WO2023151652A1 - 图像传感器驱动模组、光学组件、摄像头模组及电子设备 - Google Patents

图像传感器驱动模组、光学组件、摄像头模组及电子设备 Download PDF

Info

Publication number
WO2023151652A1
WO2023151652A1 PCT/CN2023/075431 CN2023075431W WO2023151652A1 WO 2023151652 A1 WO2023151652 A1 WO 2023151652A1 CN 2023075431 W CN2023075431 W CN 2023075431W WO 2023151652 A1 WO2023151652 A1 WO 2023151652A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
bearing part
fixed
fixing seat
bearing
Prior art date
Application number
PCT/CN2023/075431
Other languages
English (en)
French (fr)
Inventor
彭书胜
吕权明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202310142208.6A external-priority patent/CN116600197A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151652A1 publication Critical patent/WO2023151652A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils

Definitions

  • Possible implementations of the present application relate to the technical field of photographing, and in particular to an image sensor drive module, an optical component, a camera module and electronic equipment.
  • an electronic device with a camera function When electronic devices with camera functions (such as mobile phones, tablet computers, etc.) take pictures, the pictures taken will often appear blurred, ghosted or blurred due to slight shaking. For example, when the human body is holding an object, there is generally a certain degree of Physiological shaking, the human body is often in a moving state when shooting images. These irregular, involuntary shaking or motion vibrations will cause blurred shooting pictures and poor user experience. Therefore, an electronic device with a camera function needs to have an automatic focus (AF for short) function and an optical image stabilization (OIS for short) function.
  • AF automatic focus
  • OIS optical image stabilization
  • the driving structure drives the movement of the image sensor to adjust the specific position and posture of the image sensor and realize the anti-shake function of the camera module.
  • the present application provides an image sensor drive module, an optical component, a camera module and electronic equipment, which can satisfy the stability of the movement of the image sensor and ensure the image quality.
  • the embodiment of the present application provides an image sensor drive module, including a drive unit, a fixed seat and a movable seat, the drive unit includes a fixed part and a movable part that can move relatively, the fixed seat is used to carry the fixed part, and the movable seat It includes a bearing part, a fixed part and a connecting part, the connecting part is used to realize the mechanical and electrical connection between the bearing part and the fixed part, the bearing part is used to carry the image sensor and the movable part, so The fixing part is connected to the fixing seat, and the bearing part is in contact with the fixing seat.
  • Part of the structure on the bearing part and part of the structure on the fixing seat constitute a holding structure, and the holding structure is used for A holding force is provided on the carrying part, and the driving unit is used to drive the carrying part to move relative to the fixed seat, and the moving direction may be a direction perpendicular to the optical axis of the camera module, that is, where the photosensitive surface of the image sensor is located.
  • the bearing part and the fixing seat are kept in contact by the holding force of the holding structure.
  • the mobile platform of the image sensor is suspended relative to the bottom plate of the module, and the space between the mobile platform and the bottom plate not only increases the size of the optical axis direction of the camera module, but also easily causes the tilt of the mobile platform and the optical axis. Vibration in the direction of the image leads to a decrease in imaging quality, and the air thermal resistance is large, the heat of the image sensor and the driving circuit is not easy to dissipate, which will cause the junction temperature of the image sensor to be too high (for example, higher than 70 degrees, or even 90 degrees), The image sensor has too much imaging noise, which affects the image quality.
  • This application ensures the contact between the bearing part and the fixed platform by setting the holding structure, which can ensure that there is no displacement in the direction of the optical axis during the moving process of the image sensor, improves the stability of the moving process of the image sensor, and can move the image sensor along the route It is limited in a stable plane, which can avoid axial vibration or tilt of the image sensor during the movement (that is, reduces the displacement of the optical axis of the image sensor and the crosstalk of the rotation direction of the image sensor), and can ensure the image data obtained by the image sensor quality and stability.
  • a position detection sensor in the direction of the optical axis needs to be provided on the mobile platform.
  • this application since the image sensor has no displacement in the direction of the optical axis, this application does not need to configure a sensor for detecting the position of the optical axis direction, which can save the cost of the image sensor drive module, simplify the structure of the device configured on the movable seat, and facilitate the realization of activities.
  • the small size of the seat since the image sensor has no displacement in the direction of the optical axis, this application does not need to configure a sensor for detecting the position of the optical axis direction, which can save the cost of the image sensor drive module, simplify the structure of the device configured on the movable seat, and facilitate the realization of activities.
  • the small size of the seat since the image sensor has no displacement in the direction of the optical axis, this application does not need to configure a sensor for detecting the position of the optical axis direction, which can save the cost of the image sensor drive module, simplify the structure of the device configured on the movable seat, and facilitate the realization of activities. The small size of the seat.
  • This application can also reduce the thermal resistance between the bearing part and the fixing seat through the contact between the two, and the heat on the bearing part can be better conducted to one part of the outer surface of the fixing seat through the contact relationship between the bearing part and the fixing part.
  • improving the thermal conductivity of the image sensor driver module can optimize the heat dissipation efficiency of the image sensor and driver unit, and prevent the camera module from deteriorating in image quality due to excessive temperature during video shooting or long-term photo taking.
  • the connecting part constitutes at least part of the holding structure
  • the connecting part is an elastic structure
  • the elastic force of the connecting part acts on the bearing part to form the holding force.
  • the elastic force of the connecting part is used as the holding force to ensure the contact between the bearing part and the fixed seat. It is necessary to add other holding structures in addition to the fixed seat and the movable seat.
  • the connecting part can not only ensure the bearing part Moving under the driving force of the driving unit, it also has the function of providing a holding force, and the dual-function design of the connecting part is beneficial to the miniaturization of the image sensor driving module.
  • connection between the connecting part and the fixing part is a first position
  • connection between the connecting part and the bearing part is a second position
  • the first position and the An elastic potential exists between the second positions, said elastic potential forming said holding force.
  • the fixed seat includes a fixed platform, the bearing part is in contact with the inner surface of the fixed platform, and the bearing part is used to bear the image sensor on the inner surface of the fixed platform
  • the image sensor is located on the light-emitting side of the lens assembly of the camera module
  • the inner surface of the fixed platform is perpendicular to the optical axis of the camera module
  • the first position is between the inner surface of the fixed platform.
  • the distance in the direction of the optical axis is smaller than the distance in the direction of the optical axis of the inner surface between the second position and the fixed platform, and the elastic pulling force of the connecting part acts on the second position to form a direction toward The holding force of the fixed platform.
  • the connecting part constitutes at least part of the holding structure
  • the fixed part and the carrying part can be designed to be non-coplanar during the process of making the movable seat, and there is an optical axis between the first position and the second position before assembly direction height difference.
  • the first position and the second position can be assembled into a coplanar state, or during the assembly process, the specific physical position of the first position or the second position can be adjusted to store energy in such a way that in The elastic potential energy is stored in the connecting portion, and the force of the elastic potential energy acting on the bearing portion is a holding force towards the fixed platform.
  • the bearing part is provided with a magnetic piece, and the magnetic piece and a part of the fixing seat for contacting the bearing part constitute at least part of the holding structure for contacting the bearing part.
  • a part of the fixing base is provided with a magnetically permeable material, and at least part of the holding force is formed by the magnetic attraction force between the magnetic piece and the fixing base.
  • the magnetic member includes at least two magnets, the at least two magnets are arranged on the bearing part in a point-like distribution state, and are adjacent to the outer edge of the bearing part, and the bearing The outer edge of the part is the edge position of the carrying part facing the fixing part.
  • the number of magnets can be three or four.
  • the three magnets can define a surface, which can ensure the surface contact of the contact surface between the bearing part and the fixing seat.
  • there are four magnets they can be symmetrically distributed at the four corners of the image sensor, which is beneficial to ensure the smooth movement of the image sensor.
  • the magnet is arranged on the outer edge of the bearing part, so that the position of the magnet is as far away from the image sensor as possible, and the influence of the magnetic field generated by the magnet on the image sensor is reduced.
  • the magnetic element includes at least two magnetic strips, both of which are elongated, and the at least two magnetic strips are symmetrically distributed on the bearing part and adjacent to the bearing part.
  • the outer edge of the bearing part, the outer edge of the bearing part is the edge position of the bearing part facing the fixing part.
  • the arrangement of the elongated magnetic strips can not only provide greater magnetic attraction force, but also facilitate assembly and fixing.
  • the magnetic attraction force between the magnetic member and the fixed seat provided on the bearing part needs to ensure that the bearing part can maintain contact with the fixed seat during the movement process, and the magnetic attraction force must also be controlled within a preset range. That is, the magnetic attraction force should not be too large. If the magnetic attraction force is too large, the driving unit may not be able to drive the carrying part to move, or the moving efficiency of the carrying part may be affected.
  • the movable part is a magnetic drive part
  • the fixed part is a coil drive part
  • the magnetic part includes the magnetic drive part
  • the magnetic drive part and the fixed base A magnetic attraction constitutes at least part of said retaining force.
  • a magnetic driving part is used to form a holding structure, which is beneficial to the miniaturization design of the image sensor driving module.
  • the fixed base is provided with a magnetic piece
  • part of the bearing part has a magnetically permeable material
  • the part of the bearing part with a magnetically permeable material is a magnetic attraction piece
  • the magnetic piece and the The magnetic element constitutes at least part of the holding structure
  • the magnetic element is located at the contact surface between the fixing base and the bearing part
  • the magnetic attraction force between the magnetic element and the magnetic element constitute the retention force.
  • the magnetic parts are arranged on the fixed platform, and the magnetic parts, such as steel plates, are correspondingly arranged on the bearing part. This design can reduce the influence of the magnetic parts on the drive unit and the image sensor, and ensure the smoothness and smoothness of the movement of the image sensor. The quality of the resulting image signal.
  • the magnetic part is located on the surface of the fixing seat away from the carrying part, or the magnetic part is embedded in the fixing seat.
  • the magnetic attraction is located on the surface of the bearing part facing the fixing seat, the magnetic attraction is in contact with the fixing seat to form a friction interface, and the magnetic attraction is also used to carry the image sensor.
  • the carrying part includes a circuit board and a magnetic attraction, and the magnetic attraction is fixed on the bottom surface of the circuit board to reinforce the strength of the circuit board.
  • the distance between the magnetic parts, the image sensor and the drive unit can be maximized, which is beneficial to reduce the influence of the magnetic parts on the drive unit and the image sensor, and ensure the image sensor The smoothness of movement and the quality of the resulting image signal.
  • the magnetic parts and the fixed platform are combined into one, which does not affect the overall structure of the image sensor drive module, and also provides a link between the image sensor drive module and other structures in the electronic device. Assembly positioning provides convenience.
  • the image sensor driving module includes an elastic member, one end of the elastic member is located at the bearing part, and the other end is located at the fixing seat, and the elastic member constitutes at least part of the holding structure
  • the elastic force applied by the elastic member to the bearing part is at least part of the retaining force, and the direction of the elastic force is toward the contact surface between the bearing part and the fixing seat.
  • a friction interface is formed at the contact surface of the bearing part and the fixing seat, and the friction coefficient of the friction interface is less than 0.3.
  • the friction coefficient of the sliding friction between the bearing part and the fixed seat it is possible to ensure the smoothness of the movement of the image sensor and reduce the frictional resistance during the movement of the image sensor on the basis of limiting the moving plane of the image sensor , improving the efficiency of driving the movement of the image sensor.
  • the bearing part and/or the fixing seat includes a super-slip material layer, and the super-slip material layer is a solid structure, through which the super-slip material The layer achieves said frictional interface with a coefficient of friction of less than 0.3.
  • the combination between the super-smooth material layer of the solid structure and the bearing part and the fixed platform is easier to realize, for example, it can be directly connected and fixed through the adhesive layer, and the assembly process has the advantage of being simple and easy.
  • a lubricating layer is provided between the bearing part and the fixed seat, and the lubricating layer is an oily, fat-like or paste-like structure.
  • the layer achieves said frictional interface with a coefficient of friction of less than 0.3.
  • This solution achieves a friction interface with a low friction coefficient by setting an oily, fat or paste-like lubricating layer between the bearing part and the fixing seat. Since the shape of the lubricating layer is not fixed, the bearing part and the fixing seat A lubricating layer is added to the contact surface between them, and the lubricating layer can be made into a smaller size, which is conducive to realizing the miniaturization of the optical axis direction of the camera module.
  • the design of the lubricating layer is also beneficial to ensure the flatness of the contact surface. It can be understood that the problem of flatness can be compensated by the lubricating layer, so as to avoid vibration or inclination in the direction of the optical axis of the image sensor during the movement.
  • the lubricating layer may include a rolling structure.
  • the friction coefficient of the friction interface is less than 0.3 by performing a surface treatment process on the contact surface between the bearing part and the fixing seat.
  • the surface treatment methods can be: surface modification technology, such as polishing; surface alloying technology, such as carburizing and nitriding; surface conversion film (by chemical methods, the additive material and the substrate are chemically reacted to form a conversion film) technology etc.
  • the way of surface treatment constitutes the friction interface X, without adding a super-slip material layer or a lubricating layer, and can obtain a smaller size in the direction of the optical axis.
  • the friction interface includes a material with thermal conductivity.
  • This application can reduce the thermal resistance at the position of the friction interface, and the heat on the bearing part can be better conducted to one side of the outer surface of the fixing seat through the contact relationship between the bearing part and the fixing part, thereby improving the performance of the image sensor drive module.
  • the thermal conductivity can optimize the heat dissipation efficiency of the image sensor and the drive unit, and prevent the camera module from degrading the image quality due to excessive temperature during the process of shooting video or taking pictures for a long time.
  • the thermal conductivity of the friction interface is greater than 0.5 W/m ⁇ K. This solution helps to ensure the performance of the image sensor and improve the quality of the image signal by limiting the thermal conductivity of the friction interface.
  • the contact mode between the bearing part and the fixing seat is contact between planes
  • the plane on the bearing part used to contact the fixing seat is a first plane
  • the plane on the fixing base used to contact the carrying part is a second plane
  • both the first plane and the second plane are continuous and complete plane structures.
  • the contact mode between the bearing part and the fixing seat is contact between a plane and an array of bumps, and at the contact position between the bearing part and the fixing seat, the
  • the structural form of one of the bearing part and the fixing seat is a complete planar structure
  • the structural form of the other of the bearing part and the fixing seat is an arrayed bump structure
  • the arrayed bump structure All locales corresponding to the complete planar structure.
  • the contact mode between the bearing part and the fixing seat is contact between a plane and a plurality of convex points, and at the contact position between the bearing part and the fixing seat, the
  • the structural form of one of the bearing part and the fixing seat is a complete planar structure
  • the structural form of the other of the bearing part and the fixing seat is a plurality of bump structures
  • the plurality of bump structures A local area setting corresponding to the complete planar structure.
  • the contact between the bearing part and the fixing seat is a contact between a plane and a protruding rib structure, and at the contact position of the bearing part and the fixing seat
  • the structural form of one of the bearing part and the fixing seat is a complete planar structure
  • the structural form of the other of the bearing part and the fixing seat is a protruding rib structure.
  • the movable seat is an integrated circuit board structure
  • the bearing part includes a first area for carrying the movable part and other electronic devices
  • the movable seat is placed on the image sensor.
  • the dimension in the direction of the optical axis is the thickness of the movable seat, the thickness of the first region, the thickness of the connecting part and the thickness of the fixed part are equal.
  • the movable seat formed by the integrated circuit structure can save the space of the image sensor driving module in the thickness direction, and is conducive to the miniaturization design of the image sensor driving module in the direction of the optical axis of the image sensor.
  • it is formed by the integral molding process of the circuit board. The manufacturing process is simple, easy to assemble, and the structural stability will be better.
  • the circuit layer in the movable seat is only routed in the same circuit board, which can ensure the signal The stability of the transmission reduces the loss of the signal.
  • the carrying part includes a second area for fixing the image sensor, the first area is connected between the second area and the connecting part, and the second area
  • the thickness is smaller than the thickness of the first area
  • the first area is arranged around the edge of the second area and together with the second area to form a storage space
  • the storage space is used to accommodate the image sensor
  • the contact surface between the first region and the fixing seat is coplanar with the contact surface between the second region and the fixing seat.
  • a groove is provided on the bearing part, and the groove is used to accommodate the image sensor, which is beneficial to saving space in the direction of the optical axis, and is easy to realize a small-sized design in the direction of the optical axis.
  • the fixed base includes a fixed platform and a fixed frame
  • the retaining force is used to maintain contact between the bearing part and the fixed platform
  • the fixed frame is fixedly connected to the fixed frame.
  • the edge of the platform, the fixed frame and the fixed platform form an enclosing space
  • the driving unit, the connecting part and part of the bearing part are located in the enclosing space
  • the driving unit is located away from the bearing part One side of the fixed platform.
  • the fixed seat includes a fixed platform
  • the holding force is used to maintain contact between the bearing part and the fixed platform
  • the driving unit is located between the bearing part and the fixed platform.
  • the fixing member is fixed to the fixed platforms.
  • the fixed seat includes a fixed frame, the fixed frame is fixedly connected to the edge of the fixed platform, the fixed part is connected to the fixed frame, the fixed part and the fixed platform separated by at least part of the fixed frame.
  • the carrying part includes a first carrying platform and a second carrying platform, the first carrying platform is used to carry the image sensor, and the first carrying platform is in contact with the fixing seat to form a contact surface , the direction perpendicular to the contact surface is the direction of the optical axis, the second carrying platform and the connecting portion are stacked along the direction of the optical axis, the movable part of the driving unit is fixed on the second carrying platform on the platform.
  • the first carrying platform and the connecting part are interconnected in an integrated structure, and the connecting part is located between the second carrying platform and the contact surface along the direction of the optical axis. between.
  • the bearing part is designed as two board structures (i.e. the first bearing platform and the second bearing platform), and the second bearing platform and the connecting part are stacked to realize the movable seat in the direction perpendicular to the optical axis. On the small size design. When this solution is applied to electronic equipment, it can save the occupied area of the circuit board where the camera module is located.
  • the first carrying platform and the connecting part are respectively connected to the top surface and the bottom surface of the second carrying platform, and along the direction of the optical axis, the second carrying platform is located on the between the connecting portion and the contact surface.
  • the bearing part is designed as two board structures (i.e. the first bearing platform and the second bearing platform), and the second bearing platform and the connecting part are stacked to realize the movable seat in the direction perpendicular to the optical axis. On the small size design. When this solution is applied to electronic equipment, it can save the area occupied by the camera module on the circuit board.
  • the bearing part includes a first board and a second board, the outer edge of the first board and the connecting part are interconnected into an integrated structure, and the inner edge of the first board Enclosed to form a storage space, the first plate is used to carry the movable part, the second plate includes a first part and a second part, the first part and the first plate are stacked, and the second part is located at The bottom of the receiving space, the second part is used to carry the image sensor, so that the image sensor is accommodated in the receiving space, and the second plate is in contact with the fixing seat.
  • This solution connects the image sensor through the second board, carries the movable parts through the first board, and the image sensor is accommodated in the storage space, which is conducive to realizing the size of the optical axis direction, making it easy to realize a small-sized structure of the image sensor driving module in the optical axis direction .
  • an embodiment of the present application provides an optical assembly, including an axial movement driving module and the image sensor driving module described in any possible implementation of the first aspect, the axial movement driving module is fixed Connected to the image sensor drive module, the image sensor drive module is used to drive the image sensor to move on a plane perpendicular to the optical axis, and the axial movement drive module is used to drive the lens module on the axis Move or tilt up.
  • an embodiment of the present application provides a camera module, including an image sensor, a lens assembly, and the optical assembly described in the second aspect, the lens assembly is fixed to the axial movement drive module, and the image sensor fixed to the image sensor drive module, the lens assembly is located on the light incident side of the image sensor.
  • an embodiment of the present application provides a camera module, including an image sensor, a lens assembly, and the image sensor driving module described in any possible implementation manner of the first aspect, the image sensor is fixed to the image The sensor drives the module, and the lens assembly is located on the light-incident side of the image sensor.
  • the embodiment of the present application provides an electronic device, including a processor and the camera module described in the third aspect or the fourth aspect, the processor is electrically connected to the camera module, and the processor is used for The image signal output by the image sensor is processed.
  • FIG. 1 is a perspective view of an electronic device provided in a possible implementation manner of the present application
  • Fig. 2 is a perspective view of another direction of the electronic device shown in Fig. 1;
  • FIG. 3A is a perspective view of a camera module provided in a possible implementation manner of the present application.
  • FIG. 3B is a perspective sectional view of a camera module provided in an embodiment of the present application.
  • FIG. 4 is an exploded perspective view of a camera module provided in a possible implementation manner of the present application.
  • FIG. 5 is an exploded perspective view of a camera module provided in a possible implementation manner of the present application.
  • FIG. 6 is a perspective view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 7 is an exploded perspective view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 8 is an exploded perspective view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 9 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 10A is a partial enlarged view of the cross-sectional view of the image sensor driving module shown in FIG. 9;
  • FIG. 10B is a partially enlarged view of a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 11A is a schematic diagram of the friction interface between the bearing part and the fixed platform in the image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 11B is a schematic diagram of the friction interface between the bearing part and the fixed platform in the image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 11C is a schematic diagram of the friction interface between the bearing part and the fixed platform in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 12 is a schematic diagram of the friction interface between the bearing part and the fixed platform in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 13 is a schematic diagram of the friction interface between the bearing part and the fixed platform in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 14 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 15 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 16 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 17 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 18 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • Fig. 19 is a schematic diagram of the specific form of the contact surface between the bearing part and the fixed plane in the image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 20 is a schematic diagram of a specific architecture of a holding structure in an image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 21 is a schematic diagram of a specific architecture of a holding structure in an image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 22 is a schematic diagram of a specific architecture of a holding structure in an image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 23A is a schematic diagram of the specific architecture of the holding structure in the image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 23B is a schematic diagram of the specific architecture of the holding structure in the image sensor driving module provided in a possible implementation manner of the present application;
  • FIG. 24 is a schematic diagram of the specific architecture of the holding structure in the image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 25A is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • Fig. 25B is the same as the embodiment shown in Fig. 25A, and the detailed structure of the first carrying area is marked in Fig. 25B;
  • Fig. 26 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • Fig. 27 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • Fig. 28 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • Fig. 29 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 30 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 31 is a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 provided in some possible implementations of the present application.
  • Electronic devices can be mobile phones, tablets, laptops, televisions, vehicle-mounted devices, wearable devices, video surveillance devices, and other electronic products.
  • the wearable device may be a smart bracelet, a smart watch, a wireless headset, augmented reality (augmented reality, AR) glasses, an augmented reality helmet, a virtual reality (virtual reality, VR) glasses, a virtual reality helmet, and the like.
  • augmented reality augmented reality, AR
  • VR virtual reality
  • FIG. 2 is a structural diagram of the electronic device 1000 shown in FIG. 1 at another angle.
  • the electronic device 1000 includes a casing 100 , a display screen 200 , a front camera assembly 300 , a rear camera assembly 400 , a motherboard 500 , a processor 600 , a memory 700 and a battery 800 .
  • the display screen 200 is used to display images, and the display screen 200 may also integrate a touch function.
  • the display screen 200 is mounted on the casing 100 .
  • the housing 100 may include a frame 1001 and a rear cover 1002 .
  • the display screen 200 and the rear cover 1002 are installed on opposite sides of the frame 1001 respectively.
  • the space facing the display screen 200 is the front of the electronic device 1000
  • the space facing the back cover 1002 is the rear of the electronic device 1000 .
  • the front camera assembly 300 is located inside the casing 100 and below the display screen 200 .
  • the display screen 200 is provided with a front camera hole 2001 , and the front camera assembly 300 collects the light in front of the electronic device 1000 through the front camera hole 2001 to realize shooting.
  • the front camera assembly 300 may include the camera module described in the following possible implementation manners, or may include camera modules with other structures.
  • the rear cover 1002 is provided with at least one rear camera hole 1003 .
  • the rear camera assembly 400 is located inside the casing 100 , and the rear camera assembly 400 collects the light behind the electronic device 1000 through at least one rear camera hole 1003 to achieve shooting.
  • “at least one” includes both one and multiple cases, a plurality is two or more, and “above” includes the original number.
  • the rear camera assembly 400 includes at least one camera module 4001, such as one or more of a standard camera module, a telephoto camera module, a wide-angle camera module, an ultra-telephoto camera module, and an ultra-wide-angle camera module.
  • the rear camera assembly 400 includes a standard camera, a wide-angle camera and a periscope telephoto camera.
  • the camera module 4001 of the rear camera assembly 400 may include the camera modules described in possible implementations below, and may also include camera modules with other structures.
  • the rear camera assembly 400 may also include a flash module 4002 .
  • the rear cover 1002 is provided with a flashlight hole 1004 , and the flashlight module 4002 is located inside the casing 100 and emits light through the flashlight hole 1004 .
  • the mainboard 500 is located inside the casing 100 , and the processor 600 and the memory 700 are fixed on the mainboard 500 .
  • the display screen 200 , the front camera component 300 and the rear camera component 400 are coupled to the processor 600 .
  • the memory 700 is used to store computer program codes.
  • Computer program code includes computer instructions.
  • the processor 600 is used to invoke computer instructions to enable the electronic device 1000 to perform corresponding operations, for example, to enable the display screen 200 to display target images, to enable the front camera assembly 300 and the rear camera assembly 400 to capture target images, and so on.
  • the battery 800 is electrically connected to the main board 500 for powering the electronic device 1000 .
  • the electronic device 1000 may also include one or more of functional modules such as an antenna module, a mobile communication module, a sensor module, a motor, a microphone module, and a speaker module. These functional modules Groups may be electrically connected to processor 600 to communicate signals.
  • a possible implementation mode of the present application provides a camera module
  • the camera module can be the front camera assembly 300 or the rear camera assembly 400 in the implementation shown in Figure 1 and Figure 2, the camera module and the electronic device
  • the processor 600 is electrically connected, specifically, the processor 600 is electrically connected to the image sensor in the camera module, and can drive the image sensor, and can also process the image signal output by the image sensor.
  • Figure 3A is a three-dimensional assembly view of the camera module 10 provided in one embodiment of the present application
  • Figure 3B is a perspective cross-sectional view of the camera module 10 provided in one embodiment of the present application, as shown in Figures 4 and 5
  • the three-dimensional exploded view of the camera module 10 in two directions is provided for FIG. 3A .
  • the camera module 10 includes an image sensor driving module 2 , a lens driving module 3 , an image sensor 4 and a lens assembly 5 .
  • the lens driving module 3 and the image sensor driving module 2 constitute an optical assembly 80 , and the image sensor driving module 2 is used to drive the image sensor 4 to move.
  • the lens driving module 3 is used for optical focusing, optical anti-shake, aberration adjustment, etc. of the camera module 10 .
  • the image sensor 4 moves on a reference plane, which may be coplanar or parallel to the photosensitive surface of the image sensor 4 , and which may be a plane perpendicular to the extending direction of the optical axis P.
  • the optical axis P can be understood as the optical axis of the image sensor 4, can also be understood as the optical axis of the lens assembly 5, and can also be understood as the optical axis of the camera module 10. In the camera module, theoretically, the optical axis of the lens assembly 5 The optical axis of the lens assembly 5 and the optical axis of the image sensor 4 may be coincident.
  • the optical axis of the lens assembly 5 and the optical axis of the image sensor 4 may also have a relative offset or inclination. However, whether it is coincidence or There are offset and tilt phenomena, the extension direction of the optical axis of the lens assembly 5 and the optical axis of the image sensor 4 are consistent (the extension direction can be understood as basically the same direction, allowing a small range of relative tilt), both It can be regarded as the optical axis of the camera module 10 .
  • the lens driving module 3 includes a housing 31 and a driving assembly 32 , the housing 31 surrounds and forms an accommodation space, and the housing 31 is used for fixed connection with other functional modules (such as the image sensor driving module 2 ).
  • the driving assembly 32 is accommodated in the accommodation space of the housing 31 , and the driving assembly 32 is used to drive the lens assembly 5 of the camera module 10 to move.
  • the driving assembly 32 of the lens driving module 3 is used to drive the lens assembly 5 to move or tilt in the axial direction (ie, the direction in which the optical axis P extends), so as to achieve optical image stabilization, optical focusing, and adjustment of aberrations.
