WO2023150983A1 - 一种x射线管钨靶材制造方法 - Google Patents

一种x射线管钨靶材制造方法 Download PDF

Info

Publication number
WO2023150983A1
WO2023150983A1 PCT/CN2022/075921 CN2022075921W WO2023150983A1 WO 2023150983 A1 WO2023150983 A1 WO 2023150983A1 CN 2022075921 W CN2022075921 W CN 2022075921W WO 2023150983 A1 WO2023150983 A1 WO 2023150983A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
target
tungsten plate
oxygen
free copper
Prior art date
Application number
PCT/CN2022/075921
Other languages
English (en)
French (fr)
Inventor
唐志宏
Original Assignee
上海超群检测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超群检测科技股份有限公司 filed Critical 上海超群检测科技股份有限公司
Priority to PCT/CN2022/075921 priority Critical patent/WO2023150983A1/zh
Publication of WO2023150983A1 publication Critical patent/WO2023150983A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Definitions

  • the invention relates to the technical field of X-ray control, in particular to a method for manufacturing a tungsten target for an X-ray tube.
  • the anode tungsten target is an important part, which is generally composed of a tungsten plate and a connecting substrate, and is sealed in a glass vacuum, ceramic vacuum or metal shell vacuum system.
  • the main function of the tungsten plate in the anode tungsten target assembly is to withstand the bombardment of the high-speed electron flow, convert 1% of its energy into X-rays, and at the same time convert 99% of the energy into heat energy, and the heat mainly passes through
  • the anode base connected to the tungsten plate performs conduction and radiation heat dissipation.
  • the anode base needs to apply a high voltage to guide the electron flow direction of the cathode so that it bombards the anode bullseye at a high speed.
  • Oxygen-free copper material has excellent electrical and thermal conductivity, and is an ideal material for making anode substrates.
  • the entire anode tungsten target is in a high vacuum environment above 10 -6 Pa, and the surface of the tungsten plate is subjected to high-speed electron bombardment, and its surface temperature will reach above 1400°C, even exceeding the melting point of the tungsten plate.
  • the conduction of heat will cause the tungsten plate to melt, deform, crack, or even fall off from the substrate in a high-temperature environment, which will greatly affect the performance and life of the X-ray tube. Therefore, there are high requirements for the connection between the tungsten plate and the substrate.
  • the traditional anode tungsten target is prepared by melting and casting, that is, the metal copper is melted and cast on the back of the tungsten plate to realize the coating of the copper metal on the tungsten plate.
  • the tungsten plate usually used in this method is columnar.
  • the tungsten plate, that is, the front and back of the tungsten plate are flat, and the anode target tungsten-copper joint surface is the cylindrical surface and the bottom surface of the tungsten plate, and the connection area is small.
  • the purpose of the present invention is to solve the shortcomings in the prior art, and propose a method for manufacturing a tungsten target for an X-ray tube.
  • a method for manufacturing tungsten targets for X-ray tubes including raw materials: tungsten plates, oxygen-free copper rods, and molybdenum nail consumables; also includes making molds: graphite holders, graphite crucible forming molds, and the manufacturing method includes the following steps:
  • the processed tungsten plate needs to be cleaned by detergent to remove surface oil, pickled to remove oxide film and vacuum high temperature degassing process;
  • the surface of the graphite support is provided with fixing holes that are compatible with the molybdenum nail consumables, and the tungsten plate is fixed on the graphite support by using the fixing holes and the molybdenum nail consumables. After fixing, the triangular waveform serrated surface of the tungsten plate or other concave-convex surfaces face upward. ;
  • the oxygen-free copper rod is washed by detergent aqueous solution to remove surface oil, hydrochloric acid and nitric acid aqueous solution to remove surface oxide film, and dry;
  • the back of the tungsten plate is processed with a triangular wave sawtooth surface or other concave-convex surfaces. If the processing conditions permit, the larger the surface area after processing, the better. type, array bump type, etc., as shown in Figure 1, Figure 2, Figure 3, and Figure 4 of the accompanying drawings.
