WO2023151109A1 - 水泵冷却结构及具有其的冷却系统 - Google Patents

水泵冷却结构及具有其的冷却系统 Download PDF

Info

Publication number
WO2023151109A1
WO2023151109A1 PCT/CN2022/076631 CN2022076631W WO2023151109A1 WO 2023151109 A1 WO2023151109 A1 WO 2023151109A1 CN 2022076631 W CN2022076631 W CN 2022076631W WO 2023151109 A1 WO2023151109 A1 WO 2023151109A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical seal
pipe
cooling
liquid outlet
water pump
Prior art date
Application number
PCT/CN2022/076631
Other languages
English (en)
French (fr)
Inventor
周维坚
余敏
缪杰
滕新伟
杨丹飞
余伟平
何涛
Original Assignee
浙江水泵总厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水泵总厂有限公司 filed Critical 浙江水泵总厂有限公司
Publication of WO2023151109A1 publication Critical patent/WO2023151109A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Definitions

  • the present application relates to the technical field related to centrifugal pumps, in particular to a water pump cooling structure and a cooling system having the same.
  • the mechanical seal in the centrifugal pump relies on a pair or several pairs of end faces perpendicular to the shaft for relative sliding to keep fit under the fluid pressure and the elastic force (or magnetic force) of the compensation mechanism, and is equipped with auxiliary seals to achieve leakage prevention.
  • the pumping liquid to be transported is a high-temperature and high-pressure liquid
  • the pressure of the high-temperature pumping liquid will rise sharply, which will easily cause leakage at the mechanical seal;
  • the pumping liquid of the centrifugal pump is a high-temperature and high-pressure liquid
  • most of the cartridge-type mechanical seals are used to prevent leakage, but the cartridge-type mechanical seals are expensive, which will lead to a substantial increase in production costs; Cooling liquid is used to cool down the mechanical seal.
  • the centrifugal pump is working, the sliding bearings and other components in the bearing bush need to be cooled by connecting the cooling liquid, which will lead to too many cooling pipes connected to the pump body. The connection is complicated, which is not conducive to the subsequent maintenance of the pump.
  • the application firstly provides a water pump cooling structure, including a pump body, a main shaft, two bearing pads, two connecting pipes and two sets of mechanical seals; the main shaft runs through the pump body, and the two bearing pads are arranged on both sides of the main shaft.
  • the two ends of the pump body along the length direction of the main shaft and the main shaft are provided with the mechanical seal; the pump body is also equipped with two mechanical seal cooling valves corresponding to the two sets of mechanical seals.
  • a bearing bush cooling cavity is opened in the bearing bush, one end of the communication pipe is connected to the bearing bush, and the other end is connected to the pump body, so as to connect the mechanical seal cooling chamber on the same side of the pump body with the bearing bush The cooling cavity is connected.
  • the cooling structure of the water pump mentioned above connects the cooling cavity of the bearing bush with the cooling cavity of the mechanical seal through the connecting pipe, so that the cooling liquid only needs to be passed through any one, and the cooling liquid can cool both of them along the connecting pipe, and the cooling liquid can be cooled from the other.
  • Outflow so that the cooling chambers on the same side of the pump body form a whole, and only one set of coolant inlet and outlet pipes can meet the cooling liquid input and output requirements of all cooling chambers on the same side of the pump body, greatly reducing the number of cooling pipes , which reduces the difficulty of disassembly and assembly of the cooling pipeline during maintenance, and facilitates the disassembly and assembly of the water pump.
  • the bearing pad cooling chamber includes a bearing pad liquid inlet and a bearing pad liquid outlet
  • the mechanical seal cooling chamber includes a mechanical seal liquid inlet and a mechanical seal liquid outlet
  • the two ends of the communication pipe are respectively It is connected with the bearing bush liquid outlet and the mechanical seal liquid inlet
  • the bearing bush liquid inlet is used for inputting cooling liquid
  • the mechanical seal liquid outlet is used for outputting cooling liquid.
  • the cooling liquid will first cool down the sliding bearing through the bearing shell liquid inlet, and then cool down the mechanical seal through the mechanical seal cooling chamber, so as to meet the cooling requirements of the sliding bearing and the mechanical seal at the same time, and then control the production cost. While greatly increasing, it is guaranteed that the sliding bearing and the mechanical seal can work normally.
  • the bearing pad cooling cavity corresponds to the sliding bearing in the bearing pad and is located on the lower side of the main shaft, and the bearing pad liquid inlet and the bearing pad liquid outlet face the same direction.
  • the mechanical seal cooling chamber is arranged in a ring around the main shaft, and the mechanical seal liquid inlet and the mechanical seal liquid outlet are arranged opposite to the main shaft.
  • both ends of the communication pipe are connected to the fluid outlet of the bearing bush and the fluid inlet of the mechanical seal along the radial direction of the main shaft.
  • the axial distance between the pump body and the bearing bush is relatively small, and the radial arrangement of the connecting pipe can make the connecting pipe have sufficient installation space, effectively reducing the difficulty of installing the connecting pipe.
  • the inner diameter of the connecting pipe is 15mm-25mm.
  • the second aspect of the present application provides a cooling system
  • the cooling system includes a water pump, a base, a heat exchanger and pipelines
  • the water pump includes the water pump cooling structure described in any of the above embodiments
  • the heat exchanger and the The pump body is arranged on the base, and the heat exchanger is connected to the pump body through the pipeline.
  • the heat exchanger can exchange heat and reduce the temperature of the coolant, thereby continuously reducing the temperature at the mechanical seal and increasing the service life of the mechanical seal.
  • the cooling system further includes a main liquid inlet pipe and a main liquid outlet pipe arranged on the base;
  • the pipeline includes a water pump liquid inlet pipe, a water pump liquid outlet pipe, and a heat exchanger liquid inlet pipe , a first heat exchange pipe and a heat exchanger outlet pipe, the first heat exchange pipe is located in the heat exchanger to form two connection pipes between the main liquid inlet pipe and the main liquid outlet pipe route; wherein one of the takeover routes follows the sequence of the main liquid inlet pipe, the heat exchanger liquid inlet pipe, the first heat exchange pipe, the heat exchanger liquid outlet pipe and the main liquid outlet pipe Setting; the other connecting line is set along the sequence of the main liquid inlet pipe, the water pump liquid inlet pipe, the water pump cooling structure, the water pump liquid outlet pipe and the main liquid outlet pipe.
