WO2023153416A1 - 固体状の水崩壊性複合体及びその製造方法 - Google Patents

固体状の水崩壊性複合体及びその製造方法 Download PDF

Info

Publication number
WO2023153416A1
WO2023153416A1 PCT/JP2023/004098 JP2023004098W WO2023153416A1 WO 2023153416 A1 WO2023153416 A1 WO 2023153416A1 JP 2023004098 W JP2023004098 W JP 2023004098W WO 2023153416 A1 WO2023153416 A1 WO 2023153416A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
composite
dispersion
solvent
polymer compound
Prior art date
Application number
PCT/JP2023/004098
Other languages
English (en)
French (fr)
Inventor
伸一朗 岩本
誠 望月
尚裕 佐古
健 鈴木
遼太郎 谷
宏明 田中
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to JP2023580279A priority Critical patent/JPWO2023153416A1/ja
Priority to CN202380016061.4A priority patent/CN118488995A/zh
Publication of WO2023153416A1 publication Critical patent/WO2023153416A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/14Cellulose sulfate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/16Esters of inorganic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol

Definitions

  • One or more aspects of the present invention relate to a solid water-disintegratable composite and a method for producing the same.
  • a water-disintegratable material is a solid (for example, powder, fiber, film, etc.) in the absence of water and is easy to handle. Refers to a material that has the property of dispersing.
  • a water-disintegrable material is a water-soluble sheet-like coloring material comprising a film-forming water-soluble polymer, a dissolution accelerator, a coloring agent, and a moisture retention agent disclosed in Patent Document 1.
  • the water-soluble sheet-like coloring material has low adhesiveness, has moderate self-supporting property and flexibility, and is excellent in handleability, and when dissolved in water, it quickly becomes a uniform state. become.
  • Patent document 1 exemplifies polyvinyl alcohol, polyvinylpyrrolidone, water-soluble acrylic polymer, gelatin, starch, casein, high-molecular polysaccharides, etc. as the film-forming water-soluble polymer.
  • Patent Document 1 describes that when polyvinyl alcohol is used as a film-forming water-soluble polymer, it preferably has a degree of polymerization of 1,500 to 5,000, more preferably 2,000 to 4,500. , describes that it is preferable to use polyvinyl alcohol having a polymerization degree of 1,500 to 5,000 in combination with cellulose nanofibers as the film-forming water-soluble polymer.
  • the dissolution accelerator assists the dissolution of the water-soluble film-forming polymer, which has relatively high water solubility and relatively low water solubility. It is a component that has the effect of promoting the colorant, and also has the effect of uniformly dispersing the colorant when the sheet-like colorant is dissolved in water. More preferably 300 to 1,000 polyvinyl alcohol and/or fatty acid metal salts are described.
  • cellulose nanofibers in particular are used or desired to be used in many fields.
  • Cellulose nanofiber is a biomass-derived compound obtained by defibrating cellulose fibers to nanosize. It is well dispersed in water, and a transparent nanocellulose film can be easily obtained by drying the dispersion.
  • resin or rubber when mixed with resin or rubber, it leads to improvements in various physical properties such as strength, flexibility, and elongation, and has attracted attention as a new environmentally friendly material, and various proposals have been made.
  • Patent Document 2 using an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) as an oxidation catalyst, some of the hydroxyl groups of cellulose are carboxyl groups and aldehyde groups.
  • TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
  • biomass such as cellulose, chitin, and chitosan are efficiently converted into nanofibers, and as a means for solving the problem of effectively using biomass, a biomass dispersion fluid is injected at a high pressure of 100 to 245 MPa to cause collision.
  • a method for producing bio-nanofibers is described, which is characterized by colliding with a hard body for use.
  • Patent Document 4 describes a method for producing cellulose nanofibers in which hydroxyl groups are modified by sulfate esterification.
  • JP 2019-206646 A Japanese Unexamined Patent Application Publication No. 2008-1728 JP 2011-56456 A International publication WO2018/131721
  • Patent Document 1 discloses that when high-molecular-weight PVA is used as a water-disintegratable material in water at room temperature, it is combined with a dissolution accelerator such as low-molecular-weight PVA and fatty acid metal salt.
  • a dissolution accelerator such as low-molecular-weight PVA and fatty acid metal salt.
  • films made of high-molecular-weight PVA blended with low-molecular-weight PVA are inferior in mechanical properties to films made only of high-molecular-weight PVA.
  • one or more aspects of the present invention provide a new polymer compound, such as PVA, that is sparingly or insoluble in water at room temperature and soluble in hot water, yet readily disintegrates in water at room temperature.
  • the problem to be solved is to provide a solid water-disintegratable composite.
  • the present inventors For the purpose of enhancing the water-disintegratability of high-molecular-weight PVA at room temperature, the present inventors have also developed a material blended with a water-soluble polymer such as carboxymethylcellulose or xanthan gum instead of the low-molecular-weight PVA described in Patent Document 1. We have found that the mechanical properties are reduced compared to materials consisting only of high molecular weight PVA.
  • a water-soluble polymer such as carboxymethylcellulose or xanthan gum
  • a composite material of high-molecular-weight PVA and TEMPO-oxidized cellulose nanofibers described in Patent Document 2 or mechanically refined cellulose nanofibers described in Patent Document 3 has a high molecular weight.
  • the mechanical strength is superior to that of a material consisting of PVA alone, it has been found that the water disintegratability in water at room temperature is low.
  • a solid composite obtained by combining cellulose nanofibers having a sulfate ester group with a polymer compound that is sparingly soluble or insoluble in room temperature water and soluble in hot water is the above-mentioned.
  • the present inventors have found that the material has better mechanical properties than a material composed only of a polymer compound, and has a high water-disintegratability in water at room temperature, and has completed one or more aspects of the present invention below.
  • a solid water-disintegratable composite comprising a polymer compound that is sparingly soluble or insoluble in water at 25°C and soluble in water at 80°C or higher, and a cellulose nanofiber having a sulfate ester group.
  • the polymer compound is one or more selected from the group consisting of polyvinyl alcohol, starch, gelatin, carrageenan, agar, and derivatives thereof.
  • the polymer compound is polyvinyl alcohol having a weight average molecular weight of 60,000 g/mol or more and 220,000 g/mol or less.
  • Rotor rotation speed of the aqueous dispersion prepared by dispersing the composite in water so that the concentration of the cellulose nanofibers is 0.3% by mass at 25 ° C. using a Brookfield viscometer The composite according to any one of (1) to (7), which has a viscosity of 500 mPa ⁇ S or more when measured at 2.6 rpm. (9) The rotor rotation speed of the aqueous dispersion prepared by dispersing the composite in water so that the concentration of the cellulose nanofibers is 0.3% by mass at 25 ° C. using a Brookfield viscometer
  • the thixotropic index (TI) value obtained from the viscosity measured at 2.6 rpm and the viscosity measured at 25 ° C. using a Brookfield viscometer at a rotor rotation speed of 26 rpm is 3 to 30.
  • the complex according to any one of (1) to (8).
  • (10) A method for producing a composite according to any one of (1) to (9), preparing a solvent, and a dispersion containing the polymer compound and the cellulose nanofibers dispersed in the solvent; and A method comprising removing the solvent from the dispersion to obtain the composite. (11) removing the solvent from the dispersion to obtain the composite, The method according to (10), comprising the step of removing the solvent from the dispersion layer to obtain the film-like composite.
  • the term “sparingly soluble or insoluble in water at 25°C” means that the solubility in water at 25°C is 0 g/100 g or more and 1 g/100 g or less, preferably 0 g/100 g or more and 0.1 g/100 g or less. refers to being
  • solubility in water at 80°C or higher specifically means that the solubility in water at a temperature of 80°C or higher is 10 g/100 g or more, preferably 30 g/100 g or more.
  • a polymer compound that exhibits a solubility in the above range when fully stirred in water at a temperature of 80° C. or higher for 30 minutes or longer can be said to be “soluble in water at 80° C. or higher”.
  • Such dissolution characteristics are poorly soluble or insoluble in water at room temperature (20°C to 30°C; the same applies hereinafter) and soluble in hot water (water at 80°C or higher; the same applies hereinafter).
  • Polymer compounds alone are not suitable for use as water-disintegratable materials in water at normal temperature.
  • the present inventors predicted that a solid composite containing the polymer compound and a cellulose nanofiber having a sulfate ester group described below can be easily disintegrated in water at room temperature and used as a water-disintegratable material. I found some outside knowledge.
  • the polymer compound exhibiting the above dissolution properties is preferably one or more selected from the group consisting of polyvinyl alcohol, starch, gelatin, carrageenan and agar, and derivatives thereof, particularly preferably polyvinyl alcohol (PVA). be.
  • PVA polyvinyl alcohol
  • the high molecular weight PVA preferably has a weight average molecular weight of 60,000 g/mol or more and 220,000 g/mol or less, more preferably 64,000 g/mol or more, more preferably 200,000 g/mol or less, more preferably 150 g/mol or less. ,000 g/mol or less, more preferably 100,000 g/mol or less of PVA can be used.
  • Such high-molecular-weight PVA is preferable because it is excellent in moldability in a solid state and has high mechanical properties such as elastic modulus and strength.
  • the weight average molecular weight of PVA can be measured by gel permeation chromatography (GPC) using PVA or polystyrene as a standard substance.
  • General cellulose (undenatured cellulose) is a polysaccharide in which glucose is ⁇ -1,4-glycoside-linked, and is represented by (C 6 H 10 O 5 ) n .
  • Cellulose nanofibers used in this embodiment are Fibers composed of modified cellulose with sulfate groups.
  • the solid composite according to the present embodiment which includes the sulfated CNF and the polymer compound, replaces the sulfated CNF having a sulfate group with cellulose nanofibers that do not contain a sulfate group. Water-disintegratability is superior to solid-state composites combined with compounds.
  • the solid composite according to the present embodiment containing the sulfated CNF and the polymer compound is a material made only of the polymer compound, or a material such as carboxymethyl cellulose or xanthan gum instead of the sulfated CNF. Superior mechanical properties compared to solid composites containing water-soluble polymers.
  • the average fiber width of the sulfated CNF is not particularly limited, it is, for example, 1 nm to 1000 nm, preferably 1 nm to 100 nm, and more preferably 2 nm to 10 nm.
