WO2023151190A1 - 充电时间确定方法及bms、电池、电能设备 - Google Patents

充电时间确定方法及bms、电池、电能设备 Download PDF

Info

Publication number
WO2023151190A1
WO2023151190A1 PCT/CN2022/089767 CN2022089767W WO2023151190A1 WO 2023151190 A1 WO2023151190 A1 WO 2023151190A1 CN 2022089767 W CN2022089767 W CN 2022089767W WO 2023151190 A1 WO2023151190 A1 WO 2023151190A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
temperature
current
soc
Prior art date
Application number
PCT/CN2022/089767
Other languages
English (en)
French (fr)
Inventor
王海将
孙淑婷
黄帅
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227036677A priority Critical patent/KR20230121959A/ko
Priority to EP22773578.4A priority patent/EP4253136A4/en
Priority to JP2022562435A priority patent/JP2024512834A/ja
Priority to US17/963,917 priority patent/US20230253816A1/en
Publication of WO2023151190A1 publication Critical patent/WO2023151190A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery charging, in particular to a method for determining charging time, a battery management system (BMS), a battery, and electric energy equipment.
  • BMS battery management system
  • the charging time has become one of the main concerns of many electric vehicle owners in their daily use of the car; the software algorithm can accurately predict the time it will take for this charging process, which can be used for electric vehicle owners.
  • the current battery charging time mainly depends on the remaining capacity and the output current value of the charging pile, and the charging time is determined by its quotient. This calculation method is too ideal, and the charging state of the battery changes with the temperature during the charging process, which leads to an inaccurate determination of the charging time, which causes a lot of inconvenience to users, especially car owners.
  • the present application provides a charging time determination method, a BMS, a battery, and an electric energy device, which can accurately determine the charging time in a battery state.
  • the present application provides a method for determining charging time, including:
  • the possible charging method of the battery is determined according to the charging temperature of the current charging environment.
  • the temperature is too high or too low, a part of the charging current of the battery will first adjust the charging temperature.
  • the temperature is adjusted to When the temperature is within the set temperature range, charge the battery according to the conventional charging method.
  • the method for determining the remaining battery charging time is also adjusted according to the temperature detection result, so that the battery charging time determined for the battery is more accurate.
  • the estimating the first duration of adjusting the charging temperature of the battery to the first setting range includes: calculating the first time period according to the charging temperature, the target temperature to be adjusted, and the rate of temperature rise. A period of time; wherein, the target temperature to be adjusted is a value in the first setting range, and the charging temperature is less than a minimum value in the first setting range.
  • the first duration is determined according to the charging temperature and the target temperature to be adjusted, that is, the duration during which the battery charging temperature is adjusted from the current temperature to the first setting range is used as the first duration. Since the charging current at this time has Part of the shunt is used to adjust the battery charging temperature, so the output current of the charging pile is not the entire battery charging current. Therefore, it will be more accurate to determine the first duration through the temperature adjustment method of the embodiment of the present application. This example is aimed at the situation that the charging temperature is lower than the first setting range.
  • the estimating the first duration of adjusting the charging temperature of the battery to the first setting range includes: calculating the first time period according to the charging temperature, the target temperature to be adjusted, and the temperature drop rate A period of time; wherein, the target temperature to be adjusted is a value in the first setting range, and the charging temperature is greater than a minimum value in the first setting range.
  • the first duration is determined according to the charging temperature and the target temperature to be adjusted, that is, the duration for adjusting the charging temperature of the battery from the current temperature to the first setting range, as the first duration, because At this time, part of the charging current is shunted to adjust the battery charging temperature, so the output current of the charging pile is not the entire battery charging current. Therefore, it will be more accurate to determine the first duration through the temperature adjustment method of the embodiment of the present application. This example is aimed at the situation that the charging temperature is higher than the first setting range.
  • the estimating the second duration of charging the battery to the target SOC includes: determining a first SOC of the battery when the charging temperature reaches the first set range; according to the second A SOC, the target SOC and the cell capacity of the battery are used to determine the amount to be charged of the battery; and the second duration is calculated according to the amount to be charged and the charging current of the charging device.
  • the charging time is determined based on the current SOC and the target SOC, and the determined charging time is more accurate.
  • the determining the first SOC of the battery when the charging temperature reaches the first setting range includes: when the battery is charged and the charging temperature is adjusted, according to the adjustment The current consumed by the charging temperature of the battery and the charging current of the charging device determine the effective charging current of the battery; according to the current SOC of the battery, the cell capacity of the battery, the effective charging current, and The first duration is used to calculate the first SOC.
  • the determining the first SOC of the battery when the charging temperature reaches the first setting range includes: when only charging temperature adjustment is performed on the battery, setting the battery The current SOC is determined as the first SOC.
  • the current SOC of the battery is used as the SOC when the battery is charged when it reaches the first temperature range, so as to improve Determination of battery charging time is efficient without having to re-determine the current SOC of the battery.
  • the method further includes: obtaining the maximum charging current of the charging device and the actual output current coefficient of the charging device; determining the product of the maximum charging current and the actual output current coefficient charging current for the charging device.
  • the actual output current of the charging device is determined by obtaining the maximum charging current of the charging device such as a charging pile, and obtaining its output current coefficient, so as to determine the actual output current of the charging device in the case of charging the battery.
  • the determined charging time is more accurate when the output current is used to determine the charging time of the battery.
  • the acquiring the actual output current coefficient of the charging device includes: calibrating the actual output current coefficient of the charging device according to historical charging data of the battery.
  • the actual output current coefficient may be determined according to previous charging history data of the charging device.
  • the actual output current coefficient of the charging device can be calculated according to the nominal output current of the charging device and the historical actual output current. In this way, the accuracy of battery charging time is improved.
  • the obtaining the actual output current coefficient of the charging device includes: calculating the actual output current coefficient of the charging device according to the maximum charging current of the charging device and the actual charging current of the battery.
  • the current actual output current coefficient may also be directly calculated according to the nominal maximum charging current of the charging device and the current actual output current, so as to determine the actual output current coefficient of the charging device.
  • the method further includes outputting, to a target object, information of a time when the battery is charged to the target SOC in response to sending a period arrival or request message.
  • the charging time of the battery can be output through the electric device such as the display panel of the electric vehicle or the display unit in the car, or the charging time can be sent to the user's electronic device through the network connection, so that the user can know the current charging time , which is convenient for users to make behavior plans based on charging time.
  • the embodiment of the present application greatly facilitates the acquisition of the charging time of the battery.
  • the present application provides a battery management system, including a processor and a storage medium, where a computer program is stored on the storage medium, and when the computer program is executed by the processor, the charging The time determination method calculates the charging time.
  • the present application provides a battery, including a battery cell and the aforementioned battery management system.
  • the present application provides an electric energy device, including a device body and a power source, and the power source uses the battery.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 shows a schematic structural view of a battery according to an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of a battery module according to an embodiment of the present application
  • Fig. 4 is a schematic diagram of an exploded structure of a battery cell provided by some embodiments of the present application.
  • Fig. 5 is a schematic flowchart of a method for determining charging time provided by some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the remaining battery charging time is mainly determined by the remaining battery capacity and the output current value of the charging pile.
  • the battery charging current changes with the charging state of the battery.
  • the charging temperature of the battery is too low or too high, such as the charging temperature is lower than -10°C, in order to ensure the use of the battery, it is generally necessary to adjust the charging temperature of the battery before charging.
  • the charging temperature of the battery is higher than 40° C., it is also necessary to adjust the charging temperature of the battery before considering charging the battery.
  • the charging time of the battery is still determined through the output current of the charging device, it will be extremely inaccurate, which is not conducive to the user, especially the electric vehicle owner, to arrange the behavior plan.
  • the inventors found that, when charging the battery, it is necessary to detect the current charging temperature. When it is determined that the current charging temperature is not within the set temperature range, it is necessary to The actual charging current is used to determine the charging time of the battery, and the charging time determined in this way will be more accurate and more meaningful.