  • the lens driving module 3 can drive the lens assembly 5 to move axially to achieve optical focusing of the camera module 10 .
  • the lens driving module 3 can also be used to compensate other optical parameters of the camera module 10, such as aberration, and the lens driving module 3 can drive at least part of lenses in the lens assembly 5 to move to compensate for the aberration.
  • the driving assembly 32 includes a magnetic driving part 321 and a coil driving part 322, the coil driving part 322 is connected to the lens assembly 5, and the magnetic driving part 321 is connected to the housing 31, when the coil driving part 322 When energized, the coil driver 322 is coupled with the magnetic driver 321 to generate an electromagnetic driving force to drive the lens assembly 5 to move.
  • the driving assembly 32 of the lens driving module 3 is covered by the housing 31 , and the driving assembly 32 of the lens driving module 3 does not participate in the driving of the image sensor driving module 2 .
  • the lens driving module 3 and the image sensor driving module 2 in the optical assembly 80 are two independent modular structures, and the image sensor driving module 2 can match different types of lens driving modules 3 to form different configurations.
  • the image sensor driving module 2 provided by the present application can form a variety of different optical anti-shake solutions, and has wide adaptability.
  • the image sensor 4 can be fixed to the image sensor driving module 2 first, and then the lens driving module 3 can be fixed to the top surface of the image sensor driving module 2.
  • the lens driving module 3 and the image sensor driving module 2 are fixedly connected by glue (glue layer 801 ).
  • the lens driving module 3 and the image sensor driving module 2 can also be fixedly connected as a whole to form an optical assembly 80 , and then the image sensor 4 is installed into the optical assembly 80 .
  • the optical assembly 80 can be a modular structure independent of the image sensor 4 and the lens assembly 5, the assembly accuracy of the modular structure is easy to control, and the manufacturing cost is low.
  • the optical assembly 80 and the image sensor 4 and the lens During the assembly process of the component 5, the assembly process can also be simplified, and the positioning accuracy of each optical element after assembly is high, which is beneficial to ensure the optical stability of the camera module.
  • the camera module 10 includes a circuit board 9 for electrical connection with the processor on the motherboard in the electronic device.
  • the circuit board 9 can be a flexible circuit board.
  • the circuit board 9 can be a part of the image sensor drive module 2.
  • the circuit board 9 is used to transmit the signal collected by the image sensor 4 to the processor.
  • a driving circuit can also be arranged on the circuit board 9 , and the driving circuit is used to drive the image sensor driving module 2 to realize the movement of the image sensor 4 .
  • the image sensor driving module 2 includes a first top surface S1 and a first bottom surface S2 oppositely arranged.
  • the first bottom surface S2 is planar and used for connecting with the main board or the middle frame support in the electronic equipment.
  • the first top surface S1 has a frame-shaped structure, and the image sensor driving module 2 includes a first carrying area R1, the first carrying area R1 is located inside the opening S11 surrounded by the first top surface S1, and the image sensor 4 is installed from this opening S11 in the first carrying area R1.
  • Optical elements 6, such as IR filters, can also be installed in the first carrying area R1.
  • the lens driving module 3 has a frame-shaped structure as a whole, and the area surrounded by the lens driving module 3 is located on the light-incident side of the first carrying area R1 of the image sensor driving module 2, that is, facing the first carrying area R1 along the optical axis direction,
  • the opening S11 communicates with the first carrying area R1 and the area surrounded by the lens driving module 3, and the area surrounded by the lens driving module 3 is used for installing the lens assembly 5.
  • part of the lens assembly 5 can be located inside the opening S11.
  • part of the lens assembly 5 can also protrude into the first carrying area R1.
  • the lens driving module 3 includes a second bottom surface S3 and a second top surface S4 opposite to each other.
  • the second bottom surface S3 is the outer surface of the bottom plate of the housing 31
  • the second top surface S4 is the outer surface of the top plate of the housing 31 .
  • the second bottom surface S3 can be glued and fixed to the first top surface S1 through the adhesive layer 801 , and the second bottom surface S3 can also be fixed to the first top surface S1 by other connection methods, such as screwing, welding and the like.
  • the camera module 10 may not be provided with a lens driving module, and only the image sensor driving module 2 is used to adjust the position of the image sensor 4 to realize anti-shake or aberration of the camera module 10. Compensation and other functions provide a miniaturized camera module 10 with a simple structure, which is applied in specific electronic equipment, which is beneficial to save the space and board area of the electronic equipment.
  • an image sensor drive module 2 provided in an embodiment of the present application includes a fixed seat 21, a drive unit 22, and a movable seat 23.
  • the drive unit 22 includes a fixed part 221 and a movable part 222 that can move relatively, for example
  • the fixed part 221 is a magnet
  • the movable part 222 is a coil. When the movable part 222 is energized, it interacts with the fixed part 221 to generate a driving force.
  • the fixed seat 21 is used for carrying the fixed part 221
  • the movable seat 23 is used for carrying the movable part 222 and the image sensor 4 .
  • the fixing base 21 includes a fixing platform 211 and a fixing frame 212 .
  • the fixing platform 211 includes an opposite inner surface S0 and a first bottom surface S2, the fixing frame 212 is connected to the fixing platform 211 and protrudes from the inner surface S0, and the fixing member 221 is fixed to the fixing seat 21 , the side of the fixing frame 212 away from the inner surface forms an opening S11. There may be contact between the movable seat 23 and the inner surface S0 of the fixed platform 211 .
  • the movable seat 23 includes a bearing part 231, a fixing part 232 and a connecting part 233, the connecting part 233 is used to realize the mechanical and electrical connection between the bearing part 231 and the fixing part 232, and the fixing part 232 is connected to
  • the fixed seat 21, the fixed part 232 and the fixed seat 21 are relatively fixedly connected
  • the bearing part 231 includes a second bearing area R2 and a first bearing area R1, and the second bearing area R2 is located on the first bearing area.
  • the periphery of the region R1, the second carrying region R2 is used to carry the movable part 222
  • the first carrying region R1 is used to carry the image sensor 4
  • the opening S11 is used to install the image sensor 4 to the Describe the first bearing region R1.
  • the image sensor driving module 2 is designed as a module structure independent of the image sensor 4. After the image sensor driving module 2 is assembled as a whole, the image sensor 4 is placed through the opening S11 position of the image sensor driving module 2. Assemble to the image sensor driver module 2. In this application, the decoupling of the image sensor driving module 2 and the image sensor 4 is not only beneficial to control the manufacturing accuracy of the image sensor driving module 2 .
  • the image sensor 4 Due to the production and assembly process of the image sensor driver module 2, the image sensor 4 is not assembled therein, the manufacturing process of the image sensor driver module 2 has no influence on the performance of the image sensor 4, and the test process of the image sensor driver module 2 can also be Using a dedicated image sensor for separate testing, the application of the image sensor driver module 2 in the camera module can ensure the high-quality performance of the image sensor 4 in the camera module, and can improve the production yield of the camera module and reduce costs.
  • FIG. 6 is a three-dimensional assembly view of the image sensor driving module 2 provided in an embodiment of the present application
  • FIG. 7 and FIG. 8 are three-dimensional exploded views of the image sensor driving module 2 provided in FIG. 6 in two directions.
  • FIG. 9 is a cross-sectional view of the image sensor driving module 2 provided in FIG. 6 . As shown in FIG.
  • the fixed seat 21 is equivalent to the housing of the image sensor drive module 2, and the fixed frame 212 of the fixed seat 21 includes a side frame 2122 and a top plate 2121, and the top plate 2121 and the fixed platform 211
  • the inner surface S0 is opposite to each other, the side frame 2122 is connected between the top plate 2121 and the fixed platform 211 , and forms an enclosing space 2120 with the top plate 2121 and the fixed platform 211 .
  • the driving unit 22 , the connecting portion 233 and the second carrying area R2 are located in the surrounding space 2120 .
  • the opening S11 is surrounded by the top plate 2121 .
  • the driving unit in FIG. 6 is inside the fixing seat 21 and cannot be seen because it is blocked by the fixing seat 21 .
  • the fixed seat 21 can be used as an installation carrier, and can also protect the drive unit 22 and the movable seat 23, and the fixed seat 21 can also be used as a structure for connecting the image sensor drive module 2 to other devices, for example, the image sensor drive module 2 can be installed on On the circuit board in the electronic equipment, it can be realized by the fixed connection between the fixing base 21 and the circuit board.
  • the fixed platform 211 is a planar structure
  • the fixed platform 211 is used to contact part of the movable seat 23
  • the inner surface of the fixed platform 211 can be a planar structure
  • the fixed platform 211 The inner surface of the fixed platform 211 can be perpendicular to the optical axis direction of the image sensor 4, the inner surface of the fixed platform 211 can be parallel to the photosensitive surface of the image sensor 4, and the outer surface of the fixed platform 211 is the first bottom surface S2 of the image sensor drive module 2 (such as Figure 5).
  • the fixed platform 211 is made of a metal material, or the fixed platform 211 has a magnetically conductive material, and the fixed platform 211 can be attracted by the magnetic attraction force of the magnetic element.
  • the fixed platform 211 is used to contact the part of the structure that drives the image sensor 4 to move on the movable seat 23.
  • the movable seat 23 drives the image sensor 4 to move on the fixed platform 211, and during the movement, the contact between the fixed platform 211 and the movable seat 23 The surfaces remain in contact, and the fixed platform 211 has a heat-conducting material, which can be used as a heat dissipation structure to dissipate the heat generated by the image sensor and other electronic devices on the movable seat 23 .
  • the fixed platform 211 includes a central area 2111, a connecting area 2112 and an edge area 2113, the central area 2111, the connecting area 2112 and the edge area 2113 are in the same plane, and the connecting area 2112 is arranged around the periphery of the central area 2111 and connected to the Between the edge area 2113 and the central area 2111.
  • the fixed platform 211 can be a one-piece plate-like structure, and the dotted line box therein schematically expresses the separation between the central area 2111, the connection area 2112 and the edge area 2113, specifically the separation between these three parts.
  • the central area 2111 is used to contact with a part of the movable seat 23.
  • the part of the structure that carries the image sensor 4 on the movable seat 23 is frame-shaped (or ring shape)
  • a part of the central area 2111 is in contact with the movable seat 23
  • a part of the central area 2111 is set opposite to the image sensor 4, and there is a gap between the central area 2111 and the image sensor 4.
  • the edge area 2113 is used for connecting the fixing frame 212 .
  • the fixed frame 212 includes a top plate 2121 and a side frame 2122.
  • the top plate 2121 has a rectangular frame structure, and the opening S11 surrounded by the top plate 2121 is used for installing or accommodating optical elements (such as optical lenses) or as a light hole.
  • the outer contour of the opening S11 surrounded by the top plate 2121 is larger than the outer contour of the image sensor, and it is convenient to install the image sensor on the movable seat 23 through the position of the opening S11 .
  • the side frame 2122 is connected to the outer edge of the top plate 2121, and the side frame 2122 and the top plate 2121 together form an enclosing space 2120.
  • the fixing member 221 of the driving unit 22 is fixed on the inner side of the top plate 2121 and located in the enclosing space 2120.
  • the fixing part 221 is a magnetic driving part, and the fixing part 221 includes four bar magnets, and the four bar magnets are arranged opposite to each other.
  • the top plate 2121 includes four frames, and each frame is equipped with a bar magnet.
  • the fixed frame 212 is provided with a magnetically permeable structure 2123.
  • the outer surface of 2121 may also be embedded in the middle layer of the top plate 2121 .
  • the fixing part 221 is installed inside the magnetically permeable structure 2123 , and the magnetically permeable structure 2123 is used to achieve magnetic shielding of the image sensor driving module 2 .
  • the magnetically permeable structure 2123 is made of a material with magnetic shielding properties.
  • the shape of the magnetically permeable structure 2123 can be the same as that of the top plate 2121.
  • the magnetically permeable structure 2123 can also be arranged on the top plate 2121 and the side frame 2122 at the same time, that is, the magnetically permeable structure 2123 forms a surrounding
  • the structure of the space 2120 forms an all-round shield for the magnetic environment inside the image sensor driving module 2 .
  • the magnetically permeable structure 2123 can be a plate-like structure, such as a metal plate, which can be fixed on the inner surface of the top plate 2121.
  • the magnetically permeable structure 2123 can also be a layer coated on the surface of the top plate
  • the structure is, for example, a coating with a magnetic permeability function formed on the surface of the top plate 2121 by means of spraying or electroplating.
  • the magnetically conductive structure 2123 can also be a mesh structure, which has the function of electromagnetic shielding, and can also have the function of grounding.
  • the present application can realize the magnetic shielding of the image sensor driving module 2 by setting the magnetic conductive structure 2123 in the fixed frame 212.
  • the magnetic conductive structure 2123 can ensure The stability of the driving signal of the driving unit 22 improves the stability of the movement of the image sensor 4 .
  • the setting of the magnetic permeable structure 2123 to be grounded can protect the electronic components in the image sensor driving module 2 , such as preventing static electricity from damaging the electronic components.
  • the fixing frame 212 may be an integrated structure, and the top plate 2121, the side frame 2122 and the magnetic permeable structure 2123 are formed into an integrated structure through a double-material injection molding process.
  • a positioning structure 2125 protrudes from the inner surface of the top plate 2121 of the fixed frame 212, and the positioning structure 2125 protrudes and extends from the inner surface of the top plate 2121 to the surrounding space 2120, the positioning structure 2125 is cylindrical, and the top plate 2121 is a rectangular structure , the number of positioning structures 2125 is four and distributed at the four corners of the top plate 2121 .
  • the positioning structure 2125 is used to cooperate with the corresponding hole structure on the movable seat 23 to realize the assembly positioning between the fixed seat 21 and the movable seat 23. Through the cooperation of the positioning structure 2125 and the hole structure on the movable seat 23, it can realize Precise alignment between the movable part 222 and the fixed part 221 of the driving unit 22 .
  • the driving unit 22 is used as a power source of the image sensor driving module to generate a driving force, and the driving force can drive the movable seat 23 to move relative to the fixed seat 21 .
  • the drive unit 22 is a magnetic structure motor, such as a VCM (Voice Coil Motor, voice coil motor), and the fixed part 221 and the movable part 222 are respectively a magnetic drive part and a coil drive part, the embodiment shown in Figure 7 Among them, the fixed part 221 is a magnetic driving part, and the movable part 222 is a coil driving part. In another specific solution, the fixed part 221 is a coil driving part, and the movable part 222 is a magnetic driving part.
  • the driving unit 22 can also be other types of driving, for example: SMA (shape memory alloy, shape memory alloy motor), PIEZO (Piezo Motor, piezoelectric motor).
  • SMA shape memory alloy, shape memory alloy motor
  • PIEZO PiEZO Motor, piezoelectric motor
  • the movable part 222 and the fixed part 221 of the driving unit 22 in the embodiment of the present application can be two mutually independent elements (such as the coil and the magnet in the magnetic structure motor), and the driving force is generated under the electrified state to drive the image sensor to move; the present application
  • the movable part 222 and the fixed part 221 of the driving unit 22 in the embodiment can also be an integral structure, such as a shape memory alloy motor, which can be driven by changing the size of the material through heating.
  • any electrical connection parts or electronic devices are not provided on the fixed seat 21, and all circuit traces, electronic devices and parts that need to be powered in the camera module 10 are all arranged on the movable seat 23, and the movable seat 23 is equivalent to the main board (or circuit board structure) in the camera module 10, which is used to carry all the devices that need to supply power or transmit signals.
  • the transmission path improves the stability of the signal.
  • the movable seat 23 is an integrated circuit board structure, the wiring for transmitting signals or currents only needs to be arranged in the integrated circuit board, and does not need to be transmitted between different circuit boards or FPCs.
  • Such signals and currents The transmission process can ensure the stability of the signal, reduce the loss of the signal, and it is also easy to realize the isolation between the signals, so as to prevent the quality of the image signal from being affected by the mutual interference of the signals.
  • the movable seat 23 includes a bearing part 231, a fixed part 232 and a connecting part 233, and the connecting part 233 is used to realize the bearing part 231 and the fixing part.
  • 232 mechanical and electrical connections.
  • Mechanical connection refers to the connection relationship in structural form, which can include direct connection or indirect connection.
  • Direct connection can also be an integrated structure.
  • the two parts of an integrated circuit board structure can be understood as direct connection and indirect connection.
  • connecting through other connection structures such as connecting two board structures through solder balls.
  • the electrical connection refers to the connection of signal wires, which can transmit image signals, electrical signals or other signals through the electrical connection relationship, for example, electrical connection through wires in a circuit board, or electrical connection through FPC, and so on.
  • the fixing part 232 is connected to the fixing seat 21, specifically, the fixing part 232 can be connected between the fixing platform 211 and the fixing frame 212, and in other embodiments, the fixing part 232 can also be connected to the fixing frame 212, And the fixing part 232 is separated from the fixing platform 211 by at least part of the fixing frame 212 .
  • Movable seat 23 is provided with hole structure 235, and hole structure 235 is distributed in the corner position of movable seat 23, and hole structure 235 is used for cooperating with the positioning structure 2125 of fixed seat 21, realizes the assembly process between movable seat 23 and fixed seat 21 positioning to ensure the positioning accuracy between the fixed part 221 and the movable part 222 of the drive unit 22 .
  • the hole structure 235 is distributed between the carrying portion 231 and the connecting portion 233 , and is located outside the four corners of the carrying portion 231 .
  • the movable part 222 of the driving unit 22 is disposed on the bearing part 231 .
  • the carrier part 231 is also used for assembling the image sensor 4. Specifically, after the image sensor drive module 2 is assembled, the image sensor 4 is placed on the carrier from the opening S11 by using assembly equipment, such as a placement machine. On the part 231 , during the assembly process, the image sensor 4 is fixed to the carrying part 231 and electrically connected to the carrying part 231 .
  • the image sensor 4 can be fixed on the carrying part 231 by glue, and then the circuits in the carrying part 231 of the image sensor 4 can be electrically connected by means of gold wires. In other embodiments, the image sensor 4 can also be directly connected by solder balls. On the pads of the carrying portion 231 , the electrical connection between the image sensor 4 and the circuits in the carrying portion 231 is realized through solder balls and pads.
  • the fixed part 232 of the movable seat 23 is assembled between the edge area 2113 of the fixed platform 211 and the side frame 2122 of the fixed frame 212, and the outer edge of the fixed part 232
  • the circuit board 9 can be integrated with the fixed part 232
  • the circuit board 9 can also be connected to the fixed part 232 by plugging, specifically, a male connector can be provided on the fixed part 232
  • a female connector is arranged on the circuit board 9, and the transmission of electrical signals is realized through the cooperation between the male connector and the female connector. sent to the processor.
  • the carrying part 231 and the fixed platform 211 are stacked, and the central area of the carrying part 231 surrounds the storage space 2310, which is used to accommodate the image sensor 4.
  • the storage space 2310 can also be used to accommodate other optical components 6 (such as a filter or lens) or as a light passage (that is, no optical element is placed, but it is located on the light incident side of the image sensor 4).
  • electronic devices 7 are arranged on the surface of the carrying portion 231 away from the fixed platform 211, and the electronic devices 7 are distributed on opposite sides of the receiving space 2310 on the carrying portion 231, in order to ensure the structural symmetry of the movable seat 23
  • the electronic devices 7 can be symmetrically distributed on both sides of the accommodating space 2310, which is beneficial to ensure the smooth movement of the movable seat 23.
  • the electronic device 7 and the movable part 222 of the drive unit 22 are installed on the same surface of the bearing part 231, that is, installed on the surface of the bearing part 231 facing the top plate 2121 of the fixed frame 212, so that the bearing part 231 Both the electronic device 7 and the movable part 222 are accommodated in the surrounding space 2120 in the fixed frame 212 (as shown in FIG. 8 and FIG. 10A ).
  • the movable part 222 is fixed to a side of the second carrying area R2 of the carrying part 231 away from the fixed platform 211 , and the movable part 222 faces the top plate 2121 .
  • the movable part 222 of the driving unit 22 is a coil driving part, and the movable part 222 includes four coils arranged opposite to each other, and all the coils are connected to the four magnets fixed on the top plate 2121 one by one
  • the coil is arranged on the carrying portion 231 , and the carrying portion 231 is provided with circuit traces, so that it is easy to realize the layout of the power supply circuit for the coil.
  • a support structure 8 is provided on the bearing part 231, and the movable part 222 surrounds the support structure 8, that is, each coil is provided with a support structure 8, and the support structure 8 is a rigid structure protruding from the surface of the bearing part 231. It can be understood that the coil is arranged around the support structure 8, and the support structure 8 can protect the coil from being scratched by other structures.
  • the driving unit 22 drives the carrying part 231 to move, while the position of the fixed part 232 remains unchanged.
  • the connecting part 233 undergoes elastic deformation, and the connecting part 233 is connected between the fixed part 232 and the carrying part.
  • the connecting part 233 is equivalent to the structure of a spring or a shrapnel.
  • the connecting part 233 is also provided with circuit board wiring for transmitting signals and currents, and the carrying part 231 and the fixing part are realized through the circuit board wiring.
  • the electrical connection between 232 can transmit the signal on the image sensor 4 to the outside of the image sensor driving module 2 .
  • the connecting portion 233 is an elongated elastic arm structure connected between the fixed portion 232 and the carrying portion 231. Specifically, a plurality of strip-shaped elastic arms are formed by removing material on the movable seat 23, that is, the connecting portion 233, the connecting part 233 has the ability of elastic deformation due to the shape of the material itself, and when the carrying part 231 is moved relative to the fixed part 232 by the driving force of the driving unit 22, the connecting part 233 can be elastically deformed to keep the fixed part 232 and The mechanical connection and electrical connection between the carrying parts 231 .
  • the driving unit 22 can drive the image sensor 4 to move along the X-axis direction and the Y-axis direction, the X-axis and Y-axis directions are both perpendicular to the optical axis direction of the image sensor 4, and the optical axis direction is regarded as the Z-axis
  • the X-axis direction, the Y-axis direction and the optical axis direction can construct a three-axis Cartesian coordinate system, that is, the drive unit 22 drives the image sensor 4 on a plane perpendicular to the optical axis, and along the mutually perpendicular X-axis and Y-axis two
  • the connecting part 233 is elastically deformed to ensure that the bearing part 231 can move relative to the fixed part 232 .
  • the movable seat 23 may be an elastic circuit board structure, the carrying part 231 and the fixing part 232 are not elastic, and the connecting part 233 is elastic.
  • FIG. 10A is a partially enlarged schematic view of FIG. 9 .
  • the connection part 233 includes a wire layer 2333 and a metal layer 2334 , and the wire layer 2333 is used for arranging circuit board traces to realize electrical connection between the carrying part 231 and the fixing part 232 .
  • the metal layer 2334 can be a metal flexure structure, and the metal layer 2334 is used to provide the elastic deformation of the connecting portion 233.
  • the existence of the metal layer 2334 ensures the flexibility and strength of the connecting portion 233, and improves the elastic deformation capacity of the connecting portion 233.
  • the wire layer 2333 and the metal layer 2334 may be separated by an insulating layer (the insulating layer is omitted in FIG. 10A ), and the insulating layer may specifically be a polyamide insulating material.
  • the movable seat 23 includes an integrated circuit board structure 23A and a reinforcing plate structure 23B, and the integrated circuit board structure 23A includes a fixed part 232, a connecting part 233 and a part of the bearing part ( It is called the first board 231A), and the integrated circuit board structure 23A is a structure integrally formed by the circuit board manufacturing process, wherein a wire layer 2333 and a metal layer 2334 are provided, and the metal layer 2334 is used to ensure the strength of the connection part 233 and Ability to deform elastically.
  • the reinforcing board structure 23B is a part of the bearing part (called the second board), and the reinforcing board structure 23B is connected to the bottom surface of the part of the bearing part (the first board 231A) of the integrated circuit board structure 23A.
  • the reinforcing plate structure 23B is used for contacting the fixed platform 211 , for forming the friction interface X, and for conducting heat and dissipating heat.
  • the bearing part 231 includes a first plate 231A and a second plate (reinforcing plate structure 23B), and the outer edge of the first plate 231A and the connecting part 233 are interconnected to form an integrated structure.
  • the inner edge of the first plate 231A surrounds and forms a receiving space 2310
  • the first plate 231A is used to carry the movable part 222
  • the second plate (reinforcing plate structure 23B) includes a first part 23B1 and a second part 23B2, the first part 23B1 is stacked with the first plate 231A, the second part 23B2 is located at the bottom of the receiving space 2310, and the second part 23B2 is used to carry the image sensor 4, so that the The image sensor 4 is accommodated in the accommodation space 2310 , and the second plate (reinforcing plate structure 23B) is in contact with the fixing platform 211 of the fixing base 21 .
  • the first part 23B1 of the second board (reinforcing board structure 23B) is connected with the first board 231A through an adhesive layer, the second part 23B2, the first part 23B1 and the first board 231A are stacked, and the second part 23B2 is located between the accommodating space and the image sensor 4 through an adhesive layer.
  • the image sensor 4 is electrically connected to the first board 231A, and is electrically connected to the first board 231A through a signal wire 41 (for example, a gold wire).
  • the glue structure 61 is used to fix the optical element 6, such as an IR filter. On the one hand, the glue structure 61 can be fixedly connected to the optical element 6.
  • the glue structure 61 can also fix the signal line 41 to ensure that the image sensor 4 and the bearing The stability and reliability of the electrical connection between the wire layers 2333 of the part 231.
  • the signal of the image sensor is transmitted through the first board, the connecting part and the fixing part.
  • the part of the second plate (reinforcing plate structure 23B) facing the opening S11 and the part of the first plate 231A facing the opening S11 together constitute the first bearing region R1 of the bearing part 231 (as shown in Figure 9).
  • the part marked as R1 between the two dotted lines represents the first bearing area R1 of the bearing part 231), and the part facing the first plate 231A and the top plate 2121 is the second bearing area R2 of the bearing part 231 (as shown in Figure 9 between the two dashed lines.
  • the part marked with R2 between them represents the second bearing area R2 of the bearing part 231).
  • the opening S11 of the image sensor drive module 2 provided by this solution faces the first bearing area R1.
  • the image sensor 4 is directly fixed by the suction force of the suction cup, and the image sensor is moved by moving the suction cup along the optical axis direction. 4 is placed in the first carrying area R1, and then the image sensor 4 and the carrying portion 231 are fixedly connected.
  • the opening S11 can also be set in a misaligned position with the first bearing area R1, which can be understood as part of the first bearing area R1 is directly opposite to the opening S11, while some of the first bearing area R1 is not directly opposite to the opening S11 , in this embodiment, in the process of assembling the image sensor, the image sensor can be fixed with a suction cup, by placing the image sensor in the area corresponding to the opening S11 along the optical axis direction, and then moving the suction cup along the direction perpendicular to the optical axis, to Transport the image sensor to the first load zone.
  • FIG. 10B is a partially enlarged view of a cross-sectional view of an image sensor driving module provided in a possible implementation manner of the present application.
  • a gap G between the movable seat 23 and the inner surface S0 of the fixed platform 211 which can be understood as: the movable seat 23 and the inner surface S0 of the fixed platform 211 are suspended and spaced apart.
  • the bearing part 231 is in contact with the fixed platform 211 of the fixed base 21 , forming a friction interface X at the contact position of the two, and the friction coefficient of the friction interface X is less than 0.3.
  • the friction interface X may be a contact surface between the bearing portion 231 and the fixing seat 21 (that is, the friction interface is one surface).
  • the friction interface X can also be a medium between the bearing portion 231 and the fixing seat 21 , such as lubricating oil (that is, the friction interface is in the form of grease or paste).
  • the friction interface X can also be a layer structure between the bearing part 231 and the fixed seat 21, for example, a superslip material layer is arranged between the bearing part 231 and the fixed seat 21 to form the friction interface X (that is, the friction interface form is a three-dimensional layer structure) .
  • the relationship between the bearing part 231 and the fixed platform 211 is a sliding friction relationship, and a low friction coefficient can be obtained by setting a solid structural layer, a grease or paste lubricating layer, or surface treatment at the friction interface X.
  • the lubricating layer may include a rolling structure.
  • the bearing part 231 and/or the fixing platform 211 of the fixing seat 21 includes a super-slippery material layer, and the super-slippery material layer is a solid structure, through The super-slip material layer realizes that the friction coefficient of the friction interface X is less than 0.3.
  • the super-slip material layer realizes that the friction coefficient of the friction interface X is less than 0.3.
  • the surface of the bearing part 231 and the fixed platform 211 of the fixed seat 21 are all provided with a super-slippery material layer, that is, the surface of the bearing part 231 is provided with a super-slippery material layer M1, and the surface of the fixed platform 211 is provided with a super-slippery material layer.
  • Slippery material layer M2 super-slippery material layer M1 and super-slippery material layer M2 are in contact, and the area of super-slippery material layer M2 is greater than the area of super-slippery material layer M1, this scheme combines the first case and the second case, in A friction interface X is formed between the super-slippery material layer M1 and the super-slippery material layer M2, and the friction coefficient of the friction interface X provided by this solution can be smaller.
  • the combination of the super-smooth material layer of solid structure and the bearing part 231 and the fixing platform 211 is easier to realize, for example, it can be directly connected and fixed through the glue layer, and the assembly process has the advantage of being simple and easy.
  • the super-slippery material layer M1 and the super-slippery material layer M2 can be coating or coating structures arranged on the surface of the bearing part 231 and the fixed platform 211, that is, by physical spraying or The process of electroplating is formed.
  • the super-slippery material layer M1 and the super-slippery material layer M2 can also be separate sheet-like structures, for example, the super-slippery material layer M1 and the super-slippery material layer M2 are micro-nano structures (nanomaterials), through pasting, physical pressing, etc.
  • the manufacturing process is connected to the carrying portion 231 and the surface of the fixed platform 211 .
  • a lubricating layer M3 is provided between the bearing part 231 and the fixing platform 211 of the fixing seat 21, and the lubricating layer M3 is oily, Grease or paste structure, the friction coefficient of the friction interface X is less than 0.3 through the lubricating layer M3.
  • a lubricating layer M3 with an oily, fat-like or pasty structure is provided between the bearing part 231 and the fixed platform 211 of the fixed seat 21 to realize the friction interface X with a low friction coefficient.
  • a lubricating layer M3 is added to the contact surface between the bearing part 231 and the fixing platform 211 of the fixing seat 21 , and the lubricating layer M3 can be made smaller in size, which is beneficial to realize the miniaturization of the optical axis direction of the camera module.
  • the design of the lubricating layer M3 is also beneficial to ensure the flatness of the contact surface. It can be understood that the problem of flatness can be compensated by the lubricating layer M3 to avoid vibration or inclination in the optical axis direction of the image sensor 4 during the movement.
  • no super-slip material layer or lubricating oil is provided between the bearing part 231 and the fixed platform 211 of the fixing base 21.
  • the bearing part 231 and the Surface treatment is performed on the contacting surfaces between the fixed platforms 211 of the fixed seat 21, so that the friction coefficient of the friction interface X is less than 0.3
  • the surface treatment method can be: surface modification technology, such as polishing; surface alloying Advanced technologies, such as carburizing and nitriding; surface conversion coating (by chemical means, the additive material reacts with the substrate to form a conversion coating) technology, etc.
  • the way of surface treatment constitutes the friction interface X, without adding a super-slip material layer or a lubricating layer, and can obtain a smaller size in the direction of the optical axis.
  • the flexible drive of the image sensor 4 can be realized through the friction interface X with a low friction coefficient such as a super-slip material or a lubricating layer, and the stability of the axial position of the image sensor 4 during the moving process can be ensured without any Phenomena such as axial displacement, vibration or tilt.
  • the contact between the bearing part 231 and the fixed seat 21 is also conducive to heat conduction.
