WO2024020745A1 - 电池充电的控制方法、装置、设备和介质 - Google Patents

电池充电的控制方法、装置、设备和介质 Download PDF

Info

Publication number
WO2024020745A1
WO2024020745A1 PCT/CN2022/107703 CN2022107703W WO2024020745A1 WO 2024020745 A1 WO2024020745 A1 WO 2024020745A1 CN 2022107703 W CN2022107703 W CN 2022107703W WO 2024020745 A1 WO2024020745 A1 WO 2024020745A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
current
preset
heat exchange
Prior art date
Application number
PCT/CN2022/107703
Other languages
English (en)
French (fr)
Inventor
徐良帆
李星
赵延杰
牛少军
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/107703 priority Critical patent/WO2024020745A1/zh
Publication of WO2024020745A1 publication Critical patent/WO2024020745A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery charging control method, device, equipment and medium.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • This application aims to solve at least one of the technical problems existing in the background art. To this end, one purpose of this application is to provide a battery charging control method, device, equipment and medium to solve the problems in the background technology.
  • An embodiment of the first aspect of the present application provides a method for controlling battery charging.
  • the battery includes a heat exchange plate.
  • the heat exchange plate is configured to deform under the action of the expansion force of the battery to cause the flow of heat transfer fluid in the heat exchange plate.
  • the state parameters change, and the method includes: obtaining the current flow state parameters of the heat transfer fluid in the heat exchange plate; obtaining the relevant parameters of the battery corresponding to the current charging state; and determining the charging strategy information of the battery based on the current flow state parameters and related parameters.
  • the current flow state parameters of the heat transfer fluid in the heat exchange plate can reflect the current expansion of the battery, and the relevant parameters of the battery can reflect the current charging status of the battery, it is possible to combine the current expansion of the battery with The current charging situation adjusts the battery charging strategy in real time to improve the lithium deposition and expansion of the battery caused by improper charging.
  • the current flow state parameter is the current flow rate of the heat transfer fluid in the heat exchange plate or the current fluid pressure in the heat exchange plate.
  • the current flow rate of the heat transfer fluid or the current fluid pressure in the heat exchange plate can reflect the current expansion of the battery.
  • the charging strategy information includes the target charging current
  • the method further includes: performing a charging control operation based on the target charging current so that the battery continues to be charged with the target charging current.
  • the relevant parameters include the current voltage of the battery corresponding to the current state of charge.
  • Obtaining the current voltage of the battery corresponding to the current charging state can determine the current state of the battery (such as the battery's state of charge).
  • the charging current of the battery in different states of charge is also different, that is, according to the charge of the battery at this time
  • the charging strategy of the battery is adjusted based on the electrical status and battery expansion to further ensure the safety of the adjusted charging strategy and ensure the safety of battery charging.
  • the method further includes: dividing the charging process into multiple charging stages based on multiple preset flow state parameters of the heat transfer fluid in the heat exchange plate, wherein the charging strategy information also includes the target charging stage.
  • the charging process is divided into multiple charging stages based on multiple preset flow rates of the heat transfer fluid in the heat exchange plate.
  • the charging stages of the battery can be adjusted according to the expansion of the battery, that is, the charging strategy of the battery, to ensure the safety of battery charging. , reduce lithium precipitation and extend the service life of the battery.
  • determining the charging strategy information of the battery based on the current flow state parameters and related parameters includes: determining the target charging stage based on the current flow state parameters; and based on the related parameters and the target charging stage. Determine the target charging current for the battery. First determine the appropriate target charging stage based on the current flow rate (i.e., battery expansion state) to ensure the adoption of a suitable charging strategy to avoid the risk of increased battery expansion, resulting in lithium precipitation in the battery cells and shortened battery life.
  • the current flow rate i.e., battery expansion state
  • the parameters and target charging stage determine the target charging current of the battery, that is, the target charging current of the battery is determined through the current charging status and expansion force of the battery, so that the adjusted target charging current is more consistent with the safety status of the battery at this time, ensuring Battery safety extends battery life.
  • the preset flow state parameter is the preset flow rate
  • multiple preset flow rates correspond to multiple charging stages.
  • the flow rate includes a first preset flow rate and a second preset flow rate
  • the first preset flow rate is less than the second preset flow rate
  • determining the target charging stage based on the current flow state parameter includes: in response to the current flow rate being less than the first preset flow rate , determine the charging stage corresponding to the first preset flow rate as the target charging stage; and in response to the current flow rate being not less than the first preset flow rate and less than the second preset flow rate, determining the charging stage corresponding to the second preset flow rate as the target charging stage.
  • the target charging stage for the battery to continue charging is determined, and the adaptive charging stage for the battery to continue charging can be quickly and accurately determined.
  • the battery includes a plurality of battery cells
  • the heat exchange plate is configured to abut one side surface of one of the battery cells or the opposite side surfaces of the heat exchange plate abut against two adjacent batteries respectively. Two adjacent surfaces of a monomer.
  • the heat exchange plate is in contact with the battery cell, so that when the battery cell expands, it can generate pressure on the heat exchange plate, so that the heat exchange plate can promptly and accurately respond to the pressure of the heat exchange plate and deform, thereby based on the heat transfer fluid in the heat exchange plate.
  • the charging strategy can be adjusted in real time based on changes in flow state parameters to improve battery lithium deposition due to improper charging strategies and the risk of reduced battery cycle times, while also improving potential safety hazards caused by large amounts of lithium deposition.
  • the battery cell further includes a side surface located between two opposite surfaces thereof, wherein the area of the surface of the battery cell is larger than the area of the side surface.
  • the large surface contact between the heat exchange plate and the battery cell can make the heat exchange area between the heat exchange plate and the battery cell larger, which not only improves the heat exchange effect, but also ensures that the heat exchange plate can respond to the heat exchange plate in a timely and accurate manner. Large deformation occurs due to pressure, which increases the sensitivity of the heat exchange plate to battery expansion and further ensures charging safety.
  • obtaining the current flow state parameters of the heat transfer fluid in the heat exchange plate includes: obtaining the current flow state parameters of the heat transfer fluid from a battery management system of the battery. It is more convenient to obtain the current flow state parameters of the heat transfer fluid from the battery's battery management system.
  • the charging stage of the battery includes a constant current charging stage and a constant voltage charging stage performed in sequence. Adjust the charging strategy according to the different status of the battery during charging, which is safer.
  • the method further includes: for each charging stage in the plurality of charging stages, obtaining a plurality of preset voltage thresholds and a plurality of preset charging currents in one-to-one correspondence, the plurality of preset voltage thresholds including a first A preset voltage threshold and a second preset voltage threshold, the first preset voltage threshold is less than the second preset voltage threshold, and the plurality of preset charging currents include a first preset charging current corresponding to the first preset voltage threshold and a first preset charging current corresponding to the first preset voltage threshold.
  • the constant current charging stage of each charging stage includes: responding to the current voltage of the battery is less than the first preset voltage threshold, perform a constant current charging control operation based on the first preset charging current until the voltage charged to the battery is the first preset voltage threshold; in response to the current voltage of the battery being not less than the first preset voltage threshold and is less than the second preset voltage threshold, perform a constant current charging control operation based on the second preset charging current until the voltage charged to the battery reaches the second preset voltage threshold.
  • the current voltage of the battery can reflect the charging status of the battery. It is safer to adjust the charging strategy according to the different charging status of the battery and avoid safety accidents caused by charging.
  • the method further includes: obtaining a cut-off current for each of the plurality of charging stages, wherein the constant voltage charging stage of each charging stage includes: in response to the current voltage of the battery reaching a plurality of preset The maximum voltage threshold among the voltage thresholds performs a constant voltage charging control operation based on the maximum voltage threshold until the current charged to the battery reaches the cut-off current.
  • the battery is charged at a constant voltage to reduce the polarization effect of the battery. After the charging is completed, the voltage of the battery will hardly decrease, ensuring that the charging is completed.
  • the ratio between the cut-off current and the rated charging current is greater than or equal to 0.01 and less than or equal to 0.1, wherein the rated charging current is configured to be able to fully charge the battery to the rated capacity within a preset time period.
  • the small cut-off current ensures that the polarization effect is very small, and the voltage of the battery will hardly decrease after the charging is completed, ensuring that the charging is completed. Setting the cut-off current to the above range can ensure that the cut-off current is small.
  • the multiple preset voltage thresholds corresponding to any two charging stages are the same, and the same preset voltage threshold corresponds to the previous charging stage.
  • the preset charging current is greater than or equal to the preset charging current of the next charging stage, wherein the flow rate of the heat transfer fluid in the heat exchange plate corresponding to the previous charging stage is smaller than the flow rate of the heat transfer fluid in the heat exchange plate corresponding to the next charging stage The flow rate of the fluid.
  • the method further includes: responding that the current flow rate of the heat transfer fluid in the heat exchange plate is not less than Any one of the multiple preset flow rates will stop charging the battery.
  • the current flow rate is not less than any one of the multiple preset flow rates, it means that the expansion force of the battery has reached the threshold at this time, and it is necessary to stop heating the battery to avoid lithium deposition and expansion of the battery caused by continued charging.
  • An embodiment of the second aspect of the present application provides a control device for battery charging.
  • the battery includes a heat exchange plate.
  • the heat exchange plate is configured to deform under the action of the expansion force of the battery to cause the flow of heat transfer fluid in the heat exchange plate.
  • the state parameters change, and the device includes: a first acquisition module configured to acquire the current flow state parameters of the heat transfer fluid in the heat exchange plate; a second acquisition module configured to acquire relevant parameters of the battery corresponding to the current charging state; A determination module configured to determine the charging strategy information of the battery based on the current flow state parameters and related parameters.
  • a third embodiment of the present application provides an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor, and the instructions are At least one processor executes, so that at least one processor can execute the battery charging control method of any one of the above embodiments.
  • a fourth embodiment of the present application provides a battery management system, including the electronic device in the above embodiment.
  • An embodiment of the fifth aspect of the present application provides an electrical device.
  • the electrical device includes the battery management system in the above embodiment.
  • the electrical equipment is a car.
  • the car includes a water tank.
  • the water outlet of the water tank is connected to the liquid inlet of the heat exchange plate.
  • the water inlet of the water tank is connected to the liquid outlet of the heat exchange plate.
  • the car also includes a speedometer and At least one of the pressure sensors, wherein the speedometer is configured to be installed at at least one of the water outlet and the water inlet; and the pressure sensor is configured to be installed at at least one of the water outlet and the water inlet.
  • the electrical equipment includes at least one of a tachometer and a pressure sensor; the tachometer is configured to be installed at at least one of the liquid inlet, liquid outlet and middle part of the heat exchange plate, and the tachometer is used for measuring the flow rate of the heat transfer fluid in the heat exchange plate; the pressure sensor is configured to be installed at at least one of the liquid inlet, liquid outlet and middle part of the heat exchange plate, and the pressure sensor is used to measure the current fluid pressure in the heat exchange plate .
  • the flow rate of the heat transfer fluid in the heat exchange plate is measured by a velocimeter to reflect the current flow state parameters of the heat transfer fluid; or the current fluid pressure in the heat exchange plate is measured by a pressure sensor to reflect the current flow state parameters of the heat transfer fluid.
  • the speedometer when the electrical device includes a speedometer, the speedometer is electrically connected to the battery management system; when the electrical device includes a pressure sensor, the pressure sensor is electrically connected to the battery management system. Since the flow rate and fluid pressure of the heat transfer fluid in the heat exchange plate are related to the expansion state of the battery, the battery management system can obtain the expansion state of the battery through a speedometer or pressure sensor for battery management.
  • An embodiment of the sixth aspect of the present application provides a computer-readable storage medium storing a computer program.
  • the computer program is executed by a processor, the battery charging control method in any one of the above embodiments is implemented.
  • An embodiment of the seventh aspect of the present application provides a computer program product, including a computer program, wherein when the computer program is executed by a processor, the battery charging control method of any one of the above embodiments is implemented.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of the exploded structure of a battery cell according to some embodiments of the present application.
  • Figure 4 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • Figure 5 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • Figure 6 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • Figure 7 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • Figure 8 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • FIG. 9 is a block diagram of a battery charging control device provided by some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of electrical equipment provided by some embodiments of the present application.
  • Figure 11 is a schematic structural diagram of another electrical equipment provided by some embodiments of the present application.
  • Figure 12 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • the first acquisition module 202.
  • the second acquisition module 203.
  • the first determination module 204.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery cell system's side reaction accumulation thickness and graphite flake peeling will cause the battery cell to bulge, which will appear externally. Increase the expansion force of the battery.
  • the expansion of the battery has an adverse effect on the performance and service life of the battery. For example, squeezing may cause the porosity of the electrode to decrease, affect the infiltration of the electrode by the electrolyte, cause changes in the ion transmission path, and cause lithium precipitation problems; When the film is subjected to large extrusion pressure for a long time, it may break and cause the risk of short circuit in the battery.
  • the electrolyte of the battery will be continuously consumed during the charge and discharge cycle. After the battery cell is used for a certain period of time, local electrolyte depletion may even occur. Battery swelling will further aggravate the local electrolyte shortage. At the same time, improper charging strategy will cause the battery to expand more.
  • the applicant has provided a battery charging control method.
  • the battery can generate electricity under the action of the battery's expansion force.
  • the heat exchange plate can deform to change the flow rate of the heat-conducting fluid in the heat exchange plate.
  • the heat exchange plate can understand the expansion state of the battery through the flow rate of the hot fluid, and then adjust the battery charging strategy in real time to avoid improper charging strategies to further aggravate the battery expansion. , as well as the problem of local lithium precipitation in the battery cells caused by the increase in expansion force and shortening the cycle life of the battery cells.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of battery cells, batteries, etc. disclosed in this application, which is beneficial to improving the stability of battery performance and battery life.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide accommodating space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided by some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery. As shown in FIG. 3 , the battery cell 20 includes an end cover 21 , a housing 22 , a battery cell assembly 23 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 21 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher performance. The structural strength and safety performance can also be improved.
  • the end cap 21 may be provided with functional components such as electrode terminals 21a.
  • the electrode terminal 21a may be used to electrically connect with the battery cell assembly 23 for outputting or inputting electrical energy of the battery cell 20.
  • the end cap 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the end cap 21 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • an insulating member may also be provided inside the end cover 21 , and the insulating member may be used to isolate the electrical connection components in the housing 22 from the end cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 22 is a component used to cooperate with the end cover 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the battery cell assembly 23 , electrolyte, and other components.
  • the housing 22 and the end cover 21 may be independent components, and an opening may be provided on the housing 22.
  • the end cover 21 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover 21 and the housing 22 can also be integrated. Specifically, the end cover 21 and the housing 22 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 22 At this time, the end cover 21 covers the housing 22 again.