  • the entire cooling system has only one liquid inlet and one liquid outlet, with one inlet and one outlet, and the pipeline complexity of the cooling system is relatively low, which is convenient for subsequent maintenance and repair.
  • the pump body also has two mechanical seal cavities, the two mechanical seals are respectively located in the two mechanical seal cavities, and the pipeline also includes a mechanical seal inlet pipe, a second A heat exchange pipe and a mechanical seal liquid outlet pipe, each of the mechanical seal chambers is connected with the mechanical seal liquid inlet pipe and the mechanical seal liquid outlet pipe, so that along the mechanical seal liquid inlet pipe, the second heat exchange pipe
  • the order of the pipe, the mechanical seal liquid outlet pipe and the mechanical seal chamber forms a circulation connection line; the second heat exchange pipe is located in the heat exchanger and can exchange heat with the first heat exchange pipe.
  • first heat exchange tube and the second heat exchange tube will exchange heat in the heat exchanger, so that the cooled cooling liquid can be continuously delivered to the mechanical seal chamber for cooling.
  • the main liquid inlet pipe and the main liquid outlet pipe are detachably arranged on the base, and the first heat exchange pipe and the water pump cooling structure are detachable from other pipes Connection.
  • liquid inlet pipeline system and the liquid outlet pipeline system can be disassembled and installed as a whole, which reduces the difficulty of pipeline disassembly and installation, and facilitates maintenance of the water pump or heat exchanger.
  • Fig. 1 is the schematic diagram of the cross-sectional structure in the front view direction of the water pump in the cooling system of the present application;
  • Fig. 2 is the schematic diagram of the enlarged structure of place A in Fig. 1;
  • Fig. 3 is a schematic diagram of the front view of the heat exchanger and the base in the cooling system of the present application;
  • Fig. 4 is the schematic diagram of the takeover route of the cooling system of the present application.
  • Fig. 5 is a left view structural diagram of the base, the main liquid inlet pipe and the main liquid outlet pipe in Fig. 3;
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature is “on” or “under” a second feature, which means that the first feature is directly in contact with the second feature, or that the first feature and the second feature are indirectly in contact with each other. contact through an intermediary.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it just means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “under” the first feature may mean that the first feature is directly below or obliquely below the second feature, or it just means that the level of the first feature is smaller than that of the second feature.
  • the present application first provides a water pump cooling structure, including a pump body 10, a main shaft 20, two bearing bushes 30, two connecting pipes 40 and two sets of mechanical seals 50; the main shaft 20 runs through the pump body 10, Two bearing bushes 30 are arranged at both ends of the main shaft 20, and a mechanical seal 50 is provided between the two ends of the pump body 10 along the length direction of the main shaft 20 and the main shaft 20;
  • the mechanical seal cooling chamber 11 of the bearing bush 30 is provided with a bearing bush cooling chamber 31, one end of the connecting pipe 40 is connected with the bearing bush 30, and the other end is connected with the pump body 10, so as to connect the mechanical seal cooling chamber 11 on the same side of the pump body 10 with the bearing bush
  • the cooling cavity 31 communicates. Further, one end of the communication pipe 40 is fixedly connected with the bearing bush 30 , and the other end is fixedly connected with the pump body 10 .
  • the frictional heat of the mechanical seal 50 can be taken away, the temperature of the mechanical seal 50 can be effectively reduced, and the service life of the mechanical seal 50 can be extended on the one hand.
  • the temperature of the end surface of the seal can be reduced, so that when the pumped liquid is a high-temperature liquid, the failure of the mechanical seal 50 due to excessive pressure of the pumped liquid is avoided.
  • the sliding bearing in the bearing bush 30 will generate frictional heat with the rotation of the main shaft 20.
  • the bearing bush cooling cavity 31 corresponding to the sliding bearing and passing cooling liquid into it the sliding bearing can be effectively cooled. Cool down to prolong the service life of sliding bearings.
  • the bearing pad cooling chamber 31 and the mechanical seal cooling chamber 11 are communicated through the communication pipe 40, so that the cooling liquid only needs to pass through any one of the bearing pad cooling chamber 31 or the mechanical seal cooling chamber 11, and the cooling liquid can Cool down both the bearing pad cooling chamber 31 and the mechanical seal cooling chamber 11 along the communication pipe 40, and flow out from the other;
  • the cooling chambers on the same side of the pump body 10 form a whole, and only one set of coolant inlet and outlet pipelines can meet the cooling liquid input and output requirements of all cooling chambers on the same side of the pump body 10, greatly reducing the number of cooling pipes , which reduces the difficulty of disassembly and assembly of the cooling pipeline during maintenance, and facilitates the disassembly and assembly of the water pump.
  • the bearing pad cooling chamber 31 includes a bearing pad liquid inlet 311 and a bearing pad liquid outlet 312
  • the mechanical seal cooling chamber 11 includes a mechanical seal liquid inlet 111 and a mechanical seal liquid outlet 112
  • the communication pipe 40 The two ends of the bearing pad liquid outlet 312 and the mechanical seal liquid inlet 111 are respectively connected, the bearing pad liquid inlet 311 is used for inputting cooling liquid, and the mechanical seal liquid outlet 112 is used for outputting cooling liquid;
  • the service life of the sliding bearing may be greatly reduced due to the accumulation of frictional heat; and for the mechanical seal 50, the lower-priced cartridge mechanical seal itself is also It has a certain anti-leakage capability. Therefore, on the basis of using a low-priced cartridge mechanical seal, when the mechanical seal 50 is further cooled through the mechanical seal cooling chamber 11, the cooling requirement of the mechanical seal 50 is lower than that of the mechanical seal. The cooling requirement of the sliding bearing in the bearing bush 30;
  • the cooling effect of the cooling cavity that the coolant enters first is better than that of the cooling cavity that enters second. Therefore, through the above connection method, the cooling fluid can firstly pass through the bearing bush liquid inlet 311 to cool down the sliding bearing. , and then cool down the mechanical seal 50 through the mechanical seal cooling chamber 11, so as to meet the cooling requirements of the sliding bearing and the mechanical seal 50 at the same time, thereby ensuring that the sliding bearing and the mechanical seal 50 can work normally while controlling the production cost without greatly increasing .