  • the battery using the method for determining the charging time of the embodiment of the present application can be used in electric devices such as vehicles, ships, or aircrafts, and it is convenient for users to arrange their own follow-up actions based on the charging time of the battery.
  • the embodiment of the present application provides an electric device that uses the battery of the charging time determination method as a power source.
  • the electric device can be but not limited to mobile phones, tablets, notebook computers, electric toys, electric tools, battery cars, electric vehicles, ships, aerospace device and so on.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • FIG. 1 is a schematic structural diagram of a vehicle 100 provided by some embodiments of the present application.
  • the vehicle 100 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the interior of the vehicle 100 is provided with a battery 10 , and the battery 10 may be provided at the bottom, head or tail of the vehicle 100 .
  • the battery 10 can be used for power supply of the vehicle 100 , for example, the battery 10 can be used as an operating power source of the vehicle 100 .
  • the vehicle 100 may further include a controller 110 and a motor 120 , the controller 110 is used to control the battery 10 to supply power to the motor 120 , for example, for starting, navigating and running the vehicle 100 .
  • the battery 10 can not only be used as an operating power source for the vehicle 100 , but can also be used as a driving power source for the vehicle 100 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 100 .
  • the battery 10 may include a plurality of battery cells 210 , and the battery cells 210 refer to the smallest unit forming a battery module or a battery pack.
  • a plurality of battery cells 210 may be connected in series and/or in parallel via electrode terminals for various applications.
  • the batteries mentioned in this application include battery modules or battery packs.
  • the plurality of battery cells 210 may be connected in series, in parallel or in parallel, and the mixed connection refers to a mixture of series and parallel.
  • the battery 10 may also be called a battery pack.
  • a plurality of battery cells 210 may directly form a battery pack, or may first form a battery module 20, and then the battery module 20 forms a battery pack.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery modules 20 and a case 30 , and the plurality of battery modules 20 are accommodated inside the case 30 .
  • the box body 30 is used for accommodating the battery cells 210 or the battery modules 20 , so as to prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 210 .
  • the box body 30 may be a simple three-dimensional structure such as a single cuboid, cylinder or sphere, or a complex three-dimensional structure composed of simple three-dimensional structures such as a cuboid, cylinder or sphere, which is not limited in this embodiment of the present application.
  • the material of the box body 30 can be such as alloy materials such as aluminum alloy, iron alloy, also can be as polymer material such as polycarbonate, polyisocyanurate foamed plastics, or be the composite material such as glass fiber plus epoxy resin, The embodiment of the present application does not limit this.
  • the box body 30 may include a first part 301 and a second part 302, the first part 301 and the second part 302 cover each other, and the first part 301 and the second part 302 jointly define a Space.
  • the second part 302 can be a hollow structure with one end open, the first part 301 can be a plate-shaped structure, and the first part 301 covers the opening side of the second part 302, so that the first part 301 and the second part 302 jointly define a battery.
  • the space of the unit 210 ; the first part 301 and the second part 302 can also be a hollow structure with one side open, and the open side of the first part 301 covers the open side of the second part 302 .
  • FIG. 3 shows a schematic structural diagram of a battery module 20 according to an embodiment of the present application.
  • the battery module 20 may include a plurality of battery cells 210, and the plurality of battery cells 210 may be connected in series, parallel, or mixed to form the battery module 20, and then the battery modules 20 may be connected in series, parallel, or mixed to form the battery 10.
  • the battery cell 210 may include a lithium ion battery, a sodium ion battery, or a magnesium ion battery, etc., which is not limited in this embodiment of the present application.
  • the battery cell 210 may be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • the battery cells 210 are generally divided into three types according to the way of packaging: cylindrical battery cells 210 , cube square battery cells 210 and pouch battery cells 210 , which is not limited in this embodiment of the present application. However, for the sake of brevity, the following embodiments all take the square battery cell 210 as an example for illustration.
  • FIG. 4 is a schematic diagram of an exploded structure of a battery cell 210 provided by some embodiments of the present application.
  • the battery cell 210 refers to the smallest unit constituting a battery. As shown in FIG. 4 , the battery cell 210 includes an end cover 211 , a casing 212 and a cell assembly 213 .
  • the end cap 211 refers to a component that covers the opening of the casing 212 to isolate the internal environment of the battery cell 210 from the external environment.
  • the shape of the end cap 211 can be adapted to the shape of the housing 212 to fit the housing 212 .
  • the end cap 211 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 211 is not easily deformed when being squeezed and collided, so that the battery cell 210 can have a higher Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals 211 a may be provided on the end cap 211 .
  • the electrode terminal 211 a can be used for electrical connection with the battery cell assembly 213 for outputting or inputting electric energy of the battery cell 210 .
  • the end cover 211 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 210 reaches a threshold value.
  • the material of the end cap 211 can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 211 , and the insulator can be used to isolate the electrical connection components in the housing 212 from the end cover 211 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing 212 is a component for matching the end cap 211 to form the internal environment of the battery cell 210, wherein the formed internal environment can be used to accommodate the cell assembly 213, electrolyte (not shown in the figure) and other components .
  • the housing 212 and the end cover 211 can be independent components, and an opening can be provided on the housing 212 , and the internal environment of the battery cell 210 can be formed by making the end cover 211 cover the opening at the opening.
  • the end cover 211 and the housing 212 can also be integrated. Specifically, the end cover 211 and the housing 212 can form a common connection surface before other components are inserted into the housing.
  • the housing 212 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the casing 212 may be determined according to the specific shape and size of the battery cell assembly 213 .
  • the housing 212 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the cell assembly 213 is a component in the battery cell 210 where the electrochemical reaction occurs.
  • One or more cell assemblies 213 may be contained within the casing 212 .
  • the cell assembly 213 is mainly formed by winding or stacking the positive electrode sheet and the negative electrode sheet, and usually a separator is provided between the positive electrode sheet and the negative electrode sheet.
  • the part of the positive electrode sheet and the negative electrode sheet with the active material constitutes the main body of the cell assembly, and the parts of the positive electrode sheet and the negative electrode sheet without the active material each constitute tabs (not shown in the figure).
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the positive active material and the negative active material react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop.
  • Charging remaining time remaining capacity (CAP_remain)/charging pile output current value (I_act); according to the above calculation formula, the remaining charging time of the battery during this charging process can be roughly calculated. According to the above calculation formula, the remaining charging time in this charging process can be roughly calculated; however, in some special working conditions, because the calculation method does not consider the influence of other factors in the charging process, the calculated remaining charging time will be different from the actual charging time.
  • the error of the charging time is large; one of the main factors that causes the calculation formula to calculate the error of the remaining time of full charge is that when the battery is charged at a low temperature (starting charging at a low temperature in winter) or at a high temperature (starting charging at a high temperature in summer), the remaining time of charging is calculated.
  • the formula does not take into account that when the thermal management is turned on at the initial stage of charging, the thermal management load consumes current, and the current actually charged into the battery PACK decreases, which affects the calculation error of the remaining charging time.
  • the output power of the charging pile is 3.3Kw, and the output current is assumed to be 6A; 6A current will be charged into the electric vehicle PACK, but due to the thermal management turned on, the actual current charged into the PACK will only be 1-2A.
  • the remaining charging time calculated according to the aforementioned battery charging time calculation formula will be It is about 3-6 times longer than the remaining charging time calculated by using 6A; after the thermal management is turned on, the charging temperature of the electric vehicle will reach the appropriate target temperature after heating or cooling; after the thermal management is turned off, the 6A output of the charging pile at this time
  • the current will be charged into the electric vehicle PACK, so in the actual charging process, only when the thermal management is turned on or off at the beginning stage, the actual current charged into the PACK is relatively small. Calculating the remaining time of charging with a higher current will lead to a large error between the calculated remaining time of charging and the actual charging time, which will give customers a bad experience for electric vehicles.
  • the embodiment of the present application provides a calculation method to improve the accuracy of the remaining charging time.
  • the charging pile and the vehicle complete the information interaction, and the vehicle and the battery management system (BMS) After completing the internal communication, the battery management system (BMS) calculates the remaining time of slow charging and displays it on the dashboard of the vehicle or in the charging pile or sends it to the client terminal APP.
  • Fig. 5 is a schematic flowchart of a charging time determination method provided by some embodiments of the present application. As shown in Fig. 5, the charging time determination method of the embodiment of the present application includes the following processing steps:
  • Step 501 determining the charging temperature of the battery, and estimating a first duration for adjusting the charging temperature of the battery to the first setting range if the charging temperature exceeds the first setting range.
  • the charging temperature of the battery is first detected.
  • the first setting range includes 5°C to 35°C, or 12°C to 38°C, etc. This application does not limit the specific range of the first setting range, which can be set according to the actual state of charge of the battery , or set the first setting range according to different battery types, etc.
  • Step 502 estimating a second time period for charging the battery to the target SOC after the charging temperature of the battery is adjusted to the first setting range.
  • the target SOC when it is determined that the current charging temperature is lower than the set temperature, it is necessary to estimate the second time period for charging the battery to the target SOC after the charging temperature is adjusted to the first set range.
  • the target SOC here may include 100%, etc.
  • the target SOC may also be set according to the user's requirements, such as setting the target SOC to 95%, 80%, and so on.
  • Step 503 according to the charging start time of the battery, and determining the time for charging the battery to the target SOC according to the first duration and the second duration.
  • the charging time of the battery can be determined, that is, the time for charging the battery to the target SOC, so as to provide the user with a relatively Accurate battery charging time, convenient for users to make corresponding behavior plans based on charging time, etc.
  • the possible charging method of the battery is determined according to the charging temperature of the current charging environment.
  • the temperature is too high or too low, a part of the charging current of the battery will first adjust the charging temperature.
  • the temperature is adjusted to When the temperature is within the set temperature range, charge the battery according to the conventional charging method.
  • the method for determining the remaining battery charging time is also adjusted according to the temperature detection result, so that the battery charging time determined for the battery is more accurate.
  • the estimation adjusts the charging temperature of the battery to the first duration of the first setting range, including:
  • the target temperature to be adjusted is a value in the first setting range, and the charging temperature is lower than the first setting The minimum value in the specified range.
  • the first duration is determined according to the charging temperature and the target temperature to be adjusted, that is, the duration during which the battery charging temperature is adjusted from the current temperature to the first setting range is used as the first duration. Since the charging current at this time has Part of the shunt is used to adjust the battery charging temperature, so the output current of the charging pile is not the entire battery charging current. Therefore, it will be more accurate to determine the first duration through the temperature adjustment method of the embodiment of the present application. This example is aimed at the situation that the charging temperature is lower than the first setting range.
  • the estimation adjusts the charging temperature of the battery to the first duration of the first setting range, including:
  • the target temperature to be adjusted is a value in the first setting range, and the charging temperature is greater than the first setting The minimum value in the specified range.
  • the first duration is determined according to the charging temperature and the target temperature to be adjusted, that is, the duration for adjusting the charging temperature of the battery from the current temperature to the first setting range, as the first duration, because At this time, part of the charging current is shunted to adjust the battery charging temperature, so the output current of the charging pile is not the entire battery charging current. Therefore, it will be more accurate to determine the first duration through the temperature adjustment method of the embodiment of the present application. This example is aimed at the situation that the charging temperature is higher than the first setting range.
  • the estimating the second time period for charging the battery to the target SOC includes:
  • the second duration is calculated according to the amount to be charged and the charging current of the charging device.
  • the charging time is determined based on the current SOC and the target SOC, and the determined charging time is more accurate.
  • the determining the first SOC of the battery when the charging temperature reaches the first set range includes:
  • the first SOC is calculated according to the current SOC of the battery, the cell capacity of the battery, the effective charging current, and the first duration.
  • the determining the first SOC of the battery when the charging temperature reaches the first set range includes:
  • the current SOC of the battery is determined as the first SOC.
  • the current SOC of the battery is used as the SOC when the battery is charged when it reaches the first temperature range, so as to improve Determination of battery charging time is efficient without having to re-determine the current SOC of the battery.
  • the method also includes:
  • the product of the maximum charging current and the actual output current coefficient is determined as the charging current of the charging device.
  • the actual output current of the charging device is determined by obtaining the maximum charging current of the charging device such as a charging pile, and obtaining its output current coefficient, so as to determine the actual output current of the charging device in the case of charging the battery.
  • the determined charging time is more accurate when the output current is used to determine the charging time of the battery.
  • the acquiring the actual output current coefficient of the charging device includes:
  • the actual output current coefficient of the charging device is calibrated according to the historical charging data of the battery.
  • the actual output current coefficient may be determined according to previous charging history data of the charging device.
  • the actual output current coefficient of the charging device can be calculated according to the nominal output current of the charging device and the historical actual output current. In this way, the accuracy of battery charging time is improved.
  • the acquiring the actual output current coefficient of the charging device includes:
  • the actual output current coefficient of the charging device is calculated according to the maximum charging current of the charging device and the actual charging current of the battery.
  • the current actual output current coefficient may also be directly calculated according to the nominal maximum charging current of the charging device and the current actual output current, so as to determine the actual output current coefficient of the charging device.
  • the method also includes:
  • the charging time of the battery can be output through the electric device such as the display panel of the electric vehicle or the display unit in the car, or the charging time can be sent to the user's electronic device through the network connection, so that the user can know the current charging time , which is convenient for users to make behavior plans based on charging time.
  • the embodiment of the present application greatly facilitates the acquisition of the charging time of the battery.
  • BMS battery management system
  • Step 1 For the case where the battery is charged slowly at low temperature or high temperature, and the charging start temperature (T_begin) is low or high, it is necessary to turn on thermal management heating or cool down to a suitable charging target temperature (T_Target);
  • Step 2 Enter the initial stage of charging, take low temperature as an example. At this time, it is necessary to estimate the remaining charging time (Remaintime_TherManOpen) of the thermal management opening stage, and the specific calculation method is: (charging target temperature (T_Target)-charging start temperature (T_begin))/heating temperature rise rate.
  • the estimated remaining charging time (Remaintime_TherManOpen) of the thermal management opening stage is: (charging target temperature (T_Target)-charging start temperature (T_begin))/temperature drop rate.
  • Step 3 After the temperature is adjusted to the set temperature range, the battery enters the initial stage of charging. At this time, if it is low-temperature slow charging or high-temperature slow charging, it is necessary to predict the remaining charging time after the thermal management is turned on and reaches the corresponding charging target temperature;
  • the calculation method of the estimated remaining charging time when the thermal management is turned on and reaches the target temperature is: (charging target SOC (SOC_Target) - estimated SOC (SOC_NormalCharge) after the thermal management reaches the charging target temperature) * battery capacity (Cap_Cell) / charging pile maximum Capability current value (ACMaxCurr)*actual output current coefficient (OBCOut_ratio).
  • the calculation method of the SOC value (SOC_NormalCharge) after the aforementioned estimated thermal management reaches the charging target temperature is: the current SOC value (SOC_Now )-(maximum capacity current value of the charging pile (ACMaxCurr)*actual output current coefficient (OBCOut_ratio)-thermal management consumption current (Curr_Consume))*estimated remaining charging time in the opening phase of thermal management (Remaintime_TherManOpen).
  • the calculation logic of the remaining charging time at this time is: estimate the remaining charging time of the thermal management on-stage ( Remaintime_TherManOpen)+Estimating the remaining charging time (Remaintime_NormalCharge) of entering the normal stable charging process after the thermal management reaches the charging target temperature.
  • the calculation logic of the estimated remaining charging time (Remaintime_TherManOpen) in the opening stage of thermal management is calculated according to step 1 and step 2.
  • the embodiments of the present application also describe a battery management system, including a processor and a storage medium, where a computer program is stored on the storage medium, and when the computer program is executed by the processor , the charging time can be calculated according to the method for determining the charging time.
  • the embodiments of the present application also describe a battery, including battery cells and the aforementioned battery management system.
  • the present application also describes an electric energy device, including a device body and a power supply, and the power supply uses the battery.
  • the electrical energy device in the embodiment of the present application may be any of the aforementioned devices or systems using batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种充电时间确定方法、BMS及电池、电能设备,所述方法包括:确定电池的充电温度;在所述充电温度超出第一设定范围的情况下,估算将所述电池的充电温度调整至所述第一设定范围的第一时长;估算若所述电池的充电温度调整至所述第一设定范围后,将所述电池充电至目标SOC的第二时长;根据所述电池的充电开始时间,以及所述第一时长、所述第二时长之确定将所述电池充电至所述目标SOC的时间。本申请为电池确定的充电时间更准确,方便用户及时准确了解电池充电状态。