  • the graphite crucible is a casting fusion molding mold, and its upper surface is provided with several molding cavities, and each molding cavity is composed of a large-diameter upper cylindrical cavity and a small-diameter lower cylindrical cavity, and the inner cavity of the upper cylindrical cavity
  • the shape and size are compatible with oxygen-free copper rods, and the inner cavity shape and size of the lower cylindrical cavity are compatible with graphite holders.
  • the molybdenum nail consumable is fixed at the center of the graphite holder with a certain inclination angle.
  • the distance between the molybdenum nail consumable and the edge of the tungsten plate is 0-2mm when fixing the tungsten plate.
  • the anode tungsten target after target casting in step S7 is composed of a tungsten target, an oxygen-free copper substrate, and a molybdenum nail. fixed part.
  • the molybdenum nail consumables in step S3 are sequentially washed with detergent aqueous solution to remove surface oil, nitric acid and hydrofluoric acid aqueous solution to remove surface oxide film, acetone ultrasonic cleaning to remove other tiny particles, and drying before use.
  • the method for manufacturing tungsten targets for X-ray tubes proposed by the present invention processes triangular corrugated serrated surfaces or other concave-convex surfaces on the back of the tungsten plate.
  • the oxygen-free copper is melted and coated on the back and sides of the tungsten plate.
  • the connection area of tungsten-copper is greatly increased. While improving the bonding strength of tungsten-copper, it also increases the heat transfer area from the target of the tungsten plate to the oxygen-free copper substrate. The heat conduction and heat dissipation capabilities of the anode are greatly improved.
  • the heat transformed by the high-speed electron bombardment of the anode bullseye can be most efficiently conducted through the anode oxygen-free copper substrate, which can more effectively improve the performance of the tungsten target and prevent the tungsten target from melting, cracking, falling off and other failures due to heat dissipation. Faults have effectively improved the service life of the X-ray tube, and at the same time, laid a technological foundation for the development of the X-ray tube in the direction of higher voltage and higher power.
  • the manufacturing method of the tungsten target of the X-ray tube before using the molybdenum nails and oxygen-free copper rods, undergoes surface degreasing and oxidation film treatment to avoid grease and oxidized impurities on the copper rods and molybdenum nails during high-temperature fusion welding.
  • a chemical reaction occurs to make the finished product more pure; at the same time, the graphite holder and graphite crucible made of graphite are used. Due to the low hardness of graphite, the melting point and boiling point both exceed 3000 ° C, and it will not melt with the copper liquid when heated to 1200-1400 ° C. , to facilitate subsequent demoulding work.
  • Fig. 1 is the tungsten plate 1-a structure schematic diagram that the present invention proposes, and the back side is processed into triangular wave zigzag structure;
  • Fig. 2 is the structural representation of the tungsten plate 1-b that the present invention proposes, and the back is processed into a wavy structure;
  • Fig. 3 is the structural schematic diagram of tungsten plate 1-c that the present invention proposes, and the back is processed into a square wave tooth structure;
  • Fig. 4 is a schematic diagram of the structure of the tungsten plate 1-d proposed by the present invention, and the back is processed into an array bump structure;
  • Fig. 5 is the structural representation of the oxygen-free copper rod provided by the present invention.
  • Fig. 6 is the structural representation of the universal molybdenum nail consumable provided by the present invention.
  • Fig. 7 is a schematic structural diagram of the molybdenum nail consumables dedicated to the triangular wave sawtooth structure tungsten plate provided by the present invention.
  • Fig. 8 is a schematic diagram of the molybdenum nail consumables dedicated to the square wave tooth structure tungsten plate provided by the present invention.
  • Fig. 9 is a schematic diagram of the structure of the graphite holder provided by the present invention.
  • Figure 10 is a schematic structural view of a graphite crucible provided by the present invention.