  • the bearing pad cooling cavity 31 corresponds to the sliding bearing in the bearing pad 30 and is located on the lower side of the main shaft 20 , and the bearing pad liquid inlet 311 and the bearing pad liquid outlet 312 face the same direction.
  • the bearing pad cooling cavity 31 is close to the sliding bearing to ensure that the coolant in the bearing pad cooling cavity 31 has a high cooling efficiency for the sliding bearing; in addition, by opening the bearing pad cooling cavity 31 on the lower side of the main shaft 20, it can ensure that the sliding bearing is in the bearing pad. 30 has ample accommodation space.
  • the machine seal cooling chamber 11 is arranged in a ring around the main shaft 20, and the machine seal liquid inlet 111 and the machine seal liquid outlet 112 are arranged opposite to the main shaft 20; cavity 11, and the mechanical seal liquid inlet 111 and the mechanical seal liquid outlet 112 are arranged opposite to the main shaft 20, so that when the cooling liquid flows through the mechanical seal cooling cavity 11, the cooling effect of the entire mechanical seal 50 is relatively uniform, and the mechanical The overall temperature of the seal 50 can be uniformly lowered, avoiding the occurrence of leakage of the mechanical seal 50 due to insufficient cooling of some positions.
  • the two ends of the communication pipe 40 are connected to the bearing bush liquid outlet 312 and the mechanical seal liquid inlet 111 along the radial direction of the main shaft 20; due to the axial distance between the pump body 10 and the bearing bush 30 Relatively small and equipped with other components, disposing the connecting pipe 40 along the radial direction of the main shaft 20 can make the connecting pipe 40 have sufficient installation space, effectively reducing the difficulty of installing the connecting pipe 40 .
  • the inner diameter of the connecting pipe 40 is 15 mm to 25 mm; within this inner diameter range, the coolant entering the bearing pad cooling chamber 31 and the mechanical seal cooling chamber 11 can meet the corresponding cooling requirements; optional
  • the inner diameter of the communication pipe 40 is 15 mm. In the case that the cooling requirements of the sliding bearing and the mechanical seal 50 can be met, the smaller the inner diameter of the communication pipe 40 is, the less the amount of cooling liquid is required, thereby reducing the overall operating cost of the device. .
  • the present application also provides a cooling system, as shown in Fig. 2, Fig. 3 and Fig. 4, which includes a water pump 1, a base 2, a heat exchanger 3 and a pipeline 4.
  • the water pump 1 includes the above-mentioned water pump cooling structure.
  • the heat exchanger 3 and the pump body 10 are both arranged on the base 2, and the heat exchanger 3 and the pump body 10 are connected by a pipeline 4;
  • the coolant returned by the road 4 can be re-transmitted to the mechanical seal 50 in the pump body 10 through the pipeline 4 after heat exchange by the heat exchanger 3, thereby continuously reducing the temperature at the mechanical seal 50 and increasing the use of the mechanical seal 50 life.
  • the cooling system also includes a main liquid inlet pipe 21 and a main liquid outlet pipe 22 arranged on the base 2;
  • the pipeline 4 includes a water pump liquid inlet pipe 41, a water pump liquid outlet pipe Pipe 42, heat exchanger liquid inlet pipe 43, first heat exchange pipe 44 and heat exchanger liquid outlet pipe 45, the first heat exchange pipe 44 is located in the heat exchanger 3, with the main liquid inlet pipe 21 and the main liquid outlet Form two takeover routes between the pipes 22; one of the takeover routes is along the main liquid inlet pipe 21, the heat exchanger liquid inlet pipe 43, the first heat exchange pipe 44, the heat exchanger liquid outlet pipe 45 and the main liquid outlet pipe 22.
  • Sequence arrangement another connection route is set along the sequence of the main liquid inlet pipe 21 , the water pump liquid inlet pipe 41 , the water pump cooling structure, the water pump liquid outlet pipe 42 and the main liquid outlet pipe 22 .
  • the connecting line flowing through the cooling structure of the water pump can meet the cooling requirements of the sliding bearing and the mechanical seal 50, and the flowing through the cooling structure of the pump
  • the connecting pipe line of the heat exchanger 3 can be used for heat exchange in the heat exchanger 3; in addition, such an arrangement also makes the entire cooling system only have one liquid inlet and one liquid outlet, single inlet and single outlet, and the piping of the cooling system is complicated The degree is low, which is convenient for subsequent maintenance and overhaul.
  • the main liquid inlet pipe 21 and the main liquid outlet pipe 22 are detachably arranged on the base 2, and the first heat exchange pipe 44 and the water pump cooling structure are detachable from other pipelines 4 connection; so that after the pipelines 4 connected with the first heat exchange tube 44 and the water pump cooling structure are disassembled, and the main liquid inlet pipe 21 and the main liquid outlet pipe 22 are disassembled from the base 2, they can be disassembled to obtain their respective As an integral liquid inlet pipeline system and liquid outlet pipeline system, after the maintenance is completed, the liquid inlet pipeline system and the liquid outlet pipeline system can be installed as a whole, which reduces the difficulty of pipeline disassembly and installation, so that It is used for inspection and maintenance of the water pump 1 or the heat exchanger 3 .
  • each mechanical seal cavity 12 is connected with organic seal liquid inlet pipe 46 and mechanical seal liquid outlet pipe 48, so that along the machine seal liquid inlet pipe 46, the second The sequence of the heat exchange pipe 47 , the mechanical seal liquid outlet pipe 48 and the mechanical seal chamber 12 forms a circulation connecting line; the second heat exchange pipe 47 is located in the heat exchanger 3 and can exchange heat with the first heat exchange pipe 44 .
  • the mechanical seal liquid inlet pipe 46 and the mechanical seal liquid outlet pipe 48 are located at the front and rear sides of the water pump 1 in FIG. cooling of the mechanical seal 50;
  • the cooling liquid flowing out through the mechanical seal liquid outlet pipe 48 absorbs the heat of the mechanical seal 50 and the temperature rises.
  • the coolant in the second heat exchange tube 47 and the coolant in the first heat exchange tube 44 will exchange heat under the action of temperature difference, so that the temperature of the coolant in the second heat exchange tube 47 is reduced, and can pass through the machine
  • the sealing liquid pipe 48 is transported again to the mechanical seal cavity 12 for cooling, and the above cycle is repeated to realize continuous cooling of the mechanical seal 50 .