Description

充电时间确定方法及BMS、电池、电能设备
相关申请的交叉引用
本申请要求享有于2022年02月08日提交的名称为“充电时间确定方法及BMS、电池、电能设备”的中国专利申请202210118020.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池充电领域,具体涉及一种充电时间确定方法及电池管理系统(BMS)、电池、电能设备。
背景技术
随着新能源电动汽车的快速普及,充电时长成为了众多电动汽车车主在日常用车时的主要关心要素之一;通过软件算法准确预知本次充电过程还需要花费的时间,可以为电动汽车车主合理安排自己的用车时间和工作生活时间提供准确的时间依据。而目前的电池充电时长主要依赖于剩余容量及充电桩输出电流值,通过其商值确定充电时长。这种计算方式过于理想化,且电池在充电过程中充电状态随温度等在改变,这导致充电时长的确定方式不准确,这给用户特别是车主造成诸多不便。
发明内容
鉴于上述问题,本申请提供一种充电时间确定方法、BMS及电池、电能设备,能够准确确定电池状态下的充电时长。
第一方面,本申请提供了一种充电时间确定方法,包括:
确定电池的充电温度;在所述充电温度超出第一设定范围的情况下,估算将所述电池的充电温度调整至所述第一设定范围的第一时长;估算若所述电池的充电温度调整至所述第一设定范围后,将所述电池充电至目标SOC的第二时长;根据所述电池的充电开始时间,以及所述第一时长、所述第二时长之确定将所述电池充电至所述目标SOC的时间。
本申请实施例中,根据当前的充电环境的充电温度来确定电池可能的充电方式,当温度过高或过低时,会导致电池的充电电流中的一部分首先对充电温度进行调节,当调节至设定温度范围内时,再按常规的充电方式对电池进行充电。本申请实施例通过对当前充电温度的检测,同样根据温度检测结果对电池充电剩余时间确定方式进行调整,为电池确定的电池充电时间更准确。
在某些实施例中,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:根据充电温度和待调整目标温度,以及温升速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度小于所述第一设定范围中的最小值。
本申请实施例中,根据充电温度和待调整目标温度来确定第一时长,即将电池充电温度从当前温度调整至第一设定范围内的时长,作为第一时长,由于此时的充电电流有一部分分流用于对电池充电温度进行调节,因此充电桩的输出电流并非是全部的电池充电电流。因此,通过本申请实施例的温度调节方式确定第一时长将更准确。本示例针对的是充电温度低于第一设定范围的情况。
在某些实施例中,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:根据充电温度和待调整目标温度,以及温降速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度大于所述第一设定范围中的最小值。
本申请实施例中,本申请实施例中,根据充电温度和待调整目标温度来确定第一时长,即将电池充电温度从当前温度调整至第一设定范围内的时长,作为第一时长,由于此时的充电电流有一部分分流用于对电池充电温度进行调节,因此充电桩的输出电流并非是全部的电池充电电流。因此,通过本申请实施例的温度调节方式确定第一时长将更准确。本示例针对的是充电温度高于第一设定范围的情况。
在某些实施例中,所述估算将所述电池充电至目标SOC的第二时长,包括:确定在充电温度达到所述第一设定范围的所述电池的第一SOC;根据所述第一SOC和所述目标SOC以及所述电池的电芯容量,确定所述电池的待充电量;根据所述待充电量及充电设备的充电电流计算所述第二时长。
本申请实施例中,当电池的当前充电温度达到第一设定温度的情况下,基于当前的SOC及目标SOC进行充电时间的确定,所确定的充电时间更准确。
在某些实施例中,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:在对所述电池既充电且进行充电温度调整的情况下,根据调整所述电池的充电温度所消耗的电流,以及充电设备的充电电流,确定所述电池的有效充电电流;根据所述电池的当前SOC,所述电池的电芯容量,所述有效充电电流,以及所述第一时长计算所述第一SOC。
本申请实施例中,在电池边进行温度调节边对电池进行充电的情形下,需要确定为电池进行温度调节时所占用的电流,以此来确定为电池进行充电时的有效充电电流,以此计算的电池充电时间时更准确。
在某些实施例中,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:在对所述电池仅进行充电温度调整的情况下,将所述电池的当前SOC确定为所述第一SOC。
本申请实施例中,当确定电池当前仅进行温度调整而并无充电的情况下,此时将电池当前的当前SOC作为后续达到第一温度范围时对电池进行充电时的SOC,以此能提升电池充电时间的确定效率,不必再重新确定电池当前的SOC。
在某些实施例中,所述方法还包括:获取所述充电设备的最大充电电流,以及所述充电设备的实际输出电流系数;将所述最大充电电流及所述实际输出电流系数之积确定为所述充电设备的充电电流。
本申请实施例中,通过获取充电设备如充电桩的最大充电电流,并获取其输出电流系数,以此来确定充电设备的实际输出电流,以此来确定在对电池充电的情况下,实际的输出电流,以此来确定电池的充电时间时所确定的充电时间更准确。
在某些实施例中,所述获取所述充电设备的实际输出电流系数,包括:根据所述电池的历史充电数据标定所述充电设备的实际输出电流系数。
本申请实施例中,可以根据充电设备之前的充电历史数据,来确定实际输出电流系数。如可以根据充电设备的标称输出电流和历史实际输出电流,来统计充电设备的实际输出电流系数。以此,来提升电池充电时间的准确率。
在某些实施例中,所述获取所述充电设备的实际输出电流系数,包括:根据所述充电设备的最大充电电流和所述电池的实际充电电流计算所述充电设备的实际输出电流系数。
本申请实施例中,也可以直接根据充电设备的标称的最大充电电流和当前的实际输出电流,直接计算当前的实际输出电流系数,以此来确定充电设备的实际输出电流系数。
在某些实施例中,所述方法还包括:响应于发送周期到来或请求消息,将所述电池充电至所述目标SOC的时间的信息向目标对象输出。
本申请实施例中,可以通过用电设备如电动汽车的显示仪表盘或车内显示单元输出电池充电时间,也可以通过网络连接将充电时间向用户的电子设备发送,方便用户获知当前的充电时间,方便用户基于充电时间作行为计划等。本申请实施例大大方便了对电池充电时间的获取。
第二方面,本申请提供了一种电池管理系统,包括处理器和存储介质,所述存储介质上存储有计算机程序,所述计算机程序在被所述处理器执行时,能够按所述的充电时间确定方法计算充电时间。
第三方面,本申请提供了一种电池,包括电池电芯和前述的电池管理系统。
第四方面,本申请提供了一种电能设备,包括设备本体和电源,所述电源使用所述的电池。
上述说明仅是本实用新型实施例技术方案的概述,为了能够更清楚了解本实用新型实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本实用新型实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本实用新型的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例提供的车辆的结构示意图;
图2示出了本申请一实施例的电池的结构示意图;
图3示出了本申请一实施例的电池模块的结构示意图;
图4为本申请一些实施例提供的电池单体的分解结构示意图;
图5为本申请一些实施例提供的充电时间确定方法流程示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个 元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本发明人注意到,在电池充电剩余时间确定过程中,主要通过电池剩余容量及充电桩输出电流值来确定电池充电剩余时间。但电池充电电流是随着电池的充电状态而改变的。特别是在电池的充电温度过低或过高的情况下,如充电温度低于-10℃,为了保障电池的使用状况,一般需要对电池的充电温度进行调整后,再进行充电。同样地,当电池的充电温度高于40℃的情况下,同样需要对电池的充电温度进行调整,再考虑对电池进行充电。此时若仍通过充电设备的输出电流对电池的充电时间进行确定,将会极不准确,不利于用户特别是电动车车主进行行为计划的安排。