  • the average fiber length of the sulfated CNF is not particularly limited, but is usually 0.1 ⁇ m to 6 ⁇ m, preferably 0.1 ⁇ m to 2 ⁇ m.
  • the average fiber width and average fiber length of the sulfate-esterified CNF are determined, for example, using an atomic force microscope (SPM-9700HT, manufactured by Shimadzu Corporation), the fiber width (fiber diameter ( It can be measured by measuring the equivalent circle diameter)) and the fiber length and taking an addition average value for each.
  • the average fiber width and average fiber length can be set within a desired range by adjusting the concentration of a reagent such as sulfuric acid, the amount of pulp relative to the reaction solution, and the reaction time during the production of the sulfated CNF.
  • the sulfated CNF has a sulfate ester group represented by the following general formula (1).
  • a sulfate ester group is introduced by substituting a part of the OH groups in the cellulose that normally constitutes the fiber with the sulfate ester group represented by the general formula (1).
  • the sulfated CNF can be produced, for example, by subjecting raw material pulp to sulfate esterification and fibrillation, as shown in the Examples.
  • n is an integer of 1 to 3
  • M n+ is an n-valent cation
  • the wavy line is a binding site to another atom.
  • M n+ examples include hydrogen ions (H + ), metal ions, and ammonium ions. When n is 2 or 3, M n+ forms ionic bonds with two or three -OSO 3 - .
  • Metal ions include alkali metal ions, alkaline earth metal ions, transition metal ions, and other metal ions.
  • Alkali metal ions include lithium ions (Li + ), sodium ions (Na + ), potassium ions (K + ), rubidium ions (Rb + ), cesium ions (Cs + ), and the like.
  • Alkaline earth metal ions include calcium ions (Ca 2+ ), strontium ions (Sr 2+ ), and the like.
  • transition metal ions include iron ions, nickel ions, palladium ions, copper ions, and silver ions.
  • Other metal ions include beryllium ions, magnesium ions, zinc ions, aluminum ions, and the like.
  • Ammonium ions include not only NH 4 + but also ammonium ions derived from various amines formed by replacing one or more hydrogen atoms of NH 4 + with an organic group.
  • Ammonium ions include, for example, NH 4 + , quaternary ammonium cations, alkanolamine ions, pyridinium ions, and the like.
  • Mn + is preferably a hydrogen ion, a sodium ion, a potassium ion, a calcium ion, or a quaternary ammonium cation, and particularly preferably a sodium ion (Na + ).
  • Mn + possessed by the sulfate ester group represented by the general formula (1) may be of only one type, or may be of two or more types.
  • the wavy line is the bonding site to the carbon atom to which the OH group was bonded.
  • the sulfated CNF may have other substituents in addition to the sulfate group represented by the general formula (1).
  • the other substituent is usually cellulose constituting cellulose nanofibers. substituted with at least one of the OH groups in Examples of other substituents include, but are not particularly limited to, anionic substituents and salts thereof, ester groups, ether groups, acyl groups, aldehyde groups, alkyl groups, alkylene groups, aryl groups, and combinations of two or more thereof. etc.
  • an anionic substituent, a salt thereof, or an acyl group is preferable from the viewpoint of nano-dispersibility.
  • an anionic substituent and its salt a carboxy group, a phosphate ester group, a phosphite ester group and a xanthate group are particularly preferred.
  • the anionic substituent is in the form of a salt, sodium salt, potassium salt, and calcium salt are particularly preferred from the viewpoint of nano-dispersibility.
  • an acetyl group is preferred from the viewpoint of nano-dispersibility.
  • the amount of sulfur introduced due to the sulfate ester group can be, for example, 0.3 mmol/g or more and 3.0 mmol/g or less.
  • the amount of sulfate ester group to be introduced can be set to any appropriate value within the above range depending on the application and the like.
  • the amount of sulfur introduced into the sulfated CNF due to the sulfate groups can be represented by the sulfur content (mmol) per 1 g of cellulose nanofibers.
  • the amount of sulfur introduced is preferably 0.4 mmol/g or more and 2.5 mmol/g or less, more preferably 0.8 mmol/g or more and 2.0 mmol/g or less. It is preferable from the viewpoint of high water dispersibility after drying that the amount of sulfur introduced is within the above range.
  • the amount of sulfur introduced can be determined, for example, by the combustion absorption-ion chromatography (IC) method (combustion absorption-IC method, combustion IC method) described in the Examples.
  • the amount of sulfur introduced is adjusted, for example, by controlling the concentration of a reagent such as sulfuric acid in the solution (fibrillation solution) used when fibrillating pulp, the amount of pulp relative to the fibrillation solution, the reaction time, the reaction temperature, etc. can do.
  • the present invention relates to a solid water-disintegratable composite comprising a polymer compound that is sparingly soluble or insoluble in water at 25°C and soluble in water at 80°C or higher, and a cellulose nanofiber having a sulfate ester group.
  • the water-disintegratable composite according to this aspect has water-disintegratability, it can be used as an easily disintegrable or biodegradable molded article (packaging, etc.), an easily disintegrable adhesive, a coating agent, a paint, a cosmetic, or the like. can be used.
  • the blending ratio of the polymer compound and the sulfated CNF is not particularly limited.
  • the content of the sulfated CNF with respect to the total amount of the polymer compound and the sulfated CNF may be, for example, 2% by mass or more and 98% by mass or less, It is preferably 5% by mass or more and 95% by mass or less, more preferably 8% by mass or more and 92% by mass or less, and particularly preferably 10% by mass or more and 90% by mass or less.
  • the water-disintegratable composite according to this aspect can contain one or more other components in addition to the polymer compound and the sulfated CNF, depending on the application.
  • Said other ingredients can be water, inorganic ingredients and/or organic ingredients.
  • inorganic components include inorganic fine particles.
  • inorganic fine particles include silica, mica, talc, clay, carbon, carbonates (e.g. calcium carbonate, magnesium carbonate), oxides (e.g. aluminum oxide, titanium oxide, zinc oxide, iron oxide), ceramics (e.g. ferrite), or fine particles of mixtures thereof.
  • organic components include at least one substance selected from the group consisting of resins and rubbers.
  • resins and rubbers include phenolic resins, melamine resins, urea resins, alkyd resins, epoxy resins, unsaturated polyester resins, polyurethane resins, polyethylene resins (e.g., high-density polyethylene, medium-density polyethylene, low-density polyethylene), and polypropylene.
  • the organic compound may be a functional compound. Functional compounds include dyes, UV absorbers, antioxidants, antistatic agents, and surfactants.
  • the water-disintegratable composite according to this aspect has a total content of the polymer compound and the sulfated CNF of 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and more preferably 95% by mass or more. , more preferably 98% by mass or more, and at least part of the balance can include one or more other components as listed above.
  • the water-disintegratable composite according to this aspect may contain a total of 100% by mass of the polymer compound and the sulfated CNF.
  • the shape of the water-disintegrable composite according to this aspect is not particularly limited as long as it is solid, but it can be in the form of film, fiber, powder, granules, etc., and it is particularly preferably in the form of film or fiber. .
  • the thickness of the film, the planar dimension and planar shape of the film, and the thickness and length of the fibers are not particularly limited, and can be appropriately set according to the purpose.
  • the water-disintegrable composite according to this aspect in the form of film or fiber may be further molded into a desired three-dimensional shape.
  • the water-disintegratable composite according to this aspect preferably disintegrates in water at 25°C within 24 hours.
  • the amount of water at 25°C is not particularly limited as long as it is an excess amount with respect to the water-disintegratable composite according to this aspect.
  • Water can be used in an amount such that the concentration of is 0.3% by mass or less.
  • Disintegrating in water at 25°C within 24 hours means that when a sample of the water-disintegratable composite according to this embodiment is immersed in water at 25°C and allowed to stand still, the sample is partially separated. It means that the standing time required until it becomes impossible to grasp with tweezers is within 24 hours.
  • the water-disintegratable composite according to the present embodiment is excellent in handleability in that the hand is not sticky when touched, and the dispersion obtained by disintegrating in water is less likely to adhere to a container.
  • the present inventors found that an aqueous dispersion of a water-disintegratable composite prepared by blending a water-soluble polymer such as low-molecular-weight PVA, carboxymethyl cellulose, or xanthan gum with the polymer compound instead of the above-mentioned sulfated CNF was In contrast, the aqueous dispersion of the water-disintegratable composite prepared by blending the sulfated CNF with the polymer compound has stringiness at 25 ° C. I have found that it can be done without. Spinnability can be evaluated by the method described in Examples.
  • the composite is dispersed in water so that the concentration of the sulfated CNF is 0.3% by mass.
  • Viscosity measured at 25° C. using a Brookfield viscometer at a rotor speed of 2.6 rpm is 500 mPa ⁇ S or more, more preferably 2000 mPa ⁇ S or more, more preferably 4000 mPa ⁇ S or more, and still more preferably 5000 mPa. ⁇ S or more, more preferably 10000 mPa ⁇ S or less, more preferably 8000 mPa ⁇ S or less, still more preferably 7000 mPa ⁇ S or less.
  • Such viscosity is imparted by the viscosity of the sulfated CNF, and there is no need to add a separate thickening agent to the water-disintegratable composite according to the present embodiment.
  • the composite is dispersed in water so that the concentration of the sulfated CNF is 0.3% by mass. It was obtained from the viscosity measured at 25°C with a rotor speed of 2.6 rpm using a Brookfield viscometer and the viscosity measured at 25°C with a rotor speed of 26 rpm using a Brookfield viscometer.
  • the thixotropic index (TI) value is preferably 3-30, more preferably 4-20, more preferably 5-15.
  • TI value (viscosity measured at 2.6 rpm)/(viscosity measured at 26 rpm)
  • a method for producing a water-disintegratable composite Another one or more aspects of the present invention comprise: A method for producing a water-disintegratable composite according to one or more of the above aspects, comprising: preparing a solvent, and a dispersion containing the polymer compound and the cellulose nanofibers dispersed in the solvent; and and removing the solvent from the dispersion to obtain the composite.
  • the water-disintegratable composite according to one or more aspects above can be produced.
  • the dispersion contains a solvent, and the polymer compound and the cellulose nanofibers dispersed in the solvent, and may further contain one or more of the above-described other components as necessary.