Abstract

一种水泵冷却结构及具有其的冷却系统。该结构包括泵体(10)、主轴(20)、两个轴瓦(30)、两个连通管(40)以及两组机械密封(50);主轴(20)贯穿泵体(10),两个轴瓦(30)设置于主轴(20)两端,泵体(10)沿主轴(20)长度方向的两端与主轴(20)之间设置有机械密封(50);泵体(10)内还开设有两个分别与两组机械密封(50)对应的机封冷却腔(11),轴瓦(30)内开设有轴瓦冷却腔(31),连通管(40)一端与轴瓦(30)连接,另一端与泵体(10)连接,以将位于泵体(10)同一侧的机封冷却腔(11)与轴瓦冷却腔(31)连通。

Description

水泵冷却结构及具有其的冷却系统
相关申请
本申请要求2022年2月10日申请的,申请号为202210125309.8,发明名称为“水泵冷却结构及具有其的冷却系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及离心泵相关技术领域,特别是涉及一种水泵冷却结构及具有其的冷却系统。
背景技术
离心泵内的机械密封依靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合,并配以辅助密封而达到阻漏作用,但是,当所输送泵送液为高温高压液体时,由于高温泵送液的压力会大幅上升,从而导致机械密封处容易发生泄露;
目前,当离心泵的泵送液为高温高压液体时,大多采用集装式机封以防止泄漏,但是集装式机封价格昂贵,会导致生产成本大幅增加;也存在开设冷却腔并通过接入冷却液对机封进行降温的方式,但由于离心泵在工作时,轴瓦内的滑动轴承等部件均需要通过接入冷却液的方式进行降温,因此会导致连接泵体的冷却管路过多,接管复杂,不利于水泵后续的检修维护。
发明内容
基于此,有必要针对目前在离心泵输送高温高压液体时通过接入冷却液的方式对机械密封进行降温,会导致水泵的冷却管路过于复杂,不利于水泵检修维护的问题,提供一种水泵冷却结构及具有其的冷却系统。
本申请首先提供一种水泵冷却结构,包括泵体、主轴、两个轴瓦、两个连通管以及两组机械密封;所述主轴贯穿所述泵体,两个所述轴瓦设置于所述主轴两端,所述泵体沿所述主轴长度方向的两端与所述主轴之间设置有所述机械密封;所述泵体内还开设有两个分别与两组所述机械密封对应的机封冷却腔,所述轴瓦内开设有轴瓦冷却腔,所述连通管一端与所述轴瓦连接,另一端与所述泵体连接,以将位于所述泵体同一侧的机封冷却腔与所 述轴瓦冷却腔连通。
上述水泵冷却结构,通过连通管将轴瓦冷却腔与机封冷却腔连通,使得仅需要从任意一者通入冷却液,冷却液便能够沿连通管对两者均进行降温,并从另一者流出;从而使得泵体同一侧的各冷却腔形成一个整体,仅通过一组冷却液进出管路即可满足泵体同一侧所有冷却腔的冷却液输入及输出需求,大大减少了冷却管路数量,降低了检修维护时冷却管路的拆装难度,有利于水泵的拆卸组装。
在其中一个实施例中,所述轴瓦冷却腔包括轴瓦进液口以及轴瓦出液口,所述机封冷却腔包括机封进液口以及机封出液口,所述连通管的两端分别与所述轴瓦出液口以及所述机封进液口连接,所述轴瓦进液口用于输入冷却液,所述机封出液口用于输出冷却液。
可以理解的是,冷却液会先通过轴瓦进液口对滑动轴承进行降温,再通过机封冷却腔对机械密封进行降温,以同时满足滑动轴承以及机械密封的降温需求,进而在控制生产成本不大幅增加的同时,保证滑动轴承以及机械密封均能够正常工作。
在其中一个实施例中,所述轴瓦冷却腔与所述轴瓦内的滑动轴承对应且位于所述主轴下侧,所述轴瓦进液口与所述轴瓦出液口朝向相同。
在其中一个实施例中,所述机封冷却腔以所述主轴为中心环形设置,所述机封进液口与所述机封出液口以所述主轴为中心相对设置。
可以理解的是,冷却液在流经机封冷却腔时,整个机械密封的冷却效果较为均匀,机械密封整体的温度能够得到均匀降低,进而避免因部分位置降温不足而导致机械密封泄漏的情况发生。
在其中一个实施例中,所述连通管的两端沿所述主轴的径向方向与所述轴瓦出液口以及所述机封进液口连接。
可以理解的是,泵体与轴瓦之间轴向间距相对较小,径向设置连通管能够使得连通管具有充足的安装空间,有效降低连通管安装时的难度。
在其中一个实施例中,所述连通管的内径为15mm~25mm。
本申请第二方面提供一种冷却系统,该冷却系统包括水泵、底座、换热器以及管路,所述水泵包括上述任一实施例所述的水泵冷却结构,所述换热器以及所述泵体均设于所述底座,所述换热器与所述泵体之间通过所述管路连接。
可以理解的是,换热器能够对冷却液进行换热降温,从而持续降低机械密封处的温度,增加机械密封的使用寿命。
在其中一个实施例中,所述冷却系统还包括设于所述底座的主进液管以及主出液管;所述管路包括水泵进液管、水泵出液管、换热器进液管、第一换热管以及换热器出液管, 所述第一换热管位于所述换热器内,以在所述主进液管与所述主出液管之间形成两条接管路线;其中一条所述接管路线沿所述主进液管、所述换热器进液管、所述第一换热管、所述换热器出液管以及所述主出液管的顺序设置;另一条所述接管路线沿所述主进液管、所述水泵进液管、所述水泵冷却结构、所述水泵出液管以及所述主出液管的顺序设置。
可以理解的是,整个冷却系统仅具有一个进液端与一个出液端,单进单出,冷却系统的管路复杂度较低,便于后续进行维护检修。
