WO2023133808A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023133808A1
WO2023133808A1 PCT/CN2022/072058 CN2022072058W WO2023133808A1 WO 2023133808 A1 WO2023133808 A1 WO 2023133808A1 CN 2022072058 W CN2022072058 W CN 2022072058W WO 2023133808 A1 WO2023133808 A1 WO 2023133808A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cells
battery cell
cells
cell
Prior art date
Application number
PCT/CN2022/072058
Other languages
English (en)
French (fr)
Inventor
钱欧
陈小波
金秋
杨飘飘
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280024740.1A priority Critical patent/CN117063333A/zh
Priority to PCT/CN2022/072058 priority patent/WO2023133808A1/zh
Priority to EP22919280.2A priority patent/EP4266458A1/en
Priority to US18/218,591 priority patent/US20230352788A1/en
Publication of WO2023133808A1 publication Critical patent/WO2023133808A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the embodiments of the present application provide a battery, an electrical device, a method and a device for preparing the battery, which can increase the energy density of the battery.
  • a battery in a first aspect, includes: a plurality of first battery cells, the first battery cells are cylinders, and there are gaps between the plurality of first battery cells; The battery cells are arranged in the gaps between the plurality of first battery cells, and the second battery cells are configured to be deformed under the extrusion of the plurality of first battery cells so as to adapt to The shape of the gap is matched; the box is used to accommodate a plurality of the first battery cells and the second battery cells.
  • the battery of the embodiment of the present application makes full use of the gaps between the plurality of cylindrical first battery cells to improve the utilization rate of the space in the box, thereby increasing the energy density of the battery.
  • multiple first battery cells may contact each other and may collide, resulting in deformation of the first battery cells; the charging and discharging process of the battery may swell, and it may also make the multiple cells in contact with each other Extrusion and deformation between the first battery cells; when the battery is used in vehicles and other scenarios, external forces may cause collisions between multiple first battery cells, which in turn leads to deformation of the first battery cells.
  • the deformation of the first battery cell may cause damage to the casing, resulting in electrolyte leakage, and may also cause deformation of the electrode assembly inside the first battery cell, resulting in lithium deposition, which will lead to battery safety issues. Therefore, arranging the deformable second battery cells in the gaps between the multiple first battery cells can effectively reduce the extrusion between the multiple first battery cells, thereby reducing the deformation of the first battery cells and improving the performance of the first battery cells.
  • the stability between the multiple first battery cells further improves the safety of the battery. That is, the battery of the embodiment of the present application can greatly improve the system energy density and market competitiveness of the cylindrical battery, and can effectively reduce the failure of the battery.
  • the battery includes: a plurality of battery cell groups arranged along a first direction, and each of the plurality of battery cell groups includes a plurality of battery cell groups arranged along a second direction.
  • the first battery cell, the first direction, the second direction, and the axial direction of the first battery cell are perpendicular to each other, and a plurality of the second battery cells are respectively arranged on the plurality of battery cells.
  • the orthographic projections of the axes of all the first battery cells in the two adjacent battery cell groups on the first plane do not coincide, and the first plane is perpendicular to the first direction. In this way, the first battery cells of two adjacent battery cell groups are arranged alternately, so that the space between adjacent curved surfaces can be fully utilized.
  • the orthographic projections of the axes of all the first battery cells in the two adjacent battery cell groups on the first plane are evenly distributed, and the battery cells in different battery cell groups can be
  • the dislocation arrangement makes reasonable use of space, reduces the gaps between the multiple first battery cells, and improves the space utilization rate of the multiple first battery cells in the battery.
  • the second battery cell is located in a gap formed by three adjacent first battery cells in the two adjacent battery cell groups.
  • every three first battery cells can form a relatively independent gap, and correspondingly, the second battery cell can be arranged in the gap formed by the three first battery cells Make full use of the gap to further improve the space utilization of the battery.
  • the cross-sections of the three adjacent first battery cells along the second plane are three circles, and every two circles in the three circles are mutually circumscribed circles, and the first The two planes are perpendicular to the axis of the first battery cell.
  • the space utilization rate of the multiple first battery cells in the battery can be greatly improved, so as to make full use of the limited space of the battery box; further Yes, arranging the second battery cells in the gaps between the plurality of first battery cells can fully fill the gaps between the first battery cells, further improving the energy density of the battery.
  • the second battery cells are arranged in the gaps between the three first battery cells, when the originally tangent multiple first battery cells are subjected to external pressure or expand to generate pressure, the second battery cells will The pressure can be relieved, and the deformation of the first battery cells under the pressure can be reduced, so that the three first battery cells can be kept in a tangential state as much as possible, so as to avoid electrolysis caused by the deformation of the first battery cells Liquid leakage or lithium analysis and other problems, improve the safety performance of the battery.
  • the second battery cell is provided with a liquid leakage sensor, and the liquid leakage sensor is used to detect whether liquid leakage occurs in the first battery cell and/or the second battery cell, so as to Find the leakage phenomenon in time to avoid the circuit short circuit caused by the leakage.
  • the liquid leakage sensor is disposed at an end of the second battery cell close to the first electrode terminal of the first battery cell.
  • the liquid leakage sensor can detect in time whether there is liquid leakage near the first electrode terminal of the first battery cell, so as to avoid the short circuit caused by the liquid leakage to the electrical connection between the first electrode terminal and other components, and also avoid the impact of the liquid leakage on the first electrode terminal. Influence of confluence components.
  • the second battery cell is provided with a pressure sensor for detecting a stress state of a plurality of the first battery cells pressing the second battery cell.
  • the first battery cell may be deformed under the action of pressure, and the deformation of the first battery cell may cause damage to its casing, resulting in electrolyte leakage, and may also cause deformation of the electrode assembly inside the first battery cell.
  • a pressure sensor can be provided on the second battery cell to detect the stress state of the plurality of first battery cells that squeeze the second battery cell, so as to timely discover potential safety hazards.
  • the pressure sensor is disposed around the second battery cell, so that the pressure sensor disposed on the second battery cell can detect each first battery adjacent to the second battery cell.
  • the stress state of the battery cell so as to timely warn of possible safety risks caused by stress.
  • the battery includes a first current-combining component and a second current-combining component, and the first current-combining component is used to realize electrical connection between a plurality of the first battery cells to form a first power supply circuit ;
  • the second bus component is used to realize the electrical connection between a plurality of the second battery cells to form a second power supply circuit, and the first power supply circuit and the second power supply circuit are respectively used for different purposes.
  • the electrical module provides electrical energy.
  • the capacitances are also usually set to be different.
  • the capacitance of the first battery cell is usually relatively large, and can be used to supply power to the electric device where the battery is located, that is, the electrical connection between multiple first battery cells is realized through the first bus component to form the second battery cell.
  • a power supply circuit, the first power supply circuit can be used to output electric energy to the electric device where the battery is located.
  • the electric capacity of the second battery is generally small, therefore, the electrical connection between the second battery cells can be realized through the second bus component to form a second power supply circuit, and the second power supply circuit can be used as a backup power supply and output separately electrical energy.
  • the second power supply circuit can replace the low-voltage system of the vehicle. In this way, the low-voltage system does not need to occupy additional space, for example, it does not need to occupy the space other than the battery. In the gaps between the plurality of first battery cells, it is beneficial to improve the energy density of the system, and can also reduce the cost.
  • an electric device including: the battery described in the first aspect or any one of the embodiments in the first aspect.
  • the electric device is a vehicle, ship or spacecraft.
  • a method for preparing a battery cell including: providing a plurality of first battery cells, the first battery cells are cylinders, and there are gaps between the plurality of first battery cells providing a second battery cell, the second battery cell is disposed in the gap between the plurality of the first battery cells, the second battery cell is configured to be in the plurality of the first battery cells The cells are deformed under extrusion to fit the shape of the gap; and a box is provided for accommodating a plurality of the first battery cells and the second battery cells.
  • a device for preparing a battery cell including a module for performing the method of the third aspect above.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of a partial structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic cross-sectional view of a partial exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of a first battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a partial structure of a battery disclosed in an embodiment of the present application.
  • Fig. 6 is a partial structural schematic diagram of another battery disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of an exploded structure of any adjacent three first battery cells and the corresponding second battery cells in a battery disclosed in an embodiment of the present application;
  • Fig. 8 is a schematic structural view of any three adjacent first battery cells and the corresponding second battery cells installed in a battery disclosed in an embodiment of the present application;
  • Fig. 9 is a schematic structural view of a second battery cell disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic flow chart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • an embodiment of the present application provides a battery, the battery includes a box, the box contains a plurality of cylindrical first battery cells, there are gaps between the plurality of first battery cells, the battery A second battery cell is also included, the second battery cell is disposed in the gap between the plurality of first battery cells, and the second battery cell can be compressed under the compression of the plurality of first battery cells. Deformation to fit the gaps between multiple first battery cells, which can also make full use of the gaps between multiple cylindrical first battery cells, improve the space utilization rate in the box, and improve the battery capacity. energy density.