  • dispersion refers to “dissolution” and/or “suspension”.
  • a solvent capable of dissolving the polymer compound and dispersing the cellulose nanofibers can be suitably used, and specific examples include water and dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • the amount of the solvent is not particularly limited as long as it can dissolve the soluble components in the solvent and uniformly suspend the insoluble components.
  • the concentration of the sulfated CNF in the dispersion is The amount can be 0.3% by mass or less.
  • the order of adding each component to the solvent for preparing the dispersion is not particularly limited.
  • the temperature of the water is preferably a temperature at which the polymer compound can be dissolved, more preferably 90° C. or higher, and more preferably 100° C. or lower. After dispersing the polymer compound in water at 80°C or higher, the temperature of the water may be lowered to a temperature below 80°C, such as normal temperature.
  • the timing of adding the cellulose nanofibers and the one or more other components that are optionally added to the dispersion is not particularly limited.
  • the cellulose nanofibers and the polymer compound are added to water at 80° C. or higher and dispersed to prepare the dispersion.
  • the temperature of the polymer compound dispersion is lowered to a temperature below 80°C. and then dispersing the cellulose nanofibers in the polymer compound dispersion to prepare the dispersion.
  • the step of removing the solvent from the dispersion to obtain the composite is performed by drying such as air drying, freeze drying, hot air drying, vacuum drying, and spray drying to remove the dispersion. It is a step of removing the solvent from the liquid.
  • the drying step can be appropriately selected according to the desired shape of the water-disintegratable composite.
  • the dispersion can be spray-dried to obtain a powdery water-disintegrable composite.
  • the drying step includes: and removing the solvent from the dispersion layer to obtain the composite in the form of a film.
  • the layer of the dispersion can be formed by spreading the dispersion on the bottom of a suitable container, the thickness of the layer being determined by the concentration of the ingredients in the dispersion, the desired film thickness, It can be appropriately set in consideration of the thickness of the water-disintegratable composite having a shape.
  • the removal of the solvent from the layer can be performed by a drying treatment such as air drying, freeze drying, hot air drying, vacuum drying, or the like.
  • the drying step includes: mixing the dispersion and a coagulating liquid to form a mixed liquid, forming a coagulate containing the polymer compound and the cellulose nanofibers in the mixed liquid; and is removed to obtain the film-like composite.
  • the coagulating liquid is not particularly limited as long as it can precipitate a coagulate containing the polymer compound and the cellulose nanofibers in the mixed liquid mixed with the dispersion liquid.
  • ethanol isopropyl alcohol, etc.
  • sodium sulfate (Na 2 SO 4 ) aqueous solution sodium sulfate (Na 2 SO 4 ) aqueous solution, ammonium sulfate ((NH 4 ) 2 SO 4 ) aqueous solution, zinc sulfate (ZnSO 4 ) aqueous solution, magnesium sulfate (MgSO 4 ) aqueous solution, aluminum sulfate (Al 2 (SO 4 ) 3 ) aqueous solution can be exemplified as the coagulating liquid.
  • the coagulants described in this paragraph can also be used in the wet spinning method described below.
  • the layer of coagulum can be obtained by forming the coagulum on the bottom of a suitable container.
  • the thickness of the layer can be appropriately set in consideration of the concentration of the components in the dispersion, the thickness of the desired film-like water-disintegratable composite, and the like.
  • the removal of the solvent from the layer can be performed by a drying treatment such as air drying, freeze drying, hot air drying, vacuum drying, or the like.
  • the drying step includes: A step of ejecting the dispersion liquid from a nozzle to form a fibrous ejected product (fiberization step); A step of removing the solvent from the ejected matter to obtain the fibrous composite (fiber drying step) including.
  • the fiberization step and the fiber drying step may be performed simultaneously or sequentially.
  • a dry spinning method can be exemplified as a method for simultaneously performing the fiberization step and the fiber drying step.
  • the dispersion liquid is discharged from a nozzle in an atmosphere at a temperature at which the solvent volatilizes to form a fibrous discharge, and the solvent is removed from the discharge by volatilization to form fibers. to obtain the composite in the form of
  • a wet spinning method can be exemplified as a method for sequentially performing the fiberization step and the fiber drying step.
  • the fiberization step the dispersion liquid is discharged from a nozzle into a coagulation liquid, and a fibrous discharge (coagulation) containing the polymer compound and the cellulose nanofibers is formed in the coagulation liquid. things).
  • the coagulating liquid the coagulating liquids described with respect to the other preferred embodiments above can be used.
  • a fiber drying step is further performed to remove the solvent from the fibrous discharge obtained in the fiberizing step. The removal of the solvent from the fibrous discharge can be performed by drying treatment such as air drying, freeze drying, hot air drying, and vacuum drying.
  • ⁇ Method for producing sulfuric acid esterified CNF (cellulose nanofiber)> 150 g of dimethyl sulfoxide (DMSO), 25 g of acetic anhydride (concentration in fibrillation solution: 14% by mass) and 3.35 g of sulfuric acid (concentration in fibrillation solution: 1.87% by mass) were placed in a 300 ml sample bottle and heated to 25°C. The mixture was stirred at room temperature using a magnetic stirrer for about 30 seconds to prepare a fibrillation solution.
  • DMSO dimethyl sulfoxide
  • acetic anhydride concentration in fibrillation solution: 14% by mass
  • sulfuric acid concentration in fibrillation solution: 1.87% by mass
  • the combustion absorption-IC method was used to quantify the sulfur content attributable to the sulfated CNF. That is, dry sulfate-esterified CNF (0.01 g) is placed in a magnetic board, burned in a tubular furnace (1350 ° C.) under an oxygen atmosphere (flow rate: 1.5 L / min), and the generated gas component is % hydrogen peroxide (20 ml). The resulting absorption liquid was diluted to 100 ml with pure water, and the sulfate ion concentration (% by mass) was measured by ion chromatography of the diluted solution. The amount of sulfur introduced (mmol/g) was calculated.
  • the amount of sulfate ester groups introduced into the sulfate-esterified CNF prepared above measured by this method was 1.7 mmol/g.
  • PVA Polyvinyl alcohol
  • the mixed aqueous solution was slowly discharged into 500 ml of acetone (coagulating liquid) to obtain a fibrous discharge of a mixture of sulfated CNF and PVA. .
  • the discharge is removed from acetone, dried at 50 ° C. for 10 hours using a blower dryer, and then dried at 105 ° C. for 1 hour using a blower dryer.
  • Composite of fibrous sulfate esterified CNF and PVA made the body.
  • the aqueous solution was slowly discharged into 500 ml of acetone (coagulating liquid) to obtain a fibrous discharge of PVA.
  • the ejected material was removed from the acetone, dried at 50° C. for 10 hours using a blower dryer, and then dried at 105° C. for 1 hour using a blower dryer to prepare fibrous PVA.
  • the mixed aqueous solution was slowly discharged into 500 ml of acetone (coagulating liquid) to obtain a fibrous discharge of PVA.
  • the ejected material was removed from the acetone, dried at 50° C. for 10 hours using a blower dryer, and then dried at 105° C. for 1 hour using a blower dryer to prepare fibrous PVA.
  • PVA (90%) CMC (10%) 4.05 g of PVA and 0.45 g of CMC were added to 895.5 g of water. Thereafter, the mixture was heated to 80° C. and stirred to solubilize PVA and CMC, thereby obtaining a mixed aqueous solution of PVA and CMC.
  • PVA (90%) xanthan gum (10%) 4.05 g of PVA and 0.45 g of xanthan gum were added to 895.5 g of water. Thereafter, the mixture was heated to 80° C. and stirred to solubilize PVA and xanthan gum, thereby obtaining a mixed aqueous solution of PVA and xanthan gum.
  • TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
  • sodium bromide sodium bromide
  • the temperature of the reaction system was kept at 20° C., and the pH was maintained at 10 by successively adding 3N sodium hydroxide aqueous solution.
  • the resulting product was filtered through a glass filter, washed thoroughly with water, and added with water to bring the total weight to 500 g.
  • a mixer G5200, manufactured by Biolomix
  • a uniform aqueous dispersion of TEMPO-oxidized CNF having a concentration of 1% by mass was obtained.
  • the water disintegratability was evaluated by the following procedure. 0.1 g of the sample is added to 100 g of water at 25 ° C. in a beaker and left to stand, and after a predetermined time has passed, the sample collapses when grasped with tweezers (partly separated and cannot be grasped with tweezers) determined no. The standing time at which the sample first collapsed was defined as "water disintegration time”. Samples that disintegrate in water within 1 hour are evaluated as "A1", samples that exceed 1 hour and within 2 hours are evaluated as "A2”, samples that exceed 2 hours and within 24 hours are evaluated as "A3”, and samples that do not disintegrate within 24 hours. was rated as "Y".
  • the spinnability was evaluated by the following procedure. 0.1 g of sample was added to 100 g of water at 25° C. in a beaker and stirred for 6 hours using a magnetic stirrer. When the tip of the glass rod was immersed in the dispersion liquid after stirring and then taken out, the threadability was evaluated as "yes" when the string was drawn, and as "no" when the string was not drawn.
  • the viscosity characteristics were evaluated by the following procedure.
  • a sample having a weight shown in Table 1 below was added to 100 g of water at 25° C. in a beaker and stirred for 6 hours using a magnetic stirrer. After stirring, 100 g of the homogeneous dispersion was defoamed for 10 seconds with a defoamer (Awatori Mixer ARE-310, manufactured by Thinky) and allowed to stand at 25° C. for 24 hours.
  • the viscosity of the dispersion after standing was measured at 25° C. using a Brookfield viscometer (DV-II+, manufactured by Brookfield) at rotor rotation speeds of 2.6 rpm and 26 rpm. No. for measurement. 62 rotors were used.
  • the reinforcing property was evaluated according to the following procedure.
  • the elastic modulus and strength of each sample were determined by a tensile test (films in evaluation tests 1 and 2 conform to JIS K 7176-1, fibers in evaluation test 2 conform to JIS R 7606:2000).
  • the reinforcing properties of samples whose elastic modulus and strength exceeded those of 100% PVA samples of the same shape were evaluated as " ⁇ ", and the reinforcing properties of other samples were evaluated as "X".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の一以上の態様は、ポリビニルアルコール等の、常温の水に難溶性又は不溶性であり熱水に可溶性であるポリマー化合物を含みながら、常温の水中で容易に崩壊することができる、新たな固体状の水崩壊性複合体を提供することを課題とする。 本発明の一以上の態様は、25℃の水に難溶性又は不溶性であり、80℃以上の水に可溶性であるポリマー化合物、及び硫酸エステル基を有するセルロースナノファイバーを含有する、固体状の水崩壊性複合体に関する。本発明の別の一以上の態様は、前記複合体の製造方法であって、溶媒並びに前記溶媒中に分散した前記ポリマー化合物及び前記セルロースナノファイバーを含有する分散液を調製する工程、及び、前記分散液から前記溶媒を除去して前記複合体を得る工程を含む方法に関する。