为了准确确定电池充电时间,本发明人研究发现,在对电池进行充电的情况下,需要对当前的充电温度进行检测,当确定当前的充电温度未在设定的温度范围内时,需要根据当前的实际充电电流对电池的充电时间进行确定,以此方式确定的充电时间将更准确,更有参考意义。
利用本申请实施例充电时间确定方法的电池,可以用于车辆、船舶或飞行器等用电装置中,方便用户基于电池充电时间安排自己的后续行为。
本申请实施例提供一种使用充电时间确定方法的电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
请参照图1,图1为本申请一些实施例提供的车辆100的结构示意图。车辆100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆100的内部设置有电池10,电池10可以设置在车辆100的底部或头部或尾部。电池10可以用于车辆100的供电,例如,电池10可以作为车辆100的操作电源。车辆100还可以包括控制器110和马达120,控制器110用来控制电池10为马达120供电,例如,用于车辆100的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池10不仅可以作为车辆100的操作电源,还可以作为车辆100的驱动电源,代替或部分地代替燃油或天然气为车辆100提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体210,电池单体210是指组成电池模块或电池包的最小单元。多个电池单体210可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池包括电池模块或电池包。其中,多个电池单体210之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。本申请的实施例中多个电池单体210可以直接组成电池包,也可以先组成电池模块20,电池模块20再组成电池包。
图2示出了本申请一实施例的电池10的结构示意图。图2中,电池10可以包括多个电池模块20和箱体30,多个电池模块20容纳于箱体30内部。箱体30用于容纳电池单体210或电池模块20,以避免液体或其他异物影响电池单体210的充电或放电。箱体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施例对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料,本申请实施例对此也并不限定。
在一些实施例中,箱体30可以包括第一部分301和第二部分302,第一部分301与第二部分302相互盖合,第一部分301和第二部分302共同限定出用于容纳电池单体210的空间。第二部分302可以为一端开口的空心结构,第一部分301可以为板状结构,第一部分301盖合于第二部分302的开口侧,以使第一部分301与第二部分302共同限定出容纳电池单体210的空间;第一部分 301和第二部分302也可以是均为一侧开口的空心结构,第一部分301的开口侧盖合于第二部分302的开口侧。
图3示出了本申请一实施例的电池模块20的结构示意图。图3中,电池模块20可以包括多个电池单体210,多个电池单体210可以先串联或并联或混联组成电池模块20,多个电池模块20再串联或并联或混联组成电池10。本申请中,电池单体210可以包括锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体210可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体210一般按封装的方式分成三种:柱形电池单体210、方体方形电池单体210和软包电池单体210,本申请实施例对此也不限定。但为描述简洁,下述实施例均以方体方形电池单体210为例进行说明。
图4为本申请一些实施例提供的电池单体210的分解结构示意图。电池单体210是指组成电池的最小单元。如图4,电池单体210包括有端盖211、壳体212和电芯组件213。
端盖211是指盖合于壳体212的开口处以将电池单体210的内部环境隔绝于外部环境的部件。不限地,端盖211的形状可以与壳体212的形状相适应以配合壳体212。可选地,端盖211可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖211在受挤压碰撞时就不易发生形变,使电池单体210能够具备更高的结构强度,安全性能也可以有所提高。端盖211上可以设置有如电极端子211a等的功能性部件。电极端子211a可以用于与电芯组件213电连接,以用于输出或输入电池单体210的电能。在一些实施例中,端盖211上还可以设置有用于在电池单体210的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖211的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖211的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体212内的电连接部件与端盖211,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体212是用于配合端盖211以形成电池单体210的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件213、电解液(在图中未示出)以及其他部件。壳体212和端盖211可以是独立的部件,可以于壳体212上设置开口,通过在开口处使端盖211盖合开口以形成电池单体210的内部环境。不限地,也可以使端盖211和壳体212一体化,具体地,端盖211和壳体212可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体212的内部时,再使端盖211盖合壳体212。壳体212可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体212的形状可以根据电芯组件213的具体形状和尺寸大小来确定。壳体212的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电芯组件213是电池单体210中发生电化学反应的部件。壳体212内可以包含一个或更多个电芯组件213。电芯组件213主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳(在图中未示出)。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
随着新能源电动汽车的快速普及,电动汽车充电时长成为了众多电动汽车车主在日常用车时的主要关心的要素之一;通过软件算法准确预知本次充电过程还需要花费的时间,可以为电动汽车车主合理安排自己的用车时间和工作生活时间提供准确的时间依据;当前充电剩余时间的计算方法为:
充电剩余时间=剩余容量(CAP_remain)/充电桩输出电流值(I_act);根据上述计算公式可以大概计算出电池本次充电过程中的充电剩余时间。根据上述计算公式可以大概计算出本次充电过程中的充电剩余时间;但是该计算方法在某些特殊工况下由于未考虑充电过程中其它因素的影响,将会导致计算的充电剩余时间与真实的充电时间误差大;其中导致该计算公式计算满充充电剩余时间误差大的一个主要因素为当电池在低温(冬天低温开启充电)或者高温(夏天高温开启充电)开始充电时,充电剩余时间计算公式中没有考虑到在充电起始阶段开热管理时,热管理负载消耗电流,实际充入到电池PACK中的电流减小,对充电剩余时间计算误差的影响。
一般情况下,电动汽车在低温或者高温进行充电时,为了保证充电安全以及充电速度,需 要通过车载热管理系统将电动车的PACK温度升温至或者降温至合适的充电温度区间(20℃-35℃)进行充电。但是由于枪输出功率恒定(通常为3.3Kw、6.6Kw等),在热管理开启的过程,热管理系统需要消耗电流。在充枪输出功率恒定的情况,开启热管理将会,导致实际充电到PACK中的电流减小,从而导致充电时间延长;如果充电剩余时间计算未考虑由于热管理开启导致实际充电到PACK中的电流减小的影响,根据前述公式计算充电剩余时间的误差将会变大。