  • first battery cells may contact each other and may collide, resulting in deformation of the first battery cells; the charging and discharging process of the battery may swell, and it may also make the multiple cells in contact with each other Extrusion and deformation between the first battery cells; when the battery is used in vehicles and other scenarios, external forces may cause collisions between multiple first battery cells, which in turn leads to deformation of the first battery cells.
  • the deformation of the first battery cell may cause damage to the casing, resulting in electrolyte leakage, and may also cause deformation of the electrode assembly inside the first battery cell, resulting in lithium deposition, which will lead to battery safety issues.
  • the deformable second battery cells in the gaps between the multiple first battery cells can effectively reduce the extrusion between the multiple first battery cells, thereby reducing the deformation of the first battery cells and improving the performance of the first battery cells.
  • the stability between the multiple first battery cells further improves the safety of the battery. That is, the battery of the embodiment of the present application can greatly improve the system energy density and market competitiveness of the cylindrical battery, and can effectively reduce the failure of the battery.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • multiple battery cells can be connected in series, parallel or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • Figure 2 shows a schematic diagram of a partial structure of a battery 10 according to an embodiment of the present application
  • Figure 3 shows a schematic cross-sectional view of a partial exploded structure of a battery 10 according to an embodiment of the present application, wherein the battery 10 is assembled in Figure 3 A part of the battery 10 in FIG. 2 can then be formed.
  • the battery 10 of the embodiment of the present application includes: a plurality of first battery cells 21, the first battery cells 21 are cylinders, and there are Gap; the second battery cell 22 is disposed in the gap between the plurality of first battery cells 21 , and the second battery cell 22 is configured to be squeezed by the plurality of first battery cells 21 deformed to fit the shape of the gap; the box body 11 is used to accommodate a plurality of the first battery cells 21 and the second battery cells 22 .
  • section of the battery 10 shown in FIG. 3 is a section along a direction perpendicular to the axis Z of the first battery cell 21 .
  • the battery 10 of the embodiment of the present application includes a plurality of first battery cells 21. Since the plurality of first battery cells 21 are cylinders, and the sides of the cylinders are curved surfaces, the sides of the plurality of first battery cells 21 There is a gap between the walls; the second battery cell 22 of the embodiment of the present application can be deformed, so that the second battery cell 22 is arranged in the gap of a plurality of first battery cells 21, and the second battery cell
  • the body 22 can be deformed under the extrusion of a plurality of first battery cells 21 to fit the gaps between the plurality of first battery cells 21 , which makes full use of the cylindrical first battery cells
  • the gap between 21 improves the utilization rate of the space in the box 11 of the battery 10 , and also increases the energy density of the battery 10 .
  • the battery 10 may expand during charging and discharging, and may also It may make the plurality of first battery cells 21 that are in contact with each other be squeezed and deformed; when the battery 10 is used in a scene such as a vehicle, it may be subjected to an external force and cause a collision between the plurality of first battery cells 21, resulting in The first battery cell 21 is deformed, and the deformation of the first battery cell 21 may cause damage to the casing, resulting in leakage of the electrolyte, and may also cause deformation of the electrode assembly inside the first battery cell 21 to cause lithium precipitation.
  • the deformable second battery cells 22 in the gaps between the multiple first battery cells 21 can effectively reduce the extrusion between the multiple first battery cells 21, thereby reducing the pressure of the first battery cells 21.
  • the deformation improves the stability among the multiple first battery cells 21 , thereby improving the safety of the battery 10 . Therefore, the battery 10 of the embodiment of the present application can greatly improve the system energy density and market competitiveness of the battery 10 including cylindrical battery cells, and can effectively reduce the failure of the battery 10 .
  • the battery 10 of the embodiment of the present application includes a box body 11 , and the inside of the box body 11 is a hollow structure, and a plurality of first battery cells 21 and second battery cells 22 are accommodated in the box body 11 .
  • Fig. 2 and Fig. 3 show a possible implementation of the box body 11 of the embodiment of the present application.
  • the case body 11 of the embodiment of the present application may be formed by combining multiple parts.
  • the box body 11 may include four side walls 111, the four side walls 111 are respectively parallel to the axial direction Z of the first battery cells 21, so as to connect the plurality of first battery cells 21 and the second battery cells 22 surrounded.
  • each side wall 111 may be provided with a concave-convex profiling structure, and the profiling structure may fit the curved side walls of a plurality of first battery cells 21, filling the side walls 111 and The gap between the first battery cells 21 makes the first battery cells 21 relatively stable and improves the stability of the battery 10 .
  • the box body 11 may also include two end plates, the two end plates are perpendicular to the four side walls 111, and are respectively arranged at the two ends of the four side walls 111 along the axial direction Z, so as to be compatible with the four
  • the side wall 111 forms a hollow cuboid, so that the box body 11 is relatively sealed.
  • the battery 10 may also include other parts, and the other part serves as at least one of the two end plates to form a hollow box 11 with the four side walls 111, for example, the battery 10 may include a heat management
  • the thermal management component is disposed at one or both ends of the first battery cell 21 along the axial direction Z to serve as an end plate, but the embodiment of the present application is not limited thereto.
  • the box body 11 in the embodiment of the present application may also be formed in other ways.
  • the box body 11 may also include two parts, referred to here as a first part and a second part respectively, and the first part and the second part are fastened together.
  • the shapes of the first part and the second part may be determined according to the shape of the inner first battery cell 21, at least one of the first part and the second part having an opening.
  • first part and the second part may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part is a hollow cuboid and only one face is an open face
  • the first part is a plate-shaped example, so the first part is covered at the opening of the second part to form a box body 11 with a closed chamber
  • the cavity The chamber can be used to accommodate a plurality of battery cells, the plurality of battery cells includes a first battery cell 21 and a second battery cell 22, and the plurality of battery cells are connected in parallel or in series or combined in parallel and placed in the first part Inside the box body 11 formed after fastening with the second part.
  • first part and the second part may both be hollow cuboids with only one face being an opening face, the opening of the first part and the opening of the second part are arranged oppositely, and the first part and the second part are interlocked to form a A box 11 that closes the chamber.
  • first battery cell 21 in the embodiment of the present application may further include: a first electrode terminal 211, which may be used to electrically connect with the internal electrode assembly of the first battery cell 21 to output electrical energy.
  • second battery cell 22 may further include a second electrode terminal 221 , and the second electrode terminal 221 may be used to electrically connect with the internal electrode assembly of the second battery cell 22 to output electric energy.
  • FIG. 4 shows a schematic structural diagram of the first battery cell 21 according to the embodiment of the present application.
  • the first battery cell 21 may include two first electrode terminals 211, and similarly, the second battery cell 22 may also include two second electrode terminals 221, where any The two electrode terminals included in the battery cell are described as an example.
  • the two electrode terminals are respectively a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is used for electrical connection with the positive electrode lug, and the negative electrode terminal is used for electrical connection with the negative electrode lug.
  • the positive electrode terminal and the positive tab can be connected directly or indirectly, and the negative electrode terminal and the negative tab can be directly connected or indirectly connected.
  • the positive electrode terminal is electrically connected to the positive electrode lug through a connecting member
  • the negative electrode terminal is electrically connected to the negative electrode lug through a connecting member.
  • the two electrode terminals of the embodiment of the present application may be respectively provided on the two cylindrical bottom surfaces of the battery cells, that is, the two cylindrical bottom surfaces of the first battery cell 21 are respectively provided with A first electrode terminal 211, and similarly, a second electrode terminal 221 is provided on the two cylindrical bottom surfaces of the second battery cell 22, so as to facilitate the electrical connection between multiple battery cells.
  • the battery 10 in the embodiment of the present application may also include a current flow component 13, which is used to realize electrical connection between multiple battery cells, such as parallel connection, series connection or mixed connection.
  • the current-combining component 13 can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member 13 may be fixed to the electrode terminal of the battery cell by welding.
  • FIG. 3 does not show the busbar 13 in FIG. 2 .
  • the two cylindrical bottom surfaces of the first battery cell 21 are respectively provided with first electrode terminals 211.
  • the first confluence member 131 at both ends of the plurality of first battery cells 21 can realize the electrical connection among the plurality of first battery cells 21 and/or between the first battery cells 21 and other battery cells. , for easy assembly and electrical connection.