Description

固体状の水崩壊性複合体及びその製造方法
 本発明の一以上の態様は、固体状の水崩壊性複合体及びその製造方法に関する。
 水崩壊性材料とは、水の無い状態では固体状(例えば粉末、繊維、フィルム等の形状であり得る)であって取り扱いが容易であり、水に浸漬した状態では形態が崩壊し、水中に分散する性質を有する材料を指す。
 水崩壊性材料の一例として、特許文献1に開示されている、皮膜形成性水溶性ポリマー、溶解促進剤、着色剤、および湿潤保持剤を含んでなる、水溶性シート状色材が例示できる。特許文献1によれば、前記水溶性シート状色材は、粘着性が低く、適度な自立性や柔軟性を有し、取り扱い性に優れており、水に溶かしたときは速やかに均一な状態になる。特許文献1では、皮膜形成性水溶性ポリマーとして、ポリビニルアルコール、ポリビニルピロリドン、水溶性アクリルポリマー、ゼラチン、デンプン、カゼイン、高分子多糖類等が例示されている。
 特許文献1では、ポリビニルアルコールを皮膜形成性水溶性ポリマーとして用いる場合、好ましくは重合度1,500~5,000、より好ましくは2,000~4,500であることが記載されており、更に、皮膜形成性水溶性ポリマーとして、重合度が1,500~5,000のポリビニルアルコールと、セルロースナノファイバーとを組み合わせて用いることが好ましいことが記載されている。
 特許文献1では更に、溶解促進剤は、水溶性が比較的高く、相対的に水溶性の低い水溶性皮膜形成性ポリマーの溶解を補助し、シート状色材を水に接触させたときの溶解を促進する作用を有すると共に、シート状色材を水に溶解させたときに着色剤を均一に分散させる作用も有する成分であり、具体例としては、重合度が好ましくは200~1,400、より好ましくは300~1,000のポリビニルアルコール、及び/又は、脂肪酸金属塩が記載されている。
 一方、環境意識の高まりからバイオマス由来材料の実用化を目指した検討が世界中で展開されている。例えば木質(木材チップ)から取り出されるセルロースの多くは紙として人々の生活と、CO固定化の両方に大きく貢献している。セルロースの中でも特にセルロースナノファイバーは、多くの分野で利用されている、又は利用することが望まれている。セルロースナノファイバーはセルロースの繊維をナノサイズにまで解繊したバイオマス由来の化合物であり、水に良分散し、分散液を乾燥させることで容易に透明なナノセルロース膜を得る事ができる。また、樹脂やゴムと混合させると強度・柔軟性・伸び率の向上といった各種物性の向上につながり、環境適合型の新材料として着目されており、様々な提案が従来から行われている。
 例えば、特許文献2では、2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)等のN-オキシル化合物を酸化触媒として用いて、セルロースの水酸基の一部がカルボキシル基及びアルデヒド基からなる群から選ばれる少なくとも1つの官能基に酸化された微細セルロース繊維を製造する方法が記載されている。
 特許文献3では、セルロースやキチン・キトサンなどのバイオマスを効率的にナノファイバー化し、バイオマスを有効利用するという課題を解決するための手段として、バイオマスの分散流体を100~245MPaで高圧噴射して衝突用硬質体に衝突させることを特徴とする、バイオナノファイバーの製造方法が記載されている。
 特許文献4では水酸基が硫酸エステル化修飾されたセルロースナノファイバーの製造方法が記載されている。
特開2019-206646号公報 特開2008-1728号公報 特開2011-56456号公報 国際公開WO2018/131721
 ポリビニルアルコール(PVA)のなかでも高分子量PVAは固体状態での機械的強度及び成形性に優れるが、常温の水に難溶性であり、熱水に可溶性である。このため特許文献1では、高分子量PVAを常温の水への水崩壊性材料として使用する場合に低分子量PVA、脂肪酸金属塩等の溶解促進剤と組み合わせることを開示している。しかし本発明者らは、低分子量PVAを配合した高分子量PVAからなるフィルムは、高分子量PVAのみからなるフィルムと比較して機械的特性が劣ることを見出した。
 そこで、本発明の一以上の態様は、PVA等の、常温の水に難溶性又は不溶性であり熱水に可溶性であるポリマー化合物を含みながら、常温の水中で容易に崩壊することができる、新たな固体状の水崩壊性複合体を提供することを解決すべき課題とする。
 本発明者らは、高分子量PVAの常温での水崩壊性を高める目的で、特許文献1に記載の低分子量PVAに代えて、カルボキシメチルセルロース、キサンタンガム等の水溶性ポリマーを配合した材料もまた、高分子量PVAのみからなる材料と比較して機械的特性が低下することを見出した。
 更に本発明者らは、高分子量PVAと、特許文献2に記載のTEMPO酸化セルロースナノファイバー又は特許文献3に記載の機械的に微細化処理したセルロースナノファイバーとを複合化した材料は、高分子量PVAのみからなる材料と比較して機械的強度は優れるものの、常温の水中での水崩壊性が低いことを見出した。
 そこで本発明者らは鋭意研究した結果、硫酸エステル基を有するセルロースナノファイバーを、常温の水に難溶性又は不溶性であり熱水に可溶性であるポリマー化合物と組み合わせた固体状の複合体が、前記ポリマー化合物のみからなる材料よりも機械的特性に優れ、且つ、常温の水中での水崩壊性が高いことを見出し、以下の本発明の一以上の態様を完成するに至った。
(1)25℃の水に難溶性又は不溶性であり、80℃以上の水に可溶性であるポリマー化合物、及び
 硫酸エステル基を有するセルロースナノファイバー
を含有する、固体状の水崩壊性複合体。
(2)前記ポリマー化合物が、ポリビニルアルコール、デンプン、ゼラチン、カラギーナン及び寒天、並びに、それらの誘導体からなる群から選択される1以上である、(1)に記載の複合体。
(3)前記ポリマー化合物が、重量平均分子量が60,000g/mol以上220,000g/mol以下のポリビニルアルコールである、(2)に記載の複合体。
(4)前記ポリマー化合物と前記セルロースナノファイバーとの合計量に対し前記セルロースナノファイバーを2質量%以上98質量%以下含有する、(1)~(3)のいずれかに記載の複合体。
(5)フィルム又は繊維の形状を有する、(1)~(4)のいずれかに記載の複合体。
(6)25℃の水中で24時間以内に形状が崩壊する、(1)~(5)のいずれかに記載の複合体。
(7)前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液は、25℃において曳糸性を有さない、(1)~(6)のいずれかに記載の複合体。
(8)前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度が、500mPa・S以上である、(1)~(7)のいずれかに記載の複合体。
(9)前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度と、25℃においてB型粘度計を用いてローター回転速度26rpmの条件で測定される粘度とから求めたチキソトロピーインデックス(TI)値が3~30である、(1)~(8)のいずれかに記載の複合体。
(10)(1)~(9)のいずれかに記載の複合体の製造方法であって、
 溶媒、並びに、前記溶媒中に分散した前記ポリマー化合物及び前記セルロースナノファイバーを含有する分散液を調製する工程、及び、
 前記分散液から前記溶媒を除去して前記複合体を得る工程
を含む方法。
(11)前記分散液から前記溶媒を除去して前記複合体を得る工程が、
 前記分散液の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
を含む、(10)に記載の方法。
(12)前記分散液から前記溶媒を除去して前記複合体を得る工程が、
 前記分散液と凝固液とを混合して混合液を形成し、前記混合液中で、前記ポリマー化合物及び前記セルロースナノファイバーを含有する凝固物を形成する工程、及び
 前記凝固物の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
を含む、(10)に記載の方法。
(13)前記分散液から前記溶媒を除去して前記複合体を得る工程が、
 前記分散液をノズルから吐出して繊維状の吐出物を形成する工程、及び、
 前記吐出物から前記溶媒を除去して繊維状の前記複合体を得る工程
を含む、(10)に記載の方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2022-017930号の開示内容を包含する。
 本発明の一以上の態様によれば、PVA等の、常温の水に難溶性又は不溶性であり、熱水に可溶性であるポリマー化合物を含みながら、常温の水中で容易に崩壊することができる、新たな固体状の水崩壊性複合体が提供される。
1.ポリマー化合物
 本発明の一以上の態様で使用する、25℃の水に難溶性又は不溶性であり、80℃以上の水に可溶性であるポリマー化合物について以下に説明する。
 「25℃の水に難溶性又は不溶性」とは、具体的には、25℃の水への溶解度が0g/100g以上、1g/100g以下、好ましくは0g/100g以上、0.1g/100g以下であることを指す。
 「80℃以上の水に可溶性」とは、具体的には、80℃又はそれ以上の温度の水への溶解度が10g/100g以上、好ましくは30g/100g以上であることを指す。80℃又はそれ以上の温度の水中で30分間以上十分に撹拌したときに前記範囲の溶解度を呈するポリマー化合物を「80℃以上の水に可溶性」であると言うことができる。
 このような、常温(20℃~30℃を指す。以下同じ)の水に難溶性又は不溶性であり、熱水(80℃以上の水を指す。以下同じ)に可溶性であるという溶解特性を示すポリマー化合物は、単独では常温の水への水崩壊性材料として使用するのに適していない。しかし本発明者らは、前記ポリマー化合物と、後述する硫酸エステル基を有するセルロースナノファイバーとを含有する固体状の複合体が、常温の水中で容易に崩壊でき水崩壊性材料として利用できるという予想外の知見を見出した。
 上記の溶解特性を示すポリマー化合物は、好ましくは、ポリビニルアルコール、デンプン、ゼラチン、カラギーナン及び寒天、並びに、それらの誘導体からなる群から選択される1以上であり、特に好ましくはポリビニルアルコール(PVA)である。上記の溶解特性を示すPVAとしては、高分子量のPVAであることが好ましい。
 高分子量のPVAとしては、重量平均分子量が好ましくは60,000g/mol以上220,000g/mol以下、より好ましくは64,000g/mol以上、より好ましくは200,000g/mol以下、より好ましくは150,000g/mol以下、より好ましくは100,000g/mol以下のPVAが使用できる。このような高分子量のPVAは、固体状態での成形性に優れ、弾性率、強度等の機械的特性が高いため好ましい。
 PVAの重量平均分子量は、標準物質としてPVA又はポリスチレンを用いたゲル浸透クロマトグラフィ(GPC)法により測定することができる。
2.硫酸エステル基を有するセルロースナノファイバー
 続いて本発明の一以上の態様で使用する、硫酸エステル基を有するセルロースナノファイバーについて説明する。なお、前記セルロースナノファイバーを、「硫酸エステル化セルロースナノファイバー」又は「硫酸エステル化CNF」とも記す。
 一般的なセルロース(未変性セルロース)は、グルコースがβ-1,4-グリコシド結合した多糖類であり、(C10で示されるが、本態様に用いるセルロースナノファイバーは、硫酸エステル基を有する、変性されたセルロースから構成される繊維である。
 前記硫酸エステル化CNFと、前記ポリマー化合物とを含む本態様に係る固体状の複合体は、硫酸エステル基を有する前記硫酸エステル化CNFに代えて、硫酸エステル基を含まないセルロースナノファイバーを前記ポリマー化合物と組み合わせた固体状の複合体よりも水崩壊性が優れている。
 また、前記硫酸エステル化CNFと、前記ポリマー化合物とを含む本態様に係る固体状の複合体は、前記ポリマー化合物のみからなる材料や、前記硫酸エステル化CNFに代えて、カルボキシメチルセルロース、キサンタンガム等の水溶性ポリマーを配合した固体状の複合体と比較して、機械的特性に優れている。
 前記硫酸エステル化CNFの平均繊維幅は特に制限はないが、例えば1nm~1000nmであり、1nm~100nmであることが好ましく、2nm~10nmであることがより好ましい。前記硫酸エステル化CNFの平均繊維長は、特に制限はないが、通常は0.1μm~6μmであり、0.1μm~2μmであることが好ましい。
 前記硫酸エステル化CNFの平均繊維幅及び平均繊維長は、例えば原子間力顕微鏡(SPM-9700HT、株式会社島津製作所製)を用いて、任意に選択した50本の繊維における繊維幅(繊維径(円相当直径))及び繊維長を計測し、それぞれ加算平均値をとることで測定することができる。平均繊維幅及び平均繊維長は、前記硫酸エステル化CNFの製造時の硫酸等の試薬の濃度、反応溶液に対するパルプの量、反応時間を調整することにより、所望の範囲に設定することができる。
 前記硫酸エステル化CNFは、下記一般式(1)で表される硫酸エステル基を有する。前記硫酸エステル化CNFは、通常は繊維を構成するセルロース中のOH基の一部を、一般式(1)で表される硫酸エステル基で置換することにより、硫酸エステル基が導入されている。前記硫酸エステル化CNFは、例えば、実施例で示したように、原料パルプを硫酸エステル化及び解繊することにより製造することができる。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)において、nは1~3の整数であり、Mn+はn価の陽イオンであり、波線は他の原子への結合部位である。)
 Mn+としては、水素イオン(H)、金属イオン、アンモニウムイオン等が挙げられる。nが2又は3の場合、Mn+は、2つ又は3つの-OSO との間でイオン結合を形成する。