  • the circuit, coil driver and image sensor on the bearing part 231 will generate heat during operation.
  • the bearing part 231 and the fixed seat can The contact between 21 conducts heat conduction.
  • the friction interface X includes a material with thermal conductivity
  • the bearing part 231 can be a thermal conductive material
  • the fixing platform 211 of the fixing seat 21 can also be a thermal conductive material.
  • the thermal conductivity of the friction interface X is greater than 0.5 W/m ⁇ K. This solution helps to ensure the performance of the image sensor and improve the quality of the image signal by limiting the thermal conductivity of the friction interface.
  • the space between the mobile platform and the bottom plate will not only increase the size of the optical axis direction of the camera module, but also easily cause the tilt of the mobile platform and the optical axis. Vibration in the direction of the image leads to a decrease in imaging quality, and the air thermal resistance is large, the heat of the image sensor and the driving circuit is not easy to dissipate, which will cause the junction temperature of the image sensor to be too high (for example, higher than 70 degrees, or even 90 degrees), The image sensor has too much imaging noise, which affects the image quality.
  • the contact between the bearing part 231 and the fixed platform 211 can ensure the stability of the movement of the image sensor 4, and the movement route of the image sensor 4 is limited to a fixed (stable) plane (such as a plane perpendicular to the optical axis). On the plane), the image sensor 4 is prevented from vibrating or tilting in the axial direction during the movement process, which can ensure the quality and stability of the image data obtained by the image sensor 4 .
  • the present application can also reduce thermal resistance, and the heat on the bearing part can be better conducted to one side of the outer surface of the fixing seat 21 through the contact relationship between the bearing part and the fixing part, thereby improving the heat conduction of the image sensor drive module 2
  • the ability can optimize the heat dissipation efficiency of the image sensor 4 and the drive unit 22, and avoid the degradation of the imaging quality caused by the high temperature of the camera module 10 during video shooting or long-term photo taking.
  • the working junction temperature of the image sensor 4 can be controlled below 70°C, for example, the working structure of the image sensor can be less than 50°C.
  • FIG. 14 shows a specific structural form of the contact surface between the carrying portion 231 and the fixed platform 211 .
  • the contact mode between the bearing part 231 and the fixed platform 211 of the fixing seat 21 is the contact between planes.
  • the plane on the bearing part 231 used to contact the fixing base 21 is the first plane S5
  • the plane on the fixing platform 211 of the fixing base 21 used to contact the bearing part 231 is the second plane S6. Both the first plane S5 and the second plane S6 are continuous and complete plane structures.
  • FIG. 15 shows a specific structural form of the contact surface between the carrying portion 231 and the fixed platform 211 .
  • the contact mode between the bearing part 231 and the fixed platform 211 of the fixed base 21 is the contact between the plane and the arrayed bumps, and at the contact position between the bearing part 231 and the fixed platform 211, the bearing
  • the structural form of one of the part 231 and the fixed platform 211 is a complete planar structure, and the structural form of the other of the bearing part 231 and the fixed platform 211 is an array bump structure. As shown in FIG.
  • the carrying portion 231 includes an arrayed bump structure S51 , the structure where the fixing platform 211 contacts the carrying surface 231 is the second plane S6 , and the arrayed bump structure S51 corresponds to all regions of the second plane S6 .
  • the contact between the array bump structure S51 and the second plane S6 can solve the problem of positional deviation in the direction of the optical axis caused by the flatness of plane-to-plane contact.
  • the arrangement of the array bump structure S51 makes it easier to control the flatness of the plane formed by the contact positions of the bumps and the plane. In the process of relative movement, it can be more stable and can also ensure the stability of the friction coefficient.
  • the arrayed bump structure S51 can also be arranged on the fixed platform 211 , and correspondingly, the second plane S6 is arranged on the bearing part 231 .
  • FIG. 16 shows a specific structural form of the contact surface between the carrying portion 231 and the fixed platform 211 .
  • the contact mode between the bearing part 231 and the fixed platform 211 of the fixed seat 21 is the contact between a plane and a plurality of convex points.
  • the bearing The structural form of one of the part 231 and the fixed platform 211 is a complete planar structure, and the structural form of the other of the bearing part 231 and the fixed platform 211 is a structure of multiple bumps. As shown in FIG.
  • a plurality of bump structures S52 are provided on the carrying portion 231, the structure where the fixed platform 211 is in contact with the carrying surface 231 is the second plane S6, and the plurality of bump structures S52 are set corresponding to a local area of the second plane S6,
  • the second plane S6 is in a rectangular shape, and a plurality of bump structures S52 are arranged corresponding to the four corners of the second plane S6.
  • the plurality of bump structures S52 may also correspond to the corners of the second plane S6. Other positions are set, for example, corresponding to the midpoint position of each side of the second plane S6, or each side corresponds to a plurality of bump structures S52. In the embodiment shown in FIG.
  • a plurality of bump structures S52 can also be arranged on the fixing platform 211 , and correspondingly, the second plane S6 is arranged on the bearing part 231 .
  • This solution is beneficial to adjust the flatness at the position of the friction interface and fix the contact surface position between the platform 211 and the bearing part 231 through the cooperation of the convex point structure S52 distributed at the local position and the plane, and does not require high flatness manufacturing accuracy.
  • the smoothness of movement of the image sensor 4 can also be satisfied.
  • the contact between the bearing part 231 and the fixing platform 211 of the fixing seat 21 is the contact between the plane and the protruding rib structure, or the protruding rib structure and the protruding rib structure contact between the rib structures.
  • the setting of the rib structure can increase the contact area, which is beneficial to reduce the pressure, and avoid the damage of the contact surface friction during the relative movement, which affects the positioning accuracy in the direction of the optical axis .
  • the rib structure can improve the movement in the direction of the optical axis caused by the problem of flatness.
  • the structural form of the bearing part 231 is a protruding rib structure S53, and the structural form of the fixed platform 211 is For a complete planar structure S6, the protruding rib structure S53 slides on the planar structure S6 to realize a friction interface.
  • the protruding rib structure S53 is distributed in a ring.
  • the structural form of the bearing part 231 is also a protruding rib structure S53, and the difference with the embodiment shown in Figure 17 is that the protruding rib structure S53 in the embodiment shown in Figure 18 Distributed in a network.
  • the structure of the fixing platform 211 is a protruding rib structure S54.
  • the bearing part The structural form of 231 may be a planar structure S7.
  • the structural form of the bearing portion 231 may also be a rib-like structure.
  • a protruding rib structure may also be provided on the carrying portion 231, and the fixing platform 211 may be provided as a planar structure.
  • FIGs 14 to 19 schematically describe several different structural forms of the friction interface, which are not limitations on the structural form of the friction interface in this application.
  • the application can design friction interfaces with different structural forms according to specific design requirements.
  • the present application provides a moving platform for the carrying part 231 by sliding the carrying part 231 and the fixed platform 211, and the carrying part 231 will not leave the fixed platform 211 during the moving process, thereby, the carrying part 231 needs to have a holding force capable of keeping the carrying portion 231 in contact with the fixed platform 211 .
  • the image sensor driving module 2 is provided with a holding structure, and part of the holding structure is located on the bearing part 231 (it can be understood that the part of the holding structure is a part of the structure on the bearing part), and part of the holding structure is located on the fixing seat 21 (it can be understood as part of the structure on the bearing part).
  • the holding structure is a part of the structure on the fixing seat), the holding structure provides a holding force on the bearing part 231, and the holding force is used to make the bearing part 231 and the fixing platform 211 of the fixing base 21 Stay in touch.
  • the setting of the retaining structure can be realized through many different embodiments, which are described in detail below.
  • the holding structure 26 is composed of a connecting portion 233 and a fixing portion 232, the connecting portion 233 is connected to the bearing portion 231, and the fixing portion 232 is located on the fixing seat 21, that is, the fixing portion 232 and the fixing seat 21 is fixedly connected, and the part of the structure fixedly connected to the fixing part 232 on the fixing seat 21 can be used as a part of the holding structure.
  • the connecting portion 233 of the movable seat 23 serves as a part of the holding structure, and the connecting portion 233 is an elastic structure, and the elastic force of the connecting portion 233 acts on the bearing portion 231 to form the holding force.
  • the elastic force of the connecting part 233 is used as the holding force to ensure the contact between the bearing part 231 and the fixed seat 21. It is necessary to add other holding structures in addition to the fixed seat and the movable seat.
  • the connecting part 233 not only The supporting part 231 can ensure the movement under the driving force of the driving unit 22 , and also has the function of providing a holding force.
  • the dual-function design of the connecting part 233 is beneficial to the miniaturization of the image sensor driving module 2 .
  • connection between the connecting portion 233 and the fixing portion 232 is a first position 2331
  • the connection between the connecting portion 233 and the bearing portion 231 is a second position 2332
  • the first position 2331 Elastic potential energy exists between the second position 2332 and the elastic potential energy forms the holding force.
  • This solution defines a specific way of forming the elastic force of the connecting part 233.
  • the necessary assembly position of the connecting part 233 is used, which is beneficial to ensure the image
  • the size of the sensor driving module 2 is miniaturized.
  • the distance D1 between the first position 2331 and the fixed platform 211 in the direction of the optical axis is smaller than the distance D1 between the second position 2332 and the second position 2332.
  • the distance D2 between the fixed platforms 211 in the direction of the optical axis can be understood as that the first position 2331 and the second position 2332 form a stepped structure during the assembly process, and the assembled connecting portion 233 has a fixed direction
  • the force that pulls the carrying portion 231 in the direction of the platform 211 that is, the elastic pulling force of the connecting portion 233 acts on the second position 2332 to form the holding force toward the fixed platform 211 .
  • the second position 2332 can be provided to face the fixed platform 211 when D1 is less than D2
  • the pulling force is enough to hold the force.
  • the method of forming the retaining force in this solution is realized during the assembly process.
  • the connecting portion 233 is used as a holding structure.
  • the fixed portion 232 and the carrying portion 231 can be designed to be non-coplanar, that is, when the connecting portion 233 is in a free state (not subject to any Constraining force), the first position 2331 of the joint between the connecting part 233 and the fixed part 232 and the second position 2332 of the joint between the connecting part 233 and the bearing part 231 correspond to different optical axis positions, the first position 2331 and the second position There is a height difference in the optical axis direction between 2332 before assembly.
  • the first position 2331 and the second position 2332 can be assembled into a coplanar state, or during the assembly process, the specific physical position of the first position 2331 or the second position 2332 can be adjusted to store in this way energy, that is, the elastic potential energy is stored in the connecting portion 233, and the force of the elastic potential energy acting on the bearing portion 231 is a retaining force toward the fixed platform 211.
  • This solution is beneficial to realize the miniaturization of the size of the assembled image sensor driving module.
  • the holding structure 26 includes a magnetic piece 24 and a fixed platform 211, the magnetic piece 24 is fixed on the bearing part 231, and the magnetic piece 24 and the fixed platform
  • the magnetic attraction between 211 constitutes at least part of said holding force.
  • the fixed platform 211 is designed to cooperate with the magnetic parts to form a magnetic attraction force, and the magnetic attraction force is used as the holding force to ensure the life and stability of the holding force.
  • the elastic force of the connecting part 233 is used as the retaining force, the elastic coefficient of the elastic force will change during long-term use, resulting in a decrease in the elastic performance of the connecting part 233, which may affect the carrying part 231 and the fixing.
  • the holding force between the platforms 211 is not enough to support the frictional interface between the two to keep in contact, it will affect the stability of the movement of the image sensor 4 and also affect the thermal conductivity of the image sensor driving module 2 .
  • the magnetic member 24 and using the magnetic attraction force as the holding force the continuous stability of the holding force can be ensured, and the service life of the image sensor driving module 2 can be improved.
  • the retaining force may include not only the elastic force provided by the connecting portion 233 , but also the magnetic force provided by the magnetic member 24 .
  • the magnetic member 24 includes four magnets 241, 242, 243, 244, and the four magnets 241, 242, 243, 244 are arranged in a point-like distribution state on the On the bearing part 231 and adjacent to the outer edge of the bearing part 231 , the outer edge of the bearing part 231 is an edge position of the bearing part 231 facing the fixing part 232 .
  • four magnets 241 , 242 , 243 , 244 are distributed at the four corners of the carrying portion 231 .
  • the magnetic member 24 may include two or three magnets, or the number of magnets may be greater than or equal to five, and the plurality of magnets are evenly spaced at the edge of the bearing portion 231 .
  • the three magnets can define a surface, which can ensure the surface contact of the contact surface between the bearing part and the fixing seat.
  • the three magnets can be symmetrically distributed at the four corners of the image sensor, which is beneficial to ensure the smooth movement of the image sensor.
  • the magnetic member 24 includes four magnetic strips 245, 246, 247, 248, and the magnetic strips 245, 246, 247, 248 are all elongated, and Two pairs are symmetrically distributed on the carrying portion 231 and adjacent to the outer edge of the carrying portion 231 , the outer edge of the carrying portion 231 is the edge position of the carrying portion 231 facing the fixing portion 232 .
  • the magnetic strips 245, 246, 247, 248 are located inside the coil, and the coil is the movable part 222 of the driving unit.
  • the magnetic strips 245 , 246 , 247 , 248 can also be arranged on the periphery of the movable part 222 .
  • the number of magnetic strips may also be two, three or more. The arrangement of the elongated magnetic strips can not only provide greater magnetic attraction force, but also facilitate assembly and fixing.
  • the magnetic attraction force between the magnetic member 24 and the fixed seat 21 arranged on the bearing part 231 needs to ensure that the bearing part 231 can maintain contact with the fixed seat 21 during the movement process, and the magnetic attraction force should also be controlled at Within a predetermined range, that is, the magnetic attraction force cannot be too large. If the magnetic attraction force is too large, the drive unit 22 may not be able to drive the carrying portion 231 to move, or the moving efficiency of the carrying portion 231 may be affected.
  • the holding structure 26 includes a movable part 222 and a fixed platform 211 .
  • the movable part 222 is a magnetic drive part
  • the fixed part 221 is a coil drive part.
  • the fixed part 221 is fixed on the fixed seat 21, and circuit board wiring needs to be arranged on the fixed seat 21.
  • the magnetic driving part 222 forms a magnetic attraction force between the magnetic driving part 222 and the fixed platform 211 as a magnetic part (similar to the structure of the aforementioned magnet and magnetic strip), and the magnetic driving part 222 and the fixed platform 211
  • the magnetic attraction force constitutes at least part of the retention force.
  • the magnetic driving part (the movable part 222 ) is used to form the holding structure, which is beneficial to the miniaturization design of the image sensor driving module 2 .
  • a magnetic member is provided on the fixed platform 211 of the fixed seat 21, and a magnetic attraction member, such as a steel plate, is provided on the bearing part 231 of the movable seat 23, and the magnetic member and the magnetic attraction
  • the magnetic attraction between the pieces constitutes the holding force.
  • the holding structure 26 includes a magnetic piece 24 and a magnetic attraction piece 238, the magnetic piece 238 has a magnetically permeable material and is a part of the bearing portion 231, and the magnetic piece 24 is fixed on the On the fixing seat 21 and at the position of the contact surface between the fixing seat 21 and the bearing part 231, the holding force is formed by the magnetic attraction force between the magnetic part 24 and the magnetic attraction part 238 .
  • the magnetic member 24 is located on the surface of the fixing platform 211 of the fixing base 21 away from the carrying portion 231 .
  • the magnetic member 24 is embedded inside the fixing platform 211 of the fixing base 21 .
  • the carrying part 231 includes a circuit board structure and a magnetic attraction 238 , the magnetic attraction is fixed on the bottom surface of the circuit board structure to reinforce the strength of the circuit board.
  • the magnetic attraction 238 is located on the surface of the bearing part 231 facing the fixed platform 211.
  • the magnetic attraction 238 is in contact with the fixed platform 211 to form a friction interface X.
  • the magnetic attraction 238 is also used to carry the image sensor 4.
  • the magnetic attraction 238 It can be the same structure as the reinforcing plate structure 23B in the embodiment shown in FIG. With magnetically conductive material, the magnetic attraction part 238 needs to cooperate with the magnetic part 24 to generate a magnetic attraction force. In the embodiment shown in FIG. image sensor4.
  • the magnetic member 24 and the magnetic attraction member 238 form part of the holding structure 26, and part of the holding structure 26 includes a connecting portion 233 and a fixing portion 232. That is to say, in this embodiment, The holding structure 26 acts between the bearing part 231 and the fixed platform 211 through magnetic force and elastic force to ensure contact reliability between the bearing part 231 and the fixed platform 211 .
  • the magnetic parts 24 are arranged on the fixed platform 211, and the magnetic parts, such as steel plates, are correspondingly arranged on the bearing part 231.
  • Such a design can reduce the influence of the magnetic parts on the drive unit 22 and the image sensor 4, and ensure that the image sensor 4. The smoothness of movement and the quality of the resulting image signal.
  • the magnetic part 24 By arranging the magnetic part 24 on the surface of the fixing seat 21 away from the bearing part 231, the distance between the magnetic part 24, the image sensor 4 and the drive unit 22 can be maximized, which is beneficial to reduce the impact of the magnetic part 24 on the drive unit 22 and the drive unit 22.
  • the influence of the image sensor 4 ensures the smoothness of movement of the image sensor 4 and the quality of the generated image signal.
  • the magnetic part 24 and the fixed platform 211 are combined into one, which does not affect the overall structure of the image sensor drive module 2, and is also an important factor for the image sensor drive module 2 and the electronic device.
  • the assembly and positioning between other structures provide convenience.
  • the image sensor drive module includes an elastic member 25, one end of which is connected to the top plate 2121 of the fixed frame 212 of the fixed seat 21, and the other end is connected to the bearing part 231, it can be understood that It is: one end of the elastic member is located at the bearing part, that is, one end of the elastic member is a part of the structure on the bearing part, and the other end of the elastic member is located at the fixing seat, that is, the other end of the elastic member is a part of the structure on the fixing seat.
  • the elastic member 25 In the assembled state, the elastic member 25 is in an elastic compression state, and the elastic member 25 exerts an elastic force on the bearing part 231, and this elastic force is directed towards the contact surface between the bearing part 231 and the fixed seat 21, and this elastic force is to ensure that the bearing part 231 and the fixed platform 211 contact holding force, the elastic member 25 can maintain the contact state at the friction interface X.
  • the elastic member 25, the connecting portion 233 and the fixing portion 232 jointly constitute the holding structure 26, that is, the holding force provided by the connecting portion 233 and the holding force of the elastic member 25 are utilized, The contact between the bearing part 231 and the fixed platform 211 can be made more stable.
  • This application contacts the fixed platform 211 of the bearing part 231 and the fixing seat 21, and the bearing part 231 also has a retaining force, which is used to maintain the contact state between the bearing part 231 and the fixing seat 21, and the direction of the retaining force is Facing the direction of the contact surface between the carrying portion 231 and the fixing seat 21 , no matter what position or environment the image sensor driving module 2 is in, the holding force can hold the carrying portion 231 to contact with the fixing seat 21 .
  • the holding force needs to be greater than the sum of the gravity of the carrying part 231 and all structures carried on the carrying part 231, so that no matter how the camera module 10 is placed, it can be realized that the carrying part 231 can be fixed in the process of driving the image sensor 4 to move.
  • the movement on the plane of the image sensor 4 can realize the stability of the movement of the image sensor 4, and prevent the image sensor 4 from tilting or producing axial movement.
  • the axial movement refers to the direction of the optical axis.
  • the plane where the contact surface is located is a plane perpendicular to the optical axis, and the image sensor driving module 2 provided by the present application can drive the image sensor 4 to move on a plane perpendicular to the optical axis.
  • the movable seat 23 is an integrated circuit board structure, that is, the bearing part 231, the connecting part 233 and the fixed part 232 are formed by integral molding, and the periphery of the fixed part 232 is used to connect the circuit A board (such as FPC) 9, the circuit board 9 is used to electrically connect the image sensor 4 and the processor in the electronic device.
  • the circuit board 9 and the fixing part 232 are an integrated circuit board structure. It is formed by the integral molding process of the circuit board. The manufacturing process is simple, easy to assemble, and the structural stability will be better.
  • the circuit layer in the movable seat 23 is only routed in the same circuit board, which can ensure the stability of signal transmission. , to reduce signal loss.
  • the carrying portion 231 includes a first area 231C for carrying the movable element 222 and other electronic components and a second area 231D for carrying the image sensor 4 .
  • the dimensions of the movable seat 23 in the direction of the optical axis P of the image sensor 4 are the thickness of the movable seat 23, the thickness T1 of the first region 231C, the thickness T2 of the connecting portion 233 and the fixed The thickness T3 of the portion 232 is equal.
  • the movable seat formed by the integrated circuit structure can save the space of the image sensor driving module in the thickness direction, and is conducive to the miniaturization design of the image sensor driving module in the direction of the optical axis of the image sensor.
  • the first region 231C is connected between the second region 231D and the connecting portion 233, the thickness T4 of the second region 231D is smaller than the thickness T1 of the first region 231C, and the first region 231C surrounds Set on the edge of the second area 231D and together with the second area 231D to form a storage space (since the storage space in FIG. 25A is occupied by the image sensor 4, not marked), the storage space is used to store the image
  • the sensor 4 and the image sensor 4 are connected to the bottom surface and the second region 231D, and may be connected through an adhesive layer. There may be a gap between the side of the image sensor 4 and the inner wall of the accommodating space, which facilitates the installation of the image sensor.
  • a groove is provided on the bearing part 231 for accommodating the image sensor, which is beneficial to saving space in the direction of the optical axis, and is easy to realize a small-sized design in the direction of the optical axis.
  • the contact surface between the first region 231C and the fixing platform 211 of the fixing seat 21 is coplanar with the contact surface between the second region 231D and the fixing platform 211 .
  • the second region 231D of the carrying portion 231 may be a complete plate-like structure, that is, the second region 231D is not provided with any through hole or window structure.
  • the second area 231D can also be a frame structure, that is, the second area 231D only bears the part of the edge of the image sensor 4, and part of the area of the image sensor 4 is separated from the fixed platform 211 by a gap.
  • the inside can be air, or it can be filled with heat-conducting medium.
  • FIG. 25B is the same as the embodiment shown in FIG. 25A , and FIG. 25B shows the detailed structure of the first bearing region R1 .
  • the first bearing region R1 includes a first central region R11 and a second central region R12, and in the direction along which the optical axis extends, the first central region R11 and the second central region R12 face the opening S11.
  • the second central area R12 is located on the periphery of the first central area R11 and is connected between the first central area R11 and the second bearing area R2, and the first central area R11 is used for installing the For the image sensor 4, the second central region R12 is used for installing the optical element 6.
  • the movable seat 23 is an integrated circuit board structure
  • the size of the movable seat 23 in the direction of the optical axis of the image sensor 4 is the thickness of the movable seat
  • the second bearing area The thickness T1 of R2, the thickness T2 of the connecting portion 233 and the thickness T3 of the fixing portion 232 are equal.
  • the thickness of at least part of the first bearing region R1 is smaller than the thickness of the second bearing region R2, so that at least part of the first bearing region R1 is a concave structure and constitutes a storage space for accommodating the image sensor 4 .
  • the thickness of the first central region R11 of the first carrying region R1 is smaller than the thickness of the second central region R12, and the thickness of the second central region R12 and the second carrying region
  • the thicknesses of R2 are equal, and the second central region R12 and the first central region R11 jointly enclose an accommodating space for accommodating the image sensor 4 .
  • the thickness of the first central region R11 can be equal to the thickness of the second central region R12, that is, the first bearing region R1 has a uniform thickness, and the thickness of the first bearing region R1 is smaller than the thickness of the second bearing region R2 , so that an accommodating space for accommodating an image sensor is formed between the second carrying area R2 and the first carrying area R1.
  • the friction interface X between the bearing part 231 and the fixed platform 211 is a three-dimensional layer structure, and its specific design can refer to the embodiments shown in Fig. 11A, Fig. 11B and Fig. 11C .
  • a height difference is formed between the fixing part 232 and the carrying part 231 . That is, the vertical distance H1 between the surface of the fixing portion 232 away from the fixed platform 211 and the fixed platform 211 is smaller than the vertical distance H2 between the surface of the bearing portion 231 away from the fixed platform 211 and the fixed platform 211 .
  • the fixing part 232 is connected to the fixing platform 211 through an adhesive layer.
  • the driving unit 22 is located on the side of the carrying portion 231 away from the fixed platform 211 , that is, the driving unit 22 is located between the top plate 2121 of the fixing frame 212 and the carrying portion 231 .
  • the fixed platform 211 of the fixed seat 21 is flat, and the fixed frame 212 is connected to the edge area of the fixed platform 211 , and the fixed frame 212 is used to connect the fixed part 232 of the movable seat 23 .
  • the fixing frame 212 includes a first part 212A and a second part 212B, the first part 212A is located between the fixing part 232 and the fixing platform 211 , and supports the fixing part 232 above the fixing platform 211 .
  • the second part 212B is located on a side of the fixing part 232 away from the first part 212A, that is, the first part 212A and the second part 212B clamp the fixing part 232 therebetween.
  • the drive unit 22 is located between the bearing part 231 and the fixed platform 211, the fixed part 221 of the drive unit 22 is fixed on the fixed platform 211, and the movable part 222 is fixed on the surface of the bearing part 231 facing the fixed platform 211, specifically, the movable The component 222 is fixed on a side of the second loading area R2 of the loading portion 231 away from the top plate 2121 (ie, the surface of the second loading area R2 facing the fixing platform 211 ).
  • the position of the fixing member 221 on the fixing platform 211 is located at the periphery of the friction interface X between the bearing part 231 and the fixing platform 211 .
  • the moving range of the carrying part 231 on the fixed platform 211 is within the range defined by the fixing member 221 on the fixed platform 211 .
  • the bearing part 231 includes three parts, respectively the first section A1, the second section A2 and the third section A3, the second section A2 is connected between the first section A1 and the third section A3, and the first section A1 is connected to the connecting part 233 and is used to set the movable part 222 and other electronic devices.
  • the third segment A3 is used to support the image sensor 4 .
  • the first section A1 may be parallel to the third section A3.
  • the fixing frame 212 of the fixing base 21 includes a top plate 2121 , the top plate 2121 is used to cover the connection portion 233 , and the top plate 2121 is used to protect the connection portion 233 .
  • the fixed seat 21 may not be provided with a top plate, and the fixed portion 232 of the movable seat 23 is directly connected to the top surface 212C of the fixed frame 212.
  • the miniaturization of the group saves the space of the electronic equipment.
  • the area surrounded by the end of the fixed frame 212 away from the fixed platform 211 is an opening S11 , and during the process of assembling the image sensor 4 , the image sensor 4 is assembled to the bearing part 231 through the opening S11 . on the first carrying area R1.
  • the carrying portion 231 includes a first carrying platform 231E and a second carrying platform 231F, the first carrying platform 231E is used to carry the image sensor 4, and the first carrying platform 231E is provided with a receiving groove E1 , the image sensor 4 is fixed in the accommodation groove E1 of the first carrying platform 231E through an adhesive layer, and the first carrying platform 231E is in contact with the fixed platform 211 of the fixing seat 21 to form a contact surface, and the direction perpendicular to the contact surface is the direction of the optical axis P, the second carrying platform 231F and the connecting portion 233 are stacked along the direction of the optical axis P, and the movable part 222 of the driving unit 22 is fixed on the second carrying platform 231F , the fixing member 221 is fixed on the top plate 2121 of the fixing frame 212 of the fixing seat 21 , and the driving unit 22 is located on a side of the second carrying platform 231F away from the connecting portion 233 .
  • the first carrying platform 231E and the connecting portion 233 are interconnected as an integral structure, and along the direction of the optical axis P, the connecting portion 233 is located between the second carrying platform 231F and the contact surface (that is, the friction interface). X) between.
  • the first carrying platform 231E and the second carrying platform 231F are connected by solder balls, that is, the mechanical connection and the electrical connection can also be realized.
  • the bearing part 231 is designed as two board structures (i.e. the first bearing platform 231E and the second bearing platform 231F), and the structure in which the second bearing platform 231F and the connecting part 233 are stacked can realize that the movable seat 23 Small size design in the direction perpendicular to the optical axis P.
  • the part of the second carrying platform 231F facing the top plate 2121 is the second carrying area R2 , and the second carrying area R2 and the connecting portion 233 are stacked.
  • the connecting portion 233 is located between the second loading area R2 and the fixing platform 211, the first loading area R1 includes an assembly first area R13 and an assembly second area R14, and the assembly
  • the first region R13 is used to carry the image sensor 4
  • the connecting portion 233 surrounds the first assembly region R13 and is connected to the edge of the first assembly region R13, and the second assembly region R14 is interconnected with the second bearing region R2
  • the second assembly region R14 and part of the first assembly region R13 are overlapped to form an overlapping region R111, and the mechanical and electrical connections between the first assembly region R13 and the second assembly region R14 are located at within the overlapping region R111.
  • a portion inside a rectangular frame indicated by a dotted line in FIG. 29 represents an overlapping region R111.
  • the first carrying platform 231E and the connecting part 233 are respectively connected to the top surface and the bottom surface of the second carrying platform 231F, along the direction of the optical axis P, the The second carrying platform 231F is located between the connecting portion 233 and the fixed platform 211 , which can also be understood as: along the direction of the optical axis P, the second carrying platform 231F is located between the connecting portion and the friction interface.
  • the first carrying platform 231E and the second carrying platform are directly connected to form a Z-shaped structure
  • the connecting part 233 is arranged on the side of the second carrying platform 231F away from the fixed platform 211
  • the connecting part 233 is connected to the
  • the top surface of the second carrying platform 231F, the adapter plate 233A and the second carrying platform 231F are connected by solder balls, that is, the mechanical connection and the electrical connection can also be realized.
  • the drive unit 22 is located between the second carrying platform 231F and the fixed platform 211 , the movable part 222 is fixed on the second carrying platform 231F, and the fixed part 221 is fixed on the fixed platform 211 .
  • the part of the second carrying platform 231F facing the top plate 2121 is the second carrying area R2
  • the movable part 222 is fixed on the surface of the second carrying area R2 facing the fixed platform 211 .
  • the connecting portion 233 is located between the top plate 2121 and the second bearing region R2.
  • the first carrying platform 231E is the first carrying area R1.
  • the fixed frame 212 includes a top plate 2121, and the top plate 2121 is located above the connection portion 233, which can protect the connection portion 233, and the fixed portion 232 and the fixed platform 211 are separated by a part of the fixed frame 212, that is, the fixed portion 232 is fixed in the fixed frame 212.
  • the fixed frame 212 is not provided with a top plate 2121 , and the fixed part 232 is fixed on the top surface of the fixed frame 212 , that is, the fixed part 232 is fixed on the surface of the fixed frame 212 away from the fixed platform 211 .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开一种图像传感器驱动模组、光学组件、摄像头模组及电子设备。图像传感器驱动模组包括驱动单元、固定座和活动座,承载部上的部分结构和固定座上的部分结构构成保持结构。固定座承载驱动单元的固定件,活动座包括承载部、固定部和连接部,承载部用于承载图像传感器和驱动单元的活动件。保持结构用于提供保持力至在承载部上,使得承载部和固定座之间保持接触。本申请能够保证图像传感器移动的平稳性,避免图像传感器在移动的过程中产生轴向的振动或倾斜。