  • the two bottom surfaces of the second battery cell 22 are respectively provided with second electrode terminals 211, thus, by The second flow-combining member 132 disposed at both ends of the plurality of second battery cells 22 can realize communication between the plurality of second battery cells 22 and/or between the second battery cells 22 and other battery cells. Electrically connected for ease of assembly and electrical connection.
  • the first current-combining component 131 and the second current-combining component 132 included in the battery 10 may be the same current-combining component 13 , or may be different current-combining components 13 .
  • the first bussing part 131 is used to realize the electrical connection between a plurality of first battery cells 21 to form a first power supply circuit;
  • the component 132 is used to realize the electrical connection among the plurality of second battery cells 22 to form a second power supply circuit, and the first power supply circuit and the second power supply circuit respectively provide electric energy for different power consumption modules.
  • the capacitances are also usually set to be different.
  • the capacitance of the first battery cell 21 is generally relatively large, and can be used to supply power to the electrical equipment where the battery 10 is located, that is, the electrical connection between multiple first battery cells 21 is realized through the first bus component 131 , to form a first power supply circuit, and the first power supply circuit can be used to output electric energy to the electric device where the battery 10 is located.
  • the electric capacity of the second battery 22 is generally small, therefore, the electrical connection between the second battery cells 22 can be realized through the second bus part 132 to form a second power supply circuit, which can be used as a backup power supply , output power alone.
  • the second power supply circuit can replace the low-voltage system of the vehicle 1. In this way, the low-voltage system does not need to occupy additional space, for example, it does not need to occupy space other than the battery 10, but only exists in the battery 10. In the space between the multiple first battery cells 21 that were originally vacant, it is beneficial to improve the energy density of the system, and can also reduce the cost.
  • the battery cells inside the box 11 in the embodiment of the present application can be arranged and arranged according to certain rules, especially a plurality of first battery cells 21, so as to improve the space utilization rate of the box 11, and further improve the The energy density of the battery 10.
  • the sizes of the multiple first battery cells 21 in the embodiment of the present application can be set to be the same or different.
  • the diameters of the bottom surfaces of the first battery cells 21 are the same, and the heights of the multiple first battery cells 21 are also the same, so that the capacities of the multiple first battery cells 21 are also the same, so as to facilitate the realization of multiple first battery cells.
  • the electrical connection between the bodies 21 also facilitates the arrangement of the plurality of first battery cells 21 to improve space utilization.
  • FIG. 5 shows a schematic diagram of a partial section of a battery 10 according to an embodiment of the present application.
  • the battery 10 may be the battery 10 shown in FIG. 2 and FIG. 3 , and the section may be perpendicular to the first battery cell 21
  • the axis Z is the plane.
  • the battery 10 includes: a plurality of battery cell groups arranged along the first direction X, and each battery cell group in the plurality of battery cell groups includes a plurality of battery cell groups arranged along the second direction Y
  • the first direction X, the second direction Y, and the axis Z of the first battery cell 21 are perpendicular to each other. Arranging a plurality of first battery cells 21 in an array can effectively utilize the space inside the box body 11 .
  • a plurality of second battery cells 22 are respectively arranged in multiple gaps between two adjacent battery cell groups in the plurality of battery cell groups.
  • there are multiple gaps between multiple battery cell groups and multiple second battery cells 22 can be arranged in multiple gaps, for example, the multiple second battery cells 22 It may be set in all gaps or in some gaps, which is not limited in the embodiment of the present application.
  • any two adjacent battery cell groups among the plurality of battery cell groups are respectively referred to as the first battery cell group 201 and the second battery cell group 202 here.
  • FIG. 5 taking any two adjacent battery cell groups among the plurality of battery cell groups as an example, they are respectively referred to as the first battery cell group 201 and the second battery cell group 202 here.
  • a plurality of second battery cells 22 of the battery 10 can be arranged in all the gaps, that is, there is a one-to-one correspondence between the plurality of second battery cells 22 and the plurality of gaps, so that every two The second battery cells 22 are arranged in all the gaps between the adjacent battery cell groups, so that the space utilization of the battery 10 reaches the maximum value, so as to fully utilize all the gaps of the first battery cells 21 in the battery 10 .
  • FIG. 6 shows a schematic partial cross-sectional view of another battery 10 according to the embodiment of the present application.
  • the cross-section may be a plane perpendicular to the axis Z of the first battery cell 21 .
  • the plurality of second battery cells 22 may only be arranged in part of the gap, that is, only a part of the gap between the first battery cell group 201 and the second battery cell group 202 is provided with the second The battery cells 22 can reduce the quantity of the second battery cells 21 and reduce the cost.
  • multiple battery cell groups can be dislocated to reduce the gaps between the multiple first battery cells 21 and improve space utilization.
  • the orthographic projections of the axes of all the first battery cells 21 in two adjacent battery cell groups on the first plane 12 do not coincide, and the first plane 12 is perpendicular to the first direction X.
  • the first battery cells 21 of two adjacent battery cell groups are arranged alternately, so that the space between the curved surfaces can be fully utilized.
  • the orthographic projections of the axes of all the first battery cells 21 in two adjacent battery cell groups on the first plane 12 are evenly distributed.
  • the first battery cell group 201 and the second battery cell group 202 are taken as an example here, and all the first battery cells included in the first battery cell group 201 and the second battery cell group 202
  • the bodies 21 have the same size.
  • the distances between the projections of the axes of all the first battery cells 21 included in the two battery cell groups on the first plane 12 can be equal. For example, as shown in FIG.
  • the distance between the axis of the first battery cell 21 in the first battery cell group 201 and the axis of the first first battery cell 21 in the second battery cell group 202 is L1; is L2, the distance L1 is equal to the distance L2, and so on, and the distance between the projections of the axes of all the first battery cells 21 included in the first battery cell group 201 and the second battery cell group 202 on the first plane 12 is equal to L1, in this way, the battery cells 20 in different battery cell groups can be misplaced, and the space is rationally used, the gaps between the multiple first battery cells 21 are reduced, and the multiple first battery cells in the battery 10 are improved.
  • the space utilization rate of body 21 is the space utilization rate of body 21.
  • the second battery cell 22 is located in a gap formed by three adjacent first battery cells 21 in two adjacent battery cell groups. Specifically, as shown in FIG. 6, when the first battery cells 21 of a plurality of battery cell groups are dislocated, every three first battery cells 21 can form a relatively independent gap. Correspondingly, the The second battery cell 22 is disposed in the gap formed by the three first battery cells 21 to further improve the space utilization of the battery 10 .
  • the cross-sections of three adjacent first battery cells 21 along the second plane are three circles, and every two circles in the three circles are mutually circumscribed circles, and the second plane is perpendicular to the first battery
  • the second battery cells 22 are arranged in the gaps of the plurality of first battery cells 21, which can fully fill the gaps between the first battery cells 21, The energy density of the battery 10 is further improved.
  • the second battery cells 22 are arranged in the gaps between the three first battery cells 21, when the originally tangent multiple first battery cells 21 receive external pressure or expand to generate pressure, the second battery cells 22
  • the battery cells 21 can relieve the pressure, reduce the deformation of the first battery cells 21 under the pressure, and keep the three first battery cells 21 in a tangential state as much as possible, so as to avoid the first battery cells Electrolyte leakage or lithium precipitation caused by the deformation of the body 21 can improve the safety performance of the battery 10 .
  • Figure 7 shows a schematic diagram of the exploded structure of any three adjacent first battery cells 21 and the corresponding second battery cells 22 in the battery 10 according to the embodiment of the present application, wherein, this Figure 7 can be as shown in Figure 2- 3 and the adjacent three first battery cells 21 and the corresponding second battery cells 22 of any one of the batteries 10 in FIGS. 5-6 , and FIG. 8 shows the three first battery cells 21 and the A schematic diagram of the corresponding second battery cell 22 disposed in the battery 10 .
  • the second battery cell 22 may be configured as a cylinder when it is not squeezed. Since the sides of the cylindrical second battery cells 22 are curved, they are more rounded than other shapes. In this way, as shown in FIG.
  • the deformation of the second battery cell 22 located in the gap is more flexible, and the gap between the multiple first battery cells 21 can be fully utilized.
  • the approximately triangular space between them is used to improve the energy density of the space utilization of the battery 10 .
