WO2023153399A1 - 電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物 - Google Patents

電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物 Download PDF

Info

Publication number
WO2023153399A1
WO2023153399A1 PCT/JP2023/003990 JP2023003990W WO2023153399A1 WO 2023153399 A1 WO2023153399 A1 WO 2023153399A1 JP 2023003990 W JP2023003990 W JP 2023003990W WO 2023153399 A1 WO2023153399 A1 WO 2023153399A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
ferrite
particle powder
sheet
ferrite particle
Prior art date
Application number
PCT/JP2023/003990
Other languages
English (en)
French (fr)
Inventor
英視 塚本
耕三 渡部
秀治 満井
靖士 西尾
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Publication of WO2023153399A1 publication Critical patent/WO2023153399A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present disclosure relates to an electromagnetic wave absorbing ferrite particle powder, a method for producing the electromagnetic wave absorbing ferrite particle powder, and a resin composition using the electromagnetic wave absorbing ferrite particle powder.
  • the electromagnetic wave absorption sheet is required to have flexibility and electromagnetic wave absorption performance.
  • M-type ferrite magnetoplumbite-type ferrite
  • the absorption of the ferrite particle powder itself There are means to increase performance and means to highly fill the sheet with the ferrite particle powder.
  • the flexibility of the sheet decreases significantly with increasing loading. And, if the filling amount is increased too much, sheet formation itself becomes difficult.
  • 5G communication which has become popular in recent years, is expected to be used in many electronic devices.
  • This 5G communication uses radio waves with frequencies in the GHz band, which can transmit a large amount of information at high speed with low delay and simultaneous connections.
  • the density of electronic components is increasing along with the miniaturization of electronic equipment.
  • a current flows through a high-density electronic component, part of the energy may be radiated to other electronic components as electromagnetic waves.
  • this radiated electromagnetic wave may be reflected within the housing of the electronic device.
  • An electromagnetic wave absorber is used to suppress electromagnetic noise that causes such malfunction.
  • Electromagnetic wave absorbers are often used as retrofit measures against sources of electromagnetic noise. For this reason, the electromagnetic wave absorbers used are applied not only to flat surfaces, but often also to non-flat surfaces, such as on electronic components. Therefore, the electromagnetic wave absorber is required to have good flexibility. At the same time, the electromagnetic wave absorber is often used in an electronic housing where electronic components are densely arranged and where there is almost no empty space. Therefore, the electromagnetic wave absorber is required to have a thin sheet shape and high electromagnetic wave absorption performance.
  • An electromagnetic wave absorbing material is a material that converts absorbed electromagnetic wave energy into heat energy. That is, the electromagnetic wave energy loss becomes the electromagnetic wave absorption performance. For example, electromagnetic wave energy is lost due to magnetic loss, dielectric loss, or conductive loss.
  • M-type ferrite has a high magnetocrystalline anisotropy. From this, the M-type ferrite exhibits magnetic resonance in the GHz band and exhibits the imaginary part ⁇ ′′ of the complex magnetic permeability that obtains the magnetic loss at that frequency. Therefore, M-type ferrite is promising as an electromagnetic wave absorbing material in a high frequency band.
  • M-type barium ferrite is known to have a resonance frequency around 50 GHz.
  • M-type barium ferrite cannot be said to be soft magnetic.
  • the soft magnetization proceeds.
  • magnetocrystalline anisotropy and saturation magnetization change. Therefore, the resonance frequency can be controlled to 50 GHz or less. In this way, it is possible to obtain an electromagnetic wave absorbing ferrite that can be used in various high frequency bands such as the 5G communication band.
  • the absorption performance of the electromagnetic wave absorber obtained by mixing M-type ferrite and resin varies greatly depending on the amount of ferrite filled in the resin. In order to improve the electromagnetic wave absorption performance, it is necessary to increase the filling amount of ferrite. On the other hand, if the ferrite content is increased, the electromagnetic wave absorber, which is required to be flexible as a sheet, becomes a hard and brittle resin composition. That is, if the ferrite filling amount is too large, the sheet production itself becomes difficult.
  • NBR acrylonitrile-butadiene rubber
  • additives are added in addition to the resin and ferrite. After these components are kneaded, vulcanization imparts appropriate elasticity and flexibility to the sheet. At this time, if the resin composition has a high viscosity during melt-kneading due to the high ferrite content, the additive is not micro-dispersed. As a result, subsequent vulcanization proceeds unevenly, resulting in deterioration of physical properties such as a hard and less flexible sheet.
  • NBR acrylonitrile-butadiene rubber
  • Patent Document 1 discloses an electromagnetic wave absorbing sheet having an electromagnetic wave absorbing layer containing a rubber binder and magnetic iron oxide, which is an electromagnetic wave absorbing material that magnetically resonates in the millimeter wave band or higher.
  • the maximum elongation of the elastic region in one in-plane direction of the electromagnetic wave absorbing sheet is 20% to 200%.
  • the content of the magnetic iron oxide in the electromagnetic wave absorbing layer is 30% by volume or more.
  • Epsilon iron oxide or strontium ferrite is used as the magnetic iron oxide.
  • Patent Document 2 discloses powder of Y-type hexagonal ferrite suitable for an electromagnetic wave absorber used in a high frequency band of 1 GHz or higher.
  • This powder of Y -type hexagonal ferrite has a composition formula of BaxMyFezO22 (1.5 ⁇ x ⁇ 2.2, 1.2 ⁇ y ⁇ 2.5, 11 ⁇ z ⁇ 13) . expressed.
  • M is one of divalent metal elements (excluding Fe) or a combination of two or more thereof, or a combination of a monovalent metal element and a trivalent metal element (including Fe). is.
  • the volume ratio of particles having a particle diameter of 1.0 ⁇ m or less among the particles contained in the Y-type hexagonal ferrite powder is 10% or less. Moreover, the volume ratio of particles having a particle diameter of 10.2 ⁇ m or more is 12% or less.
  • Patent Document 3 discloses an electromagnetic wave absorber for the GHz band represented by the composition formula AFe (12-X) (B1 0.5 (Co (1-y) Zn y ) 0.5 ) x O 19
  • a suitable magnetoplumbite hexagonal ferrite is disclosed.
  • A is one or two of Ba and Sr.
  • B1 is one or two of Ti and Zr.
  • x is 0.1 to 2.0.
  • y is 0.2 to 0.8.
  • the electromagnetic wave absorption sheet is required to have flexibility and high electromagnetic wave absorption performance.
  • the sheet In order to improve the absorption performance of an electromagnetic wave absorption sheet using M-type ferrite having electromagnetic wave absorption performance in the GHz band, the sheet needs to be highly filled with ferrite powder.
  • the flexibility of the sheet is significantly reduced. As a result, if the filling amount is excessively increased, sheet formation itself becomes difficult.
  • the viscosity of the resin composition during melt-kneading increases. Therefore, it is difficult to finely disperse each component in the resin composition. As a result, the flexibility of the sheet or the uniformity of physical properties is remarkably deteriorated. In particular, the effect of the additive is exhibited by a minute amount of the additive. Therefore, when the additive is not micro-finely dispersed, there is a problem that the workability and physical properties of the sheet are greatly affected.
  • the electromagnetic wave-absorbing resin sheet containing magnetic iron oxide such as ferrite in the resin described in Patent Document 1 has a controlled elongation rate, so that it can be installed even at a location where the shape of the installation location is not flat. .
  • the resin composition in a molten state has a high viscosity, so that the microscopic fine dispersion of each component is deteriorated.
  • the problem of deterioration of physical properties is improved by controlling the powder of magnetic iron oxide such as ferrite.
  • the Y-type hexagonal ferrite suitable for an electromagnetic wave absorber used in the frequency band around 3 to 6 GHz described in Patent Document 2 has a controlled particle size, so the thickness of the electromagnetic wave absorbing sheet can be reduced.
  • the resin composition in a molten state has a high viscosity, so that the microscopic fine dispersion of each component is deteriorated.
  • the powder of magnetic iron oxide such as ferrite is controlled by controlling the powder of magnetic iron oxide such as ferrite.
  • the magnetoplumbite-type hexagonal ferrite suitable for the electromagnetic wave absorber for the GHz band described in Patent Document 3 can suppress the frequency fluctuation due to the thickness fluctuation of the electromagnetic wave absorbing resin sheet containing ferrite.
  • the resin composition in a molten state has a high viscosity, so that the microscopic fine dispersion of each component is deteriorated.
  • the problem of deterioration of physical properties is improved by controlling the powder of magnetic iron oxide such as ferrite.
  • an object of the present disclosure is to provide an electromagnetic wave absorbing ferrite powder that can maintain the flexibility and uniformity of physical properties of the sheet even when the sheet is highly packed and has excellent electromagnetic wave absorption performance in the GHz band, and the electromagnetic wave.
  • An object of the present invention is to provide a resin composition using ferrite powder for absorption.
  • the first embodiment of the present disclosure consists of a magnetoplumbite-type ferrite represented by the chemical formula: A x Fe (12-y) (Ti z Mn (1-z) ) y O 19 , where A is Ba , Sr, Ca, and Pb, x is 0.9 to 1.1, y is 5.0 or less, z is 0.35 to 0.65, and 3
  • the electromagnetic wave absorbing ferrite particle powder has a compacted density of 0.00 g/cm 3 or more and an average particle diameter of 0.50 to 3.0 ⁇ m determined by an air permeation method (Blain method).
  • a second embodiment of the present disclosure is the electromagnetic wave absorbing ferrite particle powder of the first embodiment, which has a specific surface area of 0.50 to 4.0 m 2 /g.
  • an iron raw material, a titanium raw material, a manganese raw material, and a compound raw material of element A are mixed and molded, fired to produce magnetoplumbite-type ferrite, pulverized, and then annealed.
  • a method for producing an electromagnetic wave absorbing ferrite particle powder according to the first embodiment characterized by:
  • a fourth embodiment of the present disclosure is a resin composition comprising the electromagnetic wave absorbing ferrite particle powder of the first embodiment and a resin.
  • the electromagnetic wave absorbing M-type ferrite and the resin composition using the same according to the present embodiment even a sheet highly filled with ferrite powder can maintain its flexibility and uniformity of physical properties.