 金属イオンとしては、アルカリ金属イオン、アルカリ土類金属イオン、遷移金属イオン、その他の金属イオンが挙げられる。
 ここで、アルカリ金属イオンとしては、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)、ルビジウムイオン(Rb)、セシウムイオン(Cs)等が挙げられる。アルカリ土類金属イオンとしては、カルシウムイオン(Ca2+)、ストロンチウムイオン(Sr2+)等が挙げられる。遷移金属イオンとしては、鉄イオン、ニッケルイオン、パラジウムイオン、銅イオン、銀イオン等が挙げられる。その他の金属イオンとしては、ベリリウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオン等が挙げられる。
 アンモニウムイオンとしては、NH だけでなく、NH の1つ以上の水素原子が有機基に置き換わってできる各種アミン由来のアンモニウムイオンも挙げられる。アンモニウムイオンとしては、例えば、NH 、第四級アンモニウムカチオン、アルカノールアミンイオン、ピリジニウムイオン等が挙げられる。
 Mn+としては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、又は第四級アンモニウムカチオンが好ましく、ナトリウムイオン(Na)であることが特に好ましい。上記一般式(1)で表される硫酸エステル基が有するMn+としては1種のみであってもよく、2種以上であってもよい。
 前記硫酸エステル化CNFが、繊維を構成するセルロース中のOH基の一部を、一般式(1)で表される硫酸エステル基で置換することにより、硫酸エステル基が導入されている場合には、波線は前記OH基が結合していた炭素原子への結合部位である。
 前記硫酸エステル化CNFは、上記一般式(1)で表される硫酸エステル基の他に、他の置換基を有していてもよい。ここで、前記硫酸エステル化CNFが、上記一般式(1)で表される硫酸エステル基以外の基、すなわち、他の置換基を有する場合、他の置換基は通常セルロースナノファイバーを構成するセルロース中のOH基の少なくとも1つと置換されている。他の置換基としては、例えば、特に限定されないが、アニオン性置換基及びその塩、エステル基、エーテル基、アシル基、アルデヒド基、アルキル基、アルキレン基、アリール基、これらの2種以上の組み合わせ等が挙げられる。他の置換基が2種以上の組み合わせの場合、それぞれの置換基の含有比率は限定されない。他の置換基としては、中でも、ナノ分散性の観点からアニオン性置換基及びその塩、又はアシル基が好ましい。アニオン性置換基及びその塩としては、特にカルボキシ基、リン酸エステル基、亜リン酸エステル基、ザンテート基が好ましい。アニオン性置換基が塩の形態である場合、ナノ分散性の観点からナトリウム塩、カリウム塩、カルシウム塩が特に好ましい。また特に好ましいアシル基としては、ナノ分散性の観点からアセチル基が好ましい。
 前記硫酸エステル化CNFは、硫酸エステル基に起因する硫黄導入量が、例えば0.3mmol/g以上、3.0mmol/g以下であることができる。硫酸エステル基導入量は、前記範囲内で、用途等に応じて任意の適切な値に設定することができる。前記硫酸エステル化CNFの、硫酸エステル基に起因する硫黄導入量は、セルロースナノファイバー1g当たりの硫黄含有率(mmol)で表すことができる。硫黄導入量は、0.4mmol/g以上、2.5mmol/g以下であることが好ましく、0.8mmol/g以上、2.0mmol/g以下であることがより好ましい。硫黄導入量が前記範囲内であると、乾燥後の高い水分散性の観点から好ましい。
 硫黄導入量は、例えば実施例で記載した燃焼吸収-イオンクロマトグラフィー(IC)法(燃焼吸収-IC法、燃焼IC法)により求めることができる。硫黄導入量は、例えばパルプを解繊する際に用いる溶液(解繊溶液)中の硫酸等の試薬の濃度、解繊溶液に対するパルプの量、反応時間、反応温度等を制御することにより、調整することができる。
3.水崩壊性複合体
 本発明の一以上の態様は、
 25℃の水に難溶性又は不溶性であり、80℃以上の水に可溶性であるポリマー化合物、及び
 硫酸エステル基を有するセルロースナノファイバー
を含有する、固体状の水崩壊性複合体
に関する。
 本態様に係る水崩壊性複合体は、水崩壊性を有することから、易解体性又は生分解性の成形体(パッケージング等)、易解体性の接着剤、コーティング剤、塗料、化粧品等として利用することができる。
 本態様に係る水崩壊性複合体において、前記ポリマー化合物と、前記硫酸エステル化CNFとの配合比は特に限定されない。前記ポリマー化合物に対して前記硫酸エステル化CNFの割合が高いほど複合体の水崩壊性は高くなる傾向があり、前記硫酸エステル化CNFの割合が低いほど複合体の強度、弾性率が高くなる傾向があるため、目的とする機械的特性及び水崩壊性に応じて前記配合比を適宜調節することができる。本態様に係る水崩壊性複合体において、前記ポリマー化合物と、前記硫酸エステル化CNFとの合計量に対する前記硫酸エステル化CNFの含有量は例えば2質量%以上98質量%以下であることができ、好ましくは5質量%以上95質量%以下であり、より好ましくは8質量%以上92質量%以下であり、特に好ましくは10質量%以上90質量%以下である。
 本態様に係る水崩壊性複合体は、前記ポリマー化合物及び前記硫酸エステル化CNFに加えて、用途に応じて1以上の他の成分を含むことができる。前記他の成分は水、無機成分及び/又は有機成分であることができる。
 無機成分としては、例えば無機微粒子が挙げられる。無機微粒子の例として、シリカ、マイカ、タルク、クレー、カーボン、炭酸塩(例えば炭酸カルシウム、炭酸マグネシウム)、酸化物(例えば酸化アルミニウム、酸化チタン、酸化亜鉛、酸化鉄)、セラミックス(例えばフェライト)、又はこれらの混合物の微粒子が挙げられる。
 有機成分としては、例えば、樹脂及びゴムからなる群から選択される少なくとも1種の物質が挙げられる。樹脂及びゴムとしては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリエチレン樹脂(例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリビニルアルコール、アクリルアミド樹脂、シリコーン樹脂、天然ゴム、合成ゴムが挙げられる。また有機化合物は、機能性化合物であってもよい。機能性化合物としては、色素、UV吸収剤、酸化防止剤、帯電防止剤、界面活性剤が挙げられる。
 本態様に係る水崩壊性複合体は、前記ポリマー化合物及び前記硫酸エステル化CNFを合計で60質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、より好ましくは95質量%以上、より好ましくは98質量%以上であることができ、残部の少なくとも一部に、上記で挙げたような1以上の他の成分を含むことができる。本態様に係る水崩壊性複合体は、前記ポリマー化合物及び前記硫酸エステル化CNFを合計で100質量%含むものであってもよい。
 本態様に係る水崩壊性複合体は固体状であればその形状は特に限定されないが、フィルム、繊維、粉末、顆粒等の形状であることができ、フィルム又は繊維の形状であることが特に好ましい。フィルムの厚さ、フィルムの平面寸法及び平面形状、繊維の太さ及び長さは特に限定されず、目的に応じて適宜設定することができる。フィルム又は繊維の形状の本態様に係る水崩壊性複合体は、目的の立体形状となるように更に成形されたものであってもよい。
 本態様に係る水崩壊性複合体は、25℃の水中で24時間以内に形状が崩壊するものであることが好ましい。ここで25℃の水の量は、本態様に係る水崩壊性複合体に対して過剰量であればよく特に限定されないが、例えば本態様に係る水崩壊性複合体中の前記硫酸エステル化CNFの濃度が0.3質量%以下となる量の水を用いることができる。25℃の水中で24時間以内に形状が崩壊するとは、本態様に係る水崩壊性複合体の試料を25℃の水中に浸漬して静置したときに、前記試料が、一部が分離してピンセットで掴むことができない状態になるまでに要する静置時間が24時間以内であることを指す。
 本態様に係る水崩壊性複合体のより好ましい実施形態では、前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液が、25℃において曳糸性を有さない。本実施形態に係る水崩壊性複合体は、手に触れた際に手がべとつかない、水中で崩壊させて得られた分散液が容器に付着しにくい等の点で取り扱い性に優れる。本発明者らは、前記硫酸エステル化CNFではなく、低分子量PVA、カルボキシメチルセルロース、キサンタンガム等の水溶性ポリマーを前記ポリマー化合物に配合して調製した水崩壊性複合体の水分散液は、25℃において曳糸性を有し取り扱い性が悪いのに対して、前記硫酸エステル化CNFを前記ポリマー化合物に配合して調製した水崩壊性複合体の水分散液は25℃において曳糸性を有さないものとすることができることを見出した。曳糸性は、実施例に記載の方法により評価することができる。
 本態様に係る水崩壊性複合体より好ましい実施形態では、前記複合体を、前記硫酸エステル化CNFの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度が、500mPa・S以上、より好ましくは2000mPa・S以上、より好ましくは4000mPa・S以上、更に好ましくは5000mPa・S以上であり、より好ましくは10000mPa・S以下、より好ましくは8000mPa・S以下、更に好ましくは7000mPa・S以下である。このような粘度は、前記硫酸エステル化CNFによる粘性によって付与されるものであり、本実施形態に係る水崩壊性複合体には別途増粘剤を添加する必要がない。
 本態様に係る水崩壊性複合体より好ましい実施形態では、前記複合体を、前記硫酸エステル化CNFの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度と、25℃においてB型粘度計を用いてローター回転速度26rpmの条件で測定される粘度とから求めたチキソトロピーインデックス(TI)値が好ましくは3~30、より好ましくは4~20、より好ましくは5~15である。このようなチキソトロピック性は、前記硫酸エステル化CNFによって付与されるものであり、本実施形態に係る水崩壊性複合体には別途チキソトロピック剤を添加する必要がない。なおTI値は下記式より算出することができる。
TI値=(2.6rpmで測定される粘度)/(26rpmで測定される粘度)
4.水崩壊性複合体の製造方法
 本発明の別の一以上の態様は、
 上記の一以上の態様に係る水崩壊性複合体の製造方法であって、
 溶媒、並びに、前記溶媒中に分散した前記ポリマー化合物及び前記セルロースナノファイバーを含有する分散液を調製する工程、及び、
 前記分散液から前記溶媒を除去して前記複合体を得る工程
を含む方法
に関する。
 本態様に係る方法により、上記の一以上の態様に係る水崩壊性複合体を製造することができる。
 前記分散液は、溶媒、並びに、前記溶媒中に分散した前記ポリマー化合物及び前記セルロースナノファイバーを含有し、更に必要に応じて上述した1以上の他の成分を含有することができる。ここで「分散」は、「溶解」及び/又は「懸濁」を指す。
 前記溶媒としては、前記ポリマー化合物を溶解し、前記セルロースナノファイバーを分散することができる溶媒を好適に用いることができ、具体例としては、水及びジメチルスルホキシド(DMSO)が挙げられる。前記分散液を調製する工程では、各成分を水中で均一に分散させるために、必要に応じて撹拌を行う。
 前記溶媒の量は、前記溶媒中での可溶性成分を溶解し不溶性成分を均一に懸濁できる量であればよく特に限定されないが、例えば、前記分散液中での前記硫酸エステル化CNFの濃度が0.3質量%以下となる量であることができる。
 前記分散液の調製のための前記溶媒への各成分の添加順序は特に限定されない。
 前記溶媒として水を用いる場合、前記分散液を調製する工程では、前記ポリマー化合物を80℃以上の温度の水中で分散させることが好ましい。前記水の温度は、前記ポリマー化合物を溶解できる温度が好ましく、より好ましくは90℃以上であり、より好ましくは100℃以下である。前記ポリマー化合物を80℃以上の水中で分散させた後に、水の温度を80℃未満の温度、例えば常温に、低下させてもよい。前記セルロースナノファイバー及び必要に応じて添加される前記1以上の他の成分の、前記分散液への添加時期は特に限定されない。前記分散液を調製する工程の好ましい一態様では、前記セルロースナノファイバー及び前記ポリマー化合物を80℃以上の水に添加し分散させて前記分散液を調製する。前記分散液を調製する工程の別の好ましい一態様では、前記ポリマー化合物を80℃以上の水中で分散させてポリマー化合物分散液を得た後に、前記ポリマー化合物分散液の温度を80℃未満の温度に低下させ、続いて、前記セルロースナノファイバーを前記ポリマー化合物分散液に分散させて前記分散液を調製する。
 前記溶媒として、DMSO等の、常温で各成分を十分に分散できる溶媒を用いる場合は、前記溶媒への各成分の添加順序は、より自在に設定することができる。
 本態様に係る方法において、前記分散液から前記溶媒を除去して前記複合体を得る工程(乾燥工程)は、風乾、凍結乾燥、熱風乾燥、真空乾燥、噴霧乾燥等の乾燥処理により、前記分散液から前記溶媒を除去する工程である。乾燥工程は、目的とする水崩壊性複合体の形状に応じて適宜選択することができる。例えば、前記分散液を噴霧乾燥して、粉末状の水崩壊性複合体を得ることができる。
 本態様に係る方法の好ましい実施形態では、フィルム状の水崩壊性複合体を製造するために、前記乾燥工程は、
 前記分散液の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
を含む。