  • the size and deformation amount of the second battery cell 22 in the embodiment of the present application can be set according to actual applications. Specifically, if the diameter of the first battery cell 21 is relatively large, the gaps between the plurality of first battery cells 21 are relatively small, and correspondingly, the second battery cell 22 with a smaller diameter can be selected, That is, the diameter of the first battery cell 21 is quite different from the diameter of the second battery cell 22, so that the space utilization rate of the battery 10 is high; on the contrary, if the diameter of the first battery cell 21 is relatively small, Then the gaps between the plurality of first battery cells 21 are relatively large, correspondingly, the second battery cell 22 with a larger diameter is selected, that is, the diameter of the first battery cell 21 and the diameter of the second battery cell 22 The difference is small, at this time, the space utilization rate of the battery 10 is also high, but the occupancy rate of the first battery cells 21 in the battery 10 is small.
  • the second battery cell 22 can choose a material with a larger deformation amount, so that the second battery cell 22 can be deformed to fit the gap without affecting the arrangement between the first battery cells 21;
  • the diameter of the second battery cell 22 is small, and the extrusion of the second battery cell 22 is relatively small. Therefore, the second battery cell 22 can choose a material with a small amount of deformation, which can be adapted The gap between the plurality of first battery cells 21 will not affect the arrangement of the first battery cells 21 .
  • the second battery cell 22 is provided with a pressure sensor 223 for detecting the stress state of the plurality of first battery cells 21 pressing the second battery cell 22 .
  • FIG. 9 shows a schematic structural diagram of the second battery cell 22 of the embodiment of the present application. As shown in FIG. 9, considering that the first battery cell 21 may be deformed under pressure, the first battery cell 21 Deformation may cause damage to the casing and leakage of the electrolyte, and may also cause deformation of the electrode assembly inside the first battery cell 21 to cause lithium deposition, which will cause safety issues for the battery 10 . Therefore, a pressure sensor can be provided on the second battery cell 22 to detect the stress state of the plurality of first battery cells 21 pressing the second battery cell 22 .
  • the pressure sensor 223 is disposed around the second battery cell 22, so that the pressure sensor 223 disposed on the second battery cell 22 can detect each 22 the stress state of the adjacent first battery cells 21, so as to warn in time of possible safety risks caused by stress.
  • the second battery cell 22 is provided with a liquid leakage sensor 222 for detecting whether the first battery cell 21 and/or the second battery cell 22 has liquid leakage.
  • a liquid leakage sensor 222 for detecting whether the first battery cell 21 and/or the second battery cell 22 has liquid leakage.
  • the liquid leakage sensor 222 is provided to detect whether the electrolyte leakage occurs in the first battery cell 21 and/or the second battery cell 22 , so as to avoid a short circuit of the battery 10 .
  • a thermal management component may be provided inside the battery 10 , and the thermal management component may contain fluid to regulate the temperature of the battery cells in the battery 10 .
  • the fluid here can be liquid or gas, and regulating temperature refers to heating or cooling multiple battery cells.
  • the thermal management component is used to contain the cooling fluid to lower the temperature of multiple battery cells; in addition, the thermal management component can also be used for heating to raise the temperature of multiple battery cells, The embodiment of the present application does not limit this.
  • the above-mentioned fluid may flow in circulation, so as to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • the liquid leakage sensor 222 can also be used to detect whether the battery 10 has the above-mentioned fluid leakage, so as to avoid a short circuit in the battery 10. .
  • the liquid leakage sensor 222 of the second battery cell 22 is arranged at one end of the second battery cell 22 close to the first electrode terminal 211 of the first battery cell 21, so that the liquid leakage sensor 222 can detect the first electrode terminal 211 of the second battery cell 21 in time.
  • the liquid leakage sensor 222 can also detect in time whether there is liquid leakage near the second electrode terminal 221, so as to avoid leakage caused by liquid leakage.
  • the short circuit of the electrical connection between the second electrode terminal 221 and other components can also avoid the impact of the leakage on the second bus component 132 .