  • the sheet has excellent electromagnetic wave absorption performance in the GHz band.
  • Fig. 1 is a conceptual diagram of a vulcanization curve created using a curastometer.
  • the electromagnetic wave absorbing ferrite particle powder according to the present embodiment contains magnetoplumbite-type ferrite represented by the chemical formula: A x Fe (12-y) (Ti z Mn (1-z) ) y O 19 .
  • A is at least one element selected from Ba, Sr, Ca, and Pb.
  • Preferred elements are Ba and Sr.
  • x is 0.9 to 1.1, preferably 0.94 to 1.06, more preferably 0.97 to 1.03.
  • y is 5.0 or less, preferably 0.02 to 4.20, more preferably 0.05 to 3.30, still more preferably 0.08 to 2.40.
  • z is 0.35 to 0.65, preferably 0.38 to 0.63, more preferably 0.40 to 0.60. That is, the magnetoplumbite-type ferrite according to the present embodiment contains Ti and Mn in a ratio within a specific range.
  • x When x is less than 0.9 or exceeds 1.1, it becomes difficult to obtain single-phase M-type ferrite. Therefore, x less than 0.9 or greater than 1.1 is not preferred.
  • y exceeds 5.0 the imaginary part ⁇ ′′ of the complex magnetic permeability that provides the magnetic loss is also low because the saturation magnetization is too low. There are problems such as precipitation as impurities in the sintered body, or significant hardening of the sintered body during reaction firing, which reduces the pulverization efficiency. Therefore, y exceeding 5.0 is not preferable.
  • z When z is less than 0.35 or more than 0.65, the electrical neutrality cannot be maintained, resulting in deposition of impurities. Therefore, z less than 0.35 or greater than 0.65 is not preferred.
  • the compacted density of the electromagnetic wave absorbing ferrite particle powder according to the present embodiment is 3.00 g/cm 3 or more. This makes it possible to lower the viscosity of the resin composition during melt-kneading. If the compression density is less than 3.00 g/cm 3 , it is difficult to lower the viscosity of the resin composition during melt-kneading.
  • the compressed density is preferably 3.06 g/cm 3 or more, more preferably 3.10 g/cm 3 or more.
  • the upper limit of compressed density is, for example, 3.60 g/cm 3 .
  • the compressed density is measured by the method described in the examples below.
  • the average particle size of the electromagnetic wave absorbing ferrite particle powder according to the present embodiment which is obtained by the air permeation method (Blain method), is 0.50 to 3.0 ⁇ m. If the average particle size is less than 0.50 ⁇ m, the wettability between the ferrite powder surface and the resin is reduced. As a result, the flexibility of the sheet is lost. If the average particle size exceeds 3.0 ⁇ m, the electromagnetic wave absorbing sheet becomes brittle because the resin spaces between the ferrite powders become large. As a result, the flexibility of the sheet is lost.
  • the average particle size is preferably 0.65-2.50 ⁇ m, more preferably 0.80-2.00 ⁇ m.
  • the specific surface area of the electromagnetic wave absorbing ferrite particle powder according to the present embodiment is preferably 0.50 to 4.0 m 2 /g. If the specific surface area is less than 0.50, the resin space between the ferrite powders becomes large, and the electromagnetic wave absorbing sheet becomes fragile. As a result, the flexibility of the sheet is lost. If the specific surface area exceeds 4.0 m 2 /g, the wettability between the surface of the ferrite powder and the resin is reduced, resulting in loss of flexibility of the sheet.
  • the specific surface area is more preferably 1.00 to 3.80 m 2 /g, still more preferably 1.40 to 3.60 m 2 /g, still more preferably 1.80 to 3.50 m 2 /g. be.
  • the median diameter (D50) of the electromagnetic wave absorbing ferrite particle powder according to the present embodiment is preferably 0.80 to 4.00 ⁇ m. If the median diameter (D50) is less than 0.80 ⁇ m, the wettability between the surface of the ferrite powder and the resin is reduced, resulting in loss of flexibility of the sheet. If the median diameter (D50) exceeds 4.00 ⁇ m, the resin space between the ferrite powders becomes large, making the electromagnetic wave absorbing sheet fragile. As a result, the flexibility of the sheet is lost.
  • the median diameter (D50) is more preferably 1.00 to 3.60 ⁇ m, still more preferably 1.20 to 3.10 ⁇ m.
  • the iron raw material, the titanium raw material, the manganese raw material, and the compound raw material of the element A are mixed, molded, and fired to form the magnetoplumbite type ferrite.
  • the magnetoplumbite-type ferrite thus produced is pulverized and then annealed to obtain the desired electromagnetic wave absorbing ferrite particle powder.
  • Iron oxide such as ⁇ -Fe 2 O 3 is preferably used as the iron raw material.
  • Titanium oxide such as TiO 2 is preferably used as the titanium raw material.
  • Manganese oxide such as Mn 2 O 3 or Mn 3 O 4 is preferably used as the manganese raw material.
  • Preferred examples of raw materials for element A include oxides, hydroxides and carbonates of Ba, Sr, Ca and Pb.
  • Compound raw materials of A are mixed. These raw materials are mixed using, for example, a wet attritor, a homomixer, or a high speed mixer. The obtained raw material mixture is pulverized and then granulated using an extruder or the like.
  • a flux is preferably added when the raw material mixture is pulverized or granulated.
  • Preferred examples of fluxes include BaCl2.2H2O , SrCl2.6H2O , CaCl2.2H2O , KCl , MgCl2 , NaCl , and Na2B4O7 .
  • the amount of flux to be added is preferably 0.1 to 10.0% by weight, more preferably 0.1 to 8.0% by weight, based on the raw material mixture obtained above.
  • Bi 2 O 3 as a reaction accelerator may be added to and mixed with the raw material mixed powder or the pulverized powder after firing.
  • the obtained compact is fired to form magnetoplumbite-type ferrite.
  • the firing temperature is preferably 1000-1400°C, more preferably 1050-1350°C. If the firing temperature is lower than 1000°C, the ferritization reaction may not proceed sufficiently. Therefore, a single phase may not be obtained, or a theoretical saturation magnetization value ( ⁇ s) may not be obtained for the composition. If the sintering temperature is higher than 1400° C., fusion between particles due to sintering proceeds, which imposes a burden on the manufacturing process such as pulverization for controlling the particle size to a predetermined value. Therefore, firing temperatures higher than 1400° C. are not preferred.
  • the fired product obtained is pulverized.
  • the fired product may be pulverized at room temperature.
  • the fired product is pulverized using, for example, a hammer mill or a wet attritor. If the calcined material is ground in a wet attritor, then the ground material is washed with water, filtered and dried.
  • the resulting pulverized material is then annealed in the atmosphere, preferably at 600 to 1100°C, more preferably at 650 to 1050°C. If the annealing temperature is higher than 1100° C., fusion between particles due to sintering proceeds, making it difficult to obtain a powder with good dispersibility. Therefore, annealing temperatures higher than 1100° C. are not preferred. Note that the annealing treatment is performed at a temperature lower than the firing temperature. In this embodiment, the annealing treatment in this temperature range is important for achieving the powder properties of the M-type ferrite powder specified in this embodiment.
  • the resin composition used in this embodiment is composed of electromagnetic wave absorbing ferrite particles and a resin.
  • resins include hydrogenated styrene thermoplastic elastomer (SEBS), vinyl chloride resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin, PPS resin, polyamide (nylon) resin, polyamide elastomer, Polymerized fatty acid-based polyamide, acrylonitrile butadiene rubber (NBR), natural rubber (NR), isoprene rubber (IR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), and silicone rubber (Q).
  • SEBS hydrogenated styrene thermoplastic elastomer
  • VBS hydrogenated styrene thermoplastic elastomer
  • vinyl chloride resin ethylene-vinyl acetate copolymer resin
  • ethylene-ethyl acrylate copolymer resin ethylene-ethyl acrylate copolymer resin
  • the electromagnetic wave-absorbing ferrite particle powder is preferably surface-treated in advance with a surface treatment agent.
  • surface treatment agents include silane coupling agents and titanate coupling agents.
  • additives that can be added as necessary include plasticizers, reinforcing agents, heat-resistant improvers, thermally conductive fillers, adhesives, antioxidants, light stabilizers, antistatic agents, and coloring agents. agents can be mentioned.
  • the functional group may be vinyl, epoxy, amino, methacryl, mercapto, phosphoryl, or sulfo, and a methoxy or ethoxy group. alkoxy groups can be used.
  • Electromagnetic wave absorbing ferrite particle powder (which may be surface-treated if necessary), resin, and, if necessary, various additives are kneaded. After that, the obtained kneaded product is molded and rolled into a desired thickness and shape by a known method. Thus, an electromagnetic wave absorbing sheet is manufactured.
  • the resin When rubber is used as the resin, the resin may be vulcanized by the following method. First, a resin composition is added with a vulcanizing agent (sulfur), a vulcanization accelerator (eg, 2-mercaptobenzothiazole (MBT) or N-cyclohexyl-2-benzothiazolesulfenamide (CBS)), or Additives such as vulcanization accelerators (eg, stearic acid or zinc oxide) are added. Then, the components of the resin composition are kneaded, molded, and rolled at a temperature lower than the vulcanization reaction temperature (for example, 60 to 100° C.) to produce an unvulcanized sheet. Thereafter, the unvulcanized sheet is hot-pressed at a temperature at which the vulcanization reaction occurs (eg, 120-200°C). Thus, a vulcanized electromagnetic wave absorbing sheet is obtained.
  • a vulcanizing agent sulfur
  • a vulcanization accelerator eg, 2-mercap
  • the reason why the M-type ferrite particle powder according to the present embodiment is suitable as the electromagnetic wave absorbing ferrite particle powder is not yet clarified in detail, but is presumed as follows.
  • the theoretical saturation magnetization value ( ⁇ s) in the relevant composition In order to improve the electromagnetic wave absorption performance of the M-type ferrite powder itself, it is important to realize the theoretical saturation magnetization value ( ⁇ s) in the relevant composition and to finely disperse the elements constituting the relevant composition microscopically. is.
  • ⁇ s theoretical saturation magnetization value
  • an M-type ferrite powder that satisfies the above two points can be obtained by optimizing the ferrite production method. As a result, high electromagnetic wave absorption performance is realized.
  • the compressed density is controlled to 3.0 g/cm 3 or more.
  • the average particle size is controlled to 0.5 to 3.0 ⁇ m. This reduces the viscosity of the resin composition during melt-kneading, so that the components of the resin composition can be finely dispersed microscopically.
  • ferrite powder has a reinforcing effect on the excellent physical properties of the electromagnetic wave absorbing sheet. This makes it possible to realize an electromagnetic wave absorbing sheet with excellent flexibility.