  • Fig. 11 is a schematic diagram of the structure of the triangular wave sawtooth structure tungsten plate proposed by the present invention installed on the graphite holder with a general molybdenum nail;
  • Fig. 12 is a schematic diagram of the structure of the triangular wave sawtooth structure tungsten plate proposed by the present invention installed on the graphite support using special molybdenum nails;
  • Fig. 13 adopts the general molybdenum nail to be installed on the graphite holder for the wavy structure tungsten plate proposed by the present invention
  • Fig. 14 is the schematic diagram of the structure of the tungsten plate with square-wave tooth structure proposed by the present invention installed on the graphite holder by universal molybdenum nails;
  • Fig. 15 is a schematic diagram of the structure of the square wave tooth structure tungsten plate proposed by the present invention installed on the graphite support by using special molybdenum nails;
  • Fig. 16 is a structural schematic diagram of the tungsten plate with the array bump structure proposed by the present invention installed on the graphite support using a common molybdenum nail;
  • Figure 17 is a schematic structural view of placing graphite holders and oxygen-free copper rods in graphite crucibles during the implementation of the present invention
  • Fig. 18 is a schematic diagram of the structure of the anode tungsten target after casting the target in the present invention.
  • Fig. 19 is a schematic cross-sectional view of the anode tungsten target after target casting in the present invention.
  • a method for manufacturing a tungsten target for an X-ray tube :
  • moulds graphite holder 4, graphite crucible 5 forming moulds;
  • the manufacturing method is divided into:
  • the thickness a of the tungsten plate 1-a can be selected as 3-6mm. According to the heat transfer simulation, the value of the sawtooth angle ⁇ of the triangular wave structure 30 ⁇ 40°, the sawtooth depth d is 0.3a ⁇ 0.5a, as shown in Figure 1 of the attached drawing of the specification;
  • tungsten plate 1-a is successively washed with detergent aqueous solution to remove surface oil, nitric acid and hydrofluoric acid aqueous solution to remove surface oxide film, and acetone ultrasonic cleaning to remove other tiny particles. After drying, tungsten plate 1-a is Degassing in high temperature vacuum degassing furnace;
  • Oxygen-free copper rod 2 is successively washed with detergent aqueous solution to remove surface oil, hydrochloric acid and nitric acid aqueous solution to remove surface oxide film, and dried;
  • molybdenum nail consumables 3 are successively washed with detergent aqueous solution to remove surface before use Oil stain, nitric acid and hydrofluoric acid aqueous solution cleaning to remove surface oxide film, acetone ultrasonic cleaning to remove other tiny particles, drying;
  • a method for manufacturing a tungsten target for an X-ray tube :
  • raw materials tungsten plate with wavy structure on the back 1-b, oxygen-free copper rod 2, general-purpose molybdenum nail consumable 3;
  • moulds graphite holder 4, graphite crucible 5 forming moulds;
  • the manufacturing method is divided into:
  • the thickness a of the tungsten plate 1-b can be selected as 3-6mm. According to the heat transfer simulation, the value of the wave width b of the wave-shaped structure 1 ⁇ 2mm, the value of wave depth d is 0.1a ⁇ 0.3a, as shown in Figure 2 of the attached drawing of the specification;
  • tungsten plate 1-b is successively washed with detergent aqueous solution to remove surface oil, nitric acid and hydrofluoric acid aqueous solution to remove surface oxide film, and acetone ultrasonic cleaning to remove other tiny particles. After drying, tungsten plate 1-b is Degassing in high temperature vacuum degassing furnace;
  • Oxygen-free copper rod 2 is washed with detergent aqueous solution to remove surface oil stains, hydrochloric acid and nitric acid aqueous solutions to remove surface oxide film, and dried; molybdenum nail consumables 3 are washed with detergent aqueous solution to remove surface oil stains, nitric acid and hydrogen fluoride before use. Acid aqueous solution cleaning to remove surface oxide film, acetone ultrasonic cleaning to remove other tiny particles, and drying;
  • a method for manufacturing a tungsten target for an X-ray tube :
  • tungsten plate with square wave tooth shape on the back 1-c oxygen-free copper rod 2, general molybdenum nail consumables 3 and molybdenum nail consumables for square wave tooth tungsten plates 3-c;
  • moulds graphite holder 4, graphite crucible 5 forming moulds;
  • the manufacturing method is divided into:
  • the thickness a of the tungsten plate 1-c can be selected as 3-6mm.