  • the second battery cell 22 may be provided with two liquid leakage sensors 222 located at both ends of the second battery cell 22 , so as to timely detect the liquid leakage near the first electrode terminal 211 and/or the second electrode terminal 221 respectively, avoid short circuit, and improve the safety of the battery 10 .
  • the battery 10 and the electrical device of the embodiment of the present application are described above, and the method and device for preparing the battery 10 of the embodiment of the present application will be described below, and the parts not described in detail can be referred to the foregoing embodiments.
  • FIG. 10 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 may include: S310, S310, providing a plurality of first battery cells 21, the first battery cells 21 are cylinders, and there are gaps between the plurality of first battery cells 21 ; S320, providing a second battery cell 22, the second battery cell 22 is disposed in the gap between the plurality of the first battery cells 21, the second battery cell 22 is configured to be in a plurality of the first battery cells A battery cell 21 is deformed under extrusion to fit the shape of the gap; S330, providing a box body 11 for accommodating a plurality of the first battery cell 21 and the second battery cell twenty two.
  • FIG. 11 shows a schematic block diagram of a device 400 for preparing a battery according to an embodiment of the present application.
  • the device 400 may include: a providing module 410, the providing module 410 is used to: provide a plurality of first battery cells 21, the first battery cells 21 are cylinders, and a plurality of the first battery cells There is a gap between the cells 21; a second battery cell 22 is provided, the second battery cell 22 is arranged in the gap between the first battery cells 21, and the second battery cell 22 is configured as Under the extrusion of a plurality of the first battery cells 21, deformation occurs to adapt to the shape of the gap; a box body 11 is provided, and the box body 11 is used to accommodate a plurality of the first battery cells 21 and the second battery cells. battery cell 22 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池、用电设备、制备电池的方法和设备。该电池包括:多个第一电池单体,该第一电池单体为圆柱体,多个该第一电池单体之间具有间隙;第二电池单体,设置于多个该第一电池单体之间的间隙内,该第二电池单体被配置为在多个该第一电池单体的挤压下发生变形,以适配该间隙的形状;箱体,用于容纳多个该第一电池单体和该第二电池单体。本申请实施例的电池、用电设备、制备电池的方法和设备,能够提高电池的能量密度。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
考虑到电动车和大型储能设备要求高电压、高容量以满足续航能力和大电流输出,因此,如何在有限的空间里增加电池的能量密度已经成为电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种电池、用电设备、制备电池的方法和设备,能够提高电池的能量密度。
第一方面,提供了一种电池,所述电池包括:多个第一电池单体,所述第一电池单体为圆柱体,多个所述第一电池单体之间具有间隙;第二电池单体,设置于多个所述第一电池单体之间的间隙内,所述第二电池单体被配置为在多个所述第一电池单体的挤压下发生变形,以适配所述间隙的形状;箱体,用于容纳多个所述第一电池单体和所述第二电池单体。
因此,本申请实施例的电池,充分利用多个圆柱体的第一电池单体之间的间隙,提高箱体内的空间利用率,也就提高了电池的能量密度。并 且,在电池的使用过程中,多个第一电池单体之间相互接触并可能发生碰撞,而导致第一电池单体发生变形;电池充放电过程可能发生膨胀,也可能使得相互接触的多个第一电池单体之间挤压变形;电池用于车辆等场景中使用时,可能受到外力而导致多个第一电池单体之间发生碰撞,进而导致第一电池单体发生变形,而第一电池单体变形可能导致壳体破损进而导致电解液泄露,也可能导致第一电池单体内部的电极组件发生变形而引起析锂,这样都会引发电池安全问题。因此,设置可变形的第二电池单体在多个第一电池单体的空隙内,可以有效减少多个第一电池单体之间的挤压,进而减少第一电池单体的变形,提高多个第一电池单体之间的稳定性,进而提高了电池的安全性。即本申请实施例的电池既可以极大地提高圆柱电池的系统能量密度和市场竞争力,又能够有效地减少电池的故障。
在一些实施例中,所述电池包括:沿第一方向排列的多个电池单体组,所述多个电池单体组中的每个电池单体组包括沿第二方向排列的多个所述第一电池单体,所述第一方向、所述第二方向和所述第一电池单体的轴向相互垂直,多个所述第二电池单体分别设置于所述多个电池单体组中相邻两个电池单体组之间的多个间隙内,以充分利用该电池内部的空间,极大地提高该电池的空间利用率。
在一些实施例中,所述相邻两个电池单体组内的全部所述第一电池单体的轴线在第一平面上的正投影不重合,所述第一平面垂直于所述第一方向。这样,相邻两个电池单体组的第一电池单体之间交错设置,能够充分利用相邻曲面之间的空间。
在一些实施例中,所述相邻两个电池单体组内的全部所述第一电池单体的轴线在第一平面上的正投影均匀分布,不同电池单体组中的电池单体可以错位设置,合理利用空间,减小了多个第一电池单体之间的空隙,提高了电池内多个第一电池单体的空间利用率。
在一些实施例中,所述第二电池单体位于所述相邻两个电池单体组中三个相邻的所述第一电池单体形成的间隙内。
错位设置多个电池单体组时,每三个第一电池单体即可形成一个相对独立的间隙,对应的,可以将第二电池单体设置于该三个第一电池单体形成的间隙内,充分利用该间隙,以进一步提高电池的空间利用率。
在一些实施例中,所述三个相邻的所述第一电池单体沿第二平面的截面为三个圆,所述三个圆中每两个圆互为外切圆,所述第二平面垂直于所述第一电池单体的轴向。
这样,当不考虑电池内设置的多个第二电池单体时,可以极大地提高该电池内的多个第一电池单体的空间利用率,以充分利用电池的箱体的有限空间;进一步的,在该多个第一电池单体的间隙内设置第二电池单体,可以充分第一电池单体之间的间隙,进一步提高了电池的能量密度。并且,由于第二电池单体设置在该三个第一电池单体的间隙内,当原本相切的多个第一电池单体受到外部压力或者发生膨胀而产生压力时,第二电池单体可以缓解该压力,减少第一电池单体的在该压力作用下发生的变形,使得该三个第一电池单体尽量保持相切状态,以避免由该第一电池单体变形而引发的电解液泄露或者析锂等问题,提高了电池的安全性能。
在一些实施例中,所述第二电池单体设置有漏液传感器,所述漏液传感器用于检测所述第一电池单体和/或所述第二电池单体是否发生漏液,以及时发现漏液现象,避免漏液引起的电路短路。
在一些实施例中,所述漏液传感器设置于所述第二电池单体的靠近所述第一电池单体的第一电极端子的一端。
这样,漏液传感器可以及时检测第一电池单体的第一电极端子附近是否有漏液,避免漏液引发该第一电极端子与其他部件的电连接的短路,也可以避免漏液对第一汇流部件的影响。
在一些实施例中,所述第二电池单体设置有压力传感器,所述压力传感器用于检测挤压所述第二电池单体的多个所述第一电池单体的应力状态。
考虑到第一电池单体在压力作用下可能发生变形,而第一电池单体的变形可能导致其壳体破损进而导致电解液泄露,也可能导致第一电池单体内部的电极组件发生变形而引起析锂,这样都会引发电池安全问题。因此,可以通过在第二电池单体上设置压力传感器,以检测挤压该第二电池单体的多个第一电池单体的应力状态,以及时发现可能存在的安全隐患。
在一些实施例中,所述压力传感器环绕所述第二电池单体设置,以使得该第二电池单体设置的该压力传感器能够检测到与该第二电池单体相邻的每个第一电池单体的应力状态,以便于及时警示可能存在的由于应力引起的安全风险。
在一些实施例中,所述电池包括第一汇流部件和第二汇流部件,所述第一汇流部件用于实现多个所述第一电池单体之间的电连接,以形成第一供电电路;所述第二汇流部件用于实现多个所述第二电池单体之间的电连接,以形成第二供电电路,所述第一供电电路和所述第二供电电路分别为不同的用电模块提供电能。
由于第一电池单体和第二电池单体的尺寸通常不同,因此电容量也通常设置为不同。例如,第一电池单体的电容量通常较大,可以用于为该电池所在的用电设备供电,即通过第一汇流部件实现多个第一电池单体之间的电连接,以形成第一供电电路,该第一供电电路可以用于向电池所在的用电设备输出电能。
而第二电池的电容量通常较小,因此,可以通过第二汇流部件实现第二电池单体之间的电连接,以形成第二供电电路,该第二供电电路可以作为备用电源,单独输出电能。例如,以该电池为车辆供电为例,该第二 供电电路可以代替车辆的低压系统,这样,低压系统无需额外占用空间,例如无需占用电池以外的空间,而仅仅存在于电池内的原本被空置的多个第一电池单体之间的空隙中,有利于提高系统能量密度,还可以降低成本。