  • a representative embodiment of the present disclosure is as follows. First, the measurement method and evaluation method will be described.
  • the amount of each element (Ti, Mn, Zn, Ba, and Fe) contained in the ferrite particle powder was measured with a fluorescent X-ray spectrometer "ZSX PrimusII" (manufactured by Rigaku).
  • the composition ratios x, y, and z were calculated by converting the obtained amounts of Ti, Mn, Zn, Ba, and Fe into moles.
  • CD compressed density
  • the average particle size of the ferrite particle powder obtained by the air permeation method (Blain method) is measured by a "constant pressure ventilation type rapid standard universal type powder specific surface area measuring device" (manufactured by Shimadzu Corporation). Ta.
  • the specific surface area (SSA) of the ferrite particle powder was measured using a "specific surface area measuring device Macsorb” (manufactured by Mountech) according to the principle of the BET one-point method that utilizes the adsorption and desorption characteristics of nitrogen gas to the sample.
  • the median diameter (D50) of the ferrite particle powder is determined by RODOS /M with a sample dispersed at a dispersion pressure of 5 bar, measurement range 1 (0.1/0.18-35 ⁇ m) at HELOS/BF-M.
  • the absorption peak frequency and transmission attenuation (S 21 ) were measured using "Network Analyzer E8361A” (manufactured by Agilent Technologies). Ta.
  • the tensile modulus was measured according to the JIS K6251 standard by the following method.
  • a lump rubber composition was produced using "Labo Plastomill 4C150" (manufactured by Toyo Seiki Co., Ltd.).
  • an unvulcanized rubber sheet was produced using a "desktop test kneading roll machine 191-TM” (manufactured by Yasuda Seiki Seisakusho).
  • a vulcanized rubber sheet was produced using a "heat press” (manufactured by Tester Sangyo Co., Ltd.).
  • dumbbell test piece (full length 115 mm, width 25.0 mm, thickness 2.0 mm ⁇ 0.2 mm) was obtained using a test piece punching blade No. 5. Thereafter, the tensile modulus was measured using a "computer measurement control type precision universal testing machine AG-1" (manufactured by Shimadzu Corporation).
  • a vulcanization curve was obtained by performing a vulcanization test according to the JIS K6300-2 standard (die vulcanization test method A) using a curastometer.
  • Die vulcanization test method A die vulcanization test method A
  • "Labo Plastomill 4C150" manufactured by Toyo Seiki Co., Ltd.
  • an unvulcanized rubber sheet was produced using a "desktop test kneading roll machine 191-TM" (manufactured by Yasuda Seiki Seisakusho).
  • a circular resin sheet with a diameter of 45 mm was punched out from the sheet.
  • a vulcanization curve was determined using "Curastometer 7" (manufactured by JSR Trading Co., Ltd.). In this measuring method, a resin sheet punched into a circular shape is vulcanized while being heated and torsion torque is applied. Vulcanization characteristics can be obtained from a curve representing torque change from before the start of vulcanization to the end of vulcanization.
  • Fig. 1 is a conceptual diagram of a vulcanization curve obtained using a curastometer.
  • the vulcanization curve provides information on the sheet physical properties of the resin, including the minimum torque value ML before vulcanization and the maximum torque value MH after vulcanization. Furthermore, information on the speed of vulcanization such as 10% vulcanization time Tc (10) (time from the start of vulcanization to completion of 10% change in torque change from ML to MH) can get.
  • the maximum torque value MH after vulcanization is an index that indicates how elastic the sheet after vulcanization has. A higher value indicates a stiffer sheet. A lower value indicates a softer sheet.
  • the 10% vulcanization time Tc(10) is the time required for initial vulcanization. A smaller value indicates that vulcanization proceeds faster. Considering the state of the sheet when vulcanization progresses rapidly, if the time required for initial vulcanization is short (Tc(10) is small), fine dispersion of components such as additives is not sufficiently achieved. Hard to say. As a result, non-uniform vulcanization is expected. Also, when vulcanization progresses gradually in the initial stage (Tc(10) is large), it is considered that uniform vulcanization has occurred.
  • Examples 1-7 ⁇ Production of Ferrite Particle Powder> Various powder raw materials ( ⁇ -Fe 2 O 3 , TiO 2 , Mn 3 O 4 , BaCO 3 ) weighed so that the composition of the final product has the composition shown in Table 1 were mixed for 15 minutes in a wet attritor. Ta. The resulting mixture was then filtered and dried. BaCl 2 .2H 2 O was added to the raw material mixed powder obtained and mixed well. The resulting mixture was then extruded. At this time, the amount of BaCl 2 .2H 2 O added was 3.0% by weight with respect to the raw material mixed powder. The obtained granules were fired at 1280° C. in air.
  • the fired product obtained was coarsely pulverized and then pulverized with a wet attritor.
  • the ground material obtained was washed with water, filtered and dried.
  • the pulverized material obtained was then annealed at 600° C. in air.
  • Table 1 shows the manufacturing conditions at this time, and Table 2 shows various characteristics of the obtained ferrite particle powder.
  • Comparative example 1 A ferrite particle powder was produced in the same manner as in Example 3, except that the annealing treatment was not performed. Table 1 shows the manufacturing conditions at this time, and Table 2 shows various characteristics of the obtained ferrite particle powder.
  • Comparative example 2 A ferrite particle powder was produced in the same manner as in Example 1, except that the composition of the ferrite particle powder was changed (Zn was added) and the annealing treatment was not performed. Table 1 shows the manufacturing conditions at this time, and Table 2 shows various characteristics of the obtained ferrite particle powder.
  • Examples 8-13 ⁇ Production of electromagnetic wave absorbing sheet> 60.0% by volume of each ferrite particle powder obtained in Examples 1 to 6, 39.0% by volume of hydrogenated styrene thermoplastic elastomer (SEBS) resin, titanate coupling agent (Plenact TTS, manufactured by Ajinomoto Fine-Techno Co., Ltd.) 1.0% by volume was roll kneaded at 160°C. After that, the obtained kneaded material was molded and rolled to produce an electromagnetic wave absorbing sheet. The thickness of the produced electromagnetic absorbing sheet was adjusted to 1 mm in the process of molding and rolling.
  • SEBS hydrogenated styrene thermoplastic elastomer
  • Comparative Examples 3 and 4 60.0% by volume of each ferrite particle powder obtained in Comparative Examples 1 and 2, 39.0% by volume of hydrogenated styrene thermoplastic elastomer (SEBS) resin, titanate coupling agent (Plenact TTS, manufactured by Ajinomoto Fine-Techno Co., Ltd.) 1.0% by volume was roll kneaded at 160°C. However, during the kneading process, a lumpy resin kneaded product was obtained. Then, a phenomenon occurred in which the kneaded material was not caught in the forming rolls. Therefore, the preparation of the electromagnetic wave absorbing sheet with SEBS resin was abandoned. Therefore, sheets were made using NBR as an alternative resin.
  • SEBS hydrogenated styrene thermoplastic elastomer
  • each ferrite particle powder obtained in Comparative Examples 1 and 2 35.0% by volume of NBR (manufactured by JSR Corporation, N239SV), and additives such as vulcanizing agents and vulcanization accelerators, 0.69% by volume of stearic acid, 0.26% by volume of zinc oxide, 0.25% by volume of sulfur, 0.55% by volume of N-cyclohexyl-2-benzothiazolesulfenamide (CBS), and Polycizer W320 (manufactured by DIC) ) 3.3% by volume were kneaded at 80°C. After that, an unvulcanized sheet was produced by molding and rolling the obtained kneaded material.
  • NBR manufactured by JSR Corporation, N239SV
  • additives such as vulcanizing agents and vulcanization accelerators, 0.69% by volume of stearic acid, 0.26% by volume of zinc oxide, 0.25% by volume of sulfur, 0.55% by volume of N-cyclohexyl-2-benzothiazoles
  • the thickness of the unvulcanized sheet produced was adjusted to 1.0 mm during the molding and rolling process.
  • the unvulcanized sheet was subsequently heated at 150° C. using a hot press. After that, a pressure of 3 MPa was applied for 10 minutes to produce a vulcanized electromagnetic wave absorbing sheet.
  • the electromagnetic wave absorption measurement of the obtained electromagnetic wave absorbing sheet was carried out in the same manner as in Examples 8-13.
  • Examples 14-16, Comparative Examples 5 and 6 Preparation of dumbbell test piece for tensile test of resin composition> 60.0% by volume of each ferrite particle powder obtained in Examples 1, 3, 5 and Comparative Examples 1, 2, 35.0% by volume of NBR (manufactured by JSR, N239SV), and a vulcanizing agent and vulcanization accelerator
  • NBR manufactured by JSR, N239SV
  • a vulcanizing agent and vulcanization accelerator As additives such as agents, stearic acid 0.69% by volume, zinc oxide 0.26% by volume, sulfur 0.25% by volume, N-cyclohexyl-2-benzothiazolesulfenamide (CBS) 0.55% by volume, and 3.3% by volume of Polycizer W320 (manufactured by DIC) were kneaded at 80°C.
  • the obtained kneaded material was formed and rolled at 60° C. to produce an unvulcanized sheet.
  • the thickness of the unvulcanized sheet was adjusted to 2.0 mm.
  • the unvulcanized sheet was heated in a hot press at 180° C. for 25 minutes.
  • a vulcanized electromagnetic wave absorbing sheet was produced by applying a pressure of 3 MPa for 5 minutes. Dumbbell specimens were then punched out of the sheets using a specimen punching blade No. 5.
  • Table 4 shows the tensile modulus of the molded test piece.
  • additives such as agents, stearic acid 0.69% by volume, zinc oxide 0.26% by volume, sulfur 0.25% by volume, N-cyclohexyl-2-benzothiazolesulfenamide (CBS) 0.55% by volume, and 3.3% by volume of Polycizer W320 (manufactured by DIC) were kneaded at 80°C.
  • the obtained kneaded material was formed and rolled with rolls at 60° C. to a thickness of 3.2 mm to produce an unvulcanized sheet.
  • the thickness of the resulting unvulcanized sheet was adjusted to 3.2 mm during the forming and rolling process. Circular specimens were subsequently punched out of the sheets using a round punching blade (45 mm diameter).
  • Table 4 shows the maximum torque value MH and 10% vulcanization time Tc (10) obtained from the vulcanization curve at 180°C of the test piece molded body.
  • Tc(10) of Examples 14, 15, and 16 was confirmed to be 1 minute or more.
  • Tc(10) in Comparative Examples 5 and 6 was confirmed to be as short as 0.7 minutes or less. Therefore, uniform vulcanization is realized in the ferrite of the example. That is, it is considered that the components contained in the resin composition are finely dispersed due to the low viscosity of the resin composition during melt-kneading.
  • the electromagnetic wave absorbing ferrite particle powder according to the present embodiment can maintain the flexibility and uniformity of physical properties of the sheet even when the sheet is highly packed, and has excellent electromagnetic wave absorbing performance in the GHz band. Therefore, the electromagnetic wave absorbing ferrite particle powder according to the present embodiment can be suitably used as an electromagnetic wave absorbing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