 この実施形態において、前記分散液の層は、前記分散液を適当な容器の底に広げて形成することができ、前記層の厚さは、前記分散液中の成分の濃度、目的とするフィルム状の水崩壊性複合体の厚さ等を考慮して適宜設定することができる。前記層からの前記溶媒の除去は、風乾、凍結乾燥、熱風乾燥、真空乾燥等の乾燥処理により行うことができる。
 本態様に係る方法の別の好ましい実施形態では、フィルム状の水崩壊性複合体を製造するために、前記乾燥工程は、
 前記分散液と凝固液とを混合して混合液を形成し、前記混合液中で、前記ポリマー化合物及び前記セルロースナノファイバーを含有する凝固物を形成する工程、及び
 前記凝固物の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
を含む。
 前記凝固液は、前記分散液と混合した混合液中で、前記ポリマー化合物及び前記セルロースナノファイバーを含有する凝固物を析出させることができるものであれば特に限定されないが、例えばアセトン、アルコール(メタノール、エタノール、イソプロピルアルコール等)、硫酸ナトリウム(NaSO)水溶液、硫酸アンモニウム((NHSO)水溶液、硫酸亜鉛(ZnSO)水溶液、硫酸マグネシウム(MgSO)水溶液、硫酸アルミニウム(Al(SO)水溶液が凝固液として例示できる。本段落に記載の凝固剤は後述する湿式紡糸法にも使用することができる。
 前記凝固物の層は、前記凝固物の形成を適当な容器の底で行うことにより得ることができる。前記層の厚さは、前記分散液中の成分の濃度、目的とするフィルム状の水崩壊性複合体の厚さ等を考慮して適宜設定することができる。前記層からの前記溶媒の除去は、風乾、凍結乾燥、熱風乾燥、真空乾燥等の乾燥処理により行うことができる。
 また、本態様に係る方法の更に別の好ましい実施形態では、繊維状の水崩壊性複合体を製造するために、前記乾燥工程は、
 前記分散液をノズルから吐出して繊維状の吐出物を形成する工程(繊維化工程)、及び、
 前記吐出物から前記溶媒を除去して繊維状の前記複合体を得る工程(繊維乾燥工程)
を含む。
 前記繊維化工程と前記繊維乾燥工程は同時に行ってもよいし、順に行ってもよい。
 前記繊維化工程と前記繊維乾燥工程を同時に行う方法としては、乾式紡糸法が例示できる。乾式紡糸法では、前記溶媒が揮発する温度の雰囲気中に、前記分散液をノズルから吐出して、繊維状の吐出物を形成するとともに前記吐出物から前記溶媒を揮発させて除去して、繊維状の前記複合体を得る。
 前記繊維化工程と前記繊維乾燥工程を順に行う方法としては、湿式紡糸法が例示できる。湿式紡糸法では、前記繊維化工程として、凝固液中に、前記分散液をノズルから吐出して、前記凝固液中で、前記ポリマー化合物及び前記セルロースナノファイバーを含有する繊維状の吐出物(凝固物)を形成する。凝固液としては、上記の別の好ましい実施形態に関して説明した凝固液が使用できる。湿式紡糸法では更に、前記繊維化工程で得られた前記繊維状の吐出物から前記溶媒を除去する繊維乾燥工程を行う。前記繊維状の吐出物からの前記溶媒の除去は、風乾、凍結乾燥、熱風乾燥、真空乾燥等の乾燥処理により行うことができる。
<硫酸エステル化CNF(セルロースナノファイバー)作製方法>
 ジメチルスルホキシド(DMSO)150g、無水酢酸25g(解繊溶液における濃度:14質量%)及び硫酸3.35g(解繊溶液における濃度:1.87質量%)を300mlのサンプル瓶に入れ、25℃の室温下で磁性スターラーを用いて約30秒撹拌し、解繊溶液を調製した。
 次いで、解繊溶液に針葉樹クラフトパルプNBKP(日本製紙製)5.0gを加え、25℃の室温下でさらに30分2時間撹拌し、硫酸エステル化反応を行った。撹拌後、セルロースを含む解繊溶液に蒸留水を250ml加えて反応を停止させ、続いて5質量%の水酸化ナトリウム水溶液をpHが7になるまで加え、反応液を中和した。その後、遠心分離により上澄みを除いた。
 さらに蒸留水1350mlを加えて均一分散するまで攪拌した後、遠心分離により上澄みを除いた。同じ手順を繰り返し合計3回洗浄した。遠心分離により洗浄した後に蒸留水を加え、全体の重さが500gになるまで希釈した。
 次に、ミキサー(G5200、Biolomix製)を用いて3分撹拌することにより1質量%濃度の均一な、硫酸エステル基を有するセルロースナノファイバー(硫酸エステル化CNF)の水分散液を得た。
<硫酸エステル基導入量の定量>
 燃焼吸収-IC法を用いて、硫酸エステル化CNFに起因する硫黄含有率を定量した。すなわち、磁性ボードに、乾燥した硫酸エステル化CNF(0.01g)を入れ、酸素雰囲気(流量:1.5L/分)下、環状炉(1350℃)にて燃焼させ、発生したガス成分を3%過酸化水素水(20ml)に吸収させた。得られた吸収液を純水で100mlにメスアップし、希釈液のイオンクロマトグラフィーにより硫酸イオン濃度(質量%)を測定し、測定結果に基づいて、硫酸エステル化CNF1gあたりの硫酸エステル基に起因する硫黄導入量(mmol/g)を算出した。
 この方法で測定された上記で調製した硫酸エステル化CNFの硫酸エステル基導入量は、1.7mmol/gであった。
<ポリビニルアルコール(PVA)>
 PVAとして、分子量約65000の富士フイルム和光純薬製のPVAを使用した。
<PVAと硫酸エステル化CNF(セルロースナノファイバー)との複合材料の作製>
PVA:硫酸エステル化CNF=9:1
 1%濃度の硫酸エステル化CNF水分散液45gにPVA4.05gと水850.95gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAと硫酸エステル化CNFとの混合水溶液を得た。
PVA:硫酸エステル化CNF=5:5
 1%濃度の硫酸エステル化CNF水分散液45gにPVA0.45gと水134.55gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAと硫酸エステル化CNFとの混合水溶液を得た。
PVA:硫酸エステル化CNF=1:9
 1%濃度の硫酸エステル化CNF水分散液45gにPVA0.05gと水54.95gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAと硫酸エステル化CNFとの混合水溶液を得た。
 前記混合水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状の硫酸エステル化CNFとPVAとの複合体を作製した。
 前記混合水溶液100gを装填したシリンジのノズルから、前記混合水溶液を、アセトン(凝固液)500ml中にゆっくりと吐出して、硫酸エステル化CNFとPVAとの混合物の、繊維状の吐出物を得た。前記吐出物をアセトンから取り出し、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、繊維状の硫酸エステル化CNFとPVAとの複合体を作製した。
<比較試料の作製>
(PVA(100%))
 PVA0.5gに水99.5gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAの水溶液を得た。
 前記水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状のPVAを作製した。
 前記水溶液100gを装填したシリンジのノズルから、前記水溶液をアセトン(凝固液)500ml中にゆっくりと吐出して、PVAの繊維状の吐出物を得た。前記吐出物をアセトンから取り出し、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、繊維状のPVAを作製した。
(PVA(90%)低分子量PVA(10%))
 895.5gの水にPVA4.05gと低分子量PVA(分子量約20000)0.45gを加えた。その後、80℃に加熱し、攪拌することでPVAと低分子量PVAを水溶化し、PVAと低分子量PVAの混合水溶液を得た。
 前記水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状のPVAと低分子量PVAの複合体を作製した。
 PVA水溶液100gを装填したシリンジのノズルから、前記混合水溶液を、アセトン(凝固液)500ml中にゆっくりと吐出して、PVAの繊維状の吐出物を得た。前記吐出物をアセトンから取り出し、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、繊維状のPVAを作製した。
(PVA(90%)CMC(10%))
 895.5gの水にPVA4.05gとCMC0.45gを加えた。その後、80℃に加熱し、攪拌することでPVAとCMCを水溶化し、PVAとCMCの混合水溶液を得た。
 前記水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状のPVAとCMCの複合体を作製した。
(PVA(90%)キサンタンガム(10%))
 895.5gの水にPVA4.05gとキサンタンガム0.45gを加えた。その後、80℃に加熱し、攪拌することでPVAとキサンタンガムを水溶化し、PVAとキサンタンガムの混合水溶液を得た。
 前記水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状のPVAとキサンタンガムの複合体を作製した。
(PVA(90%)機械処理CNF(10%))
 機械処理CNFとして、スギノマシン社製BiNFi-s、WFo-10002を使用した。
 1%濃度の機械処理CNF水分散液45gにPVA4.05gと水850.95gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAと機械処理CNFとの混合水溶液を得た。
 前記水溶液100gを10×20cmのプラスチック容器に入れ、送風乾燥機を使用して50℃で10時間乾燥させた後、送風乾燥機を用い105℃で1時間乾燥させ、厚さ20μmのフィルム状のPVAと機械処理CNFの複合体を作製した。
(PVA(90%)TEMPO酸化CNF(10%))
 2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)0.13mmol及び臭化ナトリウム10mmolを水に溶解させて、250mLの水溶液を得た。この水溶液に、絶対乾燥状態の針葉樹クラフトパルプNBKP(日本製紙製)5gを加え、パルプが均一に分散するまで撹拌した。混合物の温度を20℃にした後、次亜塩素酸ナトリウム水溶液(富士フイルム和光純薬株式会社製)32mmolを添加して酸化反応を開始させた。反応中、反応系の温度を20℃に保ち、3N水酸化ナトリウム水溶液を逐次添加することによりpHを10に維持した。3時間反応させた後、結果物をガラスフィルターでろ過し、ろ物を十分に水洗し、水を加えて全体の重さを500gにした。次に、ミキサー(G5200、Biolomix製)を用いて3分撹拌することにより1質量%濃度の均一な、TEMPO酸化CNFの水分散液を得た。
 1%濃度のTEMPO酸化CNF水分散液45gにPVA4.05gと水850.95gを加えた。その後、80℃に加熱し、攪拌することでPVAを水溶化し、PVAとTEMPO酸化CNFとの混合水溶液を得た。
<評価試験1(表2)>
 上記で調製した、フィルム状のPVA(90%)と硫酸エステル化CNF(10%)との複合体並びにフィルム状の比較試料の水崩壊性、曳糸性、粘度特性及び補強性を評価した。結果を表2に示す。
 水崩壊性は次の手順で評価した。試料0.1gを、ビーカー内の25℃の水100gに加えて静置し、所定時間経過後に前記試料をピンセットで掴んだ時に崩壊する(一部が分離し、ピンセットで掴むことができない)か否かを判定した。前記試料が最初に崩壊した静置時間を「水崩壊時間」とした。水崩壊時間が1時間以内の試料を「A1」、1時間超2時間以内の試料を「A2」、2時間超24時間以内の試料を「A3」と評価し、24時間以内で崩壊しない試料を「Y」と評価した。
 曳糸性は次の手順で評価した。試料0.1gを、ビーカー内の25℃の水100gに加え、マグネチックスターラーを用いて6時間撹拌した。撹拌後の分散液にガラス棒の先端を浸してから取り出したときに、糸を曳く場合に曳糸性「有り」、糸を曳かない場合に曳糸性「無し」、と評価した。
 粘度特性は次の手順で評価した。下記表1に示す重量の試料を、ビーカー内の25℃の水100gに加え、マグネチックスターラーを用いて6時間撹拌した。撹拌後の均一な分散液100gを脱泡装置(あわとり練太郎ARE-310,シンキー製)で10秒間脱泡処理し、25℃において24時間静置した。静置後の分散液の、25℃における、B型粘度計(DV-II+、Brookfield社製)を用いたローター回転速度2.6rpm及び26rpmでの粘度を測定した。測定にはNo.62のローターを使用した。粘度測定開始10分後の粘度をN=3回記録し、その平均値を分散液の粘度とした。ローター回転速度2.6rpmで測定した粘度の、ローター回転速度26rpmで測定した粘度に対する倍率をTI(チキソトロピーインデックス)値とした(JIS K 6833-1:2008準拠)。
Figure JPOXMLDOC01-appb-T000002
 補強性は以下の手順で評価した。引張試験(評価試験1及び2でのフィルムはJIS K 7176-1に準拠、評価試験2での繊維はJIS R 7606:2000に準拠)により各試料の弾性率及び強度を求めた。弾性率及び強度が、PVA100%の同形状の試料の弾性率及び強度を上回った試料の補強性を「〇」と評価し、その他の試料の補強性を「×」と評価した。
Figure JPOXMLDOC01-appb-T000003
<評価試験2(表4)>
 上記で調製した、質量比が異なるPVAと硫酸エステル化CNFとの複合体の、フィルム状試料及び繊維状試料の、水崩壊性、曳糸性、粘度特性及び補強性を評価した。評価方法は「評価試験1(表2)」に記載の通りである。粘度特性の測定に用いた試料の重量を表3に示す。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (13)