在其中一个实施例中,所述泵体内还具有两个机械密封腔,两个所述机械密封分别位于两个所述机械密封腔内,所述管路还包括机封进液管、第二换热管以及机封出液管,每一所述机械密封腔连通有所述机封进液管以及机封出液管,以使得沿所述机封进液管、所述第二换热管、所述机封出液管以及所述机械密封腔的顺序形成一循环接管路线;所述第二换热管位于所述换热器内且能够与所述第一换热管交换热量。
可以理解的是,第一换热管与第二换热管会在换热器内发生换热,以使得降温后的冷却液能够持续输送至机械密封腔内进行降温。
在其中一个实施例中,所述主进液管以及所述主出液管可拆卸的设于所述底座,所述第一换热管以及所述水泵冷却结构与其他所述管路可拆卸的连接。
可以理解的是,进液管路系统和出液管路系统能够整体拆卸、安装,降低了管路拆卸安装的难度,以便于进行水泵或者换热器的检修维护。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的冷却系统中水泵的正视方向剖视结构示意图;
图2为图1中A处的放大结构示意图;
图3为本申请的冷却系统中换热器以及底座的正视结构示意图;
图4为本申请的冷却系统的接管路线示意图;
图5为图3中底座、主进液管以及主出液管的左视结构示意图;
附图标记:1、水泵;10、泵体;11、机封冷却腔;111、机封进液口;112、机封出液口;12、机械密封腔;20、主轴;30、轴瓦;31、轴瓦冷却腔;311、轴瓦进液口;312、轴瓦出液口;40、连通管;50、机械密封;
2、底座;21、主进液管;22、主出液管;3、换热器;4、管路;41、水泵进液管;42、水泵出液管;43、换热器进液管;44、第一换热管;45、换热器出液管;46、机封进液管;47、第二换热管;48、机封出液管。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当组件被称为“固定于”或“设置于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本申请的说明书所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”、“下”可以是第一特征直接和第二特征接触,或第一特征和第二特征间接地通过中间媒介接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅表示第一特征水平高度小于第二特征。
除非另有定义,本申请的说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请的说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图2,本申请首先提供一种水泵冷却结构,包括泵体10、主轴20、两个轴瓦30、两个连通管40以及两组机械密封50;主轴20贯穿泵体10,两个轴瓦30设置于主轴20两端,泵体10沿主轴20长度方向的两端与主轴20之间设置有机械密封50;泵体 10内还开设有两个分别与两组机械密封50对应的机封冷却腔11,轴瓦30内开设有轴瓦冷却腔31,连通管40一端与轴瓦30连接,另一端与泵体10连接,以将位于泵体10同一侧的机封冷却腔11与轴瓦冷却腔31连通。进一步地,连通管40一端与轴瓦30固定连接,另一端与泵体10固定连接。
通过开设于机械密封50对应的机封冷却腔11,并向其中通入冷却液,能够带走机械密封50的摩擦热,有效降低机械密封50的温度,一方面能够延长机械密封50的使用寿命,另一方面能够降低密封端面温度,从而在泵送液为高温液体时,避免由于泵送液压力过大导致机械密封50密封失效的情况发生。
此外,离心泵工作时轴瓦30内的滑动轴承会随着主轴20的转动而产生摩擦热,通过开设与滑动轴承对应的轴瓦冷却腔31并向其中通入冷却液,能够有效地对滑动轴承进行降温,以延长滑动轴承的使用寿命。
而本申请中,将轴瓦冷却腔31与机封冷却腔11通过连通管40连通,使得仅需要从轴瓦冷却腔31或机封冷却腔11中的任意一者通入冷却液,冷却液便能够沿连通管40对轴瓦冷却腔31以及机封冷却腔11均进行降温,并从另一者流出;
从而使得泵体10同一侧的各冷却腔形成一个整体,仅通过一组冷却液进出管路即可满足泵体10同一侧所有冷却腔的冷却液输入及输出需求,大大减少了冷却管路数量,降低了检修维护时冷却管路的拆装难度,有利于水泵的拆卸组装。
当然,当离心泵中具有其他需要进行降温的部件时,也可通过开设对应的冷却腔,并通过相应的连通管40将其与本申请中的轴瓦冷却腔31以及机封冷却腔11串联的方式,对该部件进行降温,以使得仅通过一组冷却液进出管路,即可满足泵体10同一侧的所有冷却腔的冷却液输入及输出需求,以达到减少管路复杂度的效果。
在图2所示的实施例中,轴瓦冷却腔31包括轴瓦进液口311以及轴瓦出液口312,机封冷却腔11包括机封进液口111以及机封出液口112,连通管40的两端分别与轴瓦出液口312以及机封进液口111连接,轴瓦进液口311用于输入冷却液,机封出液口112用于输出冷却液;