シートを高充填しても、そのシートの柔軟性および物性の均一性を維持でき、かつ、GHz帯域の電磁波吸収性能に優れる電磁波吸収用フェライト粒子粉末を提供する。 化学式:AxFe(12-y)(TizMn(1-z))yO19で表されるマグネトプランバイト型フェライトから成り、AはBa、Sr、Ca、およびPbから選択される少なくとも一種であり、xは0.9~1.1であり、yは5.0以下であり、zは0.35~0.65であり、3.00g/cm3以上の圧縮密度を有し、0.50~3.0μmの、空気透過法(ブレーン法)により求められる平均粒子径を有する、電磁波吸収用フェライト粒子粉末である。

Description

電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物
 本開示は、電磁波吸収用フェライト粒子粉末、前記電磁波吸収用フェライト粒子粉末の製造方法、及び、前記電磁波吸収用フェライト粒子粉末を用いた樹脂組成物に関する。
 電磁波吸収シートには、柔軟性と電磁波吸収性能とが求められる。GHz帯域の電磁波吸収性能を有するマグネトプランバイト型フェライト(以下、M型フェライトと略されることがある)を用いた電磁波吸収シートの電磁波吸収性能を高くする手段としては、フェライト粒子粉末自体の吸収性能を高くする手段、及び、そのシートを、当該フェライト粒子粉末で高充填させる手段がある。しかしながら、一般的に、充填量を上げていくと、シートの柔軟性は著しく低下する。そして、充填量を上げ過ぎると、シート化自体が困難となる。
 また充填量を上げていくと、溶融混練時の樹脂組成物の粘度が高くなる。そのため、樹脂組成物中での各成分の微分散が困難となる。その結果、シートの柔軟性及び物性の均一性が著しく低下してしまう。特に、添加剤の効果は、微量の添加剤により発現される。そのため、添加剤のミクロ的な微分散が実現されていない場合、シートの加工性及び物性が大きな影響を受けるという課題が知られている。
 情報通信の高度化が進む中、近年普及が進んでいる5G通信には、多くの電子機器への利用が見込まれている。この5G通信には、大容量の情報を高速に、低遅延かつ同時接続で伝送できるGHz帯の周波数の電波が使用される。それに加えて、電子機器の小型化に伴う電子部品の高密度化が進んでいる。高密度化された電子部品に電流が流れると、一部のエネルギーが電磁波となって他の電子部品に輻射されることがある。さらに、この輻射された電磁波が電子機器の筐体内で反射してしまうこともある。その結果、これら輻射あるいは反射された電磁波が、電子機器の誤作動の原因となりうる。このような誤作動の原因となる電磁波ノイズを抑制するために、電磁波吸収体が利用される。
 電磁波吸収体は、電磁波ノイズの発生源に対し後付けの対策として使用されることが多い。このことから、使用される電磁波吸収体は、平坦な面だけでなく、しばしば電子部品上などの平坦ではない面にも貼り付けられる。そのため、電磁波吸収体には、良好な柔軟性を有することが求められる。それと同時に、電子部品が高密度に配置されている電子筐体内で、空きスペースがほとんど無い箇所に、この電磁波吸収体が用いられることも多い。そのため、電磁波吸収体には、薄いシート形状及び高い電磁波吸収性能が求められる。
 電磁波吸収材料は、吸収した電磁波エネルギーを熱エネルギーに変換する材料である。すなわち、電磁波エネルギー損失分が電磁波吸収性能となる。例えば、磁性損失、誘電損失、あるいは、導電損失により、電磁波エネルギーが損失する。M型フェライトは高い結晶磁気異方性を有する。このことから、M型フェライトは、GHz帯域で磁気共鳴を発現して、その周波数で、磁気損失を得る複素透磁率の虚数部μ’’を示す。そのため、M型フェライトは、高周波帯域での電磁波吸収材料として有望である。
 例えば、M型バリウムフェライトは、50GHzあたりに共鳴周波数を持つことが知られている。しかし、その大きな保磁力のため、M型バリウムフェライトは、軟磁性とは言い難い。ただし、鉄の一部を、例えば、チタン、マンガン、亜鉛、コバルト、ニッケル、銅、スズ、あるいはジルコニウムに置換することにより軟磁性化が進む。その結果、結晶磁気異方性及び飽和磁化が変化する。そのため、共鳴周波数を50GHz以下にコントロールすることが出来る。このようにして、5G通信帯域など様々な高周波数帯域に対応可能な電磁波吸収フェライトを得ることが出来る。
 M型フェライトと樹脂とを混合して得られる電磁波吸収体の吸収性能は、樹脂中のフェライトの充填量によって大きく変化する。電磁波吸収性能を向上させるためには、フェライトの充填量を増やすことが必要になる。一方で、フェライトの充填量を増やすと、シートとしての柔軟性を求められる電磁波吸収体が、硬くて脆い樹脂組成物となってしまう。すなわち、フェライトの充填量が多すぎると、シート作製自体が困難となる。
 また、フェライトと樹脂とを混練するときは、樹脂は、加熱により溶融される。このとき、フェライトの充填量が高い樹脂組成物では、溶融時の粘度が高くなる。その結果、混練する際に樹脂組成物中の成分が均一に混ざりにくいので、微分散が困難となる。特に、微量でその効果を発現する添加剤がミクロ的に微分散出来ていない場合、添加剤の効果が十分に発揮されない。
 例えば、熱硬化性樹脂のNBR(アクリロニトリル・ブタジエンゴム)を用いてシートが作製される場合、樹脂及びフェライト以外に、添加剤が加えられる。そして、これら成分が混練された後、加硫により、適度な弾性及び柔軟性がシートに付与される。このとき、フェライトが高充填されているために、その樹脂組成物の溶融混練時の粘度が高い場合、添加剤がミクロ的に微分散されない。その結果、その後の加硫が不均一に進行してしまうので、硬くて柔軟性に劣るシートになる等の物性低下が起こる。
 特許文献1には、ミリ波帯域以上の周波数帯域で磁気共鳴する電磁波吸収材料である磁性酸化鉄とゴム製バインダーとを含む電磁波吸収層を有する電磁波吸収シートが開示されている。この電磁波吸収シートの面内の一方向における弾性域の最大伸び率は、20%~200%である。前記電磁波吸収層における前記磁性酸化鉄の含有率は、30体積%以上である。磁性酸化鉄としては、イプシロン酸化鉄またはストロンチウムフェライトが用いられている。
 特許文献2には、1GHz以上の高周波帯域で使用する電磁波吸収体に適したY型六方晶フェライトの粉体が開示されている。このY型六方晶フェライトの粉体は、BaFe22(1.5≦x≦2.2、1.2≦y≦2.5、11≦z≦13)の組成式によりあらわされる。ここで、Mは2価の金属元素(Feを除く)の1種もしくはその2種以上の組み合わせ、または、1価の金属元素と3価の金属元素(Feである場合を含む)との組み合わせである。レーザー回折式粒度分布測定装置によって求まる粒度分布において、このY型六方晶フェライトの粉体に含まれる粒子のうち、粒子径1.0μm以下の粒子の体積割合は、10%以下である。また、粒子径10.2μm以上の粒子の体積割合は、12%以下である。
 特許文献3には、AFe(12-X)(B10.5(Co(1-y)Zn)0.5)19の組成式で表される、GHz帯域用の電磁波吸収体に適したマグネトプランバイト型六方晶フェライトが開示されている。ここで、Aは、Ba及びSrのうちの1種または2種である。B1は、TiおよびZrのうちの1種または2種である。xは、0.1~2.0である。yは、0.2~0.8である。
特開2019-75571号公報 特開2008-66364号公報 特開2010-260766号公報
 電磁波吸収シートには、柔軟性および高い電磁波吸収性能が求められる。GHz帯域の電磁波吸収性能を有するM型フェライトを用いた電磁波吸収シートの吸収性能を高めるには、シートがフェライト粉で高充填される必要がある。しかし、充填量を上げていくと、シートの柔軟性は著しく低下する。その結果、充填量を上げ過ぎると、シート化自体が困難となる。
 また充填量を上げていくと、溶融混練時の樹脂組成物の粘度が高くなる。そのため、樹脂組成物中での各成分の微分散が困難である。その結果、シートの柔軟性あるいは物性の均一性が著しく低下してしまう。特に、添加剤の効果は、微量の添加剤により発現される。そのため、添加剤のミクロ的な微分散がなされていない場合、シートの加工性および物性が大きな影響を受けるという課題がある。
 特許文献1に記載のフェライトなどの磁性酸化鉄を樹脂に含有する電磁波吸収樹脂シートは、当該シートの伸び率が制御されているので、設置場所の形状が平面でない部位にも設置することができる。しかし、この文献には、フィラーで高充填された樹脂組成物を混練する際、溶融状態の樹脂組成物が高い粘度を有するために、各成分のミクロ的な微分散が悪化することにより、シート物性も悪化するという課題を、フェライトなどの磁性酸化鉄の粉体制御によって改善する旨の記載はない。