第二方面,提供了一种用电设备,包括:第一方面或者第一方面中任意一个实施例所述的电池。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
第三方面,提供了一种制备电池单体的方法,包括:提供多个第一电池单体,所述第一电池单体为圆柱体,多个所述第一电池单体之间具有间隙;提供第二电池单体,所述第二电池单体设置于多个所述第一电池单体之间的间隙内,所述第二电池单体被配置为在多个所述第一电池单体的挤压下发生变形,以适配所述间隙的形状;提供箱体,所述箱体用于容纳多个所述第一电池单体和所述第二电池单体。
第四方面,提供了一种制备电池单体的设备,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的局部结构的示意图;
图3是本申请一实施例公开的一种电池的局部分解结构的截面示意图;
图4是本申请一实施例公开的一种第一电池单体的结构示意图;
图5是本申请一实施例公开的一种电池的局部结构示意图;
图6是本申请一实施例公开的另一种电池的局部结构示意图;
图7是本申请一实施例公开的一种电池中任意相邻的三个第一电池 单体以及对应的第二电池单体的分解结构示意图;
图8是本申请一实施例公开的一种电池中安装的任意相邻的三个第一电池单体以及对应的第二电池单体的结构示意图;
图9是本申请一实施例公开的一种第二电池单体的结构示意图;
图10是本申请一实施例公开的一种制备电池的方法的示意性流程图;
图11是本申请一实施例公开的一种制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言, 可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数以及电池的安全性。其中,考虑到电动车辆等用电设备通常要求高电压、高容量以满足续航能力和大电流输出,但是这类用电设备又有体积的限制,也就限制了电池占用的空间,那么如何在有限空间内,尽可能提高电池的能量密度,已经成为一项重要课题。
例如,对于圆柱形电池单体,由于圆柱体的形状特点,成组后相邻的电池单体之间留有空隙,无法如长方形电池单体一样实现壁与壁的紧密贴合。这样就导致了圆柱形电池单体组成的电池的能量密度相对低,极大的减弱了圆柱形电池单体的市场竞争力。
因此,本申请实施例提供了一种电池,该电池包括箱体,该箱体内容纳有多个圆柱体的第一电池单体,该多个第一电池单体之间具有间隙,该电池还包括第二电池单体,该第二电池单体设置在多个第一电池单体之间的间隙内,并且该第二电池单体能够在多个第一电池单体的挤压下发生变形,以适配多个第一电池单体之间的间隙,这也可以充分利用多个圆柱体的第一电池单体之间的间隙,提高箱体内的空间利用率,也就提高了电池的能量密度。
并且,在电池的使用过程中,多个第一电池单体之间相互接触并可能发生碰撞,而导致第一电池单体发生变形;电池充放电过程可能发生膨胀,也可能使得相互接触的多个第一电池单体之间挤压变形;电池用于车辆等场景中使用时,可能受到外力而导致多个第一电池单体之间发生碰撞,进而导致第一电池单体发生变形,而第一电池单体变形可能导致壳体破损进而导致电解液泄露,也可能导致第一电池单体内部的电极组件发生变形而引起析锂,这样都会引发电池安全问题。因此,设置可变形的第二电池单体在多个第一电池单体的空隙内,可以有效减少多个第一电池单体之间的挤压,进而减少第一电池单体的变形,提高多个第一电池单体之间的稳定性,进而提高了电池的安全性。即本申请实施例的电池既可以极大地提高圆柱电池的系统能量密度和市场竞争力,又能够有效地减少电池的故障。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
图2示出了本申请实施例的一种电池10的局部结构的示意图,图3示出了本申请实施例的一种电池10的局部分解结构的截面示意图,其 中,图3中电池10组装后可以形成图2中的电池10的局部。如图2和图3所示,本申请实施例的电池10包括:多个第一电池单体21,该第一电池单体21为圆柱体,多个该第一电池单体21之间具有间隙;第二电池单体22,设置于多个该第一电池单体21之间的间隙内,该第二电池单体22被配置为在多个该第一电池单体21的挤压下发生变形,以适配该间隙的形状;箱体11,用于容纳多个该第一电池单体21和该第二电池单体22。
应理解,图3所示的电池10的截面为沿垂直于第一电池单体21的轴向Z的方向的截面。
本申请实施例的电池10包括多个第一电池单体21,由于该多个第一电池单体21为圆柱体,圆柱体的侧面为曲面,因此,多个第一电池单体21的侧壁之间存在间隙;本申请实施例的第二电池单体22能够发生变形,这样,将该第二电池单体22设置在多个第一电池单体21的间隙内,该第二电池单体22能够在多个第一电池单体21的挤压下发生变形,以适配多个第一电池单体21之间的间隙,也就充分利用了多个圆柱体的第一电池单体21之间的间隙,提高电池10的箱体11内的空间利用率,也就提高了电池10的能量密度。
并且,在电池10的使用过程中,若多个第一电池单体21之间相互接触,则可能发生碰撞,而导致第一电池单体21发生变形;电池10充放电过程可能发生膨胀,也可能使得相互接触的多个第一电池单体21之间挤压变形;电池10用于车辆等场景中使用时,可能受到外力而导致多个第一电池单体21之间发生碰撞,进而导致第一电池单体21发生变形,而第一电池单体21变形可能导致壳体破损进而导致电解液泄露,也可能导致第一电池单体21内部的电极组件发生变形而引起析锂,这样都会引发电池10安全问题。因此,设置可变形的第二电池单体22在多个第一电池单体21的空隙内,可以有效减少多个第一电池单体21之间的挤压,进而减少第一电池单体21的变形,提高多个第一电池单体21之间的稳定性,进而提高了电池10的安全性。因此,本申请实施例的电池10既可以极大地提高包括圆柱电池单体的电池10的系统能量密度和市场竞争力,又能够有效地减少电池10的故障。
本申请实施例的电池10包括箱体11,箱体11内部为中空结构,多个第一电池单体21和第二电池单体22均容纳于箱体11内。图2和图3示出了本申请实施例的箱体11的一种可能的实现方式,如图2和图3所示,本申请实施例的箱体11可以由多个部分组合形成。例如,该箱体11可以包括4个侧壁111,该四个侧壁111分别平行于第一电池单体21的轴向Z,以将多个第一电池单体21和第二电池单体22包围。可选地,每个侧壁111的朝向内部的表面可以设置有凹凸的仿形结构,该仿形结构可以与多个第一电池单体21的曲面侧壁相贴合,填充侧壁111与第一电池单体21之间的间隙,以使得第一电池单体21相对稳定,提高电池10的稳定性。
可选地,该箱体11还可以包括两个端板,该两个端板垂直于四个侧壁111,并分别设置在四个侧壁111沿轴向Z的两端,以与四个侧壁111形成中空的长方体,以使得该箱体11相对密封。或者,该电池10还可以包括其他部件,由该其他部分充当该两个端板中的至少一个,以与该四个侧壁111形成中空的箱体11,例如,该电池10可以包括热管理部件,该热管理部件设置于第一电池单体21的沿轴向Z的一端或者两端,以用作端板,但本申请实施例并不限于此。
可选地,本申请实施例的箱体11还可以通过其他方式形成。例如,箱体11也可以包括两部分,这里分别称为第一部分和第二部分,第一部分和第二部分扣合在一起。第一部分和第二部分的形状可以根据内部第一电池单体21的形状而定,第一部分和第二部分中至少一个具有一个开口。
例如,第一部分和第二部分中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分为中空长方体且只有一个面为开口面,第一部分为板状为例,那么第一部分盖合在第二部分的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体,该多个电池单体包括第一电池单体21和第二电池单体22,多个电池单体相互并联或串联或混联组合后置于第一部分和第二部分扣合后形成的箱体11内。
再例如,该第一部分和第二部分也可以均为中空长方体且各自只有一个面为开口面,第一部分的开口和第二部分的开口相对设置,并且第一部分和第二部分相互扣合形成具有封闭腔室的箱体11。
应理解,本申请实施例的第一电池单体21还可以包括:第一电极端子211,该第一电极端子211可以用于与第一电池单体21的内部的电极组件电连接,以输出电能。类似的,该第二电池单体22还可以包括第二电极端子221,该第二电极端子221可以用于与第二电池单体22的内部的电极组件电连接,以输出电能。
具体地,图4示出了本申请实施例的第一电池单体21的结构示意图。如图2至图4所示,该第一电池单体21可以包括两个第一电极端子211,类似的,第二电池单体22也可以包括两个第二电极端子221,这里以任意一个电池单体包括的两个电极端子为例进行描述。该两个电极端子分别为正极电极端子和负极电极端子,正极电极端子用于与正极极耳电连接,负极电极端子用于与负极极耳电连接。正极电极端子与正极极耳可以直接连接,也可以间接连接,负极电极端子与负极极耳可以直接连接,也可以间接连接。例如,正极电极端子通过一个连接构件与正极极耳电连接,负极电极端子通过一个连接构件与负极极耳电连接。
可选地,如图2至图4所示,本申请实施例的两个电极端子可以分别设置于电池单体的两个圆柱底面,即第一电池单体21的两个圆柱底面分别设置有一个第一电极端子211,类似的,第二电池单体22的两个圆柱底面分别设置有一个第二电极端子221,以便于实现多个电池单体之间的电连接。
应理解,本申请实施例的电池10还可以包括汇流部件13,该汇流部件13用于实现多个电池单体之间的电连接,例如并联或串联或混联。具体地,如图2所示,汇流部件13可通过连接电池单体的电极端子实现电池单体之间的电连接。进一步地,汇流部件13可通过焊接固定于电池单体的电极端子。
可选地,为了清楚地示出本申请实施例的电极端子211的位置,图3未示出图2中的汇流部件13。如图2至图4所示,对于本申请实施例的 圆柱形第一电池单体21,该第一电池单体21的两个圆柱底面分别设置有第一电极端子211,这样,通过分别设置于多个第一电池单体21的两端的第一汇流部件131即可实现多个第一电池单体21之间和/或第一电池单体21与其他电池单体之间的的电连接,便于组装和电连接。类似的,对于本申请实施例的位于第一电池单体21之间的第二电池单体22,该第二电池单体22的两个底面分别设置有第二电极端子211,这样,通过分别设置于多个第二电池单体22的两端的第二汇流部件132即可实现多个第二电池单体22之间的和/或该第二电池单体22与其他电池单体之间的电连接,便于组装和电连接。
在本申请实施例中,电池10包括的第一汇流部件131和第二汇流部件132可以为相同的汇流部件13,或者,也可以为不同的汇流部件13。例如,对于第一汇流部件131与第二汇流部件132不同的情况,第一汇流部件131用于实现多个第一电池单体21之间的电连接,以形成第一供电电路;第二汇流部件132用于实现多个第二电池单体22之间的电连接,以形成第二供电电路,第一供电电路和第二供电电路分别为不同的用电模块提供电能。由于第一电池单体21和第二电池单体22的尺寸通常不同,因此电容量也通常设置为不同。例如,第一电池单体21的电容量通常较大,可以用于为该电池10所在的用电设备供电,即通过第一汇流部件131实现多个第一电池单体21之间的电连接,以形成第一供电电路,该第一供电电路可以用于向电池10所在的用电设备输出电能。
而第二电池22的电容量通常较小,因此,可以通过第二汇流部件132实现第二电池单体22之间的电连接,以形成第二供电电路,该第二供电电路可以作为备用电源,单独输出电能。例如,以该电池10为车辆1供电为例,该第二供电电路可以代替车辆1的低压系统,这样,低压系统无需额外占用空间,例如无需占用电池10以外的空间,而仅仅存在于电池10内的原本被空置的多个第一电池单体21之间的空隙中,有利于提高系统能量密度,还可以降低成本。