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the battery cell assembly 23 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the battery cell assembly 23 is a component in the battery cell 20 where electrochemical reactions occur.
  • One or more battery cell assemblies 23 may be contained within the housing 22 .
  • the battery cell assembly 23 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the battery cell assembly, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute the tab 23a.
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the tabs 23a are connected to the electrode terminals to form a current loop.
  • FIG. 4 is a flow chart of a battery charging control method provided by some embodiments of the present application. Referring to Figure 4, the method includes:
  • Step S101 Obtain the current flow state parameters of the heat transfer fluid in the heat exchange plate.
  • Step S102 Obtain relevant parameters of the battery corresponding to the current charging state.
  • Step S103 Determine the charging strategy information of the battery based on the current flow state parameters and related parameters.
  • the heat exchange plate in the battery is used to adjust the temperature of the battery.
  • the temperature of the battery is higher than the highest threshold, it is used to reduce the temperature of the battery.
  • the temperature of the battery is lower than the lowest threshold, it is used to increase the temperature of the battery. temperature.
  • the heat-conducting fluid in the heat exchange plate is a heat-conducting medium.
  • the heat-conducting fluid flows in the heat exchange plate to adjust the temperature of the battery to ensure that the temperature of the battery is within an appropriate range to avoid affecting the safety performance of the battery. . Since the expansion of the battery will squeeze the heat exchange plate, the heat exchange plate will deform, narrowing the circulation channel in the heat exchange plate, and the flow state parameters of the heat transfer fluid in the heat exchange plate will change, so that the heat transfer fluid can pass through the heat exchange plate. Flow state parameters reflect the expansion of the battery.
  • the battery charging strategy can be adjusted in real time to improve the lithium deposition and expansion of the battery caused by improper charging.
  • the current flow state parameter includes the current flow rate of the heat transfer fluid in the heat exchange plate. Since the expansion of the battery will squeeze the heat exchange plate, the heat exchange plate will deform, narrowing the circulation channel in the heat exchange plate, and the flow rate of the heat transfer fluid in the heat exchange plate will change, so that the flow rate of the heat transfer fluid can be used to determine Reflects the expansion of the battery.
  • the current flow state parameter includes the current fluid pressure in the heat exchange plate.
  • the greater the fluid flow rate the smaller the pressure, and the smaller the pressure.
  • the smaller the flow rate of the fluid the greater the pressure, and the greater the pressure. That is to say, because the expansion of the battery will squeeze the heat exchange plate, the heat exchange plate will deform, narrowing the circulation channel in the heat exchange plate, and the current fluid pressure in the heat exchange plate will change, so that the heat exchange plate can be
  • the current fluid pressure in the plate reflects the expansion of the battery.
  • both the current flow rate of the heat transfer fluid and the current fluid pressure in the heat exchange plate can reflect the current flow state parameters of the heat transfer fluid.
  • the current flow rate of the heat transfer fluid is used as the current flow state parameter of the heat transfer fluid for introduction below.
  • the current fluid pressure in the heat exchange plate can also be used as the current flow state of the heat transfer fluid.
  • the charging strategy information includes the target charging current.
  • Figure 5 is a flow chart of a battery charging control method provided by some embodiments of the present application. See Figure 5. The method also includes:
  • Step 104 Perform a charging control operation based on the target charging current so that the battery continues to be charged with the target charging current.
  • the battery will have corresponding charging current and voltage when charging.
  • the charging current of the battery corresponding to the current charging state is the current charging current
  • the target charging current is the charging current of the battery adjusted in real time. Based on the target
  • the charging current to continue charging the battery is the charging strategy of the battery.
  • the adjusted target charging current may be the same as or different from the current charging current.
  • the battery expansion and lithium deposition caused by improper charging can be improved. Compared with directly Charging the battery with the current charging current can ensure charging safety, prolong the service life of the battery, and prevent safety hazards.
  • the relevant parameters include the current voltage of the battery corresponding to the current state of charge.
  • the relevant parameters of the battery corresponding to the current charging state may include the current voltage of the battery, and the current voltage of the battery may be directly obtained from the battery management system (Battery Management System, BMS).
  • BMS Battery Management System
  • the current voltage of the battery is the voltage across the battery.
  • obtaining the current voltage of the battery corresponding to the current charging state can determine the current state of the battery (for example, the state of charge of the battery).
  • the charging current of the battery in different states of charge is also different. That is, the charging strategy of the battery is adjusted according to the state of charge of the battery and the expansion of the battery at this time, to further ensure the safety of the adjusted charging strategy and ensure the safety of battery charging.
  • the method further includes:
  • Step 105 Divide the charging process into multiple charging stages based on multiple preset flow state parameters of the heat transfer fluid in the heat exchange plate.
  • the charging strategy information also includes the target charging stage.
  • the flow state of the heat transfer fluid (for example: flow rate) can reflect the expansion of the battery, which also reflects the displayed charging state.
  • the charging process has been divided into multiple charging stages based on multiple preset expansion state information of the battery or multiple preset flow rates of the heat transfer fluid in the heat exchange plate. , and stored in the battery management system.
  • step S105 may not be executed and step S101 may be started directly.
  • the charging process is divided into multiple charging stages according to multiple preset flow rates of the heat transfer fluid in the heat exchange plate. Subsequently, the charging stage of the battery can be adjusted according to the expansion of the battery, that is, the charging of the battery. strategy to ensure the safety of battery charging, reduce lithium deposition, and extend the service life of the battery.
  • the charging process can also be divided into multiple charging stages in advance based on multiple preset expansion state information of the battery.
  • FIG. 6 is a flow chart of a battery charging control method provided by some embodiments of the present application.
  • step S103 includes:
  • Step S131 Determine the target charging stage based on the current dynamic state parameters.
  • Step S132 Determine the target charging current of the battery based on the relevant parameters and the target charging stage.
  • the current dynamic state parameter is the current flow rate.
  • step 105 since in step 105, the charging process has been divided into multiple charging stages based on multiple preset flow rates of the battery's heat transfer fluid, so after obtaining the current flow rate of the battery's heat transfer fluid, it can be easily Quickly determine the target charging stage of your battery.
  • the target charging current of the battery is jointly determined by relevant parameters and the target charging stage.
  • the adaptive target charging stage is first determined based on the current flow rate (i.e., the battery expansion state), which can ensure the timely adoption of an appropriate charging strategy and avoid the increase in the expansion force of the battery, causing lithium deposition in the battery cells and the battery. Risk of shortened lifespan.
  • the target charging current of the battery is determined based on the relevant parameters and the target charging stage, that is, the target charging current of the battery is determined through the current charging state and expansion force of the battery, so that the adjusted target charging current is more consistent with the current state of the battery. Safe state to ensure the safety of the battery and extend the service life of the battery.
  • the expansion state information of the battery includes expansion force
  • the preset expansion state information includes a preset expansion force threshold.
  • Step S131 includes: determining the current expansion force of the battery based on the current flow rate; determining the target charging stage of the battery based on the current expansion force and a plurality of preset expansion force thresholds.
  • the current flow rate of the heat transfer fluid can reflect the current expansion force of the battery.
  • step S131 when the current flow state parameter is the current flow rate of the heat transfer fluid in the heat exchange plate, the preset flow state parameter is the preset flow rate, and multiple preset flow rates correspond to multiple charging stages.
  • the preset flow rate includes a first preset flow rate and a second preset flow rate, and the first preset flow rate is smaller than the second preset flow rate.
  • step S131 includes:
  • Step S1311 In response to the current flow rate being less than the first preset flow rate, determine the charging stage corresponding to the first preset flow rate as the target charging stage.
  • Step S1312 In response to the current flow rate being not less than the first preset flow rate and less than the second preset flow rate, determine the charging stage corresponding to the second preset flow rate as the target charging stage.
  • multiple flow rates can be divided into multiple flow rate ranges, such as a first flow rate range and a second flow rate range.
  • the flow rate in the first flow rate range is smaller than the flow rate in the second flow rate range.
  • the first flow rate range The maximum flow rate in is the first preset flow rate, and the maximum flow rate in the second flow rate range is the second preset flow rate.
  • Each preset flow rate corresponds to a charging stage.
  • the target charging stage for continuing charging of the battery is determined based on the current flow rate of the heat transfer fluid, and the adaptive charging stage for continuing charging of the battery can be quickly and accurately determined.
  • FIG. 8 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • the battery 100 includes a plurality of battery cells 20 , and the heat exchange plate 30 is configured to abut one of the batteries.
  • One side surface of the cell 20 or two opposite surfaces of the heat exchange plate 30 are respectively in contact with two adjacent surfaces of two adjacent battery cells 20 .
  • the heat exchange plate 30 is in contact with one side surface of one of the battery cells 20.
  • the heat exchange plate 30 can perform thermal management on the battery cell 20, such as reducing the temperature of the battery cell. 20 temperature or increase the temperature of the battery cell 20 .
  • Such an arrangement can be such that one heat exchange plate 30 is arranged corresponding to one battery cell 20, and the heat exchange effect is better.
  • two opposite surfaces of the heat exchange plate 30 are respectively in contact with two adjacent surfaces of two adjacent battery cells 20.
  • One heat exchange plate 30 can be used for two batteries.
  • the cells 20 perform thermal management. This arrangement makes the battery more compact and is conducive to miniaturization of the device.
  • the heat exchange plate 30 is in contact with the battery cell 20, so that when the battery cell 20 expands, it can generate pressure on the heat exchange plate 30, so that the heat exchange plate 30 can be Accurately respond to the pressure of the heat exchange plate to deform, thereby adjusting the charging strategy in real time based on changes in the flow rate of the heat transfer fluid in the heat exchange plate, improving the risk of battery lithium deposition and reduced battery cycle times caused by improper charging strategies, while also improving Due to the large amount of lithium precipitation, safety hazards have arisen.
  • the battery cell further includes a side surface located between two opposite surfaces thereof, wherein the area of the surface of the battery cell is larger than the area of the side surface.
  • the surface of the battery cell is larger than the side surface of the battery cell, and the surface of the battery cell can be called a large surface.
  • the heat exchange plate 30 is in contact with the large surface of the battery cell 20, which can make the heat exchange area between the heat exchange plate 30 and the battery cell 20 larger, while improving the heat exchange effect and ensuring the heat exchange.
  • the hot plate can promptly and accurately respond to the pressure of the heat exchange plate to produce large deformations, thereby increasing the sensitivity of the heat exchange plate to battery expansion, further ensuring charging safety and extending the service life of the battery.
  • step S101 includes: obtaining the current dynamic state parameters of the heat transfer fluid from the battery management system of the battery.
  • the dynamic state parameters of the heat transfer fluid are transmitted to the battery management system of the battery in real time.
  • the charging stage of the battery includes a constant current charging stage and a constant voltage charging stage performed in sequence.
  • the charging strategy of the battery will change during the charging process. For example, constant current charging may be used in the early stage of charging. After the voltage of the battery increases to a predetermined value, constant voltage charging may be used in the late charging period.
  • the charging strategy is adjusted according to the different states of the battery during the charging process, which is safer.
  • the method further includes: for each charging stage in the plurality of charging stages, obtaining one-to-one corresponding multiple preset voltage thresholds and multiple preset charging currents, the multiple preset voltage thresholds It includes a first preset voltage threshold and a second preset voltage threshold, and the first preset voltage threshold is smaller than the second preset voltage threshold.
  • the plurality of preset charging currents include a first preset charging current corresponding to a first preset voltage threshold and a second preset charging current corresponding to a second preset voltage threshold. The first preset charging current is greater than or equal to the second preset charging current. Preset charging current.
  • the constant current charging stage of each charging stage includes: in response to the current voltage of the battery being less than the first preset voltage threshold, performing a constant current charging control operation based on the first preset charging current until the voltage of the battery is charged to the first preset voltage threshold.
  • Preset voltage threshold in response to the current voltage of the battery being not less than the first preset voltage threshold and less than the second preset voltage threshold, performing a constant current charging control operation based on the second preset charging current until the voltage of the battery is charged to the first preset voltage threshold.
  • the preset voltage threshold for any one of the multiple charging stages includes a first preset voltage threshold and a second preset voltage threshold, and the first preset voltage threshold is the preset voltage threshold.
  • the lower limit of the preset voltage threshold is the upper limit of the preset voltage threshold.
  • the first preset voltage threshold is different, and the second preset voltage threshold is also different.
  • the battery is charged with a first preset charging current until the battery voltage reaches the first preset voltage. Threshold; if you continue to charge the battery at this time, the voltage of the battery will increase, making the current voltage of the battery greater than or equal to the first preset voltage threshold. At this time, the battery will be charged with a constant current using the second preset charging current until the battery voltage to the second preset voltage threshold.
  • each constant current charging stage may include the above multiple operations of performing constant current charging on the battery with a preset charging current.
  • each constant current charging stage includes a number of operations that perform constant current charging on the battery with a preset charging current and is greater than or equal to 3 and less than or equal to 10.
  • the charging current of the battery gradually decreases to avoid the charging current due to the later charging process. Safety issues caused by excessive size.
  • the current voltage of the battery can reflect the charging state of the battery. It is safer to adjust the charging strategy according to the different charging states of the battery, avoid safety accidents caused by charging, and extend the service life of the battery.
  • the method further includes: obtaining a cut-off current for each charging stage in the plurality of charging stages, wherein the constant voltage charging stage of each charging stage includes: responding to the current voltage of the battery reaching a plurality of The maximum voltage threshold among the preset voltage thresholds is used, and the constant voltage charging control operation is performed based on the maximum voltage threshold until the current charged to the battery reaches the cut-off current.
  • the battery has a polarization effect when charging, because the current voltage of the battery has not reached the maximum voltage threshold, but because of the existence of polarization voltage, it shows the voltage of the maximum voltage threshold. If charging is stopped at this time, the polarization effect will be slow. After slowly removing it, the battery will show its true voltage. In order to prevent this from happening, the battery must be charged with constant voltage after constant current charging. In the constant voltage stage, the current will continue to decrease until the set cut-off current, which is often a very small current value. The small current ensures that the polarization effect is very small, and the battery voltage will hardly decrease after the charging is completed, ensuring that the charging is completed.
  • the charging of the battery is divided into two stages.
  • the former stage is constant current charging, that is, according to the set current, the current is constant during the charging process, and the voltage increases with the charging time.
  • the latter stage is the constant voltage charging stage.
  • the battery voltage reaches the set cut-off voltage, a period of constant voltage charging is performed. In this stage, the current continues to decrease until the set charging cut-off current.
  • the battery is charged at a constant voltage to reduce the polarization effect of the battery. After the charging is completed, the voltage of the battery will hardly decrease, ensuring that the charging is completed.
  • the ratio between the cut-off current and the rated charging current is greater than or equal to 0.01 and less than or equal to 0.1, wherein the rated charging current is configured to be able to fully charge the battery to the rated capacity within a preset time period.
  • the small cut-off current ensures that the polarization effect is very small, and the voltage of the battery will hardly decrease after the charging is completed, ensuring that the charging is completed. Setting the cut-off current to the above range can ensure that the cut-off current is small.
  • the multiple preset voltage thresholds corresponding to any two charging stages are the same, and the same preset voltage thresholds were used in the previous charging stage.
  • the preset charging current corresponding to the stage is greater than or equal to the preset charging current of the next charging stage, wherein the flow rate of the heat transfer fluid in the heat exchange plate corresponding to the previous charging stage is smaller than that in the heat exchange plate corresponding to the next charging stage.
  • the flow rate of the heat transfer fluid is the current flow rate of the heat transfer fluid in the heat exchange plate.