  1.  25℃の水に難溶性又は不溶性であり、80℃以上の水に可溶性であるポリマー化合物、及び
     硫酸エステル基を有するセルロースナノファイバー
    を含有する、固体状の水崩壊性複合体。
  2.  前記ポリマー化合物が、ポリビニルアルコール、デンプン、ゼラチン、カラギーナン及び寒天、並びに、それらの誘導体からなる群から選択される1以上である、請求項1に記載の複合体。
  3.  前記ポリマー化合物が、重量平均分子量が60,000g/mol以上220,000g/mol以下のポリビニルアルコールである、請求項2に記載の複合体。
  4.  前記ポリマー化合物と前記セルロースナノファイバーとの合計量に対し前記セルロースナノファイバーを2質量%以上98質量%以下含有する、請求項1~3のいずれか1項に記載の複合体。
  5.  フィルム又は繊維の形状を有する、請求項1~4のいずれか1項に記載の複合体。
  6.  25℃の水中で24時間以内に形状が崩壊する、請求項1~5のいずれか1項に記載の複合体。
  7.  前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液は、25℃において曳糸性を有さない、請求項1~6のいずれか1項に記載の複合体。
  8.  前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度が、500mPa・S以上である、請求項1~7のいずれか1項に記載の複合体。
  9.  前記複合体を、前記セルロースナノファイバーの濃度が0.3質量%となるように水に分散させることにより調製した水分散液の、25℃においてB型粘度計を用いてローター回転速度2.6rpmの条件で測定される粘度と、25℃においてB型粘度計を用いてローター回転速度26rpmの条件で測定される粘度とから求めたチキソトロピーインデックス(TI)値が3~30である、請求項1~8のいずれか1項に記載の複合体。
  10.  請求項1~9のいずれか1項に記載の複合体の製造方法であって、
     溶媒、並びに、前記溶媒中に分散した前記ポリマー化合物及び前記セルロースナノファイバーを含有する分散液を調製する工程、及び、
     前記分散液から前記溶媒を除去して前記複合体を得る工程
    を含む方法。
  11.  前記分散液から前記溶媒を除去して前記複合体を得る工程が、
     前記分散液の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
    を含む、請求項10に記載の方法。
  12.  前記分散液から前記溶媒を除去して前記複合体を得る工程が、
     前記分散液と凝固液とを混合して混合液を形成し、前記混合液中で、前記ポリマー化合物及び前記セルロースナノファイバーを含有する凝固物を形成する工程、及び
     前記凝固物の層から前記溶媒を除去してフィルム状の前記複合体を得る工程
    を含む、請求項10に記載の方法。
  13.  前記分散液から前記溶媒を除去して前記複合体を得る工程が、
     前記分散液をノズルから吐出して繊維状の吐出物を形成する工程、及び、
     前記吐出物から前記溶媒を除去して繊維状の前記複合体を得る工程
    を含む、請求項10に記載の方法。
PCT/JP2023/004098 2022-02-08 2023-02-08 固体状の水崩壊性複合体及びその製造方法 WO2023153416A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023580279A JPWO2023153416A1 (ja) 2022-02-08 2023-02-08
CN202380016061.4A CN118488995A (zh) 2022-02-08 2023-02-08 固体状的水崩解性复合体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017930 2022-02-08
JP2022017930 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153416A1 true WO2023153416A1 (ja) 2023-08-17