Description

图像传感器驱动模组、光学组件、摄像头模组及电子设备
[根据细则91更正 24.02.2023]
本申请要求于2022年2月11日提交中国专利局、申请号为202210129798.4,发明名称为“图像传感器驱动模组、光学组件、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2023年2月7日提交中国专利局、申请号为202310142208.6,发明名称为“图像传感器驱动模组、光学组件、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请可能的实施方式涉及拍摄技术领域,尤其涉及一种图像传感器驱动模组、光学组件、摄像头模组及电子设备。
背景技术
具摄像功能的电子设备(例如手机、平板电脑等)进行摄像时,经常会因轻微抖动导致拍摄的照片会发虚、重影或模糊的情况,例如:人体在手持物体时,普遍存在一定程度的生理性抖动,在影像拍摄时人体往往处于移动状态,这些无规律的、非自主的抖动或运动震动会造成拍摄画面的模糊不清,用户体验感也差。因此,具有摄像功能的电子设备需要具有自动对焦(Automatic Focus,简称AF)功能、光学防抖(Optical image stabilization,简称OIS)功能。
在摄像头模组的设计过程中,一定会考虑到设置用于驱动图像传感器移动的驱动结构,驱动结构带动图像传感器移动可以调节图像传感器的具体的位置和姿态,实现摄像头模组的防抖功能。
在电子设备的轻薄化及多功能的发展趋势下,摄像模组的设计过程中,针对图像传感器的驱动结构,如何设计可以满足图像传感器移动的平稳性,保证图像质量为业界持续探索的课题。
发明内容
本申请提供一种图像传感器驱动模组、光学组件、摄像头模组及电子设备,可以满足图像传感器移动的平稳性,保证图像质量。
第一方面,本申请实施例提供一种图像传感器驱动模组,包括驱动单元、固定座和活动座,驱动单元包括能够相对移动的固定件和活动件,固定座用于承载固定件,活动座包括承载部、固定部及连接部,所述连接部用于实现所述承载部和所述固定部之间的机械和电连接,所述承载部用于承载图像传感器和所述活动件,所述固定部连接至所述固定座,所述承载部和所述固定座之间接触,所述承载部上的部分结构和所述固定座上的部分结构构成保持结构,所述保持结构用于提供保持力在所述承载部上,所述驱动单元用于驱动所述承载部相对所述固定座移动,移动的方向可以为垂直于摄像头模组的光轴的方向,即图像传感器感光面所在的面或平行于感光面的平面的方向上,所述承载部和所述固定座通过所述保持结构的所述保持力保持接触。
常规的摄像头模组中,图像传感器移动台相对模组的底板悬空,移动台和底板之间间隔的空间不但增大了摄像头模组的光轴方向尺寸,在容易引起移动台的倾斜及光轴方向的振动,导致成像质量下降,而且空气热阻较大,图像传感器及驱动电路的热不容易散出,会形成图像传感器结温过高(例如高于70度,甚至会达到90度),造成图像传感器成像噪点过多,影响成像质量。本申请通过设置保持结构,保证承载部和固定平台之间的接触,能够保证图像传感器移动过程中在光轴的方向上无位移,提高图像传感器移动过程的平稳性,可以将图像传感器移动的路线限定在稳定的平面中,能避免图像传感器在移动的过程中产生轴向的振动或倾斜(即减少了图像传感器光轴方向位移及图像传感器旋转方向的串扰),能够保证图像传感器获得的图像数据的质量和稳定性。在图像传感器移动台相对模组的底板悬空的设计方案中,需要在移动台上设置光轴方向的位置检测传感器。本申请由于图像传感器在光轴方向无位移,本申请不需要配置光轴方向位置检测的传感器,可以节约图像传感器驱动模组的成本,使得活动座上配置的器件结构简单化,有利于实现活动座的小尺寸。
本申请通过承载部和固定座的接触还能够降低二者之间的热阻,承载部上的热可以通过承载部和固定部之间的接触关系更好的传导至固定座的外表面的一侧,提升图像传感器驱动模组的导热能力,能够优化图像传感器和驱动单元的散热效率,避免摄像头模组在拍摄视频或长时间拍照过程中因为温度过高导致成像质量下降。
一种可能的实施方式中,所述连接部构成至少部分所述保持结构,所述连接部为弹性结构,所述连接部的弹性力作用在所述承载部上形成所述保持力。本实施方式中,利用连接部的弹性力作为保持力,保证承载部和固定座之间的接触,有需要在固定座和活动座之外再增设其它的保持结构,连接部不但能够保证承载部在驱动单元的驱动力下移动,还兼备提供保持力的功能,连接部的双重功能的设计,有利于图像传感器驱动模组的尺寸小型化。
一种可能的实施方式中,所述连接部和所述固定部的连接处为第一位置,所述连接部和所述承载部的连接处为第二位置,所述第一位置和所述第二位置之间存在弹性势能,所述弹性势能形成所述保持力。本方案限定了一种具体的连接部的弹性力的形成方式,通过第一位置和第二位置之间形成弹性势能的方式,利用了连接部必要的组装位置,有利于保证图像传感器驱动模组的尺寸小型化。
一种可能的实施方式中,所述固定座包括固定平台,所述承载部与所述固定平台的内表面接触,所述承载部用于承载所述图像传感器在所述固定平台的内表面上移动,所述图像传感器位于摄像头模组的镜头组件的出光侧,所述固定平台的内表面垂直于摄像模组的光轴,所述第一位置与所述固定平台的内表面之间在所述光轴方向上的距离小于所述第二位置与所述固定平台之间的内表面在所述光轴方向上的距离,所述连接部的弹性拉力作用在所述第二位置上形成朝向所述固定平台的所述保持力。本方案通过在组装活动座的过程中,确定第一位置和第二位置和固定平台之间的距离关系,能提供第二位置朝向固定平台的拉力,即够成保持力。本方案形成保持力的方式在组装过程中实现,对于活动座的连接部而言,在其制作过程中不需要考虑形成保持力而对其结构做特殊的设计,可以节约制作成本。
其它实施方式中,连接部构成至少部分保持结构,可以在制作活动座的过程中,就将固定部和承载部设计为不共面,第一位置和第二位置之间在组装之前存在光轴方向的高度差。在组装的过程中,可以将第一位置和第二位置组装为共面的状态,或者组装过程中,调节第一位置或第二位置的具体的物理位置,以这样的方式储能,即在连接部中储存弹性势能,而且此弹性势能作用在承载部上的力为朝向固定平台的保持力,本方案有利于实现组装后的图像传感器驱动模组的尺寸小型化。
一种可能的实施方式中,所述承载部上设有磁性件,所述磁性件和用于接触所述承载部的部分所述固定座构成至少部分所述保持结构,用于接触所述承载部的部分所述固定座且具有导磁材料,通过所述磁性件和所述固定座之间的磁吸力构成至少部分所述保持力。本方案通过在承载部上设置磁性件,将固定平台设计为可以与磁性件相互配合形成磁吸力的方式,通过磁吸力作为保持力,能够保证保持力的寿命和稳定性。
一种可能的实施方式中,所述磁性件包括至少两个磁石,所述至少两个磁石呈点状分布状态设置在所述承载部上,且邻近所述承载部的外边缘,所述承载部的外边缘为所述承载部朝向所述固定部的边缘位置。具体而言,磁石的数量可以为三个或四个,当磁石为三个时,三个磁石可以限定一个面,能够保证承载部和固定座之间的接触面的面接触。当磁石为四个时,可以对称分布在图像传感器的外置的四个角落位置,有利于保证图像传感器移动的平稳性。本方案通过将磁石设置在承载部的外边缘,使得磁石位置尽量远离图像传感器,减少磁石产生的磁场对图像传感器的影响。
一种可能的实施方式中,所述磁性件包括至少两个磁条,所述磁条均呈长条状,所述至少两个磁条对称分布在所述承载部上,且邻近所述承载部的外边缘,所述承载部的外边缘为所述承载部朝向所述固定部的边缘位置。长条状的磁条的设置不但可以提供较大的磁吸力,而且也方便组装和固定。本申请实施例中设置在承载部上的磁性件和固定座之间的磁吸力需要保证承载部在移动过程中可以保持与固定座之间的接触,磁吸力还要控制在预设范围内,即磁吸力不能太大,若磁吸力太大,可能会导致驱动单元无法带动承载部移动,或影响承载部移动的效率。
一种可能的实施方式中,所述活动件为磁性驱动件,所述固定件为线圈驱动件,所述磁性件包括所述磁性驱动件,所述磁性驱动件和所述固定座之间的磁吸力构成至少部分所述保持力。本方案利用磁性驱动件构成保持结构,有利于图像传感器驱动模组尺寸小型化的设计。
一种可能的实施方式中,所述固定座上设有磁性件,部分所述承载部具有导磁材料,具有导磁材料的部分所述承载部为磁吸件,所述磁性件和所述磁吸件构成至少部分所述保持结构,所述磁性件位于所述固定座和所述承载部之间的接触面的位置处,通过所述磁性件和所述磁吸件之间的磁吸力构成所述保持力。本方案通过将磁性件设置在固定平台上,对应地在承载部上设置磁吸件,例如钢板,这样的设计可以减少磁性件对驱动单元及图像传感器的影响,保证图像传感器的移动平稳性及所产生的图像信号的质量。
一种可能的实施方式中,磁性件位于固定座背离承载部的表面,或者磁性件内嵌在固定座的内部。磁吸件位于承载部朝向固定座的表面,磁吸件与固定座接触构成摩擦界面,磁吸件还用于承载图像传感器。承载部包括线路板和磁吸件,磁吸件固定在线路板的底面用于补强线路板的强度。本方案通过将磁性件设置在固定座远离承载部的表面,可以实现磁性件与图像传感器及驱动单元之间的距离最大化,有利于减少磁性件对驱动单元及图像传感器的影响,保证图像传感器的移动平稳性及所产生的图像信号的质量。通过将磁性件内嵌在固定平台的内部,使得磁性件和固定平台结合为一体,不影响图像传感器驱动模组的整体结构,也为图像传感器驱动模组和电子设备内的其它结构之间的组装定位提供了便利。
一种可能的实施方式中,所述图像传感器驱动模组包括弹性件,所述弹性件的一端位于所述承载部,另一端位于所述固定座,所述弹性件构成至少部分所述保持结构,所述弹性件施加至所述承载部的弹力为至少部分所述保持力,所述弹力的方向为朝向所述承载部和所述固定座之间的接触面的方向。本方案提供了一种保持结构的具体方案,通过弹性件的设置可以提升保持结构的保持力的稳定性,弹性件和连接部可以共同构成保持结构,即利用了连接部提供的保持力,又利用了弹性件的保持力,可以使得承载部和固定平台之间的接触更稳定。
一种可能的实施方式中,所述承载部和所述固定座的接触面处形成摩擦界面,所述摩擦界面的摩擦系数小于0.3。本申请通过对承载部和固定座之间的滑动摩擦的摩擦系数的限定,能够实现在限定图像传感器移动平面的基础上,保证图像传感器移动的顺畅性,减小图像传感器移动过程中的摩擦阻力,提高驱动图像传感器移动的效率。
一种可能的实施方式中,在所述摩擦界面的位置处,所述承载部和/或所述固定座包括超滑材料层,所述超滑材料层为固态结构,通过所述超滑材料层实现所述摩擦界面的摩擦系数小于0.3。固态结构的超滑材料层与承载部和固定平台之间的结合更容易实现,例如可以直接通过胶层连接固定,组装工艺方面具有简单易行的优势。
一种可能的实施方式中,在所述摩擦界面的位置处,所述承载部和所述固定座之间设润滑层,所述润滑层为油状、脂状或膏状结构,通过所述润滑层实现所述摩擦界面的摩擦系数小于0.3。本方案通过在承载部和固定座之间设置油状、脂状或膏状结构的润滑层实现低摩擦系数的摩擦界面,由于润滑层的形态不是固定的,在所述承载部和所述固定座之间的接触面处增加润滑层,润滑层可以做到较小的尺寸,有利于实现摄像头模组光轴方向的小型化。润滑层的设计还有利于保证接触面的平面度,可以理解为通过润滑层可以补偿平面度的问题,以避免图像传感器在移动的过程中存在光轴方向的振动或倾斜。
一种可能的实施方式中,所述润滑层可以包括滚动结构。
一种可能的实施方式中,通过对所述承载部和所述固定座之间接触的表面进行表面处理的制作工艺,实现所述摩擦界面的摩擦系数小于0.3。表面处理的方式可以为:表面改性的技术,例如抛光;表面合金化的技术,例如渗碳和渗氮;表面转化膜(通过化学方法,使添加材料与基体发生化学反应,形成转化膜)技术等。表面处理的方式构成摩擦界面X,不需要增加超滑材料层或润滑层,可以获得较小的光轴方向的尺寸。
一种可能的实施方式中,所述摩擦界面包括具有导热性能的材料。本申请能够降低摩擦界面位置处的热阻,承载部上的热可以通过承载部和固定部之间的接触关系更好的传导至固定座的外表面的一侧,提升图像传感器驱动模组的导热能力,能够优化图像传感器和驱动单元的散热效率,避免摄像头模组在拍摄视频或长时间拍照过程中因为温度过高导致成像质量下降。
一种可能的实施方式中,所述摩擦界面的导热系数为大于0.5W/m·K。本方案通过对摩擦界面导热系数的限定有利于保证图像传感器的性能,提升图像信号的质量。
一种可能的实施方式中,所述承载部和所述固定座之间的接触方式为平面和平面之间的接触,所述承载部上用于接触所述固定座的平面为第一平面,所述固定座上用于接触所述承载部的平面为第二平面,所述第一平面和所述第二平面均为连续的完整的平面结构。本方案有利于导热,承载部和固定座之间的接触面积越大,导热效率越高,本方案通过完整平面的接触能够提高散热能力。
一种可能的实施方式中,所述承载部和所述固定座之间的接触方式为平面和阵列式凸点之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为阵列式凸点结构,所述阵列式凸点结构对应所述完整的平面结构的所有的区域设置。本方案通过阵列式凸点结构和平面之间接触,可以解决平面与平面接触的平面度引起的光轴方向位置偏移的问题。阵列式凸点结构的设置较容易控制各凸点与平面的接触位置所构成的平面的平面度。在相对移动的过程中,可以更平稳,也能保证摩擦系数的稳定。
一种可能的实施方式中,所述承载部和所述固定座之间的接触方式为平面和多个凸点之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为多个凸点结构,所述多个凸点结构对应所述完整的平面结构的局部区域设置。本方案通过局部位置分布的凸点结构和平面的配合,有利于调整摩擦界面位置处的平面度,固定平台和承载部的接触面位置,不需要较高的平面度的制作精度,也可以满足图像传感器的移动的平稳性。
一种可能的实施方式中,所述承载部和所述固定座之间的接触方式为平面和凸出的筋条结构之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为凸出的筋条结构。相较凸点的结构,本方案通过筋条结构的设置可以增加接触面积,有利于减小压强,避免在相对移动的过程中,因相接触的面摩擦受损,影响在光轴方向上的定位精度。相较全平面接触的结构,筋条结构又可以改善平面度问题形成的光轴方向的移动。
一种可能的实施方式中,所述活动座为一体式的电路板结构,所述承载部包括用于承载所述活动件及其它电子器件的第一区,所述活动座在所述图像传感器的光轴方向上的尺寸为所述活动座的厚度,所述第一区的厚度、所述连接部的厚度和所述固定部的厚度相等。一体式的电路结构构成的活动座在厚度方向上可以节约图像传感器驱动模组的空间,有利于图像传感器驱动模组在图像传感器的光轴方向上的尺寸小型化的设计。本实施方式中,通过电路板一体成型的工艺制作形成的,制作工艺简单,方便组装,而且结构稳定性会更好,活动座内的线路层只是在同一个电路板内走线,可以保证信号传送的稳定性,减少信号的损耗。
一种可能的实施方式中,所述承载部包括用于固定所述图像传感器的第二区,所述第一区连接在所述第二区和所述连接部之间,所述第二区的厚度小于所述第一区的厚度,所述第一区环绕设置在所述第二区的边缘并和所述第二区共同围成收容空间,所述收容空间用于收容所述图像传感器,所述第一区和所述固定座之间的接触面与所述第二区和所述固定座之间的接触面共面。本方案通过在承载部上设凹槽,凹槽用于容纳图像传感器,用利于节约光轴方向上的空间,易于实现光轴方向的小尺寸的设计。
一种可能的实施方式中,所述固定座包括固定平台和固定框,所述保持力用于使所述承载部和所述固定平台之间保持接触,所述固定框固定连接至所述固定平台的边缘,所述固定框和所述固定平台围成包围空间,所述驱动单元、所述连接部和部分所述承载部位于所述包围空间中,所述驱动单元位于所述承载部背离所述固定平台的一侧。本方案限定了驱动单元的具体的位置布局,有利于实现图像传感器驱动模组小尺寸的设计。
一种可能的实施方式中,所述固定座包括固定平台,所述保持力用于使所述承载部和所述固定平台之间保持接触,所述驱动单元位于所述承载部和所述固定平台之间,所述固定件固定至所述固定平台。本方案限定了驱动单元的具体的位置布局,利用固定平台固定固定件,有利于实现图像传感器驱动模组小尺寸的设计。
一种可能的实施方式中,所述固定座包括固定框,所述固定框固定连接至所述固定平台的边缘,所述固定部连接至所述固定框,所述固定部和所述固定平台之间通过至少部分所述固定框隔开。本方案提供一种固定座和活动座的固定部连接的具体的结构,有利于合理配置图像传感器驱动模组内的结构布局,实现整体结构的紧凑及小尺寸的优势。
一种可能的实施方式中,所述承载部包括第一承载平台和第二承载平台,所述第一承载平台用于承载图像传感器,所述第一承载平台与所述固定座接触构成接触面,垂直于所述接触面的方向为光轴方向,所述第二承载平台和所述连接部沿所述光轴方向层叠设置,所述驱动单元的所述活动件固定在所述第二承载平台上。
一种可能的实施方式中,所述第一承载平台与所述连接部互连为一体式结构,沿所述光轴方向,所述连接部位于所述第二承载平台和所述接触面之间。本实施方式通过将承载部设计为两块板结构(即第一承载平台和第二承载平台),而且第二承载平台和连接部层叠设置的架构,可以实现活动座在垂直于光轴的方向上的小尺寸的设计。本方案应用在电子设备中时,可以节约摄像头模组所在的电路板的占板面积。
一种可能的实施方式中,所述第一承载平台和所述连接部分别连接至所述第二承载平台的顶面和底面,沿所述光轴方向,所述第二承载平台位于所述连接部和所述接触面之间。本实施方式通过将承载部设计为两块板结构(即第一承载平台和第二承载平台),而且第二承载平台和连接部层叠设置的架构,可以实现活动座在垂直于光轴的方向上的小尺寸的设计。本方案应用在电子设备中时,可以节约摄像头模组在电路板上的占板面积。
一种可能的实施方式中,所述承载部包括第一板和第二板,所述第一板的外边缘和所述连接部互连为一体式的结构,所述第一板的内边缘包围形成收容空间,所述第一板用于承载所述活动件,所述第二板包括第一部分和第二部分,所述第一部分与所述第一板层叠设置,所述第二部分位于所述收容空间的底部,所述第二部分用于承载所述图像传感器,以使所述图像传感器容纳在所述收容空间中,所述第二板和所述固定座之间接触。本方案通过第二板连接图像传感器,通过第一板承载活动件,图像传感器容纳在收容空间中,有利于实现光轴方向的尺寸,使得图像传感器驱动模组在光轴方向易于实现小尺寸架构。
第二方面,本申请实施例提供一种光学组件,包括轴向运动驱动模组和第一方面任一种可能的实施方式所述的图像传感器驱动模组,所述轴向运动驱动模组固定连接至所述图像传感器驱动模组,所述图像传感器驱动模组用于驱动所述图像传感器在垂直于光轴的平面上移动,所述轴向运动驱动模组用于驱动镜头模组在轴向上移动或倾斜。
第三方面,本申请实施例提供一种摄像头模组,包括图像传感器、镜头组件和第二方面所述的光学组件,所述镜头组件固定至所述轴向运动驱动模组,所述图像传感器固定至所述图像传感器驱动模组,所述镜头组件位于所述图像传感器的入光侧。
第四方面,本申请实施例提供一种摄像头模组,包括图像传感器、镜头组件和第一方面任一种可能的实施方式所述的图像传感器驱动模组,所述图像传感器固定至所述图像传感器驱动模组,所述镜头组件位于所述图像传感器的入光侧。
第五方面,本申请实施例提供一种电子设备,包括处理器和第三方面或第四方面所述的摄像头模组,所述处理器与所述摄像头模组电连接,所述处理器用于对所述图像传感器输出的图像信号进行处理。
附图说明
图1是本申请一种可能的实施方式提供的电子设备的立体图;
图2是图1所示的电子设备的另一个方向的立体图;
图3A是本申请一种可能的实施方式提供的摄像头模组的立体图;
图3B所示为本申请一种实施方式提供的摄像头模组的立体剖视图;
图4是本申请一种可能的实施方式提供的摄像头模组的立体分解图;
图5是本申请一种可能的实施方式提供的摄像头模组的立体分解图;
图6是本申请一种可能的实施方式提供的图像传感器驱动模组的立体图;
图7是本申请一种可能的实施方式提供的图像传感器驱动模组的立体分解图;
图8是本申请一种可能的实施方式提供的图像传感器驱动模组的立体分解图;
图9是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图10A是图9所示的图像传感器驱动模组的剖面图的部分放大图;
图10B是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图的部分放大图;
图11A是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平台之间的摩擦界面的示意图;
图11B是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平台之间的摩擦界面的示意图;
图11C是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平台之间的摩擦界面的示意图;
图12是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平台之间的摩擦界面的示意图;
图13是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平台之间的摩擦界面的示意图;
图14是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图15是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图16是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图17是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图18是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图19是本申请一种可能的实施方式提供的图像传感器驱动模组中的承载部和固定平面之间的接触面的具体形态的示意图;
图20是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图21是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图22是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图23A是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图23B是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图24是本申请一种可能的实施方式提供的图像传感器驱动模组中的保持结构的具体架构的示意图;
图25A是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图25B与图25A所示的实施方式相同,在图25B中标示了第一承载区的详细的结构;
图26是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图27是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图28是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图29是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图30是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图;