  • the expansion force of the battery is determined based on the flow rate of the heat transfer fluid
  • the charging stage is determined based on the expansion force of the battery.
  • the preset charging current may be different in different charging stages. The greater the flow rate of the heat transfer fluid, the greater the expansion of the battery. The greater the force, the preset charging current can be reduced at this time.
  • the charging current of the battery is reduced to ensure the charging safety of the battery, avoid excessive expansion of the battery, causing lithium deposition in the battery cells, and extend the battery's mission.
  • the method further includes: responding to the current flow rate of the heat transfer fluid in the heat exchange plate. If the flow rate is not less than any one of the multiple preset flow rates, charging of the battery will stop.
  • FIG. 9 is a block diagram of a battery charging control device provided by some embodiments of the present application.
  • the device includes: a first acquisition module 201 configured to acquire the current flow state parameters of the heat transfer fluid in the heat exchange plate;
  • the second acquisition module 202 is configured to acquire the relevant parameters of the battery corresponding to the current charging state;
  • the first determination module 203 is configured to determine the charging strategy information of the battery based on the current flow state parameters and relevant parameters.
  • the current flow state parameter is the current flow rate of the heat transfer fluid in the heat exchange plate or the current fluid pressure in the heat exchange plate.
  • the charging strategy information includes the target charging current
  • the device further includes: a first control module configured to perform a charging control operation based on the target charging current, so that the battery continues to be charged with the target charging current.
  • the relevant parameters include the current voltage of the battery corresponding to the current state of charge.
  • the device further includes: a storage module configured to divide the charging process into multiple charging stages based on multiple preset flow state parameters of the heat transfer fluid in the heat exchange plate, wherein the charging strategy information Also included is the target charging phase.
  • the first determination module 203 when the charging strategy information includes the target charging current, includes: a first sub-determination module configured to determine the target charging stage based on the current dynamic state parameters; a second sub-determination module, Configured to determine a target charging current for the battery based on the relevant parameters and the target charging stage.
  • the preset flow state parameter when the current flow state parameter is the current flow rate of the heat transfer fluid in the heat exchange plate, the preset flow state parameter is the preset flow rate, and multiple preset flow rates correspond to multiple charging stages.
  • the plurality of preset flow rates include a first preset flow rate and a second preset flow rate.
  • the first preset flow rate is less than the second preset flow rate
  • determining the target charging stage based on the current flow state parameter includes: in response to the current flow rate being less than the first Preset flow rate, determine the charging stage corresponding to the first preset flow rate as the target charging stage; and in response to the current flow rate being not less than the first preset flow rate and less than the second preset flow rate, setting the charging stage corresponding to the second preset flow rate to The charging stage is determined as the target charging stage.
  • the battery includes a plurality of battery cells
  • the heat exchange plate is configured to abut one side surface of one of the battery cells or the opposite sides of the heat exchange plate abut against adjacent surfaces respectively. Two adjacent surfaces of two battery cells.
  • the battery cell further includes a side surface located between two opposite surfaces thereof, wherein the area of the surface of the battery cell is larger than the area of the side surface.
  • the first acquisition module 201 is configured to acquire the current flow state parameter of the heat transfer fluid from the battery management system of the battery.
  • the charging stage of the battery includes a constant current charging stage and a constant voltage charging stage performed in sequence.
  • the device further includes: a second acquisition module configured to acquire, for each of the multiple charging stages, multiple preset voltage thresholds and multiple preset voltage thresholds in one-to-one correspondence.
  • Charging current the plurality of preset voltage thresholds include a first preset voltage threshold and a second preset voltage threshold, the first preset voltage threshold is smaller than the second preset voltage threshold, the plurality of preset charging currents include the same as the first preset voltage threshold.
  • each charging stage The constant current charging stage includes: in response to the current voltage of the battery being less than a first preset voltage threshold, performing a constant current charging control operation based on the first preset charging current until the voltage of the battery is charged to the first preset voltage threshold; in response to The current voltage of the battery is not less than the first preset voltage threshold and less than the second preset voltage threshold, and a constant current charging control operation is performed based on the second preset charging current until the voltage of the battery is charged to the second preset voltage threshold.
  • the device further includes: a third acquisition module. configured to obtain a cut-off current for each of a plurality of charging stages, wherein the constant voltage charging stage of each charging stage includes: in response to a current voltage of the battery reaching a maximum voltage threshold of a plurality of preset voltage thresholds , perform a constant voltage charging control operation based on the maximum voltage threshold until the current charged to the battery reaches the cut-off current.
  • a third acquisition module configured to obtain a cut-off current for each of a plurality of charging stages, wherein the constant voltage charging stage of each charging stage includes: in response to a current voltage of the battery reaching a maximum voltage threshold of a plurality of preset voltage thresholds , perform a constant voltage charging control operation based on the maximum voltage threshold until the current charged to the battery reaches the cut-off current.
  • the ratio between the cut-off current and the rated charging current is greater than or equal to 0.01 and less than or equal to 0.1, wherein the rated charging current is configured to fully charge the battery to the rated capacity within a preset time period.
  • the multiple preset voltage thresholds corresponding to any two charging stages are the same, and the same preset voltage threshold is the same in the previous one.
  • the preset charging current corresponding to the charging stage is greater than or equal to the preset charging current of the next charging stage, wherein the flow rate of the heat transfer fluid in the heat exchange plate corresponding to the previous charging stage is smaller than the heat exchange plate corresponding to the next charging stage The flow rate of the heat transfer fluid in .
  • the device when the current flow state parameter is the current flow rate of the heat transfer fluid in the heat exchange plate, the preset flow state parameter is the preset flow rate, and the device further includes: a second control module configured to respond to When the current flow rate of the heat transfer fluid in the heat exchange plate is not less than any one of the multiple preset flow rates, charging of the battery is stopped.
  • Some embodiments of the present application provide an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions that can be executed by at least one processor, and the instructions are executed by at least one processor.
  • the processor executes, so that at least one processor can execute the battery charging control method of any one of the above embodiments.
  • Some embodiments of the present application provide a battery management system, including the electronic device in the above embodiments.
  • Some embodiments of the present application provide an electrical device, and the electrical device includes the battery management system in the above embodiments.
  • Figure 10 is a schematic structural diagram of electrical equipment provided by some embodiments of the present application.
  • the electrical equipment is a car.
  • the car includes a water tank 40 and a speedometer 50.
  • the water outlet 401 of the water tank 40 It is connected with the liquid inlet 301 of the heat exchange plate 30, and the water inlet 402 of the water tank 40 is connected with the liquid outlet 302 of the heat exchange plate 30.
  • the speedometer 50 is installed at at least one of the water outlet 401 and the water inlet 402.
  • Figure 11 is a schematic structural diagram of another electrical equipment provided by some embodiments of the present application.
  • the electrical equipment is a car.
  • the car includes a water tank 40 and a pressure sensor 60.
  • the water tank 40 The water outlet 401 is connected to the liquid inlet 301 of the heat exchange plate 30, the water inlet 402 of the water tank 40 is connected to the liquid outlet 302 of the heat exchange plate 30, and the pressure sensor 60 is installed at at least one of the water outlet 401 and the water inlet 402.
  • the water tank 40 is connected to the heat exchange plate 30, and the thermal management of the battery can be achieved through the water in the water tank 40, that is, the heat transfer fluid is water.
  • the water in the water tank 40 enters the liquid inlet 301 from the water outlet 401, and then flows to the heat exchange plate 30 through the liquid inlet 301.
  • the water performs thermal management on the battery in the heat exchange plate 30, and the water flows from the outlet 401 to the heat exchange plate 30.
  • the liquid flows out of the liquid port 302, then flows to the water inlet 402, and flows to the water tank 40 through the water inlet 402.
  • the water tank 40 is connected to the heat exchange plate 30, and the battery can be thermally managed through the water in the water tank 40.
  • the speedometer 50 is installed at the water outlet 401 or the water inlet 402, which can reduce the size of the battery. .
  • the pressure sensor 60 is installed at the water outlet 401 or the water inlet 402, which can also reduce the size of the battery.
  • the electrical equipment includes a tachometer 50 and/or a pressure sensor 60
  • the tachometer 50 is configured to be installed on the liquid inlet 301 , the liquid outlet 302 and the liquid outlet 302 of the heat exchange plate 30 .
  • the velocity meter 50 is used to measure the flow rate of the heat transfer fluid in the heat exchange plate.
  • the pressure sensor 60 is configured to be installed at at least one of the liquid inlet 301 , the liquid outlet 302 of the heat exchange plate 30 and the middle part of the heat exchange plate 30 , and the pressure sensor 60 is configured to measure the pressure in the heat exchange plate. current fluid pressure.
  • the liquid inlet 301 and the liquid outlet 302 are not located between the battery cells 20. Installing the speedometer 50 (and/or pressure sensor) at the liquid inlet 301 and/or the liquid outlet 302 will not Affects the compactness of the battery structure. It should be understood that the velocimeter 50 (and/or the pressure sensor) can also be installed in the middle of the heat exchange plate 30 .
  • the middle part of the heat exchange plate 30 refers to the part located between the battery cells 20 .
  • the heat transfer fluid flows from the liquid inlet 301 of the heat exchange plate 301 to exchange heat with the battery cells 20 , and the heat exchange fluid flows out through the liquid outlet 302 of the heat exchange plate 302 .
  • the velocity meter 50 can be installed at any one of the liquid inlet 301 and the liquid outlet 302 of the heat exchange plate 30 and the middle part of the heat exchange plate 30 .
  • the velocity meter 50 (and/or the pressure sensor) can be installed on any two of the liquid inlet 301 and the liquid outlet 302 of the heat exchange plate 30 and the middle part of the heat exchange plate 30 at.
  • a speedometer 50 (and/or a pressure sensor) is installed on the liquid inlet 301 and the liquid outlet 302 of the heat exchange plate 30 and in the middle of the heat exchange plate 30 .
  • the velocity meter is installed at the liquid inlet or outlet of the heat exchange plate to facilitate measuring the flow rate of the heat transfer fluid.
  • the speedometer 50 When the speedometer 50 is installed on the liquid inlet 301 and the liquid outlet 302 of the heat exchange plate 30, the speedometer 50 does not contact the battery cell 20 to avoid the impact of the speedometer 50 on the battery cell 20; when the speedometer 50 is installed When the flow rate is in the middle of the heat exchange plate 30, the current flow rate measured by the velocimeter 50 is more accurate.
  • the pressure sensor is installed at the liquid inlet or outlet of the heat exchange plate to facilitate measurement of the fluid pressure in the heat exchange plate.
  • the pressure sensor When the pressure sensor is installed on the liquid inlet 301 and the liquid outlet 302 of the heat exchange plate 30, the pressure sensor does not contact the battery cell 20 to prevent the pressure sensor from affecting the battery cell 20; when the pressure sensor is installed on the heat exchange plate In the middle of 30, the fluid pressure measured by the pressure sensor is more accurate.
  • the speedometer when the electrical device includes a speedometer, the speedometer is electrically connected to the battery management system.
  • the electrical device includes a pressure sensor, the pressure sensor is electrically connected to the battery management system.
  • the tachometer is electrically connected to the battery management system. Since the flow rate of the heat transfer fluid in the heat exchange plate is related to the expansion state of the battery, the battery management system can obtain the expansion state of the battery through the tachometer for use Battery management.
  • the pressure sensor is electrically connected to the battery management system. Since the fluid pressure of the heat transfer fluid in the heat exchange plate is related to the expansion state of the battery, the battery management system can obtain the expansion state of the battery through the pressure sensor for battery management.
  • Non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Some embodiments of the present application provide a computer program product, including a computer program, wherein when the computer program is executed by a processor, the battery charging control method of any one of the above embodiments is implemented.
  • the computer program product includes one or more computer instructions. When these computer instructions are loaded and executed on a computer, some or all of the above methods may be implemented in whole or in part according to the processes or functions described in the embodiments of this application.
  • FIG. 12 is a flow chart of a battery charging control method provided by some embodiments of the present application. Figure, see Figure 12, the method includes:
  • Step S601 Divide the charging process into multiple charging stages based on multiple preset flow rates of the heat transfer fluid in the heat exchange plate.
  • the charging stage may have the following stages:
  • First charging stage When the flow rate of the heat transfer fluid is greater than or equal to 0.9L/min, first charge to 3.775V at 1.25C in the first substage, then charge to 3.949V in the second substage at 1.00C, and then charge to 0.75 in the third substage. C is charged to 4.113V, then the fourth sub-stage is charged to 0.33C to 4.303V, then the fifth sub-stage is charged to 0.33C to 4.35V, and finally the constant voltage of 4.35V is used to charge until the cut-off current I corresponds to a charge rate of less than or equal to 0.05C.
  • the charging rate is a measure of charging speed.
  • Second charging stage When the flow rate of the thermal fluid is greater than or equal to 0.7L/min and less than 0.9L/min, it means that the expansion force of the battery has increased to 4000N at this time. Adjust the charging strategy and first charge to 1.25*0.75C in the first sub-stage. 3.775V, then charge to 3.949V in the second sub-stage 1.00*0.75C, then charge to 4.113V in the third sub-stage 0.75*0.75C, then charge to 4.303V in the fourth sub-stage 0.33*0.5C, and then The fifth sub-stage charges to 4.35V at 0.33*0.5C, and finally uses a constant voltage of 4.35V to charge until the cut-off current I corresponds to a charging rate of less than or equal to 0.05C.
  • the third charging stage When the flow rate of the thermal fluid is greater than or equal to 0.5L/min and less than 0.7L/min, it means that the expansion force of the battery has increased to 6000N at this time. Adjust the charging strategy and first perform the first sub-stage 1.25*0.75*0.75C. Charge to 3.775V, then perform the second sub-stage 1.00*0.75*0.75C to charge to 3.949V, then perform the third sub-stage 0.75*0.75*0.75C to charge to 4.113V, and then perform the fourth sub-stage 0.33*0.5*0.5 C is charged to 4.303V, and then the fifth sub-stage 0.33*0.5*0.5C is charged to 4.35V. Finally, a constant voltage of 4.35V is used to charge until the cut-off current I corresponds to a charge rate of less than or equal to 0.05C.
  • the fourth charging stage When the flow rate of the thermal fluid is greater than or equal to 0.3L/min and less than 0.5L/min, it means that the expansion force of the battery has increased to 8000N at this time. Adjust the charging strategy and proceed to the first sub-stage first 1.25*0.75*0.75* 0.5C charging to 3.775V, then the second sub-stage 1.00*0.75*0.75*0.5C charging to 3.949V, then the third sub-stage 0.75*0.75*0.75*0.5C charging to 4.113V, and then the fourth sub-stage Stage 0.33*0.5*0.5*0.33C charges to 4.303V, then proceeds to the fifth sub-stage 0.33*0.5*0.5*0.33C to charge to 4.35V, and finally uses a constant voltage of 4.35V to charge until the cut-off current I corresponds to a charge rate of less than Equal to 0.05C.
  • more charging stages can be divided according to demand, or just two or three charging stages.
  • Step S602 Obtain the current flow rate of the heat transfer fluid in the heat exchange plate.
  • the obtained current flow rate of the thermal fluid is 0.6L/min.
  • Step S603 Determine the target charging stage based on the current flow rate.
  • the target charging stage is determined to be the third charging stage based on the current flow rate of 0.6L/min.
  • Step S604 Obtain the current voltage of the battery corresponding to the current charging state.
  • the current voltage of the battery is obtained to be 3.8V.
  • Step S605 Determine the target charging current of the battery based on the target charging stage and the current voltage.
  • the charging rate corresponding to the charging current of the battery is determined to be 1.00*0.75*0.75C based on the current voltage of the battery being 3.8V.
  • Step S606 Determine the charging strategy of the battery based on the target charging current of the battery.
  • the charging strategy of the battery is: first charge to 3.949V at 1.00*0.75*0.75C, then charge to 4.113V at 0.75*0.75*0.75C, and then charge to 4.303V at 0.33*0.5*0.5C V, then charge to 4.35V at 0.33*0.5*0.5C, and finally use a constant voltage of 4.35V to charge to the cut-off current I ⁇ 0.05C.
  • the battery when conducting experiments, the battery can be rested for a period of time T after charging is completed, and T is greater than or equal to 10 minutes, which is used to simulate the rest time of the battery in actual applications, and then the battery is discharged at 1C to 2.8V, used to simulate the discharge process of the battery, and cycle like this until the terminal capacity of the battery is x% of the initial capacity, where 50 ⁇ x ⁇ 90.
  • the number of battery cycles is about 1,200.
  • the number of battery cycles is about 1,600, and the battery life is significantly improved.
  • the charging strategy of the related technology is: regardless of the expansion of the battery, the charging strategy of the battery is the same as the charging strategy of the first charging stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种电池充电的控制方法、装置、设备和介质,电池包括换热板,换热板被配置为在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流动状态参数产生变化,方法包括:获取换热板中导热流体的当前流动状态参数;获取电池的与当前充电状态对应的相关参数;基于当前流动状态参数和相关参数确定电池的充电策略信息。由于换热板中导热流体的当前流动状态参数可以体现电池的当前膨胀情况,电池的相关参数可以体现电池的当前充电情况,从而能够结合电池的当前膨胀情况和当前充电情况实时调整电池的充电策略,改善电池由于充电不当造成的电池膨胀,以及电池膨胀力过大,造成的电池析锂,寿命衰减,和电池析锂引发的安全隐患等问题。