  • the wave width b of the square wave structure The value is 1-3mm, and the wave depth d is 0.2a-0.4a, as shown in Figure 3 of the attached drawing of the specification;
  • tungsten plate 1-c is successively washed with detergent aqueous solution to remove surface oil, nitric acid and hydrofluoric acid aqueous solution to remove surface oxide film, and acetone ultrasonic cleaning to remove other tiny particles. After drying, tungsten plate 1-c is Degassing in high temperature vacuum degassing furnace;
  • Oxygen-free copper rod 2 is successively washed with detergent aqueous solution to remove surface oil, hydrochloric acid and nitric acid aqueous solution to remove surface oxide film, and dried;
  • molybdenum nail consumables 3 are successively washed with detergent aqueous solution to remove surface before use Oil stain, nitric acid and hydrofluoric acid aqueous solution cleaning to remove surface oxide film, acetone ultrasonic cleaning to remove other tiny particles, drying;
  • a method for manufacturing a tungsten target for an X-ray tube :
  • moulds graphite holder 4, graphite crucible 5 forming moulds;
  • the manufacturing method is divided into:
  • the thickness a of the tungsten plate 1-d can be selected as 3-6mm.
  • the convexity of the array bump structure is The dot spacing b takes a value of 1-2mm, and the bump height d takes a value of 0.1a to 0.3a, as shown in Figure 4 of the attached drawing of the specification;
  • tungsten plate 1-d is successively washed with detergent aqueous solution to remove surface oil, nitric acid and hydrofluoric acid aqueous solution to remove surface oxide film, and acetone ultrasonic cleaning to remove other tiny particles. After drying, tungsten plate 1-d is Degassing in high temperature vacuum degassing furnace;
  • Oxygen-free copper rod 2 is washed with detergent aqueous solution to remove surface oil stains, hydrochloric acid and nitric acid aqueous solutions to remove surface oxide film, and dried; molybdenum nail consumables 3 are washed with detergent aqueous solution to remove surface oil stains, nitric acid and hydrogen fluoride before use. Acid aqueous solution cleaning to remove surface oxide film, acetone ultrasonic cleaning to remove other tiny particles, and drying;
  • graphite crucible 5 can be Install 6 sets of anode tungsten targets, as shown in Figure 17;
  • the anode tungsten target material 6 after the target casting is completed is composed of a tungsten target 62, an oxygen-free copper substrate 63, and a molybdenum nail 61.
  • the oxygen-free copper and the tungsten material have a large connection area, high bonding strength, and a large heat conduction area.
  • the anode structure required for processing the anode tungsten target 6 into an X-ray tube, when it is sealed in glass or ceramics When in a vacuum system, the tungsten target 62 is bombarded by high-speed electrons and generates a lot of heat. The heat is quickly conducted and dissipated through the oxygen-free copper substrate 63 connected to the tungsten target 62, which can effectively protect the tungsten target 62 from being melted and cracked. Greatly improve the performance and life of the X-ray tube.
  • the back of the tungsten plate is processed into concave and convex surfaces of different shapes to increase the contact surface of tungsten and copper.