图31是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图。
具体实施方式
下面结合本申请可能的实施方式中的附图对本申请可能的实施方式进行描述。
请参阅图1,图1是本申请可能的实施方式提供的电子设备1000在一些可能的实施方式中的结构示意图。电子设备可以是手机、平板、笔记本电脑、电视机、车载设备、可穿戴设备、视频监控设备等电子产品。可穿戴设备可以是智能手环、智能手表、无线耳机、增强现实技术(augmented reality,AR)眼镜、增强现实技术头盔、虚拟现实技术(virtual reality,VR)眼镜及虚拟现实技术头盔等。本申请可能的实施方式以电子设备是手机为例进行说明。
请一并参阅图1和图2,图2是图1所示电子设备1000在另一角度的结构示意图。电子设备1000包括壳体100、显示屏200、前置摄像组件300、后置摄像组件400、主板500、处理器600、存储器700以及电池800。显示屏200用于显示图像,显示屏200还可以集成触摸功能。显示屏200安装于壳体100。壳体100可以包括边框1001和后盖1002。显示屏200和后盖1002分别安装于边框1001的相背两侧。在本可能的实施方式中,在电子设备1000的外部空间中,定义显示屏200朝向的空间为电子设备1000的前方,后盖1002朝向的空间电子设备1000的后方。
一些可能的实施方式中,前置摄像组件300位于壳体100内侧且位于显示屏200下方。显示屏200设有前摄像孔2001,前置摄像组件300经前摄像孔2001采集电子设备1000前方的光线,以实现拍摄。前置摄像组件300可以包括后文可能的实施方式中描述的摄像头模组,也可以包括其他结构的摄像头模组。
一些可能的实施方式中,后盖1002设有至少一个后摄像孔1003。后置摄像组件400位于壳体100内侧,后置摄像组件400经至少一个后摄像孔1003采集电子设备1000后方的光线,以实现拍摄。本申请可能的实施方式中“至少一个”包括一个和多个两种情况,多个为两个以上,“以上”包括本数。后置摄像组件400包括至少一个摄像头模组4001,例如可以包括标准摄像头模组、长焦摄像头模组、广角摄像头模组、超长焦摄像头模组、超广角摄像头模组中的一者或多者。示例性的,后置摄像组件400包括标准摄像头、广角摄像头及潜望式长焦摄像头。后置摄像组件400的摄像头模组4001可以包括后文可能的实施方式中描述的摄像头模组,也可以包括其他结构的摄像头模组。
一些可能的实施方式中,后置摄像组件400还可以包括闪光灯模组4002。后盖1002设有闪光灯孔1004,闪光灯模组4002位于壳体100内侧,经闪光灯孔1004射出光线。
一些可能的实施方式中,主板500位于壳体100内侧,处理器600及存储器700固定于主板500。显示屏200、前置摄像组件300及后置摄像组件400耦合处理器600。存储器700用于存储计算机程序代码。计算机程序代码包括计算机指令。处理器600用于调用计算机指令以使电子设备1000执行相应的操作,例如,使显示屏200显示目标图像、使前置摄像组件300和后置摄像组件400采集目标图像等。电池800电连接至主板500,用于为电子设备1000供电。一些可能的实施方式中,电子设备1000还可以包括天线模组、移动通信模组、传感器模组、马达、麦克风模组、扬声器模组等功能模组中的一者或多者,这些功能模组可以与处理器600电连接以传送信号。
本申请可能的实施方式提供一种摄像头模组,摄像头模组可以为图1和图2所示的实施方式中的前置摄像组件300或后置摄像组件400,摄像头模组与电子设备中的处理器600电连接,具体而言,处理器600电连接至摄像头模组中的图像传感器,可以驱动图像传感器,也可以对图像传感器输出的图像信号进行处理。
图3A所示为本申请一种实施方式提供的摄像头模组10的立体组装图,图3B所示为本申请一种实施方式提供的摄像头模组10的立体剖视图,图4和图5所示为图3A提供的摄像头模组10的两个方向的立体分解图。参阅图3A、图3B、图4和图5,一种实施方式中,摄像头模组10包括图像传感器驱动模组2、镜头驱动模组3、图像传感器4和镜头组件5。镜头驱动模组3和图像传感器驱动模组2构成光学组件80,图像传感器驱动模组2用于驱动所述图像传感器4移动。镜头驱动模组3用于摄像头模组10的光学对焦、光学防抖、调节像差等。
一种实施方式中,图像传感器4在一个基准面上移动,此基准面可以与图像传感器4的感光面共面或平行,此基准面可以为垂直于光轴P的延伸方向的平面。光轴P可以理解为图像传感器4的光轴,也可以理解为镜头组件5的光轴,也可以理解为摄像头模组10的光轴,摄像头模组中,理论上,镜头组件5的光轴和图像传感器4的光轴可以重合,在具有组装误差或设计公差的情况下,镜头组件5的光轴和图像传感器4的光轴也可以有相对的偏移或倾斜,但是,不管是重合还是有偏移和倾斜的现象,镜头组件5的光轴和图像传感器4的光轴的延伸方向都是一致的(延伸方向一致可以理解为基本上相同的方向,允许小范围的相对倾斜),都可以看作是摄像头模组10的光轴。
一种实施方式中,镜头驱动模组3包括外壳31和驱动组件32,外壳31围设形成容纳空间,外壳31用于与其它的功能模组(例如图像传感器驱动模组2)固定连接。驱动组件32收容在外壳31的容纳空间中,驱动组件32用于驱动摄像头模组10的镜头组件5移动。具体而言,镜头驱动模组3的驱动组件32用于驱动镜头组件5在轴向上(即光轴P延伸的方向)移动或倾斜,可以实现光学防抖、光学对焦、调节像差等。具体而言,镜头驱动模组3可以带动镜头组件5轴向移动,实现摄像头模组10的光学对焦。镜头驱动模组3也可以用于补偿摄像头模组10的其它光学参数,例如像差,可以通过镜头驱动模组3带动镜头组件5中的至少部分镜片移动来补偿像差。如图3B所示,一种实施方式中,驱动组件32包括磁驱动件321和线圈驱动件322,线圈驱动件322连接至镜头组件5,磁驱动件321连接至外壳31,当线圈驱动件322通电时,线圈驱动件322和磁驱动件321耦合产生电磁驱动力,以带动镜头组件5移动。本申请具体实施方式中,镜头驱动模组3的驱动组件32被外壳31遮蔽,镜头驱动模组3的驱动组件32不参与图像传感器驱动模组2的驱动。
本方案中,光学组件80中的镜头驱动模组3和图像传感器驱动模组2为两个彼此独立的模组化结构,图像传感器驱动模组2可以匹配不同类型的镜头驱动模组3构成不同的驱动方案,本申请提供的图像传感器驱动模组2能够形成多种不同的光学防抖方案,适应性广泛。一种实施方式的组装的过程中,可以先将图像传感器4固定至图像传感器驱动模组2,再将镜头驱动模组3固定至图像传感器驱动模组2的顶面,具体而言,可以通过粘胶的方式(胶层801)固定连接镜头驱动模组3和图像传感器驱动模组2。另一种实施方式的组装过程中,也可以将镜头驱动模组3和图像传感器驱动模组2固定连接为一个整体,构成光学组件80,再将图像传感器4安装至此光学组件80中。也就是说,光学组件80可以为一个独立于图像传感器4和镜头组件5的模组化的结构,模组化结构的组装精度容易控制,制作成本低,将光学组件80与图像传感器4和镜头组件5组装的过程中,也能够简化组装工艺,且组装后的各光学元件的定位精度高,有利于保证摄像头模组的光学稳定性。
摄像头模组10包括用于与电子设备内的主板上的处理器电连接的电路板9,电路板9可以为柔性电路板,电路板9可以为图像传感器驱动模组2中的一部分,电路板9用于将图像传感器4采集到的信号传送至处理器。电路板9上还可以设置驱动电路,驱动电路用于驱动图像传感器驱动模组2,以实现图像传感器4的移动。
参阅图4和图5,在一种具体的实施方式中,图像传感器驱动模组2包括相对设置的第一顶面S1和第一底面S2。第一底面S2呈平面状且用于与电子设备内的主板或中框支架连接。第一顶面S1呈框形架构,图像传感器驱动模组2包括第一承载区R1,第一承载区R1位于第一顶面S1包围形成的开口S11的内部,图像传感器4从此开口S11处安装于第一承载区R1中。第一承载区R1内还可以安装光学元件6,例如IR滤光片。镜头驱动模组3整体呈框形架构,镜头驱动模组3包围的区域位于图像传感器驱动模组2的第一承载区R1的入光侧,即沿光轴方向正对第一承载区R1,开口S11连通第一承载区R1和镜头驱动模组3包围的区域,镜头驱动模组3包围的区域用于安装镜头组件5,一种实施方式中,部分镜头组件5可以位于开口S11内部,一种实施方式中,部分镜头组件5也可以伸入第一承载区R1中。镜头驱动模组3包括相对设置的第二底面S3和第二顶面S4,第二底面S3为外壳31的底板的外表面,第二顶面S4为外壳31的顶板的外表面。第二底面S3可以通过胶层801与第一顶面S1粘贴固定,第二底面S3也可以通过其它的连接方式固定至第一顶面S1,例如螺丝固定、焊接等。
本申请提供的另一种实施方式中,摄像头模组10可以不设置镜头驱动模组,只通过图像传感器驱动模组2来调节图像传感器4的位置,实现摄像头模组10的防抖或像差补偿等功能,提供一种小型化、结构简单的摄像头模组10,应用在具体的电子设备中,有利于节约电子设备的空间及占板面积。
如图3B所示,本申请一种实施方式提供的图像传感器驱动模组2包括固定座21、驱动单元22和活动座23,驱动单元22包括能够相对移动的固定件221和活动件222,例如固定件221为磁石,活动件222为线圈,活动件222通电的情况下与固定件221相互作用产生驱动力。固定座21用于承载固定件221,活动座23用于承载活动件222和图像传感器4。固定座21包括固定平台211和固定框212。所述固定平台211包括相对的内表面S0和第一底面S2,所述固定框212连接至所述固定平台211且突出于所述内表面S0,所述固定件221固定至所述固定座21,所述固定框212远离所述内表面的一侧形成开口S11。活动座23和所述固定平台211的所述内表面S0之间可以接触。活动座23包括承载部231、固定部232及连接部233,所述连接部233用于实现所述承载部231和所述固定部232之间的机械和电连接,所述固定部232连接至所述固定座21,固定部232和固定座21之间相对固定连接,所述承载部231包括第二承载区R2和第一承载区R1,所述第二承载区R2位于所述第一承载区R1的外围,所述第二承载区R2用于承载所述活动件222,所述第一承载区R1用于承载图像传感器4,所述开口S11用于将所述图像传感器4安装至所述第一承载区R1。
本申请通过将图像传感器驱动模组2设计为独立于图像传感器4的模组架构,图像传感器驱动模组2组装为一个整体后,通过图像传感器驱动模组2的开口S11位置,将图像传感器4组装至图像传感器驱动模组2。本申请将图像传感器驱动模组2和图像传感器4解耦,不但有利于控制图像传感器驱动模组2的制作精度。由于图像传感器驱动模组2制作及组装过程,图像传感器4并未组装在其中,图像传感器驱动模组2的制作过程对图像传感器4的性能无影响,图像传感器驱动模组2的测试过程也可以使用单独测试专用的图像传感器,图像传感器驱动模组2应用在摄像头模组中,可以保证摄像头模组中的图像传感器4的优质的性能,而且可以提升摄像头模组的制作良率,降低成本。
本申请提供的一种具体的图像传感器驱动模组的详细结构描述如下。图6所示为本申请一种实施方式提供的图像传感器驱动模组2的立体组装图,图7和图8所示为图6提供的图像传感器驱动模组2的两个方向的立体分解图。图9所示为图6提供的图像传感器驱动模组2的剖面图。如图9所示,本实施方式中,固定座21相当于图像传感器驱动模组2的外壳,固定座21的固定框212包括侧框2122和顶板2121,所述顶板2121和所述固定平台211的所述内表面S0相对设置,所述侧框2122连接在所述顶板2121和所述固定平台211之间,且与所述顶板2121和所述固定平台211构成包围空间2120。所述驱动单元22、所述连接部233和所述第二承载区R2位于所述包围空间2120中。所述开口S11由所述顶板2121包围形成。
图6中的驱动单元在固定座21内部,由于被固定座21遮挡,无法被看到。固定座21可以作为安装载体,也能保护驱动单元22和活动座23,而且固定座21也可以作为图像传感器驱动模组2和其它的装置连接的结构,例如图像传感器驱动模组2可以安装至电子设备中的电路板上,就可以通过固定座21和电路板的固定连接实现。
参阅图7、图8和图9,一种实施方式中,固定平台211为平板式结构,固定平台211用于接触部分活动座23,固定平台211的内表面可以为平面式结构,固定平台211的内表面可以垂直于图像传感器4的光轴方向,固定平台211的内表面可以与图像传感器4的感光面平行,固定平台211的外表面为图像传感器驱动模组2的第一底面S2(如图5所示)。一种实施方式中,固定平台211为金属材料,或者固定平台211具有导磁材料,固定平台211能够被磁性元件的磁吸力吸附。固定平台211用于接触活动座23上带动图像传感器4移动的部分结构,活动座23带动图像传感器4在固定平台211上移动,且移动的过程中,固定平台211和活动座23之间的接触面保持接触状态,固定平台211具有导热材料,可以作为散热结构,将活动座23上的图像传感器和其它电子器件产生的热导出。
具体而言,固定平台211包括中心区2111、连接区2112和边缘区2113,中心区2111、连接区2112和边缘区2113共面,连接区2112环绕设置在所述中心区2111外围且连接在所述边缘区2113和所述中心区2111之间。如图7所示,固定平台211可以为一体式的平板状结构,其中的虚线框示意性地表达中心区2111、连接区2112和边缘区2113之间的分隔,具体的这三部分之间的分隔需要根据它们的功能来界定,详述如下:中心区2111用于与活动座23的部分区域接触,一种实施方式中,活动座23上承载图像传感器4的部分结构呈框形(或环状),中心区2111的部分面积和活动座23接触,中心区2111的部分面积与图像传感器4相对设置,中心区2111和图像传感器4之间具有间隙。边缘区2113用于连接固定框212。
一种实施方式中,固定框212包括顶板2121和侧框2122,顶板2121呈矩形框状结构,顶板2121包围形成的开口S11用于安装或收容光学元件(例如光学镜片)或作为通光孔。顶板2121包围形成的开口S11的外轮廓的尺寸比图像传感器的外轮廓大,并且方便通过此开口S11的位置将图像传感器安装至活动座23上。
侧框2122连接在顶板2121的外边缘,侧框2122和顶板2121共同包围形成包围空间2120,本实施方式中,驱动单元22的固定件221固定在顶板2121的内侧且位于此包围空间2120中,本实施方式中,固定件221为磁性驱动件,固定件221包括四个条状磁铁,四个条状磁铁两两相对设置,顶板2121包括四条边框,每条边框各安装一个条状磁铁。
一种实施方式中,固定框212设导磁结构2123,图7所示的实施方式中,导磁结构2123设置在顶板2121的内表面,其它实施方式中,导磁结构2123也可以设置在顶板2121的外表面,也可以内嵌在顶板2121的中间层。固定件221安装在导磁结构2123的内侧,导磁结构2123用于实现图像传感器驱动模组2的磁屏蔽。导磁结构2123为具有磁屏蔽性能的材料制成,导磁结构2123的形态可以与顶板2121相同,导磁结构2123也可以同时设置在顶板2121和侧框2122上,即导磁结构2123构成包围空间2120的架构,形成对图像传感器驱动模组2内部的磁环境的全方位屏蔽。一种实施方式中,导磁结构2123可以为板状结构,例如金属板,可以将金属板固定在顶板2121的内表面,其它实施方式中,导磁结构2123也可以为涂在顶板表面的层结构,例如,通过喷涂或电镀等方式形成在顶板2121表面的具有导磁功能的涂层。导磁结构2123也可以为网状结构,具有电磁屏蔽功能,也可以具有接地功能。本申请通过在固定框212内设导磁结构2123,能够实现图像传感器驱动模组2的磁屏蔽,当图像传感器驱动模组2内的驱动单元22为磁驱动方式时,导磁结构2123能够保证驱动单元22的驱动信号的稳定性,从而提升图像传感器4移动的稳定性。而且,导磁结构2123接地的设置,可以保护图像传感器驱动模组2内的电子器件,例如防止静电损坏电子器件等。
一种实施方式中,固定框212可以为一体成型的结构,顶板2121、侧框2122和导磁结构2123通过双料注塑工艺制成一体化的结构。
如图8所示,固定框212的顶板2121的内表面突出设置定位结构2125,定位结构2125从顶板2121的内表面向包围空间2120内突出延伸,定位结构2125呈圆柱状,顶板2121为矩形结构,定位结构2125数量为四个且分布在顶板2121的四个角落的位置。定位结构2125用于和活动座23上的对应的孔结构配合,实现固定座21和活动座23之间的组装定位,通过定位结构2125和活动座23上的孔结构的配合能够实现组装过程中驱动单元22的活动件222和固定件221之间的精确对位。
驱动单元22作为图像传感器驱动模组的动力源,用于产生驱动力,此驱动力能够带动活动座23相对固定座21移动。一种实施方式中,驱动单元22为磁结构马达,例如VCM(Voice Coil Motor,音圈马达),固定件221和活动件222分别为磁性驱动件和线圈驱动件,图7所示的实施方式中,固定件221为磁性驱动件,活动件222为线圈驱动件。另一具体方案中,固定件221为线圈驱动件,活动件222为磁性驱动件。其它实施方式中,驱动单元22也可以为其它类型的驱动,例如:SMA(shape memory alloy,形状记忆合金马达)、PIEZO(Piezo Motor,压电马达)。本申请实施例中的驱动单元22的活动件222和固定件221可以为相互独立的两个元件(例如磁结构马达中的线圈和磁铁),通电状态下产生驱动力带动图像传感器移动;本申请实施例中的驱动单元22的活动件222和固定件221也可以为一体式的结构,例如形状记忆合金马达,可以通过通电加热改变材料的尺寸进行驱动。
一种实施方式中,固定座21上不设置任何的电连接部分或电子器件,摄像头模组10中的所有的电路走线、电子器件及需要通电的部件均设置在活动座23上,活动座23相当于摄像头模组10中的主板(或电路板结构),用于承载所有的需要供电或传送信号的器件,这样的方案有利于摄像头模组10小型化的设计,而且有利于优化信号的传送路径,提升信号的稳定性。特别是活动座23为一体式电路板结构时,用于传送信号或电流的走线只需要布置在一体式的电路板内,无需在不同的电路板或FPC之间传送,这样的信号和电流传送过程能够保证信号稳定性,降低信号的损耗,而且也容易实现信号之间的隔离,防止因信号的相互干扰影响图像信号的质量。
参阅图7、图8和图9,一种实施方式中,活动座23包括承载部231、固定部232及连接部233,所述连接部233用于实现所述承载部231和所述固定部232之间的机械连接和电连接。机械连接指的是结构形态上的连接关系,可以包括直接连接或间接连接,直接连接也可以为一体式的架构,例如一体式的电路板结构的两部分之间可以理解为直接连接,间接连接指的是通过其它的连接结构进行连接,例如通过焊球连接两个板结构。电连接指的是信号走线的连接,可以通过电连接关系传送图像信号、电信号或其它信号,例如通过电路板内的走线进行电连接,或者通过FPC电连接,等等。所述固定部232连接至所述固定座21,具体而言,固定部232可以连接在固定平台211和固定框212之间,其它实施方式中,固定部232也可以连接至固定框212上,且固定部232和固定平台211之间通过至少部分固定框212隔开。
活动座23设有孔结构235,孔结构235分布在活动座23的角落的位置,孔结构235用于与固定座21的定位结构2125配合,实现活动座23和固定座21之间组装过程的定位,以保证驱动单元22的固定件221和活动件222之间的定位精度。孔结构235分布承载部231和连接部233之间,且位于承载部231的四个角的外部。
驱动单元22的活动件222设置在承载部231上。承载部231还用于组装图像传感器4,具体而言,图像传感器4是在图像传感器驱动模组2组装好后,利用组装设备,例如贴片机,将图像传感器4从开口S11处放置到承载部231上,组装的过程中,将图像传感器4的固定至承载部231且电连接至承载部231。图像传感器4可以通过粘胶固定在承载部231上,再通过打金线的方式将图像传感器4的承载部231内的线路电连接,其它实施方式中,图像传感器4也可以直接通过焊球连接至承载部231的焊垫上,通过焊球和焊垫实现图像传感器4和承载部231中的线路的电连接。
具体而言,参阅图7、图8、图9和图10A,活动座23的固定部232组装在固定平台211的边缘区2113和固定框212的侧框2122之间,固定部232的外边缘连接电路板9,电路板9可以与固定部232为一体式的结构,电路板9也可以通过插接的方式连接至固定部232,具体而言,可以在固定部232上设公连接器,在电路板9上设母连接器,通过公连接器和母连接器之间的配合实现电信号的传送,电路板9用于和电子设备中的处理器电连接,以将图像传感器4的信号传送至处理器。承载部231和固定平台211层叠设置,承载部231的中心区域位置包围收容空间2310,此收容空间2310用于收容图像传感器4,其它实施方式中,收容空间2310也可以用于收容其它光学元件6(例如滤光片或透镜)或作为通光通道(即不放置任何光学元件,但位于图像传感器4的入光侧)。如图7所示,承载部231背离固定平台211的表面上设有电子器件7,电子器件7在承载部231上分布在收容空间2310的相对的两侧,为了保证活动座23的结构对称性,可以将电子器件7对称分布在收容空间2310的两侧,这样有利于保证活动座23移动过程的平稳。一种实施方式中,电子器件7和驱动单元22的活动件222安装在承载部231的同一面,即安装在承载部231面对固定框212的顶板2121的表面,这样,承载部231上的电子器件7和活动件222均收容在固定框212内的包围空间2120中(如图8和图10A所示)。
如图9所示,活动件222固定至承载部231的第二承载区R2的背离固定平台211的一侧,且活动件222朝向顶板2121。具体而言,本实施方式中,驱动单元22的活动件222为线圈驱动件,活动件222包括四个两两相对设置的线圈,所有的线圈均与固定在顶板2121上的四个磁铁一一对应设置,线圈设置在承载部231上,而承载部231内设电路走线,容易实现对线圈的供电线路布局。一种实施方式中,参阅图7、图8、图9和图10A,承载部231上设有支撑结构8,活动件222包围支撑结构8,即每一个线圈内均设置支撑结构8,支撑结构8为刚性结构且突出设置在承载部231的表面,可以理解为,线圈围绕支撑结构8设置,支撑结构8能够保护线圈免受其它结构刮碰。
本申请通过驱动单元22带动承载部231移动,而固定部232的位置保持不变,这样,承载部231移动的过程中,连接部233发生弹性形变,连接部233连接在固定部232和承载部231之间,在机械连接方面,连接部233相当于弹簧或弹片的结构,连接部233上也设置用于传送信号和电流的电路板走线,通过电路板走线实现承载部231和固定部232之间的电连接,即能够将图像传感器4上的信号传送至图像传感器驱动模组2的外部。连接部233为连接在固定部232和承载部231之间的细长条状的弹臂结构,具体而言,通过在活动座23上去除材料的方式形成多个条状弹臂,即连接部233,连接部233由于材料本身的形态具有弹性形变的能力,在承载部231受驱动单元22的驱动力作用相对固定部232移动的过程中,连接部233可以发生弹性形变,保持固定部232和承载部231之间的机械连接和电连接。本申请实施方式中,驱动单元22能够带动图像传感器4沿X轴方向和Y轴方向移动,X轴和Y轴方向均垂直于图像传感器4的光轴方向,光轴方向看作Z轴的情况下,X轴方向、Y轴方向和光轴方向可以构建一个三轴直角坐标系,即驱动单元22带动图像传感器4在垂直于光轴的平面上,且沿着相互垂直的X轴和Y轴两个方向移动,承载部231移动的过程中,连接部233产生弹性形变,保证承载部231能够相对固定部232移动。