轴瓦30内的滑动轴承在运行中,若不及时进行降温,可能由于摩擦热的累计而导致滑动轴承使用寿命大幅下降;而对于机械密封50而言,价位较低的集装式机械密封本身也具有一定的防泄漏能力,因此,在使用价位较低的集装式机械密封的基础上,进一步通过机封冷却腔11对机械密封50进行降温时,此时机械密封50的降温需求是低于轴瓦30内滑动轴承的降温需求的;
可以理解的是,冷却液优先进入的冷却腔的冷却效果会优于其次进入的冷却腔的冷却 效果,因此,通过上述连接方式,能够使得冷却液先通过轴瓦进液口311对滑动轴承进行降温,再通过机封冷却腔11对机械密封50进行降温,以同时满足滑动轴承以及机械密封50的降温需求,进而在控制生产成本不大幅增加的同时,保证滑动轴承以及机械密封50均能够正常工作。
在图2所示的实施例中,轴瓦冷却腔31与轴瓦30内的滑动轴承对应且位于主轴20下侧,轴瓦进液口311与轴瓦出液口312朝向相同。
轴瓦冷却腔31紧贴滑动轴承,以保证轴瓦冷却腔31内的冷却液对滑动轴承具有较高的冷却效率;此外,通过将轴瓦冷却腔31开设于主轴20下侧,能够保证滑动轴承在轴瓦30内具有充足的容置空间。
在图2所示的实施例中,机封冷却腔11以主轴20为中心环形设置,机封进液口111与机封出液口112以主轴20为中心相对设置;通过环形的机封冷却腔11,且机封进液口111与机封出液口112以主轴20为中心相对设置,以使得冷却液在流经机封冷却腔11时,整个机械密封50的冷却效果较为均匀,机械密封50整体的温度能够得到均匀降低,避免由于部分位置降温不足而导致机械密封50泄漏的情况发生。
在图2所示的实施例中,连通管40的两端沿主轴20的径向方向与轴瓦出液口312以及机封进液口111连接;由于泵体10与轴瓦30之间轴向间距相对较小,且设置有其他部件,将连通管40沿主轴20的径向设置能够使得连通管40具有充足的安装空间,有效降低连通管40安装时的难度。
在图2所示的实施例中,连通管40的内径为15mm~25mm;在此内径范围下,进入轴瓦冷却腔31以及机封冷却腔11内的冷却液能够满足相应的降温需求;可选的,连通管40的内径为15mm,在能够满足滑动轴承以及机械密封50的降温需求的情况下,连通管40的内径越小,所需冷却液量越少,从而能够降低装置整体的运行成本。
本申请还提供一种冷却系统,请结合图2、图3以及图4所示,包括水泵1、底座2、换热器3以及管路4,所述水泵1包括上述的水泵冷却结构,换热器3以及泵体10均设于底座2,换热器3与泵体10之间通过管路4连接;换热器3通过管路4与泵体10之间形成循环,以使得通过管路4回输的冷却液经过换热器3的换热后能够通过管路4重新输至泵体10内的机械密封50处,从而持续降低机械密封50处的温度,增加机械密封50的使用寿命。
在图3、图4以及图5所示的实施例中,冷却系统还包括设于底座2的主进液管21以及主出液管22;管路4包括水泵进液管41、水泵出液管42、换热器进液管43、第一换热管44以及换热器出液管45,第一换热管44位于换热器3内,以在主进液管21与主出液 管22之间形成两条接管路线;其中一条接管路线沿主进液管21、换热器进液管43、第一换热管44、换热器出液管45以及主出液管22的顺序设置;另一条接管路线沿主进液管21、水泵进液管41、水泵冷却结构、水泵出液管42以及主出液管22的顺序设置。
通过设置主进液管21和主出液管22,并在两者之间形成两条接管线路;流经水泵冷却结构的接管线路能够满足滑动轴承以及机械密封50的降温需求,而流经换热器3的接管线路能够用于换热器3内的换热;此外,如此设置还使得整个冷却系统仅具有一个进液端与一个出液端,单进单出,冷却系统的管路复杂度较低,便于后续进行维护检修。
在图4和图5所示的实施例中,主进液管21以及主出液管22可拆卸的设于底座2,第一换热管44以及水泵冷却结构与其他管路4可拆卸的连接;以使得在将与第一换热管44以及水泵冷却结构连接的各管路4拆卸,并将主进液管21以及主出液管22从底座2上拆卸后,即可拆卸得到各自作为一个整体的进液管路系统以及出液管路系统,在检修完成后,能够将进液管路系统和出液管路系统整体进行安装即可,降低了管路拆卸安装的难度,以便于进行水泵1或者换热器3的检修维护。
在图3和图4所示的实施例中,泵体10内还具有两个机械密封腔12,两组机械密封50分别位于两个机械密封腔12内,管路4还包括机封进液管46、第二换热管47以及机封出液管48,每一机械密封腔12连通有机封进液管46和机封出液管48,以使得沿机封进液管46、第二换热管47、机封出液管48以及机械密封腔12的顺序形成一循环接管路线;第二换热管47位于换热器3内且能够与第一换热管44交换热量。
机封进液管46以及机封出液管48位于图1中水泵1的前后侧,且与机械密封腔12连通,冷却液能够通过机封进液管46进入机械密封腔12,从而实现对机械密封50的降温;
通过机封出液管48流出的冷却液吸收机械密封50的热量后温度上升,当其流动至第二换热管47后,由于第一换热管44内为直接从主进液管21输入的冷却液,第二换热管47与第一换热管44内的冷却液会在温度差作用下发生换热,从而使得第二换热管47内冷却液的温度降低,并能够通过机封出液管48重新输送至机械密封腔12内进行降温,重复上述循环,以实现对机械密封50的持续降温。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范 围。因此,本申请的专利保护范围应以所附权利要求为准。