  • the anode tungsten target produced by the manufacturing method proposed by the present invention is applied inside the X-ray tube, which can increase the service life of the X-ray tube, improve the heat dissipation effect of the tungsten target, and avoid cracking of the target and melting phenomenon occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • X-Ray Techniques (AREA)

Abstract

一种X射线管钨靶材制造方法,提供钨板(1)和无氧铜棒(2)原材料,将钨板(1)背面加工成三角波形锯齿面或其它形状凹凸面,之后进行去油清洗、去除氧化皮、高温去气工序处理,对无氧铜棒(2)进行去油清洗及酸洗去除表面氧化层处理,处理后的钨板采用钼钉耗材(3)固定在石墨托(4)上,然后将组装好的石墨托与处理后的无氧铜棒放入石墨坩埚(5)中,石墨坩埚放入真空加热炉中进行加热铸靶。该制造方法通过在钨板背面加工三角波锯齿面或者其他形状凹凸面作为钨-铜连接面,熔化的无氧铜包覆在钨板背面与侧面,增加钨板与无氧铜基体的接触面积,提高连接强度,并有效地增强了X射线管工作时阳极靶心的导热能力,提升了X射线管的可靠性和寿命。

Description

一种X射线管钨靶材制造方法 技术领域
本发明涉及X射线管制技术领域,尤其涉及一种X射线管钨靶材制造方法。
背景技术
在X射线管制造工业中,阳极钨靶材是其重要的组成部分,其一般由钨板和连接基体构成,密封于玻璃真空、陶瓷真空或者金属壳真空系统中。在X射线管工作过程中,阳极钨靶材组件中的钨板主要作用是承受高速电子流的轰击,将其1%的能量转化为X射线,同时99%的能量转化为热能,热量主要通过与钨板连接的阳极基体进行传导和辐射散热,同时,阳极基体需要施加高电压以引导阴极的电子流方向使其高速轰击阳极靶心。无氧铜材料拥有优异的导电和导热性能,是制作阳极基体的理想材料。
在工作过程中,整个阳极钨靶材处于10 -6Pa以上的高真空环境,钨板表面承受高速电子轰击,其表面温度会达到1400℃以上,甚至会超过钨板的熔点,如果不能及时将热量传导出去,将导致钨板在高温环境下熔化、变形、开裂,甚至与基体脱落,极大地影响X射线管的使用性能和寿命,因此对钨板与基体的连接有很高的要求。
由于钨铜两种金属的物性相差较大,二者不能形成对应的合金相,因此传统的焊接方法无法使钨铜金属形成冶金结合。X射线管制造工业中,传统的阳极钨靶材采用熔铸的方式制备,即将金属铜融化烧铸到钨板背面,实现铜金属对钨板的包覆,此种方式通常采用的钨 板为柱状钨板,即钨板的正面和背面均为平面状,阳极靶钨铜结合面为钨板的柱面与底面,连接面积较小,实际使用过程中,经常会发生因阳极导热能力差而造成的钨靶熔融、大量挥发、钨板开裂甚至脱落等,严重影响了X射线管的使用寿命,同时,导热能力差也严重制约了X射线管朝更高电压、更大功率方向的发展。
鉴于此,X射线管制造工业中需要开发出一种阳极钨靶材的制备方法,提升阳极的导热能力。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种X射线管钨靶材制造方法。
为了实现上述目的,本发明采用了如下技术方案:
一种X射线管钨靶材制造方法,包括原材料:钨板、无氧铜棒和钼钉耗材;还包括制作模具:石墨托、石墨坩埚成型模具,该制造方法包括以下步骤:
S1、采用粉末冶金或切割打磨等方法将钨板的背面加工成三角波形锯齿面或者其它形状凹凸面;
S2、加工完成的钨板需要经过洗涤剂清洗去除表面油污、酸洗去除氧化膜和真空高温去气工序处理;