Description

电池充电的控制方法、装置、设备和介质 技术领域
本申请涉及电池技术领域,尤其涉及一种电池充电的控制方法、装置、设备和介质。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池在充放电的过程中,会影响电池单体的膨胀状态,对外表现为电池的膨胀力增长。随着电池的膨胀应力不断增长,电池单体局部压强增大,存在析锂风险,电池析锂会影响电池安全性能和电池的使用寿命。
发明内容
本申请旨在至少解决背景技术中存在的技术问题之一。为此,本申请的一个目的在于提供一种电池充电的控制方法、装置、设备和介质,以解决背景技术中的问题。
本申请第一方面的实施例提供一种电池充电的控制方法,电池包括换热板,换热板被配置为在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流动状态参数产生变化,方法包括:获取换热板中导热流体的当前流动状态参数;获取电池的与当前充电状态对应的相关参数;基于当前流动状态参数和相关参数确定电池的充电策略信息。
本申请实施例的技术方案中,由于换热板中导热流体的当前流动状态参数可以体现电池的当前膨胀情况,电池的相关参数可以体现电池的当前充电情况,从而能够结合电池的当前膨胀情况和当前充电情况实时调整电池的充电策略,改善电池由于充电不当造成的电池析锂和膨胀的情况。
在一些实施例中,当前流动状态参数为换热板中导热流体的当前流速或者换热板中的当前流体压力。导热流体的当前流速或者换热板中的当前流体压力均可以体现电池的当前膨胀情况。
在一些实施例中,充电策略信息包括目标充电电流,并且方法还包括:基于目标充电电流执行充电控制操作,使得以目标充电电流对电池继续充电。通过结合电池的当前 膨胀情况和当前充电情况实时调整充电电流,并利用经过调整后的目标充电电流对电池进行充电,能够改善电池由于充电不当造成的电池析锂和膨胀的情况,相较于直接用当前充电电流对电池进行充电,能够保证充电安全,同时延长电池的使用寿命,不易造成安全隐患。
在一些实施例中,相关参数包括电池的与当前充电状态对应的当前电压。获取电池的与当前充电状态对应的当前电压可以确定电池的当前状态(例如电池的荷电状态),电池在不同的荷电状态下的充电电流也是不相同的,也即根据电池此时的荷电状态和电池的膨胀情况来调整电池的充电策略,进一步保证调整后的充电策略的安全性,保证电池的充电安全。
在一些实施例中,方法还包括:基于换热板中导热流体的多个预设流动状态参数,将充电过程划分为多个充电阶段,其中,充电策略信息还包括目标充电阶段。预先根据换热板中导热流体的多个预设流速,将充电过程划分为多个充电阶段,后续可以根据电池的膨胀情况调整电池的充电阶段,也即电池的充电策略,保证电池的充电安全,减少析锂,同时延长电池的使用寿命。
在一些实施例中,当充电策略信息包括目标充电电流时,基于当前流动状态参数和相关参数确定电池的充电策略信息,包括:基于当前流动状态参数确定目标充电阶段;基于相关参数和目标充电阶段确定电池的目标充电电流。先根据当前流速(即电池膨胀状态)确定适配的目标充电阶段,能够保证采用合适的充电策略,避免电池的膨胀增大,造成电池单体析锂,电池寿命缩短的风险,然后再根据相关参数和目标充电阶段确定电池的目标充电电流,也即通过了电池的当前充电状态和膨胀力情况确定了电池的目标充电电流,使得调整后的目标充电电流更加符合此时电池的安全状态,保证电池的安全性延长电池的使用寿命。
在一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,多个预设流速和多个充电阶段一一对应,多个预设流速包括第一预设流速和第二预设流速,第一预设流速小于第二预设流速,其中,基于当前流动状态参数确定目标充电阶段包括:响应于当前流速小于第一预设流速,将第一预设流速对应的充电阶段确定为目标充电阶段;以及响应于当前流速不小于第一预设流速并且小于第二预设流速,将第二预设流速对应的充电阶段确定为目标充电阶段。根据电池的当前流速以及每一充电阶段对应的预设流速,来确定电池继续充电的目标充电阶段,能够快速、准确确定电池继续充电的适配充电阶段。
在一些实施例中,电池包括多个电池单体,换热板被配置为抵接于其中一个电池单体的一侧表面或者换热板的相对两侧表面分别抵接于相邻两个电池单体的相邻两个表面。换热板与电池单体抵接,使得电池单体膨胀时可以对换热板产生压力,使得换热板能够及时准确定响应换热板的压力而产生形变,从而基于换热板中导热流体的流动状态参数变化来实时调整充电策略,改善由于充电策略不当造成的电池析锂,以及电池循环次数减少的风险,同时改善由于大量析锂引发安全隐患的问题。
在一些实施例中,电池单体还包括位于其相对两个表面之间的侧面,其中,电池单体的表面的面积大于侧面的面积。换热板与电池单体的大面抵接,能够使得换热板与电池单体的换热面积较大,在提高换热效果的同时,保证换热板能够及时准确定响应换热板的压力而产生较大形变,提升换热板对电池膨胀的敏感度,进一步保证充电安全性。
在一些实施例中,获取换热板中导热流体的当前流动状态参数,包括:从电池的电池管理系统中获取导热流体的当前流动状态参数。从电池的电池管理系统中获取导热流体的当前流动状态参数更加方便。
在一些实施例中,电池的充电阶段包括依次进行的恒流充电阶段和恒压充电阶段。根据电池在充电过程中的状态不同调整充电策略,更加安全。
在一些实施例中,方法还包括:针对多个充电阶段中的每个充电阶段,获取一一对应的多个预设电压阈值和多个预设充电电流,多个预设电压阈值包括第一预设电压阈值和第二预设电压阈值,第一预设电压阈值小于第二预设电压阈值,多个预设充电电流包括与第一预设电压阈值对应的第一预设充电电流和与第二预设电压阈值对应的第二预设充电电流,第一预设充电电流大于或等于第二预设充电电流,其中,每个充电阶段的恒流充电阶段包括:响应于电池的当前电压小于第一预设电压阈值,基于第一预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第一预设电压阈值;响应于电池的当前电压不小于第一预设电压阈值并且小于第二预设电压阈值,基于第二预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第二预设电压阈值。电池的当前电压可以反应电池的充电状态,根据电池的不同充电状态调整充电策略更加安全,避免由于充电造成的安全事故。
在一些实施例中,方法还包括:针对多个充电阶段中的每个充电阶段,获取截止电流,其中,每个充电阶段的恒压充电阶段包括:响应于电池的当前电压达到多个预设电压阈值中的最大电压阈值,基于最大电压阈值执行恒压充电控制操作,直至充电至电池 的电流为截止电流。对电池进行恒压充电,减小电池的极化效应,在充电完成后电池的电压几乎不会降低,保证充电完成。
在一些实施例中,截止电流和额定充电电流之间的比值大于或等于0.01并且小于或等于0.1,其中,额定充电电流被配置为能够在预设时长内将电池充满额定容量。小的截止电流保证了极化效应非常小,在充电完成后电池的电压几乎不会降低,保证充电完成,将截止电流设置为上述范围可以保证截止电流较小。
在一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,任意两个充电阶段相应的多个预设电压阈值相同,并且相同预设电压阈值在上一充电阶段对应的预设充电电流大于或等于下一充电阶段的预设充电电流,其中,该上一充电阶段对应的换热板中的导热流体的流速小于该下一充电阶段对应的换热板中的导热流体的流速。当导热流体的流速增大,降低电池的充电电流,保证电池的充电安全。
在一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,方法还包括:响应于换热板中导热流体的当前流速不小于多个预设流速中的任意一个预设流速,停止对电池继续进行充电。当当前流速不小于多个预设流速中的任意一个预设流速时,说明此时电池的膨胀力已经达到阈值了,需停止对电池加热,避免继续充电造成电池析锂和膨胀的情况。
本申请第二方面的实施例提供一种电池充电的控制装置,电池包括换热板,换热板被配置为在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流动状态参数产生变化,装置包括:第一获取模块,被配置为获取换热板中导热流体的当前流动状态参数;第二获取模块,被配置为获取电池的与当前充电状态对应的相关参数;第一确定模块,被配置为基于当前流动状态参数和相关参数确定电池的充电策略信息。
本申请第三方面的实施例提供一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述实施例中任一项的电池充电的控制方法。
本申请第四方面的实施例提供一种电池管理系统,包括上述实施例中的电子设备。
本申请第五方面的实施例提供一种用电设备,用电设备包括上述实施例中的电池管理系统。
在一些实施例中,用电设备为汽车,汽车包括水箱,水箱的出水口与换热板的进液口连通,水箱的进水口与换热板的出液口连通,汽车还包括测速仪和压力传感器中的至 少一种,其中,测速仪被配置为安装于出水口和进水口中的至少一处;压力传感器被配置为安装于出水口和进水口中的至少一处。将水箱与换热板连通,可以通过水箱中的水对电池实现热管理,将测速仪或者压力传感器安装于出水口或进水口,可以减小电池的体积。
在一些实施例中,用电设备包括测速仪和压力传感器中的至少一种;测速仪被配置为安装于换热板的进液口、出液口和中部中的至少一处,测速仪用于测量换热板中导热流体的流速;压力传感器被配置为安装于换热板的进液口、出液口和中部中的至少一处,压力传感器用于测量换热板中的当前流体压力。通过测速仪测量换热板中导热流体的流速来反应导热流体的当前流动状态参数;或者通过压力传感器测量换热板中的当前流体压力来反应导热流体的当前流动状态参数。
在一些实施例中,用电设备包括测速仪时,测速仪与电池管理系统电连接;用电设备包括压力传感器时,压力传感器与电池管理系统电连接。由于换热板中导热流体的流速和流体压力均与电池的膨胀状态相关,从而使得电池管理系统能够通过测速仪或者压力传感器获取电池的膨胀状态,以用于电池管理。
本申请第六方面的实施例提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述实施例中任一项的电池充电的控制方法。
本申请第七方面的实施例提供一种计算机程序产品,包括计算机程序,其中,该计算机程序被处理器执行时实现上述实施例中任一项的电池充电的控制方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的分解结构示意图;
图3为本申请一些实施例的电池单体的分解结构示意图;
图4为本申请一些实施例提供的电池充电的控制方法的流程图;
图5为本申请一些实施例提供的电池充电的控制方法的流程图;
图6为本申请一些实施例提供的电池充电的控制方法的流程图;
图7为本申请一些实施例提供的电池充电的控制方法的流程图;
图8为本申请一些实施例提供的电池的结构示意图;
图9为本申请一些实施例提供的电池充电的控制装置的框图;
图10为本申请一些实施例提供的用电设备的结构示意图;
图11为本申请一些实施例提供的另一种用电设备的结构示意图;
图12是本申请一些实施例提供的一种电池充电的控制方法的流程图。
附图标记说明:
1000、车辆;
100、电池;200、控制器;300马达;
10、箱体;11、第一部分;12、第二部分;
20、电池单体;21、端盖;21a、电极端子;22、壳体;23、电池单体组件;23a、极耳;
201、第一获取模块;202、第二获取模块;203、第一确定模块;
30、换热板;301、进液口;302、出液口;
40、水箱;401、出水口;402、进水口;
50、测速仪;
60、压力传感器。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,随着电池的充放电循环中正极活性物质和负极活性物质嵌入或脱出离子,电池单体体系副反应堆积厚度及石墨片层剥离等导致电池单体会发生鼓胀,对外表现为电池的膨胀力增长。电池的膨胀对电池的性能及使用寿命有不利影响,例如, 受力挤压可能导致极片孔隙率降低影响电解液对极片的浸润,引起离子传输路径发生改变,带来析锂问题;极片在长期承受较大挤压力时,还可能断裂引发电池内短路风险等等。此外,电池在充放电循环中电解液也会被不断消耗,在电池单体使用一定时间后,甚至会发生局部电解液枯竭,电池鼓胀则会更进一步加剧局部电解液不足的状况。同时不当的充电策略会造成电池膨胀的现象加剧。