 特許文献2に記載の3~6GHz付近の周波数帯域で使用する電磁波吸収体に適したY型六方晶フェライトは、その粒子径が制御されているので、電磁波吸収シートの厚みを薄くすることができる。しかし、この文献には、フィラーで高充填された樹脂組成物を混練する際、溶融状態の樹脂組成物が高い粘度を有するために、各成分のミクロ的な微分散が悪化することにより、シート物性も悪化するという課題を、フェライトなどの磁性酸化鉄の粉体制御によって改善する旨の記載はない。
 特許文献3に記載のGHz帯域用の電磁波吸収体に適したマグネトプランバイト型六方晶フェライトは、フェライトを含有した電磁波吸収樹脂シートの厚み変動による周波数変動を小さく抑えることができる。しかし、この文献には、フィラーで高充填された樹脂組成物を混練する際、溶融状態の樹脂組成物が高い粘度を有するために、各成分のミクロ的な微分散が悪化することにより、シート物性も悪化するという課題を、フェライトなどの磁性酸化鉄の粉体制御によって改善する旨の記載はない。
 本開示は、上記課題に対処するものである。すなわち、本開示の課題は、シートを高充填しても、そのシートの柔軟性および物性の均一性を維持でき、かつ、GHz帯域の電磁波吸収性能に優れる電磁波吸収用フェライト粉末、及び、前記電磁波吸収用フェライト粉末を用いた樹脂組成物を提供することである。
 上記課題を解決すべく、研究者らは鋭意検討した結果、M型フェライト粉の着目すべき粉体特性を所定の特性に最適化することにより、上記課題を解決することを見出した。
 すなわち、本開示の第1の実施形態は、化学式:AFe(12-y)(TiMn(1-z)19で表されるマグネトプランバイト型フェライトから成り、AはBa、Sr、Ca、およびPbから選択される少なくとも一種であり、xは0.9~1.1であり、yは5.0以下であり、zは0.35~0.65であり、3.00g/cm以上の圧縮密度を有し、0.50~3.0μmの、空気透過法(ブレーン法)により求められる平均粒子径を有する、電磁波吸収用フェライト粒子粉末である。
 本開示の第2の実施形態は、比表面積が0.50~4.0m/gである第1の実施形態の電磁波吸収用フェライト粒子粉末である。
 本開示の第3の実施形態は、鉄原料、チタン原料、マンガン原料及び元素Aの化合物原料を混合・成形し、焼成してマグネトプランバイト型フェライトを生成し、粉砕後、アニール処理を行うことを特徴とする第1の実施形態の電磁波吸収用フェライト粒子粉末の製造方法である。
 本開示の第4の実施形態は、第1の実施形態の電磁波吸収用フェライト粒子粉末と樹脂から成る樹脂組成物である。
 本実施形態に係る電磁波吸収M型フェライト及びそれを用いた樹脂組成物によれば、フェライト粉で高充填されているシートでも、その柔軟性及び物性の均一性を維持することができる。また、そのシートは、GHz帯域の電磁波吸収性能に優れる。
 図1は、キュラストメータを用いて作成される加硫曲線の概念図である。
 以下、本実施形態を詳細に説明する。本実施形態に係る電磁波吸収用フェライト粒子粉末は、化学式:AFe(12-y)(TiMn(1-z)19で表されるマグネトプランバイト型フェライトを含む。ここで、Aは、Ba、Sr、Ca、及びPbから選択される少なくとも一の元素である。好ましい元素は、Ba及びSrである。
 xは、0.9~1.1、好ましくは0.94~1.06、さらに好ましくは0.97~1.03である。yは、5.0以下、好ましくは0.02~4.20であり、さらに好ましくは0.05~3.30であり、一層好ましくは0.08~2.40である。zは、0.35~0.65、好ましくは0.38~0.63、さらに好ましくは0.40~0.60である。すなわち、本実施形態に係るマグネトプランバイト型フェライトは、TiとMnとを特定範囲の比率で含んでいる。
 xが0.9未満若しくは1.1を超える場合は、単相のM型フェライトが得られにくくなる。そのため、0.9未満若しくは1.1を超えるxは好ましくない。yが5.0を超える場合、飽和磁化が低くなり過ぎるために、磁性損失を得る複素透磁率の虚数部μ’’も低くなってしまうこと、添加元素の一部がフェライトに固溶せずに不純物として析出してしまうこと、あるいは、反応焼成時における焼結体の著しい硬化により、粉砕効率が低下してしまうこと、といった課題が生じる。そのため、5.0を超えるyは好ましくない。zが0.35未満若しくは0.65を超える場合は、電気的中性が保たれなくなる結果、不純物が析出してしまう。そのため、0.35未満若しくは0.65を超えるzは好ましくない。
 本実施形態に係る電磁波吸収用フェライト粒子粉末の圧縮密度は、3.00g/cm以上である。これにより、溶融混練時の樹脂組成物の粘度を下げることが可能となる。圧縮密度が3.00g/cm未満の場合、溶融混練時の樹脂組成物の粘度を下げることが困難である。圧縮密度は、好ましくは3.06g/cm以上であり、さらに好ましくは3.10g/cm以上である。圧縮密度の上限は、例えば3.60g/cmである。圧縮密度は、後述する実施例において説明する方法で測定される。
 本実施形態に係る電磁波吸収用フェライト粒子粉末の、空気透過法(ブレーン法)により求められる平均粒子径は、0.50~3.0μmである。平均粒子径が0.50μm未満の場合、フェライト粉末表面と樹脂の濡れ性が低下してしまう。その結果、シートの柔軟性が損なわれてしまう。平均粒子径が3.0μmを超える場合、フェライト粉末間の樹脂空間が大きくなるために、電磁波吸収シートが脆くなる。その結果、シートの柔軟性が損なわれてしまう。平均粒子径は、好ましくは0.65~2.50μmであり、さらに好ましくは0.80~2.00μmである。
 本実施形態に係る電磁波吸収用フェライト粒子粉末の比表面積は、好ましくは0.50~4.0m/gである。比表面積が0.50未満の場合、フェライト粉末間の樹脂空間が大きくなるため、電磁波吸収シートが脆くなる。その結果、シートの柔軟性が損なわれてしまう。比表面積が4.0m/gを超えると、フェライト粉末表面と樹脂との濡れ性が低下してしまうため、シートの柔軟性が損なわれてしまう。比表面積は、より好ましくは1.00~3.80m/gであり、さらに好ましくは1.40~3.60m/gであり、一層好ましくは1.80~3.50m/gである。
 本実施形態に係る電磁波吸収用フェライト粒子粉末のメジアン径(D50)は、好ましくは0.80~4.00μmである。メジアン径(D50)が0.80μm未満の場合、フェライト粉末表面と樹脂との濡れ性が低下してしまうため、シートの柔軟性が損なわれてしまう。メジアン径(D50)が4.00μmを超えるとフェライト粉末間の樹脂空間が大きくなるため、電磁波吸収シートは脆くなる。その結果、シートの柔軟性が損なわれてしまう。メジアン径(D50)は、より好ましくは1.00~3.60μmであり、さらに好ましくは1.20~3.10μmである。
 次に、本実施形態に係る電磁波吸収用フェライト粒子粉末の製造方法を説明する。本実施形態に係る電磁波吸収用フェライト粒子粉末の製造法では、鉄原料、チタン原料、マンガン原料、及び元素Aの化合物原料が混合、成形、及び焼成されて、マグネトプランバイト型フェライトを生成する。生成されたマグネトプランバイト型フェライトの粉砕、その後のアニール処理により、目的とする電磁波吸収用フェライト粒子粉末が得られる。
 鉄原料としては、α-Feなどの酸化鉄が好ましく用いられる。チタン原料としては、TiOといった酸化チタンが好ましく用いられる。マンガン原料としては、MnあるいはMnのような酸化マンガンが好ましく用いられる。元素Aの原料の好ましい例として、Ba、Sr、Ca、及びPbの、酸化物、水酸化物、及び炭酸塩を上げることができる。
 まず、化学式:AFe(12-y)(TiMn(1-z)19のx、y、zに対応する比率で秤量された鉄原料、チタン原料、マンガン原料、及び元素Aの化合物原料が混合される。これらの原料は、例えば、湿式アトライタ、ホモミキサー、あるいはハイスピードミキサーを用いて、混合される。得られた原料混合物は、粉砕された後、押出成形機などを用いて造粒成形される。
原料混合物の粉砕時あるいは造粒成形時に、好ましくは、融剤が添加される。融剤の好ましい例としては、BaCl・2HO、SrCl・6HO、CaCl・2HO、KCl、MgCl、NaCl、及びNaが挙げられる。融剤の添加量は、上記で得られた原料混合物に対し、好ましくは0.1~10.0重量%、より好ましくは0.1~8.0重量%である。