S3、石墨托的表面开设与钼钉耗材适配的固定孔,并利用固定孔和钼钉耗材将钨板固定于石墨托上,固定后钨板的三角波形锯齿面或其他形状凹凸面朝上;
S4、无氧铜棒依次经过洗涤剂水溶液清洗去除表面油污、盐酸和 硝酸水溶液清洗去除表面氧化膜、烘干;
S5、将安装钨板后的石墨托放入石墨坩埚内部,使钨板的凹凸面朝上,并将无氧铜棒放置在钨板的上方,两者之间保持0~2mm的距离;
S6、将安装完成后的石墨坩埚放入真空加热炉中进行加热铸靶,真空炉的真空度控制在在1.0×10 -3~1.0×10 -5Pa之间,加热温度1200~1400℃,保温10~40min,炉冷降温;
S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚,取出完成铸靶后的阳极钨靶材,并将其加工成实际生产需要的阳极结构。
优选地,所述钨板背面加工三角波形锯齿面或者其他形状凹凸面,在加工条件允许的情况下,加工后表面积越大越好,加工面包括但不限于三角波锯齿型、方波齿型、波浪型、阵列凸点型等,如说明书附图的图1、图2、图3、图4所示。
优选地,所述石墨坩埚为铸造熔融成型模具,其上表面开设有若干成型腔,且每个成型腔是由大直径的上圆柱腔和小直径的下圆柱腔组成,上圆柱腔的内腔造型和大小与无氧铜棒适配,下圆柱腔的内腔造型和大小与石墨托适配。
优选地,所述钼钉耗材固定在有一定倾角的石墨托的中心位置,为保证铸靶过程中钨板固定牢固,所述钼钉耗材固定钨板时距离钨板边缘的距离0~2mm。
优选地,所述步骤S7中完成铸靶后的阳极钨靶材由钨靶、无氧铜基体、钼钉组成,无氧铜基体包覆在钨靶的底面与侧面以及钼钉低于钨靶的固定部分。
优选地,所述步骤S3中的钼钉耗材在使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干处理。
本发明具有以下有益效果:
1、本发明提出的X射线管钨靶材制造方法,通过在钨板背面加工三角波形锯齿面或者其它形状凹凸面,在铸靶工艺中,无氧铜熔化包覆在钨板背面与侧面,极大地增加了钨铜连接面积,在提升钨铜结合强度的同时,也增加了钨板靶心向无氧铜基体的传热面积,阳极导热、散热能力有了极大地提升,在X射线管工作中,阳极靶心承受高速电子轰击转化的热量能最高效地通过阳极无氧铜基体传导出去,更有效地提升了钨靶性能,防止钨靶由于热量难以耗散而发生熔化、开裂、脱落等失效故障,有效地提升了X射线管的使用寿命,同时,也为X射线管朝更高电压、更大功率方向的发展打下工艺基础。
2、该X射线管钨靶材制造方法,在钼钉和无氧铜棒使用前皆经过表面除油和除氧化膜处理,避免高温熔融焊接时铜棒和钼钉还有油脂和氧化杂质,发生化学反应,使其成品后的纯度更高;同时采用石墨材质的石墨托和石墨坩埚,由于石墨的硬度低,熔点和沸点均超过3000℃,加热至1200-1400℃时不与铜液熔融,便于后续的脱模工作开展。
附图说明
图1为本发明提出的钨板1-a结构示意图,背面加工成三角波锯齿型结构;
图2为本发明提出的钨板1-b结构示意图,背面加工成波浪型结构;
图3为本发明提出的钨板1-c结构示意图,背面加工成方波齿型结构;
图4为本发明提出的钨板1-d结构示意图,背面加工成阵列凸点型结构;
图5为本发明提供的无氧铜棒结构示意图;
图6为本发明提供的通用钼钉耗材结构示意图;
图7为本发明提供的三角波锯齿型结构钨板专用的钼钉耗材结构示意图;
图8为本发明提供的方波齿型结构钨板专用的钼钉耗材结构示意图;
图9为本发明提供的石墨托结构示意图;
图10为本发明提供的石墨坩埚结构示意图;
图11为本发明提出的三角波锯齿型结构钨板采用通用钼钉安装到石墨托上的结构示意图;
图12为本发明提出的三角波锯齿型结构钨板采用专用钼钉安装到石墨托上的结构示意图;
图13为本发明提出的波浪型结构钨板采用通用钼钉安装到石墨 托上的结构示意图;
图14为本发明提出的方波齿型结构钨板采用通用钼钉安装到石墨托上的结构示意图;
图15为本发明提出的方波齿型结构钨板采用专用钼钉安装到石墨托上的结构示意图;
图16为本发明提出的阵列凸点型结构钨板采用通用钼钉安装到石墨托上的结构示意图;