比如,当电动汽车在-10℃时开始充电,此时电动汽车进入边充电边加热阶段,充电桩输出功率为3.3Kw,输出电流假设为6A;如果当前未开热管理,则充电桩输出的6A电流将会充入到电动汽车PACK中,但是由于开启热管理,将会导致实际充入PACK中的电流只有1-2A,此时根据前述电池充电时间计算公式计算的充电剩余时间,将会比使用6A计算的充电剩余时间偏大3-6倍左右;由于热管理开启之后,经过加热或者冷却,电动汽车充电温度会达到合适的目标温度;热管理关闭之后,此时充电桩输出的6A电流会充入到电动汽车PACK中,因此在实际充电过程中,只有在开始阶段热管理开启或者关闭的情况下,实际充入到PACK中的电流偏小,如果在充电开始阶段使用该偏小的电流计算充电剩余时间,将会导致计算的充电剩余时间和实际的充电时间误差大,从而给电动汽车使用客户不好的体验。
为了解决上述问题,本申请实施例提供了一种提升充电剩余时间精度的计算方法,当整车插枪进入充电阶段后,充电桩和整车完成信息交互,整车与电池管理系统(BMS)完成内部通讯,电池管理系统(BMS)计算慢充充电剩余时间,显示在整车仪表盘中或者充电桩中或者发送到客户终端APP中。
图5为本申请一些实施例提供的充电时间确定方法流程示意图,如图5所示,本申请实施例的充电时间确定方法包括以下处理步骤:
步骤501,确定电池的充电温度,在所述充电温度超出第一设定范围的情况下,估算将所述电池的充电温度调整至所述第一设定范围的第一时长。
根据本申请一些实施例,在确定电池充电时间之前,首先对电池的充电温度进行检测,当待检测温度未位于设定温度范围的情况下,需要以其他方式对电池的充电时间进行估算。本申请实施例中,第一设定范围包括5℃至35℃,或者12℃至38℃等,本申请不限定第一设定范围的具体范围,其可以根据电池的实际充电状态而设定,或依据不同的电池类型而设置第一设定范围等。
步骤502,估算若所述电池的充电温度调整至所述第一设定范围后,将所述电池充电至目标SOC的第二时长。
根据本申请一些实施例,当确定当前的充电温度低于设定温度的情况下,需要估算当将充电温度调整至第一设定范围内后,将电池充电至目标SOC的第二时长。这里的目标SOC可以包括100%等,当然,也可以根据用户的需求,设定目标SOC,如将目标SOC设定为95%、80%等。
步骤503,根据所述电池的充电开始时间,以及所述第一时长、所述第二时长之确定将所述电池充电至所述目标SOC的时间。
根据本申请一些实施例,根据电池充电的开始时间,所估算的第一时长及第二时长,即可确定电池的充电时间,即将电池充电至目标SOC的时间,以此能够向用户提供出较准确的电池充电时间,方便用户基于充电时间进行相应的行为计划等。
本申请实施例中,根据当前的充电环境的充电温度来确定电池可能的充电方式,当温度过高或过低时,会导致电池的充电电流中的一部分首先对充电温度进行调节,当调节至设定温度范围内时,再按常规的充电方式对电池进行充电。本申请实施例通过对当前充电温度的检测,同样根据温度检测结果对电池充电剩余时间确定方式进行调整,为电池确定的电池充电时间更准确。
根据本申请的一些实施例,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:
根据充电温度和待调整目标温度,以及温升速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度小于所述第一设定范围中的最小值。
本申请实施例中,根据充电温度和待调整目标温度来确定第一时长,即将电池充电温度从当前温度调整至第一设定范围内的时长,作为第一时长,由于此时的充电电流有一部分分流用于对电池充电温度进行调节,因此充电桩的输出电流并非是全部的电池充电电流。因此,通过本申请实施例的温度调节方式确定第一时长将更准确。本示例针对的是充电温度低于第一设定范围的情况。
根据本申请的一些实施例,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:
根据充电温度和待调整目标温度,以及温降速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度大于所述第一设定范围中的最小值。
本申请实施例中,本申请实施例中,根据充电温度和待调整目标温度来确定第一时长,即将电池充电温度从当前温度调整至第一设定范围内的时长,作为第一时长,由于此时的充电电流有一部分分流用于对电池充电温度进行调节,因此充电桩的输出电流并非是全部的电池充电电流。因此,通过本申请实施例的温度调节方式确定第一时长将更准确。本示例针对的是充电温度高于第一设定范围的情况。
根据本申请的一些实施例,所述估算将所述电池充电至目标SOC的第二时长,包括:
确定在充电温度达到所述第一设定范围的所述电池的第一SOC;
根据所述第一SOC和所述目标SOC以及所述电池的电芯容量,确定所述电池的待充电量;
根据所述待充电量及充电设备的充电电流计算所述第二时长。
本申请实施例中,当电池的当前充电温度达到第一设定温度的情况下,基于当前的SOC及目标SOC进行充电时间的确定,所确定的充电时间更准确。
根据本申请的一些实施例,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:
在对所述电池既充电且进行充电温度调整的情况下,根据调整所述电池的充电温度所消耗的电流,以及充电设备的充电电流,确定所述电池的有效充电电流;
根据所述电池的当前SOC,所述电池的电芯容量,所述有效充电电流,以及所述第一时长计算所述第一SOC。
本申请实施例中,在电池边进行温度调节边对电池进行充电的情形下,需要确定为电池进行温度调节时所占用的电流,以此来确定为电池进行充电时的有效充电电流,以此计算的电池充电时间时更准确。
根据本申请的一些实施例,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:
在对所述电池仅进行充电温度调整的情况下,将所述电池的当前SOC确定为所述第一SOC。
本申请实施例中,当确定电池当前仅进行温度调整而并无充电的情况下,此时将电池当前的当前SOC作为后续达到第一温度范围时对电池进行充电时的SOC,以此能提升电池充电时间的确定效率,不必再重新确定电池当前的SOC。
根据本申请的一些实施例,所述方法还包括:
获取所述充电设备的最大充电电流,以及所述充电设备的实际输出电流系数;
将所述最大充电电流及所述实际输出电流系数之积确定为所述充电设备的充电电流。
本申请实施例中,通过获取充电设备如充电桩的最大充电电流,并获取其输出电流系数,以此来确定充电设备的实际输出电流,以此来确定在对电池充电的情况下,实际的输出电流,以此来确定电池的充电时间时所确定的充电时间更准确。
根据本申请的一些实施例,所述获取所述充电设备的实际输出电流系数,包括:
根据所述电池的历史充电数据标定所述充电设备的实际输出电流系数。
本申请实施例中,可以根据充电设备之前的充电历史数据,来确定实际输出电流系数。如可以根据充电设备的标称输出电流和历史实际输出电流,来统计充电设备的实际输出电流系数。以此,来提升电池充电时间的准确率。
根据本申请的一些实施例,所述获取所述充电设备的实际输出电流系数,包括:
根据所述充电设备的最大充电电流和所述电池的实际充电电流计算所述充电设备的实际输出电流系数。
本申请实施例中,也可以直接根据充电设备的标称的最大充电电流和当前的实际输出电流,直接计算当前的实际输出电流系数,以此来确定充电设备的实际输出电流系数。
根据本申请的一些实施例,所述方法还包括:
响应于发送周期到来或请求消息,将所述电池充电至所述目标SOC的时间的信息向目标对象输出。
本申请实施例中,可以通过用电设备如电动汽车的显示仪表盘或车内显示单元输出电池充电时间,也可以通过网络连接将充电时间向用户的电子设备发送,方便用户获知当前的充电时间,方便用户基于充电时间作行为计划等。本申请实施例大大方便了对电池充电时间的获取。
以下通过具体示例,进一步阐明本申请实施例的技术方案的实质。
针对电动汽车在低温或者高温进行充电的,充电剩余时间计算不准的工况,电池管理系统(BMS)计算充电剩余时间的计算逻辑为:
步骤1:针对电池处于低温或者高温慢充充电的情况,充电起始温(T_begin)偏低或者偏高,需要开启热管理加热或者降温至合适的充电目标温度(T_Target);