基于以上考虑,为了缓解电池膨胀力大,电池单体局部析锂的问题,申请人提供出了一种电池充电的控制方法,通过配置电池的换热板能够在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流速产生变化,换热板从而可以通过到热流体的流速了解电池的膨胀状态,进而实时调整电池的充电策略,避免不当的充电策略进一步加剧电池的膨胀,以及膨胀力增大造成的电池单体局部析锂,电池单体循环寿命缩短的问题。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于提升电池性能的稳定性和电池寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提 供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3,图3为本申请一些实施例提供的电池单体的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、电池单体组件23以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。在一些情况下,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子21a等的功能性部件。电极端子21a可以用于与电池单体组件23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电池单体组件23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电池单体组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电池单体组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电池单体组件23。电池单体组件23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电池单体组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳23a。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳23a连接电极端子以形成电流回路。
本申请的一些实施例提供了一种电池充电的控制方法,电池包括换热板,换热板被配置为在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流动状态参数产生变化。图4为本申请一些实施例提供的电池充电的控制方法的流程图,参见图4,该方法包括:
步骤S101:获取换热板中导热流体的当前流动状态参数。
步骤S102:获取电池的与当前充电状态对应的相关参数。
步骤S103:基于当前流动状态参数和相关参数确定电池的充电策略信息。
在本申请实施例中,电池中的换热板用于调节电池的温度,当电池的温度高于最高阈值时,用于降低电池温度;当电池的温度低于最低阈值时,用于增加电池温度。
在本申请实施例中,换热板中的导热流体为导热介质,导热流体在换热板中流动用于调节电池的温度,保证电池的温度在一个合适的范围内,避免影响电池的安全性能。由于电池的膨胀会挤压到换热板,换热板产生形变,使得换热板中的流通通道变窄,换热板中的导热流体的流动状态参数会发生变化,从而可以通过导热流体的流动状态参数来体现电池的膨胀情况。
在本申请实施例中,由于换热板中导热流体的当前流动状态参数可以体现电池的当前膨胀情况,电池的相关参数可以体现电池的当前充电情况,从而能够结合电池的当前膨胀情况和当前充电情况实时调整电池的充电策略,改善电池由于充电不当造成的电池析锂和膨胀的情况。
在本申请实施例的一种实现方式中,当前流动状态参数包括换热板中导热流体的当前流速。由于电池的膨胀会挤压到换热板,换热板产生形变,使得换热板中的流通通道变窄,换热板中的导热流体的流速会发生变化,从而可以通过导热流体的流速来体现电池的膨胀情况。
在本申请实施例的一种实现方式中,当前流动状态参数包括换热板中的当前流体压力。基于伯努利方程所反映出的流体流速与压强的关系,流体的流速越大,压强越小,压力也越小。反之,流体的流速越小,压强越大,压力也越大。也就是说,由于电池的膨胀会挤压到换热板,换热板产生形变,使得换热板中的流通通道变窄,换热板中的当前流体压力会发生变化,从而可以通过换热板中的当前流体压力来体现电池的膨胀情况。
如上所述,导热流体的当前流速和换热板中的当前流体压力均可以体现导热流体的当前流动状态参数。
为方便说明本申请的方案,以下以导热流体的当前流速作为导热流体的当前流动状态参数进行介绍,当然在其他实现方式中也可以以换热板中的当前流体压力作为导热流体的当前流动状态参数进行介绍,本申请对此不作特别限制。
根据本申请的一些实施例,充电策略信息包括目标充电电流,图5为本申请一些实施例提供的电池充电的控制方法的流程图,参见图5,该方法还包括:
步骤104,基于目标充电电流执行充电控制操作,使得以目标充电电流对电池继续充电。
在本申请实施例中,电池在充电时会有对应的充电电流和电压,电池的与当前充电状态对应的充电电流为当前充电电流,目标充电电流为实时调整后的电池的充电电流,以目标充电电流对电池继续充电为电池的充电策略。
本申请实施例中,经调整后的目标充电电流可以与当前充电电流相同或不同。
通过结合电池的当前膨胀情况和当前充电情况实时调整充电电流,并利用经过调整后的目标充电电流对电池进行充电,能够改善电池由于充电不当造成的电池膨胀和析锂的情况,相较于直接用当前充电电流对电池进行充电,能够保证充电安全,同时延长电池的使用寿命,不易造成安全隐患。
根据本申请的一些实施例,相关参数包括电池的与当前充电状态对应的当前电压。
在本申请实施例的一种实现方式中,电池的与当前充电状态对应的相关参数可以包括电池的当前电压,电池的当前电压可以从电池管理系统(Battery Management System,BMS)中直接获取。
其中,电池的当前电压为电池两端的电压。
在本申请实施例中,获取电池的与当前充电状态对应的当前电压可以确定电池的当前状态(例如电池的荷电状态),电池在不同的荷电状态下的充电电流也是不相同的,也即根据电池此时的荷电状态和电池的膨胀情况来调整电池的充电策略,进一步保证调整后的充电策略的安全性,保证电池的充电安全。
根据本申请的一些实施例,该方法还包括:
步骤105,基于换热板中导热流体的多个预设流动状态参数,将充电过程划分为多个充电阶段。
其中,充电策略信息还包括目标充电阶段。
在本申请实施例中,电池在充电的过程中,避免不了电池膨胀的情况,且在不同的充电状态时,电池的膨胀情况不同。导热流体的流动状态(例如:流速)可以体现电池的膨胀情况,也即体现显示的充电状态。
在本申请的一些实施例中,在该方法实施例前,已经根据电池的多个预设膨胀状态信息或换热板中导热流体的多个预设流速,将充电过程划分为多个充电阶段,并存储在电池管理系统中,在执行本申请实施例提供的方法时,可以不执行步骤S105,直接从步骤S101开始。
在本申请实施例中,预先根据换热板中导热流体的多个预设流速,将充电过程划分为多个充电阶段,后续可以根据电池的膨胀情况调整电池的充电阶段,也即电池的充电策略,保证电池的充电安全,减少析锂,同时延长电池的使用寿命。
在本申请实施例的另一种实现方式中,也可以预先根据电池的多个预设膨胀状态信息将充电过程划分为多个充电阶段。
根据本申请的一些实施例,当充电策略信息包括目标充电电流时,图6为本申请一些实施例提供的电池充电的控制方法的流程图,参见图6,步骤S103包括:
步骤S131:基于当前动状态参数确定目标充电阶段。
步骤S132:基于相关参数和目标充电阶段确定电池的目标充电电流。
示例性地,当前动状态参数为当前流速。
在本申请实施例中,由于在步骤105中,已经基于电池的导热流体的多个预设流速,将充电过程划分为多个充电阶段,所以在获取到电池导热流体的当前流速后,可以很快确定出电池的目标充电阶段。
在本申请实施例中,电池的目标充电电流由相关参数和目标充电阶段共同确定。
在本申请实施例中,先根据当前流速(即电池膨胀状态)确定适配的目标充电阶段,能够保证及时采用合适的充电策略,避免电池的膨胀力增大,造成电池单体析锂,电池寿命缩短的风险。然后再根据相关参数和目标充电阶段确定电池的目标充电电流,也即通过了电池的当前充电状态和膨胀力情况确定了电池的目标充电电流,使得调整后的目标充电电流更加符合此时电池的安全状态,保证电池的安全性延长电池的使用寿命。
根据本申请的一些实施例,电池的膨胀状态信息包括膨胀力,预设膨胀状态信息包括预设膨胀力阈值。步骤S131包括:基于当前流速确定电池的当前膨胀力;基于当前膨胀力和多个预设膨胀力阈值确定电池的目标充电阶段。
在本申请实施例中,导热流体的当前流速可以体现电池的当前膨胀力。
在本申请实施例中,根据电池当前的膨胀力情况确定电池的目标充电阶段更加准确。
根据本申请的一些实施例,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,多个预设流速和多个充电阶段一一对应,多个预设流速包括第一预设流速和第二预设流速,第一预设流速小于第二预设流速。图7为本申请一些实施例提供的电池充电的控制方法的流程图,参见图7,步骤S131包括:
步骤S1311:响应于当前流速小于第一预设流速,将第一预设流速对应的充电阶段确定为目标充电阶段。
步骤S1312:响应于当前流速不小于第一预设流速并且小于第二预设流速,将第二预设流速对应的充电阶段确定为目标充电阶段。
在本申请实施例中,可以将多个流速分为多个流速范围,例如第一流速范围和第二流速范围,第一流速范围中的流速小于第二流速范围中的流速,第一流速范围中的最大流速为第一预设流速,第二流速范围中的最大流速为第二预设流速。每一个预设流速均与一个充电阶段对应。
在本申请实施例中,根据导热流体的当前流速来确定电池继续充电的目标充电阶段,能够快速、准确确定电池继续充电的适配充电阶段。
根据本申请的一些实施例,图8为本申请一些实施例提供的电池的结构示意图,参见图8,电池100包括多个电池单体20,换热板30被配置为抵接于其中一个电池单体20的一侧表面或者换热板30的相对两个表面分别抵接于相邻两个电池单体20的相邻两个表面。
在本申请实施例的一种实现方式中,换热板30抵接于其中一个电池单体20的一侧表面,换热板30可以对该电池单体20进行热管理,例如降低电池单体20的温度或者增加电池单体20的温度。这样的布置方式可以是一个换热板30对应一个电池单体20布置,换热效果更好。
在本申请实施例的一种实现方式中,换热板30的相对两个表面分别抵接于相邻两个电池单体20的相邻两个表面,一个换热板30可以对两个电池单体20进行热管理,这样的布置方式电池的结构更紧凑,利于设备的小型化。
在申请实施例中,在上述两种布置方式中,换热板30均与电池单体20抵接,使得电池单体20膨胀时可以对换热板30产生压力,使得换热板30能够及时准确定响应换热板的压力而产生形变,从而基于换热板中导热流体的流速变化来实时调整充电策略,改善由于充电策略不当造成的电池析锂,以及电池循环次数减少的风险,同时改善由于大量析锂引发安全隐患的问题。
根据本申请的一些实施例,电池单体还包括位于其相对两个表面之间的侧面,其中,电池单体的表面的面积大于侧面的面积。
在本申请实施例中,对于方形的电池单体,电池单体的表面大于电池单体的侧面,可以称电池单体的表面为大面。
在本申请实施例中,换热板30与电池单体20的大面抵接,能够使得换热板30与电池单体20的换热面积较大,在提高换热效果的同时,保证换热板能够及时准确定响应换热板的压力而产生较大形变,提升换热板对电池膨胀的敏感度,进一步保证充电安全性,延长电池的使用寿命。
根据本申请的一些实施例,步骤S101包括:从电池的电池管理系统中获取导热流体的当前动状态参数。
在本申请实施例中,导热流体的动状态参数会实时传输给电池的电池管理系统中。
在本申请实施例中,从电池的电池管理系统中获取导热流体的当前动状态参数更加方便。
根据本申请的一些实施例,电池的充电阶段包括依次进行的恒流充电阶段和恒压充电阶段。
在本申请实施例中,电池在充电过程的充电策略时会变化的,例如在充电前期采用恒流充电,待电池的电压增加到预定值后,在充电后期可以采用恒压充电。
在本申请实施例中,根据电池在充电过程中的状态不同调整充电策略,更加安全。
根据本申请的一些实施例,该方法还包括:针对多个充电阶段中的每个充电阶段,获取一一对应的多个预设电压阈值和多个预设充电电流,多个预设电压阈值包括第一预设电压阈值和第二预设电压阈值,第一预设电压阈值小于第二预设电压阈值。多个预设充电电流包括与第一预设电压阈值对应的第一预设充电电流和与第二预设电压阈值对应的第二预设充电电流,第一预设充电电流大于或等于第二预设充电电流。
其中,每个充电阶段的恒流充电阶段包括:响应于电池的当前电压小于第一预设电压阈值,基于第一预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第一预设电压阈值;响应于电池的当前电压不小于第一预设电压阈值并且小于第二预设电压阈值,基于第二预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第二预设电压阈值。
在本申请实施例中,对于多个充电阶段中的任意一个充电阶段的预设电压阈值均包括第一预设电压阈值和第二预设电压阈值,第一预设电压阈值为预设电压阈值的下限,第二预设电压阈值为预设电压阈值的上限,对于不同的预设电压阈值,第一预设电压阈值是不同的,第二预设电压阈值也是不同的。
示例性地,对于每一个恒流充电阶段,当电池的当前电压小于第一预设电压阈值时,以第一预设充电电流对电池进行恒流充电,直至电池的电压至第一预设电压阈值;此时再继续对电池进行充电,电池的电压会增加,使得电池的当前电压大于或等于第一预设电压阈值,此时以第二预设充电电流对电池进行恒流充电,直至电池的电压至第二预设电压阈值。