 また、反応促進剤としてのBiが原料混合粉末又は焼成後の粉砕粉末に添加されて混合されてもよい。
 得られた成形体は、焼成されてマグネトプランバイト型フェライトを生成する。焼成温度は、好ましくは1000~1400℃、より好ましくは1050~1350℃である。焼成温度が1000℃より低い場合、フェライト化反応が十分に進まないことがある。そのため、単相が得られない、あるいは、該当組成での理論量の飽和磁化値(σs)が得られないことがある。焼成温度が1400℃より高い場合、粒子同士の焼結による融着が進むので、所定の粒子径に制御する粉砕などの製造工程に負担がかかる。そのため、1400℃より高い焼成温度は、好ましくない。
 得られた焼成物は粉砕される。焼成物は、室温で粉砕されてもよい。また、焼成物は、例えば、ハンマーミル、あるいは湿式アトライタ用いて粉砕される。焼成物が湿式アトライタで粉砕される場合は、その後に粉砕物が水洗、濾過、及び乾燥される。
 次いで、得られた粉砕物は、大気中、好ましくは600~1100℃、更に好ましくは650~1050℃で、アニール処理される。アニール温度が1100℃より高い場合は、粒子同士の焼結による融着が進むので、分散性の良い粉末を得ることが困難である。そのため、1100℃より高いアニール温度は、好ましくない。なお、アニール処理は、焼成温度よりも低い温度で行う。本実施形態において、この温度範囲でのアニール処理は、本実施形態で規定されるM型フェライト粉の粉体特性を達成するために重要である。
 次に、本実施形態に用いられる樹脂組成物及び電磁波吸収材(電磁波吸収シート)について説明する。本実施形態に用いられる樹脂組成物は、電磁波吸収用フェライト粒子粉末と樹脂とから成る。樹脂の例としては、水添スチレン系熱可塑性エラストマー(SEBS)、塩化ビニル樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレンーエチルアクリレート共重合樹脂、PPS樹脂、ポリアミド(ナイロン)樹脂、ポリアミドエラストマー、重合脂肪酸系ポリアミド、アクリロニトリルブタジエンゴム(NBR)、天然ゴム(NR)、イソプレンゴム(IR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、及びシリコーンゴム(Q)が挙げられる。また、電磁波吸収用フェライト粒子粉末の混合割合は、好ましくは20~75体積%である。
 電磁波吸収用フェライト粒子の樹脂への相溶性及び分散性を改善するために、好ましくは、予め電磁波吸収用フェライト粒子粉末が表面処理剤により表面処理される。添加することのできる表面処理剤の例としては、シランカップリング剤、及びチタネートカップリング剤が挙げられる。更に、必要に応じて添加することができる添加剤の例として、可塑剤、補強剤、耐熱向上剤、熱伝導性充填剤、粘着剤、酸化防止剤、光安定剤、帯電防止剤、及び着色剤を挙げることができる。
 各種カップリング剤が使用される場合は、官能基としてビニル基、エポキシ基、アミノ基、メタクリル基、メルカプト基、ホスホリル基、及びスルホ基の中のいずれか一つと、メトキシ基あるいはエトキシ基のようなアルコキシ基と、を有するカップリング剤を使用することができる。
 電磁波吸収用フェライト粒子粉末(必要に応じて表面処理されていてもよい)、樹脂、そして必要に応じて各種添加剤が混練される。その後、得られた混練物が、公知の方法で、所望の厚み及び形状に成形・圧延される。このようにして、電磁波吸収シートが製造される。
 樹脂としてゴムが使用される場合、樹脂は、以下の方法により、加硫されてもよい。まず、樹脂組成物に、加硫剤(イオウ)、加硫促進剤(例えば、2-メルカプトベンゾチアゾール(MBT)あるいはN-シクロへキシル-2-ベンゾチアゾールスルフェンアミド(CBS))、あるいは、加硫促進助剤(例えば、ステアリン酸あるいは酸化亜鉛)のような添加剤が添加される。そして、加硫反応が起る温度より低い温度(例えば、60~100℃)で、樹脂組成物の成分が混練、成形、圧延されて、未加硫シートを製造される。その後、加硫反応が起る温度(例えば120~200℃)で、未加硫シートが熱プレスされる。このようにして、加硫された電磁波吸収シートが得られる。
 本実施形態に係るM型フェライト粒子粉末が電磁波吸収用フェライト粒子粉末として好適である理由は、詳細には未だ明らかではないものの、以下のように推定される。M型フェライト粉末自体の電磁波吸収性能を高めるには、該当組成における理論量の飽和磁化値(σs)が実現されること、及び、該当組成を構成する元素をミクロ的に微分散させることが重要である。本実施形態では、フェライトの作製方法を最適化することにより、上記2点を満たすM型フェライト粉末が得られる。このことで、高い電磁波吸収性能が実現されている。
 また、圧縮密度が3.0g/cm以上にコントロールされる。さらに、平均粒子径が0.5~3.0μmにコントロールされる。このことで、溶融混練時の樹脂組成物の粘度が低下するので、樹脂組成物の構成要素をミクロ的に微分散させることが出来る。また、フェライト粉は、優れた電磁波吸収シート物性への補強効果を有する。このことで、柔軟性に優れた電磁波吸収シートを実現することが出来る。
 圧縮密度が高い程、溶融混練時の樹脂組成物の粘度をより低減することが出来る。そのため、添加剤のミクロ的な微分散が可能となる。その結果、微量な添加剤によりその効果を発現することが可能となる。平均粒子径が0.5μmを下回ると、フェライト粉末表面と樹脂との濡れ性が低下してしまう。そのため、シートの柔軟性が損なわれてしまう。一方、平均粒子径が3.0μmを上回ると、フェライト粉末間の樹脂空間が大きくなる。このことで、電磁波吸収シートは脆くなる。その結果、シートの柔軟性が損なわれてしまうと考えられる。
 本開示の代表的な実施形態は次の通りである。先ず、測定方法及び評価方法について述べる。
 フェライト粒子粉末に含まれている各元素(Ti、Mn、Zn、Ba、及びFe)の量が、蛍光X線分光分析装置「ZSX PrimusII」(Rigaku社製)により、測定された。得られた、Ti、Mn、Zn、Ba、及びFeの量をモル換算することにより、組成比x、y、及びzが算出された。
 フェライト粒子粉末の圧縮密度(CD)として、油圧プレス機により1t/cmの圧力で圧縮されたときの、粒子粉末の密度が採用された。
 フェライト粒子粉末の、空気透過法(ブレーン法)(Ps-b)により求められる平均粒子径は、「恒圧通気式 迅速標準万能式 粉体比表面積測定装置」(島津製作所社製)により測定された。
 フェライト粒子粉末の比表面積(SSA)は、「比表面積測定装置 Macsorb」(マウンテック社製)を用いて、試料に対する窒素ガスの吸脱着特性を利用したBET1点法の原理により、測定された。
 フェライト粒子粉末のメジアン径(D50)は、「レーザー回折式粒子径分布測定装置 HELOS&RODOS(計測部形式 HELOS/BF-M、気流式乾式分散ユニットRODOS/M)」(Sympatec GmbH社製)により、RODOS/Mにおいて、5barの分散圧で分散された試料を用いて、測定レンジ1(0.1/0.18~35μm)で、HELOS/BF-Mにて測定された。
 フェライト粒子粉末を使用して作製された電磁波吸収シートの電波吸収特性として、「ネットワークアナライザE8361A」(アジレントテクノロジー社製)を使用して、吸収ピーク周波数と透過減衰量(S21)とが測定された。
 引張弾性率が、以下の方法により、JIS K6251規格に準じて、測定された。まず、「ラボプラストミル 4C150」(東洋精機社製)を用いて、塊状ゴム組成物が作製された。その後「卓上テスト混練ロール機 191-TM」(安田精機製作所社製)を用いて、未加硫ゴムシートが作製された。次に、「熱プレス機」(テスター産業社製)を用いて、加硫ゴムシートが作製された。更に、試験片打抜刃5号を用いて、ダンベル試験片(全長115mm、幅25.0mm、厚み2.0mm±0.2mm)が得られた。その後、「コンピュータ計測制御式精密万能試験機AG-1型」(島津製作所社製)を用いて、引張弾性率が測定された。