一种实施方式中,活动座23可以为弹性电路板结构,承载部231和固定部232不具有弹性,连接部233具有弹性。参阅图10A,图10A为图9的部分放大示意图。连接部233包括导线层2333和金属层2334,导线层2333用于设置电路板走线,实现承载部231和固定部232之间的电连接。金属层2334可以为金属挠曲体结构,金属层2334用于提供连接部233的弹性形变,金属层2334的存在使得连接部233的柔性及强度得到保证,提升了连接部233的弹性形变的能力。导线层2333和金属层2334之间可以通过绝缘层隔离(图10A中省略了绝缘层),绝缘层具体可以为聚酰胺绝缘材料。
参阅图7、图8、图9和图10A,活动座23包括一体式的电路板结构23A和加强板结构23B,一体式的电路板结构23A包括固定部232、连接部233和部分承载部(称为第一板231A),而且一体式的电路板结构23A是通过电路板制作工艺一体成型的结构,其中设有导线层2333和金属层2334,金属层2334用于保证连接部233的强度和弹性形变的能力。加强板结构23B为部分承载部(称为第二板),加强板结构23B连接在一体式的电路板结构23A的部分承载部(第一板231A)的底面。
加强板结构23B用于和固定平台211接触,用于构成摩擦界面X,且用于导热散热。概括而言,本实施方式中,承载部231包括第一板231A和第二板(加强板结构23B),所述第一板231A的外边缘和所述连接部233互连为一体式的结构,所述第一板231A的内边缘包围形成收容空间2310,所述第一板231A用于承载所述活动件222,所述第二板(加强板结构23B)包括第一部分23B1和第二部分23B2,所述第一部分23B1与所述第一板231A层叠设置,所述第二部分23B2位于所述收容空间2310的底部,所述第二部分23B2用于承载所述图像传感器4,以使所述图像传感器4容纳在所述收容空间2310中,所述第二板(加强板结构23B)和所述固定座21的固定平台211之间接触。第二板(加强板结构23B)的第一部分23B1和第一板231A之间通过胶层连接,第二部分23B2,所述第一部分23B1与所述第一板231A层叠设置,所述第二部分23B2位于所述收容空间和图像传感器4之间通过胶层连接。如图9所示,图像传感器4和第一板231A之间电连接,通过信号线41(例如金线)电连接至第一板231A,信号线41的位置设置粘胶结构61,这部分粘胶结构61用于固定光学元件6,例如IR滤光片,一方面粘胶结构61可以固定连接光学元件6,另一方面,粘胶结构61也可以固定信号线41,保证图像传感器4和承载部231的导线层2333之间电连接的稳定可靠性。本方案通过所述第一板、所述连接部和所述固定部传送所述图像传感器的信号。
沿光轴的方向,第二板(加强板结构23B)与开口S11正对的部分及第一板231A和开口S11正对的部分共同构成承载部231的第一承载区R1(如图9两个虚线之间标示为R1的部分表示承载部231的第一承载区R1),第一板231A与顶板2121正对的部分为承载部231的第二承载区R2(如图9两个虚线之间标示为R2的部分表示承载部231的第二承载区R2)。本方案提供的图像传感器驱动模组2的开口S11正对第一承载区R1,组装图像传感器4的过程中,直接通过吸盘的吸力固定图像传感器4,通过沿光轴方向移动吸盘,将图像传感器4放置在第一承载区R1中,再固定连接图像传感器4和承载部231。其它实施方式中,开口S11也可以与第一承载区R1错位设置,可以理解为第一承载区R1的部分区域和开口S11正对,而有部分第一承载区R1并没有与开口S11正对,此种实施方式中,在组装图像传感器的过程中,可以用吸盘固定图像传感器,通过沿光轴方向将图像传感器放置至开口S11所对应的区域,再沿垂直于光轴方向移动吸盘,以将图像传感器运送至第一承载区。
图10B是本申请一种可能的实施方式提供的图像传感器驱动模组的剖面图的部分放大图。参阅图10B,活动座23和固定平台211的内表面S0之间具有间隙G,可以理解为:活动座23和所述固定平台211的内表面S0悬空间隔设置。
参阅图9和图10A,承载部231与固定座21的固定平台211接触,在二者接触位置处形成摩擦界面X,摩擦界面X的摩擦系数小于0.3。摩擦界面X可以为承载部231与固定座21的接触面(即摩擦界面形态为一个面)。摩擦界面X也可以为承载部231与固定座21之间的介质,例如润滑油(即摩擦界面形态为油脂或膏状物)。摩擦界面X也可以为承载部231与固定座21之间的层结构,例如通过超滑材料层设置在承载部231与固定座21之间形成摩擦界面X(即摩擦界面形态为立体层结构)。概括而言,承载部231和固定平台211之间为滑动摩擦的关系,摩擦界面X处可以通过设置固态的结构层、油脂或膏状的润滑层或表面处理的方式获得低摩擦系数。一种可能的实施方式中,所述润滑层可以包括滚动结构。本申请通过对承载部231和固定平台211之间的滑动摩擦的摩擦系数的限定,能够实现在限定图像传感器4移动平面的基础上,保证图像传感器4移动的顺畅性,减小图像传感器4移动过程中的摩擦阻力,提高驱动图像传感器4移动的效率。
一种实施方式中,在所述摩擦界面X的位置处,所述承载部231和/或所述固定座21的固定平台211包括超滑材料层,所述超滑材料层为固态结构,通过所述超滑材料层实现所述摩擦界面X的摩擦系数小于0.3。第一种情况下,参阅图11A,只有承载部231的表面设置超滑材料层M1,承载部231表面的超滑材料层M1和固定座21的固定平台211的表面接触,形成摩擦界面X并实现摩擦界面X的摩擦系数小于0.3,本方案不需要在固定座21上设置超滑材料层,有利于节约超滑材料,降低成本。第二种情况下,参阅图11B,只有固定座21的固定平台211的表面设置超滑材料层M2,在固定座21的固定平台211上设置的超滑材料层M2的面积需要大于承载部231上与固定平台211接触的部分面积,因为承载部231需要在超滑材料层M2上滑动,本方案设置的超滑材料层M2需要考虑承载部移动过程覆盖的面积,由于固定座21的固定平台211为简单的平板结构,其上不设置任何电路架构,在固定平台211上设置超滑材料层M2,具有容易制作的优势。第三种情况下,参阅图11C,承载部231和固定座21的固定平台211的表面均设置超滑材料层,即承载部231的表面设超滑材料层M1,固定平台211的表面设超滑材料层M2,超滑材料层M1和超滑材料层M2接触,且超滑材料层M2的面积大于超滑材料层M1的面积,本方案结合了第一种情况和第二种情况,在超滑材料层M1和超滑材料层M2之间形成摩擦界面X,本方案提供的摩擦界面X的摩擦系数可以更小。固态结构的超滑材料层与承载部231和固定平台211之间的结合更容易实现,例如可以直接通过胶层连接固定,组装工艺方面具有简单易行的优势。
图11A、图11B和图11C所示的实施方式中,超滑材料层M1和超滑材料层M2可以为设置在承载部231及固定平台211表面的涂层或镀层结构,即通过物理喷涂或电镀的工艺形成。超滑材料层M1和超滑材料层M2也可以为单独的片状体结构,例如,超滑材料层M1和超滑材料层M2为微纳结构(纳米材料),通过粘贴、物理压合等制作工艺连接至承载部231及固定平台211的表面。
一种实施方式中,参阅图12,在所述摩擦界面X的位置处,所述承载部231和所述固定座21的固定平台211之间设润滑层M3,所述润滑层M3为油状、脂状或膏状结构,通过所述润滑层M3实现所述摩擦界面X的摩擦系数小于0.3。本方案通过在承载部231和固定座21的固定平台211之间设置油状、脂状或膏状结构的润滑层M3实现低摩擦系数的摩擦界面X,由于润滑层M3的形态不是固定的,在所述承载部231和所述固定座21的固定平台211之间的接触面处增加润滑层M3,润滑层M3可以做到较小的尺寸,有利于实现摄像头模组光轴方向的小型化。润滑层M3的设计还有利于保证接触面的平面度,可以理解为通过润滑层M3可以补偿平面度的问题,以避免图像传感器4在移动的过程中存在光轴方向的振动或倾斜。
一种实施方式中,参阅图13,承载部231和所述固定座21的固定平台211之间不设置任何超滑材料层或润滑油,本实施方式是通过对所述承载部231和所述固定座21的固定平台211之间接触的表面进行表面处理的制作工艺,实现所述摩擦界面X的摩擦系数小于0.3,表面处理的方式可以为:表面改性的技术,例如抛光;表面合金化的技术,例如渗碳和渗氮;表面转化膜(通过化学方法,使添加材料与基体发生化学反应,形成转化膜)技术等。表面处理的方式构成摩擦界面X,不需要增加超滑材料层或润滑层,可以获得较小的光轴方向的尺寸。
其它实施方式中,也可以将固态的超滑材料层、油脂或膏状的润滑油结合使用在同一个实施方式中,或者将固态的超滑材料层和表面处理的制作工艺获得的表面使用在同一个实施方式中,或者将油脂或膏状的润滑油和表面处理的制作工艺获得的表面使用在同一个实施方式中。
本申请通过设置承载部231和固定座21之间接触面的摩擦界面X的摩擦系数,实现承载部231和固定座21之间的低摩擦系数的滑动连接,在驱动活动座23的承载部231移动的过程中,可以通过超滑材料或润滑层等低摩擦系数的摩擦界面X,实现图像传感器4的灵活驱动,又保证图像传感器4在移动的过程中轴向位置的稳定性,不会产生轴向位移、振动或倾斜等现象。通过承载部231和固定座21之间接触还有利于导热,承载部上231的电路、线圈驱动件及图像传感器在工作过程中都会发热,本申请实施方式中,可以通过承载部231和固定座21之间的接触进行导热。所述摩擦界面X包括具有导热性能的材料,承载部231可以为导热材料,固定座21的固定平台211也可以为导热材料。所述摩擦界面X的导热系数为大于0.5W/m·K。本方案通过对摩擦界面导热系数的限定有利于保证图像传感器的性能,提升图像信号的质量。
在摄像头模组中,若图像传感器移动台相对模组的底板悬空,移动台和底板之间间隔的空间不但增大了摄像头模组的光轴方向尺寸,也容易引起移动台的倾斜及光轴方向的振动,导致成像质量下降,而且空气热阻较大,图像传感器及驱动电路的热不容易散出,会形成图像传感器结温过高(例如高于70度,甚至会达到90度),造成图像传感器成像噪点过多,影响成像质量。本申请一种实施方式通过承载部231和固定平台211之间的接触,能够保证图像传感器4移动的平稳性,将图像传感器4移动路线限定在固定(稳定)的平面(例如垂直于光轴的平面)上,避免图像传感器4在移动的过程中产生轴向的振动或倾斜,能够保证图像传感器4获得的图像数据的质量和稳定性。而且本申请还能够降低热阻,承载部上的热可以通过承载部和固定部之间的接触关系更好的传导至固定座21的外表面的一侧,提升图像传感器驱动模组2的导热能力,能够优化图像传感器4和驱动单元22的散热效率,避免摄像头模组10在拍摄视频或长时间拍照过程中因为温度过高导致成像质量下降。本申请提供的一种具体实施方式中,图像传感器4工作结温可以控制在70度以下,例如,图像传感器的工作结构可以小于50度。
参阅图14,图14表示的是承载部231和固定平台211的接触面的具体的结构形态。本实施方式中,承载部231和固定座21的固定平台211之间的接触方式为平面和平面之间的接触,本方案有利于导热,承载部231和固定座21之间的接触面积越大,导热效率越高,本方案通过完整平面的接触能够提高散热能力。所述承载部231上用于接触所述固定座21的平面为第一平面S5,所述固定座21的固定平台211上用于接触所述承载部231的平面为第二平面S6,所述第一平面S5和所述第二平面S6均为连续的完整的平面结构。
参阅图15,图15表示的是承载部231和固定平台211的接触面的具体的结构形态。所述承载部231和所述固定座21的固定平台211之间的接触方式为平面和阵列式凸点之间的接触,在所述承载部231和固定平台211的接触位置处,所述承载部231和固定平台211中的一个的结构形态为完整的平面结构,所述承载部231和固定平台211中的另一个的结构形态为阵列式凸点结构。如图15所示,承载部231包括阵列式凸点结构S51,固定平台211与承载面231接触的结构为第二平面S6,阵列式凸点结构S51对应第二平面S6的所有的区域设置。本方案通过阵列式凸点结构S51和第二平面S6之间接触,可以解决平面与平面接触的平面度引起的光轴方向位置偏移的问题。阵列式凸点结构S51的设置较容易控制各凸点与平面的接触位置所构成的平面的平面度。在相对移动的过程中,可以更平稳,也能保证摩擦系数的稳定。图15所示的实施方式中,阵列式凸点结构S51也可以设置在固定平台211上,对应地,第二平面S6设置在承载部231上。
参阅图16,图16表示的是承载部231和固定平台211的接触面的具体的结构形态。所述承载部231和所述固定座21的固定平台211之间的接触方式为平面和多个凸点之间的接触,在所述承载部231和固定平台211的接触位置处,所述承载部231和固定平台211中的一个的结构形态为完整的平面结构,所述承载部231和固定平台211中的另一个的结构形态为多个凸点结构。如图16所示,承载部231上设多个凸点结构S52,固定平台211与承载面231接触的结构为第二平面S6,多个凸点结构S52对应第二平面S6的局部区域设置,本实施方式中,第二平面S6呈矩形形状,多个凸点结构S52对应第二平面S6的四个角落位置设置,其它实施方式中,多个凸点结构S52也可以对应第二平面S6的其它位置设置,例如对应第二平面S6的各边的中点位置,或者每条边对应分布多个凸点结构S52。图16所示的实施方式中,多个凸点结构S52也可以设置在固定平台211上,对应地,第二平面S6设置在承载部231上。本方案通过局部位置分布的凸点结构S52和平面的配合,有利于调整摩擦界面位置处的平面度,固定平台211和承载部231的接触面位置,不需要较高的平面度的制作精度,也可以满足图像传感器4的移动的平稳性。
参阅图17、图18和图19,这三个图表示的是承载部231和固定平台211的接触面的具体的三种不同的结构形态。一种实施方式中,所述承载部231和所述固定座21的固定平台211之间的接触方式为平面和凸出的筋条结构之间的接触,或者,凸出的筋条结构和凸出的筋条结构之间的接触。相较凸点的结构,通过筋条结构的设置可以增加接触面积,有利于减小压强,避免在相对移动的过程中,因相接触的面摩擦受损,影响在光轴方向上的定位精度。相较全平面接触的结构,筋条结构又可以改善平面度问题形成的光轴方向的移动。
如图17所示,在所述承载部231和所述固定座21的固定平台211的接触位置处,所述承载部231的结构形态为凸出的筋条结构S53,固定平台211的结构形态为完整的平面结构S6,凸出的筋条结构S53在平面结构S6上滑动实现摩擦界面,本实施方式中,凸出的筋条结构S53呈环形分布。如图18所示,承载部231的结构形态亦为凸出的筋条结构S53,与图17所示的实施方式的区别在于,图18所示的实施方式中的凸出的筋条结构S53呈网状分布。
如图19所示,在所述承载部231和所述固定座21的固定平台211的接触位置处,固定平台211的结构形态为凸出的筋条结构S54,本方案中,所述承载部231的结构形态可以为平面结构S7。所述承载部231的结构形态也可以为类似筋条的结构。其它实施方式中,也可以在承载部231上设置凸出的筋条结构,将固定平台211设置为平面结构。
图14至图19示意性地描述了几种不同的摩擦界面的结构形态,并不是对本申请摩擦界面结构形态的限定,本申请可以根据具体的设计需求,设计不同的结构形态的摩擦界面。
参阅图10A,本申请通过将承载部231和固定平台211滑动接触,为承载部231提供了一个移动的平台,承载部231在移动的过程中,不会离开固定平台211,藉此,承载部231上需要具有能够使得承载部231保持与固定平台211接触的保持力。具体而言,图像传感器驱动模组2内设保持结构,部分保持结构位于承载部231(可以理解为部分保持结构为承载部上的部分结构),部分保持结构位于固定座21(可以理解为部分保持结构为固定座上的部分结构),所述保持结构提供保持力在所述承载部231上,所述保持力用于使所述承载部231和所述固定座21的固定平台211之间保持接触。保持结构的设置可以通过多种不同的实施方案实现,具体描述如下。
一种实施方式中,如图10A所示,保持结构26由连接部233和固定部232构成,连接部233连接至承载部231,固定部232位于固定座21上,即固定部232和固定座21固定连接,固定座21上固定连接固定部232的部分结构可以作为部分保持结构。本方案中,活动座23的连接部233作为部分保持结构,连接部233为弹性结构,所述连接部233的弹性力作用在所述承载部231上形成所述保持力。本实施方式中,利用连接部233的弹性力作为保持力,保证承载部231和固定座21之间的接触,有需要在固定座和活动座之外再增设其它的保持结构,连接部233不但能够保证承载部231在驱动单元22的驱动力下移动,还兼备提供保持力的功能,连接部233的双重功能的设计,有利于图像传感器驱动模组2的尺寸小型化。
参阅图10A,所述连接部233和所述固定部232的连接处为第一位置2331,所述连接部233和所述承载部231的连接处为第二位置2332,所述第一位置2331和所述第二位置2332之间存在弹性势能,所述弹性势能形成所述保持力。本方案限定了一种具体的连接部233的弹性力的形成方式,通过第一位置2331和第二位置2332之间形成弹性势能的方式,利用了连接部233必要的组装位置,有利于保证图像传感器驱动模组2的尺寸小型化。
具体而言,在垂直于固定平台211的方向上,即光轴方向上,第一位置2331与所述固定平台211之间在所述光轴方向上的距离D1小于所述第二位置2332与所述固定平台211之间在所述光轴方向上的距离D2,可以理解为,第一位置2331和第二位置2332在组装的过程中形成台阶状架构,组装后的连接部233具有向固定平台211方向拉动承载部231的力,即连接部233的弹性拉力作用在所述第二位置2332上形成朝向所述固定平台211的所述保持力。本方案通过在组装活动座23的过程中,确定第一位置2331和第二位置2332和固定平台211之间的距离关系,保证D1小于D2的情况下,能提供第二位置2332朝向固定平台211的拉力,即够成保持力。本方案形成保持力的方式在组装过程中实现,对于活动座23的连接部233而言,在其制作过程中不需要考虑形成保持力而对其结构做特殊的设计,可以节约制作成本。
其它实施方式中,连接部233作为保持结构,可以在制作活动座23的过程中,就将固定部232和承载部231设计为不共面,即在连接部233处于自由的状态(不受任何约束力)下,连接部233和固定部232的连接处的第一位置2331和连接部233和承载部231连接处的第二位置2332对应不同的光轴位置,第一位置2331和第二位置2332之间在组装之前存在光轴方向的高度差。在组装的过程中,可以将第一位置2331和第二位置2332组装为共面的状态,或者组装过程中,调节第一位置2331或第二位置2332的具体的物理位置,以这样的方式储能,即在连接部233中储存弹性势能,而且此弹性势能作用在承载部231上的力为朝向固定平台211的保持力。本方案有利于实现组装后的图像传感器驱动模组的尺寸小型化。
一种实施方式中,参阅图20和图21,所述保持结构26包括磁性件24和固定平台211,所述磁性件24固定在所述承载部231上,通过所述磁性件24和固定平台211之间的磁吸力构成至少部分所述保持力。本方案通过在承载部231上设置磁性件,将固定平台211设计为可以与磁性件相互配合形成磁吸力的方式,通过磁吸力作为保持力,能够保证保持力的寿命和稳定性。连接部233的弹性力作为保持力的情况下,在长期的使用过程中,弹性力的弹性系数会发生变化,导致连接部233的弹性性能下降,这种情况下可能会影响承载部231和固定平台211之间的保持力,若保持力不够支持二者之间的摩擦界面保持接触状态,会影响图像传感器4移动的平稳性,也会影响图像传感器驱动模组2的导热性能。本方案通过设置磁性件24,利用磁吸力作为保持力的方式,可以保证保持力的持续稳定性,提升图像传感器驱动模组2的寿命。
一种实施方式中,保持力可以即包括连接部233提供的弹性力,还包括磁性件24提供的磁力。
一种具体的实施方式中,如图20所示,所述磁性件24包括四个磁石241,242,243,244,四个磁石241,242,243,244呈点状分布状态设置在所述承载部231上,且邻近所述承载部231的外边缘,所述承载部231的外边缘为所述承载部231朝向所述固定部232的边缘位置。本实施方式中,四个磁石241,242,243,244分布在承载部231的四个角的位置。其它实施方式中,磁性件24可以包括两个或三个磁石,或者磁石的数量也可以大于等于五个,多个磁石均匀间隔分布在承载部231的边缘位置。具体而言,当磁石为三个时,三个磁石可以限定一个面,能够保证承载部和固定座之间的接触面的面接触。当磁石为四个时,可以对称分布在图像传感器的外置的四个角落位置,有利于保证图像传感器移动的平稳性。
一种具体的实施方式中,如图21所示,所述磁性件24包括四个磁条245,246,247,248,所述磁条245,246,247,248均呈长条状,且两两对称分布在所述承载部231上,且邻近所述承载部231的外边缘,所述承载部231的外边缘为所述承载部231朝向所述固定部232的边缘位置。本实施方式中,磁条245,246,247,248位于线圈的内部,线圈为驱动单元的活动件222。其它实施方式中,磁条245,246,247,248也可以设置在活动件222的外围。其它实施方式中,磁条的数量也可以为两个、三个或更多个。长条状的磁条的设置不但可以提供较大的磁吸力,而且也方便组装和固定。
本申请实施例中设置在承载部231上的磁性件24和固定座21之间的磁吸力需要保证承载部231在移动过程中可以保持与固定座21之间的接触,磁吸力还要控制在预设范围内,即磁吸力不能太大,若磁吸力太大,可能会导致驱动单元22无法带动承载部231移动,或影响承载部231移动的效率。
一种具体的实施方式中,参阅图22,保持结构26包括活动件222和固定平台211。具体而言,活动件222为磁性驱动件,所述固定件221为线圈驱动件,本实施方式中,将固定件221固定在固定座21上,需要在固定座21上配置电路板走线,以实现为线圈驱动件供电。概括而言,本方案中,所述磁性驱动件222作为磁性件(类似前述的磁石和磁条的架构)与固定平台211之间形成磁吸力,所述磁性驱动件222和固定平台211之间的磁吸力构成至少部分所述保持力。本方案利用磁性驱动件(活动件222)构成保持结构,有利于图像传感器驱动模组2的尺寸小型化的设计。
参阅图23A和图23B,一种实施方式中,通过在固定座21的固定平台211上设磁性件,在活动座23的承载部231上设磁吸件,例如钢板,通过磁性件和磁吸件之间的磁吸力构成保持力。具体而言,本实施方式中,保持结构26包括磁性件24和磁吸件238,所述磁吸件238具有导磁材料且为所述承载部231的一部分,所述磁性件24固定在所述固定座21上且位于所述固定座21和所述承载部231之间的接触面的位置处,通过所述磁性件24和所述磁吸件238之间的磁吸力构成所述保持力。图23A所示的实施方式中,磁性件24位于固定座21的固定平台211的背离承载部231的表面。图23B所示的实施方式中,磁性件24内嵌在固定座21的固定平台211的内部。承载部231包括电路板结构和磁吸件238,磁吸件固定在电路板结构的底面用于补强线路板的强度。磁吸件238位于承载部231朝向固定平台211的表面,磁吸件238与固定平台211接触构成摩擦界面X,磁吸件238还用于承载图像传感器4,本实施方式中,磁吸件238与图7所示的实施方式中的加强板结构23B可以为同样的结构,但是本实施方式中,磁吸件238不但可以为承载部231提供结构加强的作用、可以承载图像传感器4,还需要具有导磁材料,磁吸件238需要和磁性件24配合产生磁吸力,而图7所示的实施方式中,加强板结构23B不需要形成磁吸力,只需要提供电路板结构23A加强力及承载图像传感器4。