在本申请实施例中,每一个恒流充电阶段可以包括上述多个以预设充电电流对电池进行恒流充电的操作。
示例性地,电池的电压至第二预设电压阈值后,此时以第三预设充电电流对电池进行恒流充电,直至电池的电压至第三预设电压阈值;然后以第四预设充电电流对电池进行恒流充电,直至电池的电压至第四预设电压阈值;依次类推可以设置多个这样的充电 阶段。例如,每一个恒流充电阶段包括的以预设充电电流对电池进行恒流充电的操作的个数大于等于3且小于等于10。
在本申请实施例中,由于第一预设充电电流大于或等于第二预设充电电流,也即随着充电进行,电池的充电电流是逐渐减小的,避免在后期充电过程中由于充电电流过大造成的安全问题。
在本申请实施例中,电池的当前电压可以反应电池的充电状态,根据电池的不同充电状态调整充电策略更加安全,避免由于充电造成的安全事故,延长电池的使用寿命。
根据本申请的一些实施例,方法还包括:针对多个充电阶段中的每个充电阶段,获取截止电流,其中,每个充电阶段的恒压充电阶段包括:响应于电池的当前电压达到多个预设电压阈值中的最大电压阈值,基于最大电压阈值执行恒压充电控制操作,直至充电至电池的电流为截止电流。
电池在充电时有极化效应,因为电池的当前电压还没有达到最大电压阈值,但因为有极化电压的存在,所以表现出了最大电压阈值的电压,如果这个时候充电停止,极化效应慢慢去掉后,电池就会表现出真实的电压。为了防止这种情况的发生,电池充电必须在恒流充电之后采用恒压充电。在恒压阶段,电流会不断地减小,直到设定的截止电流,而这往往是很小的一个电流值。小的电流保证了极化效应非常小,在充电完成后电池的电压几乎不会降低,保证充电完成。
在本申请实施例中,电池的充电分为两个阶段,前一阶段是恒流充电,即按照设定的电流,在充电过程中电流大小恒定,而电压随着充电时间而升高。后一阶段是恒压充电阶段,当电池电压达到设定的截止电压后,还要进行一段恒压充电,这个阶段电流不断的减小,直到设定的充电截止电流为止。
在本申请实施例中,对电池进行恒压充电,减小电池的极化效应,在充电完成后电池的电压几乎不会降低,保证充电完成。
根据本申请的一些实施例,截止电流和额定充电电流之间的比值大于或等于0.01并且小于或等于0.1,其中,额定充电电流被配置为能够在预设时长内将电池充满额定容量。
在本申请实施例中,小的截止电流保证了极化效应非常小,在充电完成后电池的电压几乎不会降低,保证充电完成。将截止电流设置为上述范围可以保证截止电流较小。
根据本申请的一些实施例,当当前流动状态参数为换热板中导热流体的当前流速时,任意两个充电阶段相应的多个预设电压阈值相同,并且相同预设电压阈值在上一充 电阶段对应的预设充电电流大于或等于下一充电阶段的预设充电电流,其中,该上一充电阶段对应的换热板中的导热流体的流速小于该下一充电阶段对应的换热板中的导热流体的流速。
在本申请实施例中,根据导热流体的流速确定电池的膨胀力,根据电池的膨胀力确定充电阶段,在不同的充电阶段预设充电电流可能不相同,导热流体的流速越大,电池的膨胀力越大,此时可以降低预设充电电流。
在本申请实施例中,当导热流体的流速增大,降低电池的充电电流,保证电池的充电安全,避免造成电池膨胀力过大,使得电池单体析锂,同时延长电池的使用使命。
根据本申请的一些实施例,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,方法还包括:响应于换热板中导热流体的当前流速不小于多个预设流速中的任意一个预设流速,停止对电池继续进行充电。
在本申请实施例中,当换热板中导热流体的当前流速不小于多个预设流速中的任意一个预设流速时,说明此时电池的膨胀力已经达到上限值,需停止充电,避免继续充电造成电池析锂甚至造成安全问题。
本申请的一些实施例提供一种电池充电的控制装置,电池包括换热板,换热板被配置为在电池的膨胀力的作用下产生形变,以使得换热板中导热流体的流动状态参数产生变化,图9为本申请一些实施例提供的电池充电的控制装置的框图,参见图9,装置包括:第一获取模块201,被配置为获取换热板中导热流体的当前流动状态参数;第二获取模块202,被配置为获取电池的与当前充电状态对应的相关参数;第一确定模块203,被配置为基于当前流动状态参数和相关参数确定电池的充电策略信息。
根据本申请的一些实施例,当前流动状态参数为换热板中导热流体的当前流速或者换热板中的当前流体压力。
根据本申请的一些实施例,充电策略信息包括目标充电电流,并且该装置还包括:第一控制模块,被配置为基于目标充电电流执行充电控制操作,使得以目标充电电流对电池继续充电。
根据本申请的一些实施例,相关参数包括电池的与当前充电状态对应的当前电压。
根据本申请的一些实施例,该装置还包括:存储模块,被配置为基于换热板中导热流体的多个预设流动状态参数,将充电过程划分为多个充电阶段,其中,充电策略信息还包括目标充电阶段。
根据本申请的一些实施例,当充电策略信息包括目标充电电流时,第一确定模块203包括:第一子确定模块,被配置为基于当前动状态参数确定目标充电阶段;第二子确定模块,被配置为基于相关参数和目标充电阶段确定电池的目标充电电流。
根据本申请的一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,多个预设流速和多个充电阶段一一对应,多个预设流速包括第一预设流速和第二预设流速,第一预设流速小于第二预设流速,其中,基于当前流动状态参数确定目标充电阶段包括:响应于当前流速小于第一预设流速,将第一预设流速对应的充电阶段确定为所述目标充电阶段;以及响应于当前流速不小于第一预设流速并且小于第二预设流速,将第二预设流速对应的充电阶段确定为所述目标充电阶段。
根据本申请的一些实施例中,电池包括多个电池单体,换热板被配置为抵接于其中一个电池单体的一侧表面或者换热板的相对两侧表面分别抵接于相邻两个电池单体的相邻两个表面。
根据本申请的一些实施例中,电池单体还包括位于其相对两个表面之间的侧面,其中,电池单体的表面的面积大于侧面的面积。
根据本申请的一些实施例中,第一获取模块201被配置为从电池的电池管理系统中获取导热流体的当前流动状态参数。
根据本申请的一些实施例中,电池的充电阶段包括依次进行的恒流充电阶段和恒压充电阶段。
根据本申请的一些实施例中,该装置还包括:第二获取模块,被配置为针对多个充电阶段中的每个充电阶段,获取一一对应的多个预设电压阈值和多个预设充电电流,多个预设电压阈值包括第一预设电压阈值和第二预设电压阈值,第一预设电压阈值小于第二预设电压阈值,多个预设充电电流包括与第一预设电压阈值对应的第一预设充电电流和与第二预设电压阈值对应的第二预设充电电流,第一预设充电电流大于或等于第二预设充电电流,其中,每个充电阶段的恒流充电阶段包括:响应于电池的当前电压小于第一预设电压阈值,基于第一预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第一预设电压阈值;响应于电池的当前电压不小于第一预设电压阈值并且小于第二预设电压阈值,基于第二预设充电电流执行恒流充电控制操作,直至充电至电池的电压为第二预设电压阈值。
根据本申请的一些实施例中,该装置还包括:第三获取模块。被配置为针对多个充电阶段中的每个充电阶段,获取截止电流,其中,每个充电阶段的恒压充电阶段包括:响应于电池的当前电压达到多个预设电压阈值中的最大电压阈值,基于最大电压阈值执行恒压充电控制操作,直至充电至电池的电流为截止电流。
根据本申请的一些实施例中,截止电流和额定充电电流之间的比值大于或等于0.01并且小于或等于0.1,其中,额定充电电流被配置为能够在预设时长内将电池充满额定容量。
根据本申请的一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,任意两个充电阶段相应的多个预设电压阈值相同,并且相同预设电压阈值在上一充电阶段对应的预设充电电流大于或等于下一充电阶段的预设充电电流,其中,该上一充电阶段对应的换热板中的导热流体的流速小于该下一充电阶段对应的换热板中的导热流体的流速。
根据本申请的一些实施例中,当当前流动状态参数为换热板中导热流体的当前流速时,预设流动状态参数为预设流速,装置还包括:第二控制模块,被配置为响应于换热板中导热流体的当前流速不小于多个预设流速中的任意一个预设流速,停止对电池继续进行充电。
本申请的一些实施例提供一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述实施例中任一项的电池充电的控制方法。
本申请的一些实施例提供一种电池管理系统,包括上述实施例中的电子设备。
本申请的一些实施例提供一种用电设备,用电设备包括上述实施例中的电池管理系统。
根据本申请的一些实施例,图10为本申请一些实施例提供的用电设备的结构示意图,参见图10,用电设备为汽车,汽车包括水箱40和测速仪50,水箱40的出水口401与换热板30的进液口301连通,水箱40的进水口402与换热板30的出液口302连通,测速仪50安装于出水口401和进水口402的至少一处。
根据本申请的一些实施例,图11为本申请一些实施例提供的另一种用电设备的结构示意图,参见图11,用电设备为汽车,汽车包括水箱40和压力传感器60,水箱40的 出水口401与换热板30的进液口301连通,水箱40的进水口402与换热板30的出液口302连通,压力传感器60安装于出水口401和进水口402的至少一处。
在本申请实施例的一种实现方式中,将水箱40与换热板30连通,可以通过水箱40中的水对电池实现热管理,也即导热流体为水。
在本申请实施例中,水箱40中的水从出水口401进入进液口301,再通过进液口301流向换热板30,水在换热板30中对电池进行热管理,水从出液口302流出,然后再流向进水口402,并通过进水口402流向水箱40。
在本申请实施例中,将水箱40与换热板30连通,可以通过水箱40中的水对电池实现热管理,将测速仪50安装于出水口401或进水口402,可以减小电池的体积。
在本申请实施例中,将压力传感器60安装于出水口401或进水口402,同样可以减小电池的体积。
根据本申请的一些实施例,再次参见图8,用电设备包括测速仪50和/或压力传感器60,测速仪50被配置为安装于换热板30的进液口301、出液口302和换热板30的中部中的至少一处,测速仪50用于测量换热板中导热流体的流速。压力传感器60被配置为安装于换热板30的进液口301、出液口302和换热板30的中部中的至少一处,压力传感器60被配置为用于测量所述换热板中的当前流体压力。
在本申请实施例中,进液口301和出液口302不位于电池单体20之间,在进液口301和/或出液口302安装测速仪50(和/或压力传感器)不会影响电池结构的紧凑性。应当理解,测速仪50(和/或压力传感器)也可以安装于换热板30的中部。换热板30的中部是指位于电池单体20之间的部分。
导热流体从换热板301的进液口301流入与电池单体20进行热交换,经过热交换的导热流体经由换热板302的出液口302流出。
在本申请实施例的一种实现方式中,测速仪50可以安装于换热板30的进液口301、出液口302和换热板30的中部中的任意一个处。
在本申请实施例的另一种实现方式中,测速仪50(和/或压力传感器)可以安装于换热板30的进液口301、出液口302和换热板30的中部中任意两处。
在本申请实施例的另一种实现方式中,换热板30的进液口301、出液口302和换热板30的中部均安装测速仪50(和/或压力传感器)。
在本申请实施例中,测速仪安装于换热板的进液口或出液口,便于测导热流体的流速。当测速仪50安装于换热板30的进液口301和出液口302时,测速仪50不与电池单 体20接触,避免测速仪50对电池单体20造成影响;当测速仪50安装于换热板30的中部时,测速仪50测量到的当前流速更加准确。同样地,压力传感器安装于换热板的进液口或出液口,便于测换热板中的流体压力。当压力传感器安装于换热板30的进液口301和出液口302时,压力传感器不与电池单体20接触,避免压力传感器对电池单体20造成影响;当压力传感器安装于换热板30的中部时,压力传感器测量到的流体压力更加准确。
根据本申请的一些实施例,用电设备包括测速仪时,测速仪与电池管理系统电连接。用电设备包括压力传感器时,压力传感器与电池管理系统电连接。
在本申请实施例中,测速仪与电池管理系统电连接,由于换热板中导热流体的流速与电池的膨胀状态相关,从而使得电池管理系统能够通过测速仪获取电池的膨胀状态,以用于电池管理。压力传感器与电池管理系统电连接,由于换热板中导热流体的流体压力与电池的膨胀状态相关,从而使得电池管理系统能够通过压力传感器获取电池的膨胀状态,以用于电池管理。
本申请的一些实施例提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述实施例中任一项的电池充电的控制方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本申请的一些实施例提供一种计算机程序产品,包括计算机程序,其中,该计算机程序被处理器执行时实现上述实施例中任一项的电池充电的控制方法。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行这些计算机指令时,可以全部或部分地按照本申请实施例所述的流程或功能实现上述方法中的部分或者全部。