步骤2:进入充电起始阶段,以低温为例。此时需要预估热管理开启阶段的充电剩余时间(Remaintime_TherManOpen),具体计算方式为:(充电目标温度(T_Target)-充电起始温度(T_begin))/升温温升速率。
如果进入充电阶段为高温工况:则预估热管理开启阶段的充电剩余时间(Remaintime_TherManOpen)为:(充电目标温度(T_Target)-充电起始温度(T_begin))/温降速率。
步骤3:温度调整至设定温度范围内后,电池进入充电起始阶段,此时如果是低温慢充或者高温慢充,需要预测热管理开启达到相应的充电目标温度之后的充电剩余时间值;预估热管理开启达到目标温度的充电剩余时间计算方法为:(充电目标SOC(SOC_Target)-预估热管理达到充电目标温度后的SOC(SOC_NormalCharge))*电芯容量(Cap_Cell)/充电桩最大能力电流值(ACMaxCurr)*实际输出电流系数(OBCOut_ratio)。
在充电起始阶段,此时如果是低温慢充或者高温慢充,开启热管理阶段,前述的预估热管理达到充电目标温度后的SOC值(SOC_NormalCharge)计算方法为:当前的SOC值(SOC_Now)-(充电桩最大能力电流值(ACMaxCurr)*实际输出电流系数(OBCOut_ratio)-热管理消耗电流(Curr_Consume))*预估热管理开启阶段的充电剩余时间(Remaintime_TherManOpen)。
根据本申请的一些实施例,在充电起始阶段,此时如果是低温慢充或者高温慢充开启热管理,此时的充电剩余时间计算逻辑为:预估热管理开启阶段的充电剩余时间(Remaintime_TherManOpen)+预估热管理达到充电目标温度后进入正常稳定充电过程的充电剩余时间(Remaintime_NormalCharge)。而预估热管理开启阶段的充电剩余时间(Remaintime_TherManOpen)计算逻辑根据步骤1和步骤2计算。
根据本申请的一些实施例,本申请实施例还记载了一种电池管理系统,包括处理器和存储 介质,所述存储介质上存储有计算机程序,所述计算机程序在被所述处理器执行时,能够按所述的充电时间确定方法计算充电时间。
根据本申请的一些实施例,本申请实施例还记载了一种电池,包括电池电芯和前述的电池管理系统。
根据本申请的一些实施例,本申请还记载了一种电能设备,包括设备本体和电源,所述电源使用所述的电池。
本申请实施例的电能设备可以是前述任一应用电池的设备或系统。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种充电时间确定方法,其特征在于,所述方法包括:
    确定电池的充电温度;
    在所述充电温度超出第一设定范围的情况下,估算将所述电池的充电温度调整至所述第一设定范围的第一时长;
    估算若所述电池的充电温度调整至所述第一设定范围后,将所述电池充电至目标SOC的第二时长;
    根据所述电池的充电开始时间,以及所述第一时长、所述第二时长之确定将所述电池充电至所述目标SOC的时间。
  2. 根据权利要求1所述的方法,其特征在于,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:
    根据充电温度和待调整目标温度,以及温升速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度小于所述第一设定范围中的最小值。
  3. 根据权利要求1所述的方法,其特征在于,所述估算将所述电池的充电温度调整至所述第一设定范围的第一时长,包括:
    根据充电温度和待调整目标温度,以及温降速率计算所述第一时长;其中,所述待调整目标温度为所述第一设定范围中的值,所述充电温度大于所述第一设定范围中的最小值。
  4. 根据权利要求1所述的方法,其特征在于,所述估算将所述电池充电至目标SOC的第二时长,包括:
    确定在充电温度达到所述第一设定范围的所述电池的第一SOC;
    根据所述第一SOC和所述目标SOC以及所述电池的电芯容量,确定所述电池的待充电量;
    根据所述待充电量及充电设备的充电电流计算所述第二时长。
  5. 根据权利要求4所述的方法,其特征在于,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:
    在对所述电池既充电且进行充电温度调整的情况下,根据调整所述电池的充电温度所消耗的电流,以及充电设备的充电电流,确定所述电池的有效充电电流;
    根据所述电池的当前SOC,所述电池的电芯容量,所述有效充电电流,以及所述第一时长计算所述第一SOC。
  6. 根据权利要求4所述的方法,其特征在于,所述确定在充电温度达到所述第一设定范围的所述电池的第一SOC,包括:
    在对所述电池仅进行充电温度调整的情况下,将所述电池的当前SOC确定为所述第一SOC。
  7. 根据权利要求4至6任一项所述的方法,其特征在于,所述方法还包括:
    获取所述充电设备的最大充电电流,以及所述充电设备的实际输出电流系数;
    将所述最大充电电流及所述实际输出电流系数之积确定为所述充电设备的充电电流。
  8. 根据权利要求7所述的方法,其特征在于,所述获取所述充电设备的实际输出电流系数,包括:
    根据所述电池的历史充电数据标定所述充电设备的实际输出电流系数。
  9. 根据权利要求7所述的方法,其特征在于,所述获取所述充电设备的实际输出电流系数,包括:
    根据所述充电设备的最大充电电流和所述电池的实际充电电流计算所述充电设备的实际输出电流系数。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    响应于发送周期到来或请求消息,将所述电池充电至所述目标SOC的时间的信息向目标对象输出。
  11. 一种电池管理系统,其特征在于,包括处理器和存储介质,所述存储介质上存储有计算机程序,所述计算机程序在被所述处理器执行时,能够按权利要求1~9中任一项所述的充电时间确定方法计算充电时间。
  12. 一种电池,其特征在于,包括电池电芯和权利要求11所述的电池管理系统。
  13. 一种电能设备,其特征在于,包括设备本体和电源,所述电源使用权利要求12所述的电池。
PCT/CN2022/089767 2022-02-08 2022-04-28 充电时间确定方法及bms、电池、电能设备 WO2023151190A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227036677A KR20230121959A (ko) 2022-02-08 2022-04-28 충전 시간 결정 방법 및 bms, 배터리, 전기 에너지 설비
EP22773578.4A EP4253136A4 (en) 2022-02-08 2022-04-28 CHARGING TIME DETERMINATION METHOD, BATTERY MANAGEMENT SYSTEM, BATTERY AND ELECTRIC ENERGY DEVICE
JP2022562435A JP2024512834A (ja) 2022-02-08 2022-04-28 充電時間の決定方法及びbms、電池、電気エネルギーデバイス
US17/963,917 US20230253816A1 (en) 2022-02-08 2022-10-11 Charging duration determining method, bms, battery, and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210118020.3 2022-02-08
CN202210118020.3A CN115832475A (zh) 2022-02-08 2022-02-08 充电时间确定方法及bms、电池、电能设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/963,917 Continuation US20230253816A1 (en) 2022-02-08 2022-10-11 Charging duration determining method, bms, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023151190A1 true WO2023151190A1 (zh) 2023-08-17