Claims (10)

  1. 一种水泵冷却结构,其特征在于,包括泵体、主轴、两个轴瓦、两个连通管以及两组机械密封;
    所述主轴贯穿所述泵体,两个所述轴瓦设置于所述主轴两端,所述泵体沿所述主轴长度方向的两端与所述主轴之间设置有所述机械密封;
    所述泵体内还开设有两个分别与两组所述机械密封对应的机封冷却腔,所述轴瓦内开设有轴瓦冷却腔,所述连通管一端与所述轴瓦连接,另一端与所述泵体连接,以将位于所述泵体同一侧的机封冷却腔与所述轴瓦冷却腔连通。
  2. 根据权利要求1所述的水泵冷却结构,其特征在于,所述轴瓦冷却腔包括轴瓦进液口以及轴瓦出液口,所述机封冷却腔包括机封进液口以及机封出液口,所述连通管的两端分别与所述轴瓦出液口以及所述机封进液口连接,所述轴瓦进液口用于输入冷却液,所述机封出液口用于输出冷却液。
  3. 根据权利要求2所述的水泵冷却结构,其特征在于,所述轴瓦冷却腔与所述轴瓦内的滑动轴承对应且位于所述主轴下侧,所述轴瓦进液口与所述轴瓦出液口朝向相同。
  4. 根据权利要求2所述的水泵冷却结构,其特征在于,所述机封冷却腔以所述主轴为中心环形设置,所述机封进液口与所述机封出液口以所述主轴为中心相对设置。
  5. 根据权利要求2所述的水泵冷却结构,其特征在于,所述连通管的两端沿所述主轴的径向方向与所述轴瓦出液口以及所述机封进液口连接。
  6. 根据权利要求2所述的水泵冷却结构,其特征在于,所述连通管的内径为15mm~25mm。
  7. 一种冷却系统,其特征在于,包括水泵、底座、换热器以及管路,所述水泵包括如权利要求1~6中任意一项所述的水泵冷却结构,所述换热器以及所述泵体均设于所述底座,所述换热器与所述泵体之间通过所述管路连接。
  8. 根据权利要求7所述的冷却系统,其特征在于,所述冷却系统还包括设于所述底座的主进液管以及主出液管;所述管路包括水泵进液管、水泵出液管、换热器进液管、第一换热管以及换热器出液管,所述第一换热管位于所述换热器内,以在所述主进液管与所述主出液管之间形成两条接管路线;
    其中一条所述接管路线沿所述主进液管、所述换热器进液管、所述第一换热管、所述换热器出液管以及所述主出液管的顺序设置;
    另一条所述接管路线沿所述主进液管、所述水泵进液管、所述水泵冷却结构、所述水 泵出液管以及所述主出液管的顺序设置。
  9. 根据权利要求8所述的冷却系统,其特征在于,所述泵体内还具有两个机械密封腔,两个所述机械密封分别位于两个所述机械密封腔内,所述管路还包括机封进液管、第二换热管以及机封出液管,每一所述机械密封腔连通有所述机封进液管以及机封出液管,以使得沿所述机封进液管、所述第二换热管、所述机封出液管以及所述机械密封腔的顺序形成一循环接管路线;
    所述第二换热管位于所述换热器内且能够与所述第一换热管交换热量。
  10. 根据权利要求8所述的冷却系统,其特征在于,所述主进液管以及所述主出液管可拆卸的设于所述底座,所述第一换热管以及所述水泵冷却结构与其他所述管路可拆卸的连接。
PCT/CN2022/076631 2022-02-10 2022-02-17 水泵冷却结构及具有其的冷却系统 WO2023151109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210125309.8 2022-02-10
CN202210125309.8A CN114233686A (zh) 2022-02-10 2022-02-10 水泵冷却结构及具有其的冷却系统

Publications (1)

Publication Number Publication Date
WO2023151109A1 true WO2023151109A1 (zh) 2023-08-17

Family

ID=80747516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076631 WO2023151109A1 (zh) 2022-02-10 2022-02-17 水泵冷却结构及具有其的冷却系统