将本申请实施例提供的电池充电的控制方法用于电池充电的实验,用于检测本申请提供的方法的可靠性,图12是本申请一些实施例提供的一种电池充电的控制方法的流程图,参见图12,该方法包括:
步骤S601,基于换热板中导热流体的多个预设流速,将充电过程划分为多个充电阶段。
在本申请实施例中,不同种类的电池的划分标准不一样且划分的充电阶段也不一样,例如,对于不同种类的电池,导热流体流速和电池膨胀力的对应关系会有所差异。
在本申请的一些实施例中,充电阶段可以有以下几个阶段:
第一充电阶段:导热流体的流速大于等于0.9L/min时,先进行第一子阶段1.25C充电到3.775V,再进行第二子阶段1.00C充电到3.949V,然后进行第三子阶段0.75C充电到4.113V,再进行第四子阶段0.33C充电到4.303V,然后进行第五子阶段0.33C充电到4.35V,最后使用4.35V的恒压充电到截止电流I对应的充电倍率小于等于0.05C。
在本申请实施例中,充电倍率是充电快慢的一种量度,充电倍率=充电电流/电池的额定容量,例如,1.25C表示,使用该电流对电池进行充电直至电池充满电需要的时间为1/1.25=0.8小时。
第二充电阶段:导热流体的流速大于等于0.7L/min且小于0.9L/min时,说明此时电池的膨胀力增长到4000N,调整充电策略,先进行第一子阶段1.25*0.75C充电到3.775V,再进行第二子阶段1.00*0.75C充电到3.949V,然后进行第三子阶段0.75*0.75C充电到4.113V,再进行第四子阶段0.33*0.5C充电到4.303V,然后进行第五子阶段0.33*0.5C充电到4.35V,最后使用4.35V的恒压充电到截止电流I对应的充电倍率小于等于0.05C。
第三充电阶段:导热流体的流速大于等于0.5L/min且小于0.7L/min时,说明此时电池的膨胀力增长到6000N,调整充电策略,先进行第一子阶段1.25*0.75*0.75C充电到3.775V,再进行第二子阶段1.00*0.75*0.75C充电到3.949V,然后进行第三子阶段0.75*0.75*0.75C充电到4.113V,再进行第四子阶段0.33*0.5*0.5C充电到4.303V,然后进行第五子阶段0.33*0.5*0.5C充电到4.35V,最后使用4.35V的恒压充电到截止电流I对应的充电倍率小于等于0.05C。
第四充电阶段:导热流体的流速大于等于0.3L/min且小于0.5L/min时,说明此时电池的膨胀力增长到8000N,调整充电策略,先进行第一子阶段1.25*0.75*0.75*0.5C充电到3.775V,再进行第二子阶段1.00*0.75*0.75*0.5C充电到3.949V,然后进行第三子阶段0.75*0.75*0.75*0.5C充电到4.113V,再进行第四子阶段0.33*0.5*0.5*0.33C充电到4.303V,然后进行第五子阶段0.33*0.5*0.5*0.33C充电到4.35V,最后使用4.35V的恒压充电到截止电流I对应的充电倍率小于等于0.05C。
依次类推,可以根据需求划分更多充电阶段,或者仅划分两个或三个充电阶段。
步骤S602,获取换热板中导热流体的当前流速。
示例性地,获取的热流体当前流速为0.6L/min。
步骤S603,基于当前流速确定目标充电阶段。
在本申请实施例中,根据当前流速为0.6L/min确定目标充电阶段为第三充电阶段。
步骤S604,获取电池的与当前充电状态对应的当前电压。
示例性地,获取电池的当前电压为3.8V。
步骤S605,基于目标充电阶段和当前电压确定电池的目标充电电流。
在本申请实施例中,在第三充电阶段中,根据电池的当前电压为3.8V确定电池的充电电流对应的充电倍率为1.00*0.75*0.75C。
步骤S606,基于电池的目标充电电流确定电池的充电策略。
在本申请实施例中,电池的充电策略为:先以1.00*0.75*0.75C充电到3.949V,再以0.75*0.75*0.75C充电到4.113V,然后以0.33*0.5*0.5C充电到4.303V,再以0.33*0.5*0.5C充电到4.35V,最后使用4.35V的恒压充电到截止电流I≤0.05C。
在本申请实施例中,当进行实验时,可以在充好完成后将电池休息一段时间T,且T大于等于10min,用于模拟电池在实际应用中的休息时间,然后以1C将电池放电至2.8V,用于模拟电池的放电过程,如此循环直至电池的终止容量为初始容量的x%,其中50≤x≤90。根据实现可知使用相关技术中的充电策略,电池的循环次数在1200左右,使用本申请中的充电策略,电池的循环次数在1600左右,电池的寿命明显提高。
相关技术的充电策略为:无论电池的膨胀情况如何,电池的充电策略均与第一充电阶段的充电策略相同。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种电池充电的控制方法,其中,所述电池包括换热板,所述换热板被配置为在所述电池的膨胀力的作用下产生形变,以使得所述换热板中导热流体的流动状态参数产生变化,所述方法包括:
    获取所述换热板中导热流体的当前流动状态参数;
    获取所述电池的与当前充电状态对应的相关参数;
    基于所述当前流动状态参数和所述相关参数确定所述电池的充电策略信息。
  2. 根据权利要求1所述的方法,其中,所述当前流动状态参数为所述换热板中导热流体的当前流速或者所述换热板中的当前流体压力。
  3. 根据权利要求1或2所述的方法,其中,所述充电策略信息包括目标充电电流,并且所述方法还包括:
    基于所述目标充电电流执行充电控制操作,使得以所述目标充电电流对所述电池继续充电。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述相关参数包括所述电池的与当前充电状态对应的当前电压。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述方法还包括:
    基于所述换热板中导热流体的多个预设流动状态参数,将充电过程划分为多个充电阶段,
    其中,所述充电策略信息还包括目标充电阶段。
  6. 根据权利要求5所述的方法,其中,当所述充电策略信息包括目标充电电流时,基于所述当前流动状态参数和所述相关参数确定所述电池的充电策略信息,包括:
    基于所述当前流动状态参数确定所述目标充电阶段;
    基于所述相关参数和所述目标充电阶段确定所述电池的所述目标充电电流。
  7. 根据权利要求6所述的方法,其中,当所述当前流动状态参数为所述换热板中导热流体的当前流速时,所述预设流动状态参数为预设流速,多个预设流速和多个充电阶 段一一对应,所述多个预设流速包括第一预设流速和第二预设流速,所述第一预设流速小于所述第二预设流速,
    其中,基于所述当前流动状态参数确定所述目标充电阶段包括:
    响应于所述当前流速小于所述第一预设流速,将所述第一预设流速对应的充电阶段确定为所述目标充电阶段;以及
    响应于所述当前流速不小于所述第一预设流速并且小于所述第二预设流速,将所述第二预设流速对应的充电阶段确定为所述目标充电阶段。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述电池包括多个电池单体,所述换热板被配置为抵接于其中一个电池单体的一侧表面或者所述换热板的相对两侧表面分别抵接于相邻两个电池单体的相邻两个表面。
  9. 根据权利要求8所述的方法,其中,所述电池单体还包括位于其相对两个表面之间的侧面,其中,所述电池单体的表面的面积大于侧面的面积。
  10. 根据权利要求1至9中任一项所述的方法,其中,获取所述换热板中导热流体的当前流动状态参数,包括:
    从所述电池的电池管理系统中获取所述导热流体的当前流动状态参数。
  11. 根据权利要求5所述的方法,其中,所述电池的充电阶段包括依次进行的恒流充电阶段和恒压充电阶段。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    针对所述多个充电阶段中的每个充电阶段,获取一一对应的多个预设电压阈值和多个预设充电电流,所述多个预设电压阈值包括第一预设电压阈值和第二预设电压阈值,所述第一预设电压阈值小于第二预设电压阈值,所述多个预设充电电流包括与所述第一预设电压阈值对应的第一预设充电电流和与所述第二预设电压阈值对应的第二预设充电电流,所述第一预设充电电流大于或等于所述第二预设充电电流,
    其中,每个充电阶段的所述恒流充电阶段包括:
    响应于所述电池的当前电压小于第一预设电压阈值,基于所述第一预设充电电流执行恒流充电控制操作,直至充电至所述电池的电压为所述第一预设电压阈值;
    响应于所述电池的当前电压不小于所述第一预设电压阈值并且小于所述第二预设电压阈值,基于所述第二预设充电电流执行恒流充电控制操作,直至充电至所述电池的电压为所述第二预设电压阈值。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    针对所述多个充电阶段中的每个充电阶段,获取截止电流,
    其中,每个充电阶段的所述恒压充电阶段包括:
    响应于所述电池的当前电压达到所述多个预设电压阈值中的最大电压阈值,基于最大电压阈值执行恒压充电控制操作,直至充电至所述电池的电流为截止电流。
  14. 根据权利要求13所述的方法,其中,所述截止电流和额定充电电流之间的比值大于或等于0.01并且小于或等于0.1,其中,所述额定充电电流被配置为能够在预设时长内将所述电池充满额定容量。
  15. 根据权利要求12所述的方法,其中,当所述当前流动状态参数为所述换热板中导热流体的当前流速时,任意两个充电阶段相应的多个预设电压阈值相同,并且相同预设电压阈值在上一充电阶段对应的预设充电电流大于或等于下一充电阶段的预设充电电流,其中,该上一充电阶段对应的换热板中的导热流体的流速小于该下一充电阶段对应的换热板中的导热流体的流速。
  16. 根据权利要求5至14中任一项所述的方法,其中,当所述当前流动状态参数为所述换热板中导热流体的当前流速时,所述预设流动状态参数为预设流速,所述方法还包括:
    响应于所述换热板中导热流体的当前流速不小于多个预设流速中的任意一个预设流速,停止对所述电池继续进行充电。
  17. 一种电池充电的控制装置,其中,所述电池包括换热板,所述换热板被配置为在所述电池的膨胀力的作用下产生形变,以使得所述换热板中导热流体的流动状态参数产生变化,所述装置包括:
    第一获取模块,被配置为获取所述换热板中导热流体的当前流动状态参数;
    第二获取模块,被配置为获取所述电池的与当前充电状态对应的相关参数;
    第一确定模块,被配置为基于所述当前流动状态参数和所述相关参数确定所述电池的充电策略信息。
  18. 一种电子设备,其中,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至16中任一项所述的电池充电的控制方法。
  19. 一种电池管理系统,其中,包括权利要求18所述的电子设备。
  20. 一种用电设备,其中,所述用电设备包括如权利要求19所述的电池管理系统。
  21. 根据权利要求20所述的用电设备,其中,所述用电设备为汽车,所述汽车包括水箱,所述水箱的出水口与所述换热板的进液口连通,所述水箱的进水口与所述换热板的出液口连通;
    所述汽车还包括测速仪和压力传感器中的至少一种,
    其中,所述测速仪被配置为安装于所述出水口和所述进水口中的至少一处;
    所述压力传感器被配置为安装于所述出水口和所述进水口中的至少一处。
  22. 根据权利要求20所述的用电设备,其中,所述用电设备包括测速仪和压力传感器中的至少一种;
    所述测速仪被配置为安装于所述换热板的进液口、出液口和中部中的至少一处,所述测速仪用于测量所述换热板中导热流体的流速;
    所述压力传感器被配置为安装于所述换热板的进液口、出液口和中部中的至少一处,所述压力传感器用于测量所述换热板中的当前流体压力。
  23. 根据权利要求21或22所述的用电设备,其中,所述用电设备包括所述测速仪时,所述测速仪与所述电池管理系统电连接;
    所述用电设备包括所述压力传感器时,所述压力传感器与所述电池管理系统电连接。
  24. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至16中任一项所述的电池充电的控制方法。
  25. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至16中任一项所述的电池充电的控制方法。
PCT/CN2022/107703 2022-07-25 2022-07-25 电池充电的控制方法、装置、设备和介质 WO2024020745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107703 WO2024020745A1 (zh) 2022-07-25 2022-07-25 电池充电的控制方法、装置、设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107703 WO2024020745A1 (zh) 2022-07-25 2022-07-25 电池充电的控制方法、装置、设备和介质