 キュラストメータを用いて、JIS K6300-2規格(ダイ加硫試験A法)に準じて加硫試験を行うことにより、加硫曲線が得られた。加硫試験のために「ラボプラストミル 4C150」(東洋精機社製)を用いて、塊状ゴム組成物が作製された。その後「卓上テスト混練ロール機 191-TM」(安田精機製作所社製)を用いて、未加硫ゴムシート(厚み3.2±0.2mm)が作製された。シートから、直径45mmの円状の樹脂シートが打ち抜かれた。その後、「キュラストメータ7」(JSRトレーディング社製)を用いて、加硫曲線が求められた。この測定方法では、円形に打ち抜かれた樹脂シートが、加熱されながら、ねじりトルクをかけられて、加硫される。加硫開始前から加硫終了までのトルク変化を表す曲線から、加硫特性が得られる。
 図1は、キュラストメータを用いて取得される加硫曲線の概念図である。加硫曲線からは、加硫前のトルク最小値ML及び加硫後のトルク最大値MHを含む樹脂のシート物性に関する情報が得られる。更に、10%加硫時間Tc(10)(加硫開始から、MLからMHまでのトルク変化のうちの10%の変化が完了するまでの時間)のような、加硫の速さに関する情報も得られる。
 加硫後のトルク最大値MHは、加硫後のシートがどのくらいの弾性を持つかを示す指標である。値が高いほど、そのシートがより硬いことを示す。値が低いほど、そのシートがより柔らかいことを示す。
 また、10%加硫時間Tc(10)は初期の加硫に要する時間である。この値が小さいほど、より早く加硫が進行していることが示される。加硫が早く進行する時のシート状態を考えると、初期の加硫に要する時間が短い(Tc(10)が小さい)場合、添加剤などの成分の微分散が十分に達成されているとは言い難い。その結果、不均一な加硫が起こっていることが予想される。また、初期の加硫が徐々に進行する(Tc(10)が大きい)時は、均一な加硫が起こっていると考えられる。
実施例1~7
<フェライト粒子粉末の製造>
 最終処理品の組成が表1に示す組成式となるように秤量された各種粉末原料(α-Fe、TiO、Mn、BaCO)が、湿式アトライタで15分間混合された。その後、得られた混合物が、濾過及び乾燥された。得られた原料混合粉末に、BaCl・2HOが添加されて、よく混合された。その後、得られた混合物が、押し出し成形された。この時、BaCl・2HOの添加量は、上記原料混合粉末に対して3.0重量%であった。得られた造粒物は、大気中1280℃で焼成された。得られた焼成物が、粗粉砕され、引き続き、湿式アトライタで粉砕された。得られた粉砕物が、水洗、濾過、及び乾燥された。次いで、得られた粉砕物が大気中600℃でアニール処理された。このときの製造条件を表1に、得られたフェライト粒子粉末の諸特性を表2に示す。
比較例1
 アニール処理をしなかった以外は、実施例3と同じ手法で、フェライト粒子粉末が製造された。このときの製造条件を表1に、得られたフェライト粒子粉末の諸特性を表2に示す。
比較例2
 フェライト粒子粉末の組成を変更したこと(Znが加えられた)、及び、アニール処理をしなかったこと以外は、実施例1と同じ手法で、フェライト粒子粉末が製造された。このときの製造条件を表1に、得られたフェライト粒子粉末の諸特性を表2に示す。
実施例8~13
<電磁波吸収シートの作製>
 実施例1~6で得られた各フェライト粒子粉末60.0体積%、水添スチレン系熱可塑性エラストマー(SEBS)樹脂39.0体積%、チタネートカップリング剤(プレンアクトTTS、味の素ファインテクノ社製)1.0体積%が160℃でロール混練された。その後、得られた混錬物を成形及び圧延することにより、電磁波吸収シートが作製された。成形及び圧延の過程で、作製される電磁吸収シートの厚さが1mmに調整された。
<電磁波吸収シートの測定>
 得られた電磁波吸収シートの吸収ピーク周波数と透過減衰量(S21)とが、「ネットワークアナライザ E8361A」(アジレントテクノロジー社製)を使用して、測定された。このときの電波吸収特性を表3に示す。
比較例3、4
比較例1、2で得られた各フェライト粒子粉末60.0体積%、水添スチレン系熱可塑性エラストマー(SEBS)樹脂39.0体積%、チタネートカップリング剤(プレンアクトTTS、味の素ファインテクノ社製)1.0体積%が160℃でロール混練された。しかし、混練途中で塊状の樹脂混練物が得られた。そして、混錬物が成形ロールに噛み込まれない現象が起きた。そのため、SEBS樹脂での電磁波吸収シート作製は断念された。そのため、代替樹脂としてNBRを使用してシートが作製された。
 比較例1、2で得られた各フェライト粒子粉末60.0体積%、及びNBR(JSR社製、N239SV)35.0体積%、並びに、加硫剤及び加硫促進剤等の添加剤として、ステアリン酸0.69体積%、酸化亜鉛0.26体積%、イオウ0.25体積%、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)0.55体積%、及びポリサイザーW320(DIC社製)3.3体積%が80℃で混練された。その後、得られた混錬物を成形及び圧延することにより、未加硫シートが作製された。成形及び圧延の過程で、作製される未加硫シートの厚さが1.0mmに調整された。続いて、未加硫シートが、熱プレスを用いて150℃で加熱された。その後10分間、3MPaの圧力を加えることにより、加硫された電磁波吸収シートが作製された。得られた電磁波吸収シートの電磁波吸収測定を、前記実施例8~13と同様にして実施した。
実施例14~16、比較例5、6
<樹脂組成物の引張試験用ダンベル試験片作製>
 実施例1、3、5及び比較例1、2で得られた各フェライト粒子粉末60.0体積%、NBR(JSR社製、N239SV)35.0体積%、並びに、加硫剤及び加硫促進剤等の添加剤として、ステアリン酸0.69体積%、酸化亜鉛0.26体積%、イオウ0.25体積%、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)0.55体積%、及びポリサイザーW320(DIC社製)3.3体積%が80℃で混練された。その後、得られた混錬物を60℃で成形及び圧延することにより、未加硫シートが作製された。成形及び圧延の過程で、未加硫シートの厚みが2.0mmに調整された。続いて、未加硫シートが熱プレスで180℃25分間加熱された。その後、5分間、3MPaの圧力を加えることにより、加硫された電磁波吸収シートが作製された。その後、試験片打抜刃5号を用いて、シートから、ダンベル試験片が打ち抜かれた。試験片成形体の引張弾性率を表4に示す。
<樹脂組成物の加硫曲線測定用試験片作製>
 実施例1、3、5及び比較例1、2で得られたフェライト粒子粉末60.0体積%、及びNBR(JSR社製、N239SV)35.0体積%、並びに、加硫剤及び加硫促進剤等の添加剤として、ステアリン酸0.69体積%、酸化亜鉛0.26体積%、イオウ0.25体積%、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(CBS)0.55体積%、及びポリサイザーW320(DIC社製)3.3体積%が80℃で混練された。その後、得られた混錬物を60℃のロールで厚さ3.2mmに成形及び圧延することにより、未加硫シートが作製された。成形及び圧延の過程で、得られる未加硫シートの厚さが3.2mmに調整された。続いて、丸形打抜刃(直径45mm)を用いて、シートから円形試験片が打ち抜かれた。
 試験片成形体の180℃における加硫曲線から求められたトルクの最大値MH及び10%加硫時間Tc(10)を表4に示す。
 表4より明らかなように、実施例14、15、及び16の引張弾性率は、21~34MPaの低い値であった。これに対し、比較例5及び6は、40~63MPaの高い値を示した。このことから、明らかに、実施例のフェライトを用いると、伸びやすくそして柔らかいシートを作製することができる。
 次に、実施例14、15、及び16のMHは、15~19kgf・mの低い値であった。これに対し、比較例5及び6は、22~26kgf・cmの高い値を示した。このことから、明らかに、実施例のフェライトを用いると柔らかいシートを作製することができる。
 また、実施例14、15、及び16のTc(10)は、1分以上であることが確認された。これに対して、比較例5及び6のTc(10)は、0.7分以下の短い時間であることが確認された。このことから、実施例のフェライトでは、均一な加硫が実現されている。すなわち、溶融混練時の樹脂組成物の粘度が低いため、樹脂組成物中に含まれる成分が微分散されていると考えられる。
 本実施形態に係る電磁波吸収用フェライト粒子粉末は、シートを高充填しても、そのシートの柔軟性および物性の均一性を維持でき、かつ、GHz帯域の電磁波吸収性能に優れる。そのため、本実施形態に係る電磁波吸収用フェライト粒子粉末は、電磁波吸収材に好適に使用できる。