Family

ID=84462848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089767 WO2023151190A1 (zh) 2022-02-08 2022-04-28 充电时间确定方法及bms、电池、电能设备

Country Status (2)

Country Link
CN (1) CN115832475A (zh)
WO (1) WO2023151190A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632389A (zh) * 2023-06-19 2023-08-22 国广顺能(上海)能源科技有限公司 一种移动充电设备的充电方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049188A (ja) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 電池の満充電容量推定方法
CN108445400A (zh) * 2018-02-09 2018-08-24 惠州市亿能电子有限公司 一种电池组剩余充电时间估算方法
CN111806296A (zh) * 2020-06-15 2020-10-23 汉腾汽车有限公司 一种电动汽车充电剩余时间估算方法
CN113682200A (zh) * 2021-09-30 2021-11-23 重庆长安新能源汽车科技有限公司 一种动力电池剩余充电时间估算方法、装置及电动汽车
CN113836692A (zh) * 2021-08-20 2021-12-24 合众新能源汽车有限公司 一种纯电动汽车慢充剩余时间自学习的估算方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326405A (zh) * 2012-03-20 2013-09-25 上海大众汽车有限公司 电动车低温加热充电方法和加热充电装置
CN110109024B (zh) * 2019-05-15 2021-12-07 广州小鹏汽车科技有限公司 电池充电时间的预测方法、装置、电池管理系统
CN112213641A (zh) * 2019-10-30 2021-01-12 蜂巢能源科技有限公司 用于获得剩余时间的电池管理系统及方法
CN111055722B (zh) * 2019-12-20 2023-11-17 华为技术有限公司 一种预估充电时间的方法,装置及存储介质
CN111175654B (zh) * 2020-01-13 2022-05-13 广州小鹏汽车科技有限公司 一种动力电池充电剩余时间计算方法及装置、车辆、存储介质
CN113740740A (zh) * 2020-05-27 2021-12-03 广州汽车集团股份有限公司 一种直流充电剩余时间估算方法及其系统
CN111999660B (zh) * 2020-08-31 2021-10-29 安徽江淮汽车集团股份有限公司 充电剩余时间确定方法、设备、存储介质及装置
CN113777509B (zh) * 2021-08-31 2023-03-10 北汽福田汽车股份有限公司 车辆的剩余充电时间估算方法、装置及车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049188A (ja) * 2015-09-03 2017-03-09 トヨタ自動車株式会社 電池の満充電容量推定方法
CN108445400A (zh) * 2018-02-09 2018-08-24 惠州市亿能电子有限公司 一种电池组剩余充电时间估算方法
CN111806296A (zh) * 2020-06-15 2020-10-23 汉腾汽车有限公司 一种电动汽车充电剩余时间估算方法
CN113836692A (zh) * 2021-08-20 2021-12-24 合众新能源汽车有限公司 一种纯电动汽车慢充剩余时间自学习的估算方法及装置
CN113682200A (zh) * 2021-09-30 2021-11-23 重庆长安新能源汽车科技有限公司 一种动力电池剩余充电时间估算方法、装置及电动汽车

Also Published As

Publication number Publication date
CN115832475A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
Gu et al. Thermal and electrochemical coupled modeling of a lithium-ion cell
WO2023151190A1 (zh) 充电时间确定方法及bms、电池、电能设备
Horiba et al. Manganese type lithium ion battery for pure and hybrid electric vehicles
US9461496B1 (en) Method and system for recharging a solid state battery
US11973364B2 (en) Circuit control method, battery and its controller and management system, and electrical apparatus
CN218661392U (zh) 一种用于对电动车辆进行充电的充电设备
Yang et al. Fast charging nickel-metal hydride traction batteries
CN113224404A (zh) 储能外壳中的冷却剂温度的控制
WO2023078066A1 (zh) 电池、用电装置、检测方法和检测模块
CN117013145A (zh) 电池包自加热方法、电池包、用电装置及车辆
WO2023137900A1 (zh) 充电时间确定方法及bms、电池、电能设备
US20230253816A1 (en) Charging duration determining method, bms, battery, and electrical device
WO2023092984A1 (zh) 电池充电方法及电池、电能设备
KR20150033126A (ko) 배터리 팩 온도 조절 장치
EP4246161A1 (en) Charging time determination method, bms, battery, and electrical energy device
WO2024020745A1 (zh) 电池充电的控制方法、装置、设备和介质
CN114475364B (zh) 电池包的定时保温方法、装置和电子设备
CN218274877U (zh) 电池及用电装置
US20240039063A1 (en) Lithium precipitation detection method for battery pack, computer-readable storage medium, and power consuming apparatus
US20230296682A1 (en) Safe state detection method for lithium-ion secondary battery, safe state detection apparatus, power storage device, safe state detection system, and recording medium
CN219040511U (zh) 电池单体、电池、用电装置
CN115833292A (zh) 电池充电的控制方法、装置、设备和介质
US20230396089A1 (en) Charging method for battery pack, computer-readable storage medium, and power consuming apparatus
WO2023071197A1 (zh) 电池包的充电控制方法、装置、电子设备及存储介质
CN117157799A (zh) 电池加热系统、方法、供电系统和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022773578

Country of ref document: EP

Effective date: 20220930

WWE Wipo information: entry into national phase

Ref document number: 2022562435

Country of ref document: JP