应理解,本申请实施例中的箱体11内部的电池单体可以按照一定规律进行排列和设置,尤其是多个第一电池单体21,以提高箱体11的空 间利用率,进而提高该电池10的能量密度。例如,本申请实施例的多个第一电池单体21的尺寸可以设置为相同的或者不同的,本申请实施例中以多个第一电池单体21的尺寸相同为例进行说明,即多个第一电池单体21的底面直径相同,多个第一电池单体21的高也相同,这样可以使得多个第一电池单体21的容量也相同,以便于实现多个第一电池单体21之间的电连接,也便于排列该多个第一电池单体21,以提高空间利用率。
具体地,图5示出了本申请实施例的电池10的局部截面的示意图,该电池10可以为如图2和图3所示的电池10,该截面可以为垂直于第一电池单体21的轴向Z的平面。如图5所示,该电池10内包括:沿第一方向X排列的多个电池单体组,多个电池单体组中的每个电池单体组包括沿第二方向Y排列的多个第一电池单体21,第一方向X、第二方向Y和第一电池单体21的轴向Z相互垂直。将多个第一电池单体21排列为阵列,可以有效利用箱体11内部的空间。
对应的,多个第二电池单体22分别设置于多个电池单体组中相邻两个电池单体组之间的多个间隙内。具体地,如图5所示,多个电池单体组之间具有多个间隙,可以将多个第二电池单体22设置于多个间隙内,例如,该多个第二电池单体22可以设置于全部间隙内或者部分间隙内,本申请实施例并不限于此。
例如,如图5所示,以多个电池单体组中任意两个相邻的电池单体组为例,这里分别称为第一电池单体组201和第二电池单体组202,该第一电池单体组201和第二电池单体组202之间具有多个间隙,对应设置有多个第二电池单体22,每个第二电池单体22设置于一个间隙内。其中,如图5所示,电池10的多个第二电池单体22可以设置于全部间隙内,即多个第二电池单体22与多个间隙之间一一对应,以使得每两个相邻电池单体组之间的全部间隙内均设置有第二电池单体22,使得该电池10的空间利用率达到最大值,以充分利用电池10内第一电池单体21的全部间隙。
再例如,不同于图5所示,图6示出了本申请实施例的另一种电池10的局部截面示意图,该截面可以为垂直于第一电池单体21的轴向Z的 平面。如图6所示,该多个第二电池单体22可以仅设置于部分间隙内,即该第一电池单体组201和第二电池单体组202之间仅一部分间隙内设置有第二电池单体22,这样能够减少设置的第二电池单体21的数量,降低了成本。
考虑到圆柱体的特点,可以将多个电池单体组错位设置,以减少多个第一电池单体21之间的空隙,提高空间利用率。具体地,相邻两个电池单体组内的全部第一电池单体21的轴线在第一平面12上的正投影不重合,第一平面12垂直于第一方向X。这样,相邻两个电池单体组的第一电池单体21之间交错设置,能够充分利用曲面之间的空间。
例如,相邻两个电池单体组内的全部第一电池单体21的轴线在第一平面12上的正投影均匀分布。如图6所示,这里以第一电池单体组201和第二电池单体组202为例,并且该第一电池单体组201和第二电池单体组202包括的全部第一电池单体21的尺寸相同,此时,可以设置该两个电池单体组包括的全部第一电池单体21的轴线在第一平面12的投影的间距相等。例如,如图6所示,第一电池单体组201中第一个第一电池单体21的轴线,与第二电池单体组202中第一个第一电池单体21的轴线之间的间距为L1;而第二电池单体组202中第一个第一电池单体21的轴线,与第一电池单体组201中第二个第一电池单体21的轴线之间的间距为L2,距离L1与距离L2相等,依次类推,第一电池单体组201和第二电池单体组202包括的全部第一电池单体21的轴线在第一平面12的投影的间距均等于L1,这样,不同电池单体组中的电池单体20可以错位设置,合理利用空间,减小了多个第一电池单体21之间的空隙,提高了电池10内多个第一电池单体21的空间利用率。
在本申请实施例中,第二电池单体22位于相邻两个电池单体组中三个相邻的第一电池单体21形成的间隙内。具体地,如图6所示,当错位设置多个电池单体组的第一电池单体21时,每三个第一电池单体21即可形成一个相对独立的间隙,对应的,可以将第二电池单体22设置于该三个第一电池单体21形成的间隙内,以进一步提高电池10的空间利用率。
如图6所示,三个相邻的第一电池单体21沿第二平面的截面为三个圆,三个圆中每两个圆互为外切圆,第二平面垂直于第一电池单体21的轴向Z,这样,当不考虑电池10内设置的多个第二电池单体22时,可以极大地提高该电池10内的多个第一电池单体21的空间利用率,以充分利用电池10的箱体11的有限空间;进一步的,在该多个第一电池单体21的间隙内设置第二电池单体22,可以充分第一电池单体21之间的间隙,进一步提高了电池10的能量密度。并且,由于第二电池单体22设置在该三个第一电池单体21的间隙内,当原本相切的多个第一电池单体21受到外部压力或者发生膨胀而产生压力时,第二电池单体21可以缓解该压力,减少第一电池单体21的在该压力作用下发生的变形,使得该三个第一电池单体21尽量保持相切状态,以避免由该第一电池单体21变形而引发的电解液泄露或者析锂等问题,提高了电池10的安全性能。
图7示出了本申请实施例的电池10中任意相邻的三个第一电池单体21以及对应的第二电池单体22的分解结构示意图,其中,该图7可以为如图2-3和图5-6中任一个电池10的相邻的三个第一电池单体21以及对应的第二电池单体22,图8为图7所示的三个第一电池单体21以及对应的第二电池单体22设置于电池10内时的示意图。如图7所示,第二电池单体22在未被挤压时可以设置为圆柱体。由于圆柱体的第二电池单体22的侧面为曲面,相比于其他形状更为圆滑,这样,如图8所示,在被挤压的情况下,尤其是该三个相邻的第一电池单体21沿第二平面的截面为互为外切圆的三个圆时,位于该间隙内的第二电池单体22的变形更加灵活,可以充分利用多个第一电池单体21之间的近似三角形空间,以提高电池10的空间利用率能量密度。
具体地,如图8所示,本申请实施例的第二电池单体22的尺寸以及变形量可以根据实际应用进行设置。具体地,若第一电池单体21的直径相对较大时,则多个第一电池单体21之间的间隙相对较小,对应的,可以选择直径较小的第二电池单体22,即第一电池单体21的直径和第二电池单体22的直径相差较大,这样,该电池10的空间利用率较高;相反的,若第一电池单体21的直径相对较小时,则多个第一电池单体21之间 的间隙相对较大,对应的,选择直径较大的第二电池单体22,即第一电池单体21的直径和第二电池单体22的直径相差较小,此时,该电池10的空间利用率也较高,但电池10内的第一电池单体21的占用率较小。
在本申请实施例中,对于相同大小的间隙,若第二电池单体22的直径较大,则该第二电池单体22受到的挤压也就相对较大,这种情况下,该第二电池单体22可以选择变形量较大的材料,以使该第二电池单体22能够变形以适配间隙,而不会影响第一电池单体21之间的设置;相反的,若第二电池单体22的直径较小,则该第二电池单体22受到的挤压也就相对较小,因此,该第二电池单体22可以选择变形量较小的材料,即可适配多个第一电池单体21之间的间隙,并且不会影响第一电池单体21之间的设置。
可选地,第二电池单体22设置有压力传感器223,压力传感器223用于检测挤压第二电池单体22的多个第一电池单体21的应力状态。图9示出了本申请实施例的第二电池单体22的结构示意图,如图9所示,考虑到第一电池单体21在压力作用下可能发生变形,而第一电池单体21的变形可能导致其壳体破损进而导致电解液泄露,也可能导致第一电池单体21内部的电极组件发生变形而引起析锂,这样都会引发电池10安全问题。因此,可以通过在第二电池单体22上设置压力传感器,以检测挤压该第二电池单体22的多个第一电池单体21的应力状态。
可选地,如图9所示,该压力传感器223环绕第二电池单体22设置,以使得该第二电池单体22设置的该压力传感器223能够检测到每个与该第二电池单体22相邻的第一电池单体21的应力状态,以便于及时警示可能存在的由于应力引起的安全风险。
可选地,第二电池单体22设置有漏液传感器222,漏液传感器222用于检测第一电池单体21和/或第二电池单体22是否发生漏液。如图9所示,考虑到第一电池单体21和/或第二电池单体22的内部设置有电解液,若该电解液发生泄漏,则可能导致电池10内部的电路连接发生短路,因此,设置该漏液传感器222可以用于检测第一电池单体21和/或第二电池单体22是否发生电解液泄漏,以避免电池10发生短路。
另外,考虑到该电池10内部还可以设置有热管理部件,该热管理部件可以容纳流体以给该电池10内的电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度;另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,上述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
若热管理部件发生泄漏,流出的液体也可能导致电池10内部的电路连接发生短路,因此,该该漏液传感器222还可以用于检测电池10是否发生上述流体的泄漏,以避免电池10发生短路。
可选地,第二电池单体22的漏液传感器222设置于第二电池单体22的靠近第一电池单体21的第一电极端子211的一端,这样,漏液传感器222可以及时检测第一电池单体21的第一电极端子211附近是否有漏液,避免漏液引发该第一电极端子211与其他部件的电连接的短路,也可以避免漏液对第一汇流部件131的影响;另外,由于第二电池单体22的第二电极端子221的位置与第一电极端子211对应,所以,漏液传感器222还可以及时检测第二电极端子221附近是否有漏液,避免漏液引发该第二电极端子221与其他部件的电连接的短路,还可以避免漏液对第二汇流部件132的影响。
可选地,考虑到每个电池单体设置有两个电极端子,对应的,该第二电池单体22可以设置有两个漏液传感器222,分别位于该第二电池单体22的两端,以分别及时检测第一电极端子211和/或第二电极端子221附近的漏液情况,避免发生短路,以提高电池10的安全性。
上文描述了本申请实施例的电池10和用电设备,下面将描述本申请实施例的制备电池10的方法和设备,其中未详细描述的部分可参见前述各实施例。
图10示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图10所示,该方法300可以包括:S310,S310,提供多个第一 电池单体21,该第一电池单体21为圆柱体,多个该第一电池单体21之间具有间隙;S320,提供第二电池单体22,该第二电池单体22设置于多个该第一电池单体21之间的间隙内,该第二电池单体22被配置为在多个该第一电池单体21的挤压下发生变形,以适配该间隙的形状;S330,提供箱体11,该箱体11用于容纳多个该第一电池单体21和该第二电池单体22。
图11示出了本申请一个实施例的制备电池的设备400的示意性框图。如图11所示,该设备400可以包括:提供模块410,该提供模块410用于:提供多个第一电池单体21,该第一电池单体21为圆柱体,多个该第一电池单体21之间具有间隙;提供第二电池单体22,该第二电池单体22设置于多个该第一电池单体21之间的间隙内,该第二电池单体22被配置为在多个该第一电池单体21的挤压下发生变形,以适配该间隙的形状;提供箱体11,该箱体11用于容纳多个该第一电池单体21和该第二电池单体22。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种电池,其特征在于,包括:
    多个第一电池单体(21),所述第一电池单体(21)为圆柱体,多个所述第一电池单体(21)之间具有间隙;
    第二电池单体(22),设置于多个所述第一电池单体(21)之间的间隙内,所述第二电池单体(22)被配置为在多个所述第一电池单体(21)的挤压下发生变形,以适配所述间隙的形状;
    箱体(11),用于容纳多个所述第一电池单体(21)和所述第二电池单体(22)。
  2. 根据权利要求1所述的电池,其特征在于,所述电池包括:
    沿第一方向排列的多个电池单体组,所述多个电池单体组中的每个电池单体组包括沿第二方向排列的多个所述第一电池单体(21),所述第一方向、所述第二方向和所述第一电池单体(21)的轴向相互垂直,多个所述第二电池单体(22)分别设置于所述多个电池单体组中相邻两个电池单体组之间的多个间隙内。
  3. 根据权利要求2所述的电池,其特征在于,所述相邻两个电池单体组内的全部所述第一电池单体(21)的轴线在第一平面(12)上的正投影不重合,所述第一平面(12)垂直于所述第一方向。
  4. 根据权利要求3所述的电池,其特征在于,所述相邻两个电池单体组内的全部所述第一电池单体(21)的轴线在第一平面(12)上的正投影均匀分布。
  5. 根据权利要求3或4所述的电池,其特征在于,所述第二电池单体(22)位于所述相邻两个电池单体组中三个相邻的所述第一电池单体(21)形成的间隙内。
  6. 根据权利要求5所述的电池,其特征在于,所述三个相邻的所述第一电池单体(21)沿第二平面的截面为三个圆,所述三个圆中每两个圆互为外切圆,所述第二平面垂直于所述第一电池单体(21)的轴向。
  7. 根据权利要求1至6中任一项所述的电池,其特征在于,所述第二电池单体(22)设置有漏液传感器(222),所述漏液传感器(222)用于检测所述第一电池单体(21)和/或所述第二电池单体(22)是否发生漏液。
  8. 根据权利要求7所述的电池,其特征在于,所述漏液传感器(222)设置于所述第二电池单体(22)的靠近所述第一电池单体(21)的第一电极端子(211)的一端。
  9. 根据权利要求1至8中任一项所述的电池,其特征在于,所述第二电池单体(22)设置有压力传感器(223),所述压力传感器(223)用于检测挤压所述第二电池单体(22)的多个所述第一电池单体(21)的应力状态。
  10. 根据权利要求9所述的电池,其特征在于,所述压力传感器(223)环绕所述第二电池单体(22)设置。
  11. 根据权利要求1至10中任一项所述的电池,其特征在于,所述电池包括第一汇流部件(131)和第二汇流部件(132),
    所述第一汇流部件(131)用于实现多个所述第一电池单体(21)之间的电连接,以形成第一供电电路;
    所述第二汇流部件(132)用于实现多个所述第二电池单体(22)之间的电连接,以形成第二供电电路,所述第一供电电路和所述第二供电电路分别为不同的用电模块提供电能。
  12. 一种用电设备,其特征在于,包括:根据权利要求1至11中任一项所述的电池,所述电池用于为所述用电设备提供电能。
  13. 一种制备电池的方法,其特征在于,包括:
    提供多个第一电池单体(21),所述第一电池单体(21)为圆柱体,多个所述第一电池单体(21)之间具有间隙;
    提供第二电池单体(22),所述第二电池单体(22)设置于多个所述第一电池单体(21)之间的间隙内,所述第二电池单体(22)被配置为在多个所述第一电池单体(21)的挤压下发生变形,以适配所述间隙的形状;
    提供箱体(11),所述箱体(11)用于容纳多个所述第一电池单体(21)和所述第二电池单体(22)。
  14. 一种制备电池的设备,其特征在于,包括:提供模块(410),所述提供模块(410)用于:
    提供多个第一电池单体(21),所述第一电池单体(21)为圆柱体,多个所述第一电池单体(21)之间具有间隙;
    提供第二电池单体(22),所述第二电池单体(22)设置于多个所述第一电池单体(21)之间的间隙内,所述第二电池单体(22)被配置为在多个所述第一电池单体(21)的挤压下发生变形,以适配所述间隙的形状;
    提供箱体(11),所述箱体(11)用于容纳多个所述第一电池单体(21)和所述第二电池单体(22)。
PCT/CN2022/072058 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备 WO2023133808A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280024740.1A CN117063333A (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备
PCT/CN2022/072058 WO2023133808A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备
EP22919280.2A EP4266458A1 (en) 2022-01-14 2022-01-14 Battery, electrical device, and battery preparation method and device
US18/218,591 US20230352788A1 (en) 2022-01-14 2023-07-06 Battery, power consumption device, and method and device for producing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072058 WO2023133808A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/218,591 Continuation US20230352788A1 (en) 2022-01-14 2023-07-06 Battery, power consumption device, and method and device for producing battery

Publications (1)

Publication Number Publication Date
WO2023133808A1 true WO2023133808A1 (zh) 2023-07-20

Family

ID=87280058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072058 WO2023133808A1 (zh) 2022-01-14 2022-01-14 电池、用电设备、制备电池的方法和设备

Country Status (4)

Country Link
US (1) US20230352788A1 (zh)
EP (1) EP4266458A1 (zh)
CN (1) CN117063333A (zh)
WO (1) WO2023133808A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355861A (ja) * 2003-05-27 2004-12-16 Mitsubishi Heavy Ind Ltd 電池モジュール、電池システム
EP2418709A1 (de) * 2010-08-09 2012-02-15 Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Batteriepack
CN107331908A (zh) * 2017-08-15 2017-11-07 慕金汶 蓄电池鼓包和漏液故障的智能化检测系统和方法
CN206992243U (zh) * 2017-07-17 2018-02-09 东莞市迈科新能源有限公司 一种圆柱型电池模组结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355861A (ja) * 2003-05-27 2004-12-16 Mitsubishi Heavy Ind Ltd 電池モジュール、電池システム
EP2418709A1 (de) * 2010-08-09 2012-02-15 Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Batteriepack
CN206992243U (zh) * 2017-07-17 2018-02-09 东莞市迈科新能源有限公司 一种圆柱型电池模组结构
CN107331908A (zh) * 2017-08-15 2017-11-07 慕金汶 蓄电池鼓包和漏液故障的智能化检测系统和方法

Also Published As

Publication number Publication date
EP4266458A1 (en) 2023-10-25
CN117063333A (zh) 2023-11-14
US20230352788A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN216872113U (zh) 电池和用电设备
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
CN217182265U (zh) 电池和用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
CN216872134U (zh) 电池和用电设备
CN216872133U (zh) 一种电池和用电设备
CN115842189B (zh) 一种电池冷却结构、电池、用电装置
US20240088477A1 (en) Battery, power consumption device, and method and device for producing battery
CN220155580U (zh) 电池和用电设备
WO2023221649A1 (zh) 电池和用电设备
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
CN216872190U (zh) 一种电池和用电设备
WO2023133808A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN116830368A (zh) 电池、用电设备、制造电池的方法和设备
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004780A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4258441A1 (en) Battery, electric device, and battery preparation method and device
CN220272611U (zh) 电池和用电设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024031348A1 (zh) 电极组件、电池单体、电池及用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022919280

Country of ref document: EP

Effective date: 20230718

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280024740.1

Country of ref document: CN