图23A和图23B所示的实施方式中,磁性件24和磁吸件238构成部分保持结构26,还有部分保持结构26包括连接部233和固定部232,也就是说,本实施方式中,保持结构26在承载部231和固定平台211之间通过磁性力和弹力共同作用,保证承载部231和固定平台211之间的接触可靠性。本方案通过将磁性件24设置在固定平台211上,对应地在承载部231上设置磁吸件,例如钢板,这样的设计可以减少磁性件对驱动单元22及图像传感器4的影响,保证图像传感器4的移动平稳性及所产生的图像信号的质量。本方案通过将磁性件24设置在固定座21远离承载部231的表面,可以实现磁性件24与图像传感器4及驱动单元22之间的距离最大化,有利于减少磁性件24对驱动单元22及图像传感器4的影响,保证图像传感器4的移动平稳性及所产生的图像信号的质量。通过将磁性件24内嵌在固定平台211的内部,使得磁性件24和固定平台211结合为一体,不影响图像传感器驱动模组2的整体结构,也为图像传感器驱动模组2和电子设备内的其它结构之间的组装定位提供了便利。
一种具体的实施方式中,参阅图24,图像传感器驱动模组包括弹性件25,弹性件25的一端连接至固定座21的固定框212的顶板2121,另一端连接至承载部231,可以理解为:弹性件的一端位于承载部,即弹性件的一端为承载部上的部分结构,弹性件的另一端位于固定座,即弹性件的另一端为固定座上的部分结构。组装状态下,弹性件25处于弹性压缩状态,弹性件25对承载部231施加弹力,此弹力朝向所述承载部231和所述固定座21的接触面,此弹力为保证承载部231和固定平台211接触的保持力,弹性件25能够保持摩擦界面X处的接触状态。图23A和图23B所示的实施方式中,弹性件25、连接部233和固定部232共同构成保持结构26,即利用了连接部233提供的保持力,又利用了弹性件25的保持力,可以使得承载部231和固定平台211之间的接触更稳定。
本申请通过将承载部231和固定座21的固定平台211接触,并且承载部231上还具有保持力,此保持力用于保持承载部231和固定座21之间的接触状态,保持力方向为朝向承载部231和固定座21之间接触面的方向,使得图像传感器驱动模组2不管在什么样的位置或环境下,保持力都可以将承载部231抵持至与固定座21接触。保持力需要大于承载部231及承载部231上所承载的所有结构的重力的和,这样不管摄像头模组10如何放置,都能实现在驱动图像传感器4移动的过程中,承载部231能够在固定的平面上移动,能够实现图像传感器4移动的平稳性,防止图像传感器4倾斜或产生轴向移动,此轴向移动指的是光轴的方向,可以理解为,承载部231和固定座21之间的接触面所在的平面为垂直于光轴的面,本申请提供的图像传感器驱动模组2能够带动图像传感器4在垂直于光轴的平面上移动。
参阅图25A,一种实施方式中,活动座23为一体式的电路板结构,即承载部231、连接部233和固定部232通过一体成型的方式制作形成,固定部232的外围用于连接电路板(例如FPC)9,电路板9用于电连接图像传感器4和电子设备中的处理器,本实施方式中,电路板9和固定部232为一体式的电路板结构。通过电路板一体成型的工艺制作形成的,制作工艺简单,方便组装,而且结构稳定性会更好,活动座23内的线路层只是在同一个电路板内走线,可以保证信号传送的稳定性,减少信号的损耗。所述承载部231包括用于承载所述活动件222及其它电子器件的第一区231C和用于承载图像传感器4的第二区231D。所述活动座23在所述图像传感器4的光轴P方向上的尺寸为所述活动座23的厚度,所述第一区231C的厚度T1、所述连接部233的厚度T2和所述固定部232的厚度T3相等。一体式的电路结构构成的活动座在厚度方向上可以节约图像传感器驱动模组的空间,有利于图像传感器驱动模组在图像传感器的光轴方向上的尺寸小型化的设计。
所述第一区231C连接在所述第二区231D和所述连接部233之间,所述第二区231D的厚度T4小于所述第一区231C的厚度T1,所述第一区231C环绕设置在所述第二区231D的边缘并和所述第二区231D共同围成收容空间(由于图25A的收容空间被图像传感器4占据,未标注),所述收容空间用于收容所述图像传感器4,图像传感器4和底面和第二区231D连接,可以通过胶层连接。图像传感器4的侧面和收容空间的内壁之间可以具有间隙,在方便安装图像传感器。本方案通过在承载部231上设凹槽,凹槽用于容纳图像传感器,用利于节约光轴方向上的空间,易于实现光轴方向的小尺寸的设计。所述第一区231C和所述固定座21的固定平台211之间的接触面与所述第二区231D和所述固定平台211之间的接触面共面。本实施方式中,承载部231的第二区231D可以为完整的平板状结构,即,第二区231D中不设置任何通孔或开窗的结构。其它实施方式中,第二区231D也可以为框形结构,即第二区231D只承载图像传感器4的边缘的部分,而图像传感器4的部分区域和固定平台211之间通过间隙相隔,此间隙内可以为空气,也可以填充导热介质。
参阅图25B,图25B与图25A所示的实施方式相同,在图25B中标示了第一承载区R1的详细的结构。所述第一承载区R1包括第一中心区R11和第二中心区R12,在光轴延伸的方向上,第一中心区R11和第二中心区R12正对开口S11。所述第二中心区R12位于所述第一中心区R11的外围,且连接在所述第一中心区R11和所述第二承载区R2之间,所述第一中心区R11用于安装所述图像传感器4,所述第二中心区R12用于安装光学元件6。本实施方式中,所述活动座23为一体式的电路板结构,所述活动座23在所述图像传感器4的光轴方向上的尺寸为所述活动座的厚度,所述第二承载区R2的厚度T1、所述连接部233的厚度T2和所述固定部232的厚度T3相等。
至少部分所述第一承载区R1的厚度小于所述第二承载区R2的厚度,以使至少部分所述第一承载区R1为内凹结构且构成用于收容所述图像传感器4的收容空间。图25A和图25B所示的实施方式中,所述第一承载区R1的第一中心区R11的厚度小于第二中心区R12的厚度,第二中心区R12的厚度和所述第二承载区R2的厚度相等,第二中心区R12和第一中心区R11共同围成收容空间,所述收容空间用于收容所述图像传感器4。其它实施方式中,第一中心区R11的厚度可以与第二中心区R12的厚度相等,即第一承载区R1为厚度均匀的结构,第一承载区R1的厚度小于第二承载区R2的厚度,这样第二承载区R2和第一承载区R1之间构成用于收容图像传感器的收容空间。
参阅图26,图26所示的实施方式中,承载部231和固定平台211之间的摩擦界面X为立体的层结构,其具体设计可以参阅图11A、图11B和图11C所示的实施方式。在图像传感器4的光轴P的延伸的方向上,固定部232和承载部231之间形成高度差。即固定部232远离固定平台211的表面和固定平台211之间的垂直距离H1小于承载部231远离固定平台211的表面和固定平台211之间的垂直距离H2。本实施方式中,固定部232和固定平台211之间通过胶层连接。
图25A和图26所示的实施方式中,驱动单元22位于承载部231的背离固定平台211的一侧,即驱动单元22位于固定框212的顶板2121和承载部231之间。
参阅图27,一种实施方式中,固定座21的固定平台211为平板状,固定框212连接在固定平台211的边缘区域,固定框212用于连接活动座23的固定部232。具体而言,固定框212包括第一部分212A和第二部分212B,第一部分212A位于固定部232和固定平台211之间,将固定部232支撑在固定平台211上方。第二部分212B位于固定部232背离第一部分212A的一侧,即第一部分212A和第二部分212B将固定部232夹持在二者之间。驱动单元22位于承载部231和固定平台211之间,驱动单元22的固定件221固定在固定平台211上,活动件222固定在承载部231的朝向固定平台211的表面上,具体而言,活动件222固定在承载部231的第二承载区R2的背离顶板2121的一侧(即第二承载区R2的朝向固定平台211的表面)。本方案中,固定件221在固定平台211上的位置位于承载部231和固定平台211之间的摩擦界面X的外围。承载部231在固定平台211上的移动范围位于固定件221在固定平台211上限定的范围内。承载部231包括三部分,分别为第一段A1、第二段A2和第三段A3,第二段A2连接在第一段A1和第三段A3之间,第一段A1连接至连接部233且用于设置活动件222和其它电子器件。第三段A3用于支撑图像传感器4。第一段A1可以平行于第三段A3。
图27所示的实施方式中,固定座21的固定框212包括顶板2121,顶板2121用于遮挡连接部233,顶板2121用于保护连接部233。
其它实施方式中,如图28所示,固定座21也可以不设置顶板,直接将活动座23的固定部232搭接在固定框212的顶面212C,本实施方式有利于实现图像传感器驱动模组的小型化,节约电子设备的空间。图28所示的实施方式中,固定框212的远离固定平台211的一端所围成的区域为开口S11,组装图像传感器4的过程中,将图像传感器4通过此开口S11位置组装至承载部231的第一承载区R1上。
参阅图29,一种实施方式中,承载部231包括第一承载平台231E和第二承载平台231F,所述第一承载平台231E用于承载图像传感器4,第一承载平台231E设有收容槽E1,图像传感器4通过胶层固定在第一承载平台231E的收容槽E1中,所述第一承载平台231E与所述固定座21的固定平台211接触构成接触面,垂直于所述接触面的方向为光轴P方向,所述第二承载平台231F和所述连接部233沿所述光轴P方向层叠设置,所述驱动单元22的所述活动件222固定在所述第二承载平台231F上,固定件221固定在固定座21的固定框212的顶板2121上,驱动单元22位于第二承载平台231F远离连接部233的一侧。所述第一承载平台231E与所述连接部233互连为一体式结构,沿所述光轴P方向,所述连接部233位于所述第二承载平台231F和所述接触面(即摩擦界面X)之间。第一承载平台231E和第二承载平台231F之间通过焊球连接,即实现机械的连接也能实现电连接。本实施方式通过将承载部231设计为两块板结构(即第一承载平台231E和第二承载平台231F),而且第二承载平台231F和连接部233层叠设置的架构,可以实现活动座23在垂直于光轴P的方向上的小尺寸的设计。本方案应用在电子设备中时,可以节约摄像头模组所在的电路板的占板面积。图29所示的实施方式中,第二承载平台231F中正对顶板2121的部分为第二承载区R2,第二承载区R2和所述连接部233层叠设置。沿光轴P的方向,所述连接部233位于所述第二承载区R2和所述固定平台211之间,所述第一承载区R1包括组装一区R13和组装二区R14,所述组装一区R13用于承载图像传感器4,所述连接部233环绕所述组装一区R13且连接至所述组装一区R13的边缘,所述组装二区R14和所述第二承载区R2互连为一体,所述组装二区R14和部分所述组装一区R13重叠设置且构成重叠区域R111,所述组装一区R13和所述组装二区R14之间的机械连接和电连接的位置均在所述重叠区域R111内。图29中虚线表示的矩形框内的部分代表重叠区域R111。
参阅图30和图31,本实施方式中,所述第一承载平台231E和所述连接部233分别连接至所述第二承载平台231F的顶面和底面,沿所述光轴P方向,所述第二承载平台231F位于所述连接部233和固定平台211之间,也可以理解为:沿所述光轴P方向,第二承载平台231F位于连接部和摩擦界面之间。本实施方式中,第一承载平台231E和第二承载平台直接连接构成Z形架构,连接部233设置在第二承载平台231F背离固定平台211的一侧,连接部233通过转接板233A连接至第二承载平台231F的顶面,转接板233A和第二承载平台231F之间通过焊球连接,即实现机械的连接也能实现电连接。驱动单元22位于第二承载平台231F和固定平台211之间,活动件222固定在第二承载平台231F上,固定件221固定至固定平台211上。
如图30所示,第二承载平台231F中正对顶板2121的部分为第二承载区R2,活动件222固定在第二承载区R2的朝向固定平台211的表面。在光轴方向上,所述连接部233位于所述顶板2121和所述第二承载区R2之间。第一承载平台231E为第一承载区R1。
图30所示的实施方式中,固定框212包括顶板2121,顶板2121位于连接部233的上方,可以保护连接部233,固定部232和固定平台211之间通过部分固定框212间隔,即固定部232固定在固定框212之中。
图31所示的实施方式中,固定框212不设置顶板2121,固定部232固定在固定框212的顶面,即固定部232固定在固定框212远离固定平台211的表面上。
本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的可能的实施方式及可能的实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种图像传感器驱动模组,其特征在于,所述图像传感器驱动模组应用于摄像头模组,包括:
    驱动单元,包括能够相对移动的固定件和活动件;
    固定座,用于承载所述固定件;和
    活动座,包括承载部、固定部及连接部,所述连接部用于实现所述承载部和所述固定部之间的机械和电连接,所述承载部用于承载图像传感器和所述活动件,所述固定部连接至所述固定座;
    其中,所述承载部上的部分结构和所述固定座上的部分结构构成保持结构,所述保持结构用于提供保持力在所述承载部上,所述驱动单元用于驱动所述承载部相对所述固定座移动,所述承载部和所述固定座通过所述保持结构的所述保持力保持接触。
  2. 如权利要求1所述的图像传感器驱动模组,其特征在于,所述驱动单元用于驱动所述承载部相对所述固定座在垂直于所述摄像头模组的镜头组件的光轴的平面内移动。
  3. 如权利要求1或2所述的图像传感器驱动模组,其特征在于,所述承载部上的所述连接部构成至少部分所述保持结构,所述连接部为弹性结构,所述连接部的弹性力作用在所述承载部上形成所述保持力。
  4. 如权利要求3所述的图像传感器驱动模组,其特征在于,所述连接部和所述固定部的连接处为第一位置,所述连接部和所述承载部的连接处为第二位置,所述第一位置和所述第二位置之间存在弹性势能,所述弹性势能形成所述保持力。
  5. 如权利要求4所述的图像传感器驱动模组,其特征在于,所述固定座包括固定平台,所述承载部与所述固定平台的内表面接触,所述承载部用于承载所述图像传感器在所述固定平台的内表面上移动,所述图像传感器位于所述摄像头模组的镜头组件的出光侧,所述固定平台的内表面垂直于所述镜头组件的光轴,所述第一位置与所述固定平台的内表面之间在所述镜头组件的光轴方向上的距离小于所述第二位置与所述固定平台之间的内表面在所述镜头组件的光轴方向上的距离,所述连接部的弹性拉力作用在所述第二位置上形成朝向所述固定平台的所述保持力。
  6. 如权利要求1-5任一项所述的图像传感器驱动模组,其特征在于,所述承载部上设有磁性件,所述磁性件和用于接触所述承载部的部分所述固定座构成至少部分所述保持结构,用于接触所述承载部的部分所述固定座且具有导磁材料,通过所述磁性件和所述固定座之间的磁吸力构成至少部分所述保持力。
  7. 如权利要求6所述的图像传感器驱动模组,其特征在于,所述磁性件包括至少两个磁石,所述至少两个磁石呈点状分布状态设置在所述承载部上,且邻近所述承载部的外边缘,所述承载部的外边缘为所述承载部朝向所述固定部的边缘位置。
  8. 如权利要求6所述的图像传感器驱动模组,其特征在于,所述磁性件包括至少两个磁条,所述磁条均呈长条状,所述至少两个磁条对称分布在所述承载部上,且邻近所述承载部的外边缘,所述承载部的外边缘为所述承载部朝向所述固定部的边缘位置。
  9. 如权利要求1-5任一项所述的图像传感器驱动模组,其特征在于,所述固定座上设有磁性件,部分所述承载部具有导磁材料,具有导磁材料的部分所述承载部为磁吸件,所述磁性件和所述磁吸件构成至少部分所述保持结构,所述磁性件位于所述固定座和所述承载部之间的接触面的位置处,通过所述磁性件和所述磁吸件之间的磁吸力构成所述保持力。
  10. 如权利要求1-9任一项所述的图像传感器驱动模组,其特征在于,所述图像传感器驱动模组包括弹性件,所述弹性件的一端位于所述承载部,另一端位于所述固定座,所述弹性件构成至少部分所述保持结构,所述弹性件施加至所述承载部的弹力为至少部分所述保持力,所述弹力的方向为朝向所述承载部和所述固定座之间的接触面的方向。
  11. 如权利要求1-10任一项所述的图像传感器驱动模组,其特征在于,所述承载部和所述固定座的接触面处形成摩擦界面,所述摩擦界面的摩擦系数小于0.3。
  12. 如权利要求11所述的图像传感器驱动模组,其特征在于,在所述摩擦界面的位置处,所述承载部和/或所述固定座包括超滑材料层,所述超滑材料层为固态结构,通过所述超滑材料层实现所述摩擦界面的摩擦系数小于0.3。
  13. 如权利要求11所述的图像传感器驱动模组,其特征在于,在所述摩擦界面的位置处,所述承载部和所述固定座之间设润滑层,所述润滑层为油状、脂状或膏状结构,通过所述润滑层实现所述摩擦界面的摩擦系数小于0.3。
  14. 如权利要求11所述的图像传感器驱动模组,其特征在于,通过对所述承载部和所述固定座之间接触的表面进行表面处理的制作工艺,实现所述摩擦界面的摩擦系数小于0.3。
  15. 如权利要求11-14任一项所述的图像传感器驱动模组,其特征在于,所述摩擦界面包括具有导热性能的材料。
  16. 如权利要求15所述的图像传感器驱动模组,其特征在于,所述摩擦界面的导热系数为大于0.5W/m·K。
  17. 如权利要求1-16任一项所述的图像传感器驱动模组,其特征在于,所述承载部和所述固定座之间的接触方式为平面和平面之间的接触,所述承载部上用于接触所述固定座的平面为第一平面,所述固定座上用于接触所述承载部的平面为第二平面,所述第一平面和所述第二平面均为连续的完整的平面结构。
  18. 如权利要求1-16任一项所述的图像传感器驱动模组,其特征在于,所述承载部和所述固定座之间的接触方式为平面和阵列式凸点之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为阵列式凸点结构,所述阵列式凸点结构对应所述完整的平面结构的所有的区域设置。
  19. 如权利要求1-16任一项所述的图像传感器驱动模组,其特征在于,所述承载部和所述固定座之间的接触方式为平面和多个凸点之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为多个凸点结构,所述多个凸点结构对应所述完整的平面结构的局部区域设置。
  20. 如权利要求1-16任一项所述的图像传感器驱动模组,其特征在于,所述承载部和所述固定座之间的接触方式为平面和凸出的筋条结构之间的接触,在所述承载部和所述固定座的接触位置处,所述承载部和所述固定座中的一个的结构形态为完整的平面结构,所述承载部和所述固定座中的另一个的结构形态为凸出的筋条结构。
  21. 如权利要求1-20任一项所述的图像传感器驱动模组,其特征在于,所述固定座包括固定平台和固定框,所述保持力用于使所述承载部和所述固定平台之间保持接触,所述固定框固定连接至所述固定平台的边缘,所述固定框和所述固定平台围成包围空间,所述驱动单元、所述连接部和部分所述承载部位于所述包围空间中,所述驱动单元位于所述承载部背离所述固定平台的一侧。
  22. 如权利要求1-20任一项所述的图像传感器驱动模组,其特征在于,所述固定座包括固定平台,所述保持力用于使所述承载部和所述固定平台之间保持接触,所述驱动单元位于所述承载部和所述固定平台之间,所述固定件固定至所述固定平台。
  23. 如权利要求1-20任一项所述的图像传感器驱动模组,其特征在于,所述承载部包括第一承载平台和第二承载平台,所述第一承载平台用于承载图像传感器,所述第一承载平台与所述固定座接触构成接触面,垂直于所述接触面的方向为光轴方向,所述第二承载平台和所述连接部沿所述光轴方向层叠设置,所述驱动单元的所述活动件固定在所述第二承载平台上。
  24. 如权利要求23所述的图像传感器驱动模组,其特征在于,所述第一承载平台与所述连接部互连为一体式结构,沿所述光轴方向,所述连接部位于所述第二承载平台和所述接触面之间。
  25. 如权利要求23所述的图像传感器驱动模组,其特征在于,所述第一承载平台和所述连接部分别连接至所述第二承载平台的顶面和底面,沿所述光轴方向,所述第二承载平台位于所述连接部和所述接触面之间。
  26. 如权利要求1-20任一项所述的图像传感器驱动模组,其特征在于,所述承载部包括第一板和第二板,所述第一板的外边缘连接所述连接部,所述第一板的内边缘包围形成收容空间,所述活动件设置在所述第一板上,所述第二板包括第一部分和第二部分,所述第一部分与所述第一板层叠设置,所述第二部分位于所述收容空间的底部,所述第二部分用于承载所述图像传感器,以使所述图像传感器容纳在所述收容空间中,所述第二板和所述固定座之间接触。
  27. 一种光学组件,其特征在于,包括轴向运动驱动模组和如权利要求1-26任一项所述的图像传感器驱动模组,所述轴向运动驱动模组固定连接至所述图像传感器驱动模组,所述图像传感器驱动模组用于驱动所述图像传感器在垂直于光轴的平面上移动,所述轴向运动驱动模组用于驱动镜头模组在轴向上移动或倾斜。
  28. 一种摄像头模组,其特征在于,包括图像传感器、镜头组件和如权利要求27所述的光学组件,所述镜头组件固定至所述轴向运动驱动模组,所述图像传感器固定至所述图像传感器驱动模组,所述镜头组件位于所述图像传感器的入光侧。
  29. 一种摄像头模组,其特征在于,包括图像传感器、镜头组件和如权利要求1-26任一项所述的图像传感器驱动模组,所述图像传感器固定至所述图像传感器驱动模组,所述镜头组件位于所述图像传感器的入光侧。
  30. 一种电子设备,其特征在于,包括处理器和如权利要求28或29所述的摄像头模组,所述处理器与所述摄像头模组电连接,所述处理器用于对所述图像传感器输出的图像信号进行处理。
PCT/CN2023/075431 2022-02-11 2023-02-10 图像传感器驱动模组、光学组件、摄像头模组及电子设备 WO2023151652A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210129798 2022-02-11
CN202210129798.4 2022-02-11
CN202310142208.6 2023-02-07
CN202310142208.6A CN116600197A (zh) 2022-02-11 2023-02-07 图像传感器驱动模组、光学组件、摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023151652A1 true WO2023151652A1 (zh) 2023-08-17