图17为本发明实施时石墨托和无氧铜棒放置入石墨坩埚中的结构示意图;
图18为本发明完成铸靶后的阳极钨靶材结构示意图;
图19为本发明完成铸靶后的阳极钨靶材剖面示意图。
图中:1钨板(1-a;1-b;1-c;1-d)、2无氧铜棒、3钼钉耗材(3-a;3-c)、4石墨托、5石墨坩埚、6、阳极钨靶材、61钼钉、62钨靶、63无氧铜基体。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特 定的方位构造和操作,因此不能理解为对本发明的限制。
一、实施例部分
实施例1
一种X射线管钨靶材制造方法:
包括原材料:背面为三角波锯齿型的钨板1-a、无氧铜棒2、通用钼钉耗材3与三角波锯齿型钨板专用钼钉耗材3-a;
还包括制作模具:石墨托4、石墨坩埚5成型模具;
该制造方法分为:
S1、采用铣床等加工机器将钨板1的背面加工成三角波锯齿型1-a,钨板1-a厚度a可选为3-6mm,根据传热仿真模拟,三角波结构的锯齿角α取值30~40°,锯齿深度d取值0.3a~0.5a,如说明书附图图1中所示;
S2、加工后的钨板1-a依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒,烘干后,钨板1-a在高温真空去气炉中去气;
S3、提供石墨托4,石墨托4加工成X射线管设计需要的倾角,石墨托4表面加工4个对应的钼钉孔,采用两个通用钼钉耗材3将钨板1-a固定于石墨托4的钼钉孔上,固定后钨板1-a的三角波锯齿面朝上,如图11所示,或者采用两个三角波锯齿型钨板专用钼钉耗材3-a将钨板1-a固定于石墨托4的钼钉孔上,专用钼钉3-a的弯钩将钨板1-a锁紧,如图12所示;
S4、无氧铜棒2依次经过洗涤剂水溶液清洗去除表面油污、盐酸 和硝酸水溶液清洗去除表面氧化膜、烘干;钼钉耗材3(或3-a)使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干;
S5、将安装钨板1-a后的石墨托4放入石墨坩埚5内,使钨板1-a的三角波锯齿面朝上,并将无氧铜棒2放置在钨板1-a的上方,两者之间保持1-2mm的距离;本发明提供石墨坩埚5,每个坩埚可安装钨靶材套数根据炉腔大小及实际生产情况而定,本发明实施例中石墨坩埚5可安装6套阳极钨靶材,如图17所示;
S6、将安装完成后的石墨坩埚5放入真空加热炉中进行加热铸靶,真空炉真空度在1.0×10 -5Pa,加热温度1400℃,保温40min,炉冷降温,由于无氧铜的熔点为1084℃,钨的熔点为3400℃,在真空炉加热到1400℃时,无氧铜棒2熔化,在保温过程中,液态铜均匀向下流入包覆在钨板1-a的背面与侧面,实现钨-铜的连接,停止加热后,液态铜缓慢冷却固化,形成阳极钨靶材原材料,整个过程在真空环境下进行,确保了无氧铜与钨材质不被氧化;
S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚5,取出完成铸靶后的阳极钨靶材6,如图18、图19所示,并将其加工成实际生产需要的阳极结构。
实施例2
一种X射线管钨靶材制造方法:
包括原材料:背面为波浪型结构的钨板1-b、无氧铜棒2、通用钼钉耗材3;
还包括制作模具:石墨托4、石墨坩埚5成型模具;
该制造方法分为:
S1、采用铣床等加工机器将钨板1的背面加工成波浪型1-b,钨板1-b厚度a可选为3-6mm,根据传热仿真模拟,波浪型结构的波宽b取值1~2mm,波深d取值0.1a~0.3a,如说明书附图图2中所示;
S2、加工后的钨板1-b依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒,烘干后,钨板1-b在高温真空去气炉中去气;
S3、提供石墨托4,石墨托4加工成X射线管设计需要的倾角,石墨托4表面加工4个对应的钼钉孔,采用两个通用钼钉耗材3将钨板1-b固定于石墨托4的钼钉孔上,固定后钨板1-a的波浪型面朝上,如图13所示;