Family

ID=87564361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004098 WO2023153416A1 (ja) 2022-02-08 2023-02-08 固体状の水崩壊性複合体及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2023153416A1 (ja)
CN (1) CN118488995A (ja)
WO (1) WO2023153416A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2010242063A (ja) * 2009-03-17 2010-10-28 Kuraray Co Ltd セルロースナノファイバー複合ポリビニルアルコール系重合体組成物
JP2011056456A (ja) 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
WO2018131721A1 (ja) 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
JP2018141132A (ja) * 2017-10-12 2018-09-13 スターライト工業株式会社 ガスバリア層形成用樹脂組成物
JP2019206646A (ja) 2018-05-29 2019-12-05 株式会社パイロットコーポレーション 水溶性シート状色材
JP2019218506A (ja) * 2018-06-21 2019-12-26 日本製紙株式会社 セルロースナノファイバー及びポリビニルアルコール系重合体を含む組成物の製造方法
CN112111119A (zh) * 2020-09-21 2020-12-22 桂林理工大学 一种具有优异性能的聚乙烯醇纳米复合材料及其制备方法
JP2022017930A (ja) 2020-07-14 2022-01-26 富士電機株式会社 半導体装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001728A (ja) 2006-06-20 2008-01-10 Asahi Kasei Corp 微細セルロース繊維
JP2010242063A (ja) * 2009-03-17 2010-10-28 Kuraray Co Ltd セルロースナノファイバー複合ポリビニルアルコール系重合体組成物
JP2011056456A (ja) 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology バイオナノファイバーの製造方法
WO2018131721A1 (ja) 2017-01-16 2018-07-19 株式会社Kri 硫酸エステル化修飾セルロースナノファイバーおよびセルロースナノファイバーの製造方法
JP2018141132A (ja) * 2017-10-12 2018-09-13 スターライト工業株式会社 ガスバリア層形成用樹脂組成物
JP2019206646A (ja) 2018-05-29 2019-12-05 株式会社パイロットコーポレーション 水溶性シート状色材
JP2019218506A (ja) * 2018-06-21 2019-12-26 日本製紙株式会社 セルロースナノファイバー及びポリビニルアルコール系重合体を含む組成物の製造方法
JP2022017930A (ja) 2020-07-14 2022-01-26 富士電機株式会社 半導体装置の製造方法
CN112111119A (zh) * 2020-09-21 2020-12-22 桂林理工大学 一种具有优异性能的聚乙烯醇纳米复合材料及其制备方法

Also Published As

Publication number Publication date
JPWO2023153416A1 (ja) 2023-08-17
CN118488995A (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
HPS et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications
JP6539282B2 (ja) 架橋ポリα−1,3−グルカンの溶液の製造およびそれから作製されるポリα−1,3−グルカンフィルム
Hubbe et al. Cellulosic nanocomposites: a review
Zeng et al. Chitin whiskers: An overview
EP3190216B1 (en) Method for manufacturing super absorbent polymer fiber
Frone et al. Some aspects concerning the isolation of cellulose micro-and nano-fibers
JP6526710B2 (ja) 填料入り繊維
JP6254335B2 (ja) セルロースザンテートナノファイバー
JP5676860B2 (ja) 多糖類ナノファイバーとその製造方法、多糖類ナノファイバー含むイオン液体溶液と複合材料
BR112019014155B1 (pt) Nanofibras de celulose modificadas com éster sulfato e método para a produção das nanofibras de celulose
EP2108676B1 (en) Crosslinked paper based material
JP6361123B2 (ja) 水系接着剤組成物
CN108602896A (zh) 改性羧甲基化纤维素纳米纤维分散液及其制造方法
JP6189659B2 (ja) 防曇剤および防曇用フィルム
CN106133034A (zh) 具有矿物填料和小纤维素颗粒的聚乙烯醇纤维和薄膜
CN103446621A (zh) 一种含纳米银的海藻酸钠基抗菌医用敷料及其制备方法
Uddin et al. Preparing Bombyx mori silk nanofibers using a sustainable and scalable approach
JP2020066658A (ja) 硫酸エステル化セルロースナノファイバー及びその乾燥物
Adhikari et al. Collagen incorporated functionalized bacterial cellulose composite: a macromolecular approach for successful tissue engineering applications
CN116375891B (zh) 竹基微纳米复合纤维素、制备方法及多尺度结构的纤维素薄膜
Cheng et al. Sustainable green polymers with agro-based nanomaterials: a selected review
WO2023153416A1 (ja) 固体状の水崩壊性複合体及びその製造方法
CN113423778A (zh) 吸水性组合物及其制造方法
Li et al. Preparation and properties of nano-cellulose/sodium alginate composite hydrogel
Shiravandi et al. Fabrication of affinity-based drug delivery systems based on electrospun chitosan sulfate/poly (vinyl alcohol) nanofibrous mats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580279

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023752880

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023752880

Country of ref document: EP

Effective date: 20240909