Family

ID=87563682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075431 WO2023151652A1 (zh) 2022-02-11 2023-02-10 图像传感器驱动模组、光学组件、摄像头模组及电子设备

Country Status (1)

Country Link
WO (1) WO2023151652A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881598B1 (en) * 2009-12-03 2011-02-01 Tdk Taiwan Corporation Anti-shake auto-focus modular structure
US20200174274A1 (en) * 2018-11-30 2020-06-04 New Shicoh Motor Co., Ltd Driving device, camera device and electronic apparatus
CN112492179A (zh) * 2020-12-10 2021-03-12 维沃移动通信有限公司 摄像模组和电子设备
CN112969017A (zh) * 2021-02-10 2021-06-15 维沃移动通信有限公司 摄像头模组及电子设备
CN113691701A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 摄像头模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881598B1 (en) * 2009-12-03 2011-02-01 Tdk Taiwan Corporation Anti-shake auto-focus modular structure
US20200174274A1 (en) * 2018-11-30 2020-06-04 New Shicoh Motor Co., Ltd Driving device, camera device and electronic apparatus
CN112492179A (zh) * 2020-12-10 2021-03-12 维沃移动通信有限公司 摄像模组和电子设备
CN112969017A (zh) * 2021-02-10 2021-06-15 维沃移动通信有限公司 摄像头模组及电子设备
CN113691701A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 摄像头模组及电子设备

Similar Documents

Publication Publication Date Title
WO2022007182A1 (zh) 镜头模组
WO2023010989A1 (zh) 摄像头模组及电子设备
EP3627553A1 (en) Imaging unit and imaging apparatus
TWI594059B (zh) 相機模組
WO2020093819A1 (zh) 成像模组、摄像头组件及电子装置
CN116567378A (zh) 双相机模块及光学装置
WO2022105748A1 (zh) Sma马达、摄像模组及电子设备
WO2022222791A1 (zh) 摄像头结构及电子设备
WO2022111263A1 (zh) 用于光学致动器的驱动结构及相应的摄像模组
WO2021047635A1 (zh) 摄像模组及移动终端
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
JP2023531050A (ja) カメラモジュール及び電子装置
WO2024055743A1 (zh) 摄像头模组和电子设备
WO2023151652A1 (zh) 图像传感器驱动模组、光学组件、摄像头模组及电子设备
WO2023151645A1 (zh) 图像传感器驱动模组、光学组件、摄像头模组及电子设备
WO2023124783A1 (zh) 摄像组件和电子设备
CN113992814A (zh) 音圈马达以及摄像模组、电子设备
WO2023173864A1 (zh) 感光组件、摄像头模组及电子设备
WO2023030261A1 (zh) 一种摄像头模组和电子设备
CN115695971A (zh) 电路板、摄像模组及电子设备
CN216291602U (zh) 电路板组件、摄像模组和电子设备
CN114428436B (zh) 光学防抖摄像模组
CN116600197A (zh) 图像传感器驱动模组、光学组件、摄像头模组及电子设备
CN116600202A (zh) 图像传感器驱动模组、光学组件、摄像头模组及电子设备
WO2023072133A1 (zh) 光学防抖装置、摄像头模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752431

Country of ref document: EP

Kind code of ref document: A1