Publications (1)

Publication Number Publication Date
WO2024020745A1 true WO2024020745A1 (zh) 2024-02-01

Family

ID=89704892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107703 WO2024020745A1 (zh) 2022-07-25 2022-07-25 电池充电的控制方法、装置、设备和介质

Country Status (1)

Country Link
WO (1) WO2024020745A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130257382A1 (en) * 2012-04-02 2013-10-03 Apple Inc. Managing Cycle and Runtime in Batteries for Portable Electronic Devices
CN103358923A (zh) * 2012-03-26 2013-10-23 三星Sdi株式会社 电池组及其操作方法和包括其的怠速停止和起动系统
DE102019113716A1 (de) * 2019-05-23 2020-11-26 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit einer Kühleinrichtung mit einem Drucksensor, Kraftfahrzeug sowie Verfahren
DE102021101215A1 (de) * 2021-01-21 2022-07-21 Audi Aktiengesellschaft Verfahren zum Betreiben einer Kühleinrichtung, Kühleinrichtung und Batterie für ein Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358923A (zh) * 2012-03-26 2013-10-23 三星Sdi株式会社 电池组及其操作方法和包括其的怠速停止和起动系统
US20130257382A1 (en) * 2012-04-02 2013-10-03 Apple Inc. Managing Cycle and Runtime in Batteries for Portable Electronic Devices
DE102019113716A1 (de) * 2019-05-23 2020-11-26 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit einer Kühleinrichtung mit einem Drucksensor, Kraftfahrzeug sowie Verfahren
DE102021101215A1 (de) * 2021-01-21 2022-07-21 Audi Aktiengesellschaft Verfahren zum Betreiben einer Kühleinrichtung, Kühleinrichtung und Batterie für ein Kraftfahrzeug

Similar Documents

Publication Publication Date Title
Zhao et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles
CN216872113U (zh) 电池和用电设备
CN216872114U (zh) 电池和用电设备
CN217182265U (zh) 电池和用电设备
CN113782811B (zh) 用电设备及电化学装置的加热方法
CN216872134U (zh) 电池和用电设备
CN217562707U (zh) 电池单体、电池及用电设备
CN216872133U (zh) 一种电池和用电设备
KR20140111187A (ko) 배터리 모듈 및 배터리 기준온도 이상의 유지방법
WO2024020745A1 (zh) 电池充电的控制方法、装置、设备和介质
WO2023151190A1 (zh) 充电时间确定方法及bms、电池、电能设备
EP4213273A1 (en) Charging method for battery, and battery and electrical energy device
CN217182266U (zh) 电池单体、电池和用电装置
WO2023078066A1 (zh) 电池、用电装置、检测方法和检测模块
CN216872190U (zh) 一种电池和用电设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4270591A1 (en) Circuit control method, battery and controller and management system thereof, and electric apparatus
CN116615830A (zh) 电池、用电设备、制备电池的方法和设备
CN113904028A (zh) 一种电池模组、电池包及用电设备
JP7176484B2 (ja) 電池システム
CN113611947A (zh) 一种电动汽车电池温度控制装置
WO2023133808A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4253136A1 (en) Charging time determination method, bms, battery, and electric energy device
CN115825781B (zh) 充电时间确定方法及bms、电池、电能设备
CN117293425B (zh) 电池模组、电池、用电装置及电池放电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952212

Country of ref document: EP

Kind code of ref document: A1