Country Status (2)

Country Link
CN (1) CN114233686A (zh)
WO (1) WO2023151109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488274A (zh) * 2023-12-28 2024-02-02 杭州嘉悦智能设备有限公司 冷凝收集结构及氧化亚硅生产设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372985A (zh) * 2008-08-27 2009-02-25 丹东克隆集团有限责任公司 高性能离心泵
CN202707624U (zh) * 2012-08-21 2013-01-30 沈阳鼓风机集团石化泵有限公司 一种小流量高扬程加氢装置用泵
CN102927054A (zh) * 2012-11-17 2013-02-13 山东双轮股份有限公司 芯包整体拆装径向剖分式双吸泵
CN203516210U (zh) * 2013-11-09 2014-04-02 七台河宝泰隆圣迈煤化工有限责任公司 离心泵轴封水冷散热保护系统
CN203516171U (zh) * 2013-09-26 2014-04-02 浙江科尔泵业股份有限公司 离心注水泵的平衡回水冷却式止推轴承部件
CN204783844U (zh) * 2015-07-13 2015-11-18 江西省万载水泵有限责任公司 一种卧式多级离心泵
EP3061974A1 (de) * 2015-02-24 2016-08-31 Dickow Pumpen KG Kühl- und entgasungssystem für eine wärmeträgerpumpe
CN109372792A (zh) * 2018-12-24 2019-02-22 淄博匠心防腐耐磨材料有限公司 自媒介润滑卧式泵
CN212003608U (zh) * 2020-04-09 2020-11-24 沈阳华科泵业制造有限公司 一种小流量高扬程多级离心泵

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188931B1 (en) * 2000-09-19 2007-05-30 Aisin Seiki Kabushiki Kaisha Water pump
CN204371694U (zh) * 2014-12-02 2015-06-03 江苏亚梅泵业集团有限公司 一种尿素熔融高温泵
EP3187736B1 (de) * 2015-12-30 2021-04-14 Sulzer Management AG Mehrstufige horizontale zentrifugalpumpe zum fördern eines fluids sowie verfahren zum instandsetzen einer solchen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372985A (zh) * 2008-08-27 2009-02-25 丹东克隆集团有限责任公司 高性能离心泵
CN202707624U (zh) * 2012-08-21 2013-01-30 沈阳鼓风机集团石化泵有限公司 一种小流量高扬程加氢装置用泵
CN102927054A (zh) * 2012-11-17 2013-02-13 山东双轮股份有限公司 芯包整体拆装径向剖分式双吸泵
CN203516171U (zh) * 2013-09-26 2014-04-02 浙江科尔泵业股份有限公司 离心注水泵的平衡回水冷却式止推轴承部件
CN203516210U (zh) * 2013-11-09 2014-04-02 七台河宝泰隆圣迈煤化工有限责任公司 离心泵轴封水冷散热保护系统
EP3061974A1 (de) * 2015-02-24 2016-08-31 Dickow Pumpen KG Kühl- und entgasungssystem für eine wärmeträgerpumpe
CN204783844U (zh) * 2015-07-13 2015-11-18 江西省万载水泵有限责任公司 一种卧式多级离心泵
CN109372792A (zh) * 2018-12-24 2019-02-22 淄博匠心防腐耐磨材料有限公司 自媒介润滑卧式泵
CN212003608U (zh) * 2020-04-09 2020-11-24 沈阳华科泵业制造有限公司 一种小流量高扬程多级离心泵

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117488274A (zh) * 2023-12-28 2024-02-02 杭州嘉悦智能设备有限公司 冷凝收集结构及氧化亚硅生产设备
CN117488274B (zh) * 2023-12-28 2024-03-26 杭州嘉悦智能设备有限公司 冷凝收集结构及氧化亚硅生产设备

Also Published As

Publication number Publication date
CN114233686A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023151109A1 (zh) 水泵冷却结构及具有其的冷却系统
CN201297287Y (zh) 一种适用于高温、高凝固点介质的离心泵
CN1318762C (zh) 一种高温高压热水循环泵
CN101354044B (zh) 一种适用于高温、高凝固点介质的离心泵
WO2018184327A1 (zh) 电机冷却系统
CA3148443A1 (en) Multistage centrifugal pump with two parallel flows of pumped medium
WO2023151114A1 (zh) 泵体结构及具有其的离心泵
WO2023070766A1 (zh) 轴向进液结构及具有其的多级离心泵
WO2023168765A1 (zh) 机封冷却结构及具有其的高压热水泵
CN211202419U (zh) 一种高速注水泵冲洗冷却系统
CN207377809U (zh) 一种侧进侧出径向剖分双吸离心泵
CN208845370U (zh) 一种具有水冷式泵盖和密封压盖的离心泵
CN103047158B (zh) 一种高温高压密封管路内驱动气体循环的风机装置
CN102235369B (zh) 离心泵
CN217327643U (zh) 一种输送高粘度介质的输送泵系统
CN209458141U (zh) 离心泵
CN213116738U (zh) 一种并联结构的双体管道泵
CN219412997U (zh) 应用于生物发酵液输送领域的离心泵
CN217813974U (zh) 高可靠性多级离心泵
CN107120316B (zh) 一种卧式高温泵
CN211950870U (zh) 一种两级双吸蜗壳式离心泵
CN219984879U (zh) 一种带冷却装置的机械密封结构
CN114483590B (zh) 机封冲洗结构及具有其的真空密闭管路系统
CN213116851U (zh) 一种双泵体及分体结构的双体管道泵
CN218816812U (zh) 一种耐高温型液压隔膜式计量泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925471

Country of ref document: EP

Kind code of ref document: A1