Claims (4)

  1.  化学式:AFe(12-y)(TiMn(1-z)19で表されるマグネトプランバイト型フェライトから成り、AはBa、Sr、Ca、およびPbから選択される少なくとも一種であり、xは0.9~1.1であり、yは5.0以下であり、zは0.35~0.65であり、
     3.00g/cm以上の圧縮密度を有し、
     0.50~3.0μmの、空気透過法(ブレーン法)により求められる平均粒子径を有する、
    電磁波吸収用フェライト粒子粉末。
  2.  0.50~4.0m/gの比表面積を有する、
    請求項1に記載の電磁波吸収用フェライト粒子粉末。
  3.  鉄原料、チタン原料、マンガン原料、及び元素Aの化合物原料を混合、成形、および焼成して、マグネトプランバイト型フェライトを生成することと、
     前記マグネトプランバイト型フェライトを粉砕することと、
     前記粉砕されたマグネトプランバイト型フェライトをアニール処理することと、から成る
    請求項1記載の電磁波吸収用フェライト粒子粉末の製造方法。
  4.  請求項1又は2に記載の電磁波吸収用フェライト粒子粉末と樹脂とから成る
    樹脂組成物。
PCT/JP2023/003990 2022-02-10 2023-02-07 電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物 WO2023153399A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019980 2022-02-10
JP2022019980 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023153399A1 true WO2023153399A1 (ja) 2023-08-17

Family

ID=87564432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003990 WO2023153399A1 (ja) 2022-02-10 2023-02-07 電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物

Country Status (2)

Country Link
TW (1) TW202337835A (ja)
WO (1) WO2023153399A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (ja) * 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2002353020A (ja) * 2001-05-24 2002-12-06 Sumitomo Special Metals Co Ltd 酸化物磁性材料
JP2008169378A (ja) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp 樹脂組成物
JP2022024885A (ja) * 2020-07-28 2022-02-09 Dowaエレクトロニクス株式会社 マグネトプランバイト型六方晶フェライト磁性粉の製造方法及びマグネトプランバイト型六方晶フェライト磁性粉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354972A (ja) * 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2002353020A (ja) * 2001-05-24 2002-12-06 Sumitomo Special Metals Co Ltd 酸化物磁性材料
JP2008169378A (ja) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp 樹脂組成物
JP2022024885A (ja) * 2020-07-28 2022-02-09 Dowaエレクトロニクス株式会社 マグネトプランバイト型六方晶フェライト磁性粉の製造方法及びマグネトプランバイト型六方晶フェライト磁性粉

Also Published As

Publication number Publication date
TW202337835A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
US6338900B1 (en) Soft magnetic composite material
JP5650270B2 (ja) マグネトプランバイト型六方晶フェライト及びノイズ抑制シート
JP4919636B2 (ja) 酸化物磁性材料および焼結磁石
JP5780408B2 (ja) 軟磁性樹脂組成物および電磁波吸収体
JP5408521B2 (ja) 焼結磁石の製造方法
JP5097971B2 (ja) 電波吸収体用磁性粉体の製造法
WO2014163079A1 (ja) ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
JP4697366B2 (ja) ボンド磁石用ストロンチウムフェライト粒子粉末及び該ストロンチウムフェライト粒子粉末を用いたボンド磁石
EP0986074B1 (en) Resinous magnetic composition and manufacturing process
JP2004247603A (ja) MnZn系フェライト電波吸収体
WO2015050119A1 (ja) ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
JP5794313B2 (ja) フェライト粒子およびその製造方法
KR20170063631A (ko) 본드 자석용 페라이트 입자 분말, 본드 자석용 수지 조성물 및 그것들을 사용한 성형체
WO2023153399A1 (ja) 電磁波吸収用フェライト粒子粉末、その製造方法、及びそれを用いた樹脂組成物
JP2004288941A (ja) ノイズ抑制シート
WO2013146299A1 (ja) ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
WO2024084976A1 (ja) 電磁波吸収用フェライト粒子粉末及びその製造方法、それを用いた樹脂組成物及び電磁波吸収材
JP2010260766A (ja) マグネトプランバイト型六方晶フェライトおよびそれを用いた電波吸収体
JP4279393B2 (ja) 板状の軟磁性フェライト粒子粉末及びこれを用いた軟磁性フェライト粒子複合体
JP5391414B2 (ja) 電波吸収体用磁性粉体
JP2004247602A (ja) MnZn系フェライト電波吸収体
JP2007055832A (ja) 酸化物磁性組成物及び高周波用磁性材料
JP5282318B2 (ja) 固溶系y型六方晶フェライト材料及び該材料を用いた成型体、電磁波吸収体、及びアンテナ
JP2006137653A (ja) マグネトプランバイト型六方晶フェライトおよびそれを用いた電波吸収体
JP2015030630A (ja) Z型六方晶フェライト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752863

Country of ref document: EP

Kind code of ref document: A1