S4、无氧铜棒2依次经过洗涤剂水溶液清洗去除表面油污、盐酸和硝酸水溶液清洗去除表面氧化膜、烘干;钼钉耗材3使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干;
S5、将安装钨板1-b后的石墨托4放入石墨坩埚5内,使钨板1-b的波浪型面朝上,并将无氧铜棒2放置在钨板1-b的上方,两者之间保持1-2mm的距离;本发明提供石墨坩埚5,每个坩埚可安装钨靶材套数根据炉腔大小及实际生产情况而定,本发明实施例中石墨坩埚5可安装6套阳极钨靶材,如图17所示;
S6、将安装完成后的石墨坩埚5放入真空加热炉中进行加热铸靶, 真空炉真空度在1.0×10 -5Pa,加热温度1400℃,保温40min,炉冷降温,由于无氧铜的熔点为1084℃,钨的熔点为3400℃,在真空炉加热到1400℃时,无氧铜棒2熔化,在保温过程中,液态铜均匀向下流入包覆在钨板1-b的背面与侧面,实现钨-铜的连接,停止加热后,液态铜缓慢冷却固化,形成阳极钨靶材原材料,整个过程在真空环境下进行,确保了无氧铜与钨材质不被氧化;
S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚5,取出完成铸靶后的阳极钨靶材6,如图18、图19所示,并将其加工成实际生产需要的阳极结构。
实施例3
一种X射线管钨靶材制造方法:
包括原材料:背面为方波齿型的钨板1-c、无氧铜棒2、通用钼钉耗材3与方波齿型钨板专用钼钉耗材3-c;
还包括制作模具:石墨托4、石墨坩埚5成型模具;
该制造方法分为:
S1、采用铣床等加工机器将钨板1的背面加工成方波齿型1-c,钨板1-c厚度a可选为3-6mm,根据传热仿真模拟,方波结构的波宽b取值1-3mm,波深d取值0.2a~0.4a,如说明书附图图3中所示;
S2、加工后的钨板1-c依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒,烘干后,钨板1-c在高温真空去气炉中去气;
S3、提供石墨托4,石墨托4加工成X射线管设计需要的倾角, 石墨托4表面加工4个对应的钼钉孔,采用两个通用钼钉耗材3将钨板1-c固定于石墨托4的钼钉孔上,固定后钨板1-c的方波齿面朝上,如图14所示,或者采用两个方波齿型钨板专用钼钉耗材3-c将钨板1-c固定于石墨托4的钼钉孔上,专用钼钉3-c的弯钩将钨板1-c锁紧,如图15所示;
S4、无氧铜棒2依次经过洗涤剂水溶液清洗去除表面油污、盐酸和硝酸水溶液清洗去除表面氧化膜、烘干;钼钉耗材3(或3-c)使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干;
S5、将安装钨板1-c后的石墨托4放入石墨坩埚5内,使钨板1-c的方波齿面朝上,并将无氧铜棒2放置在钨板1-c的上方,两者之间保持1-2mm的距离;本发明提供石墨坩埚5,每个坩埚可安装钨靶材套数根据炉腔大小及实际生产情况而定,本发明实施例中石墨坩埚5可安装6套阳极钨靶材,如图17所示;
S6、将安装完成后的石墨坩埚5放入真空加热炉中进行加热铸靶,真空炉真空度在1.0×10 -5Pa,加热温度1400℃,保温40min,炉冷降温,由于无氧铜的熔点为1084℃,钨的熔点为3400℃,在真空炉加热到1400℃时,无氧铜棒2熔化,在保温过程中,液态铜均匀向下流入包覆在钨板1-c的背面与侧面,实现钨-铜的连接,停止加热后,液态铜缓慢冷却固化,形成阳极钨靶材原材料,整个过程在真空环境下进行,确保了无氧铜与钨材质不被氧化;
S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚5, 取出完成铸靶后的阳极钨靶材6,如图18、图19所示,并将其加工成实际生产需要的阳极结构。
实施例4
一种X射线管钨靶材制造方法:
包括原材料:背面为阵列凸点型结构的钨板1-d、无氧铜棒2、通用钼钉耗材3;
还包括制作模具:石墨托4、石墨坩埚5成型模具;
该制造方法分为:
S1、采用铣床等加工机器将钨板1的背面加工成阵列凸点型结构1-d,钨板1-d厚度a可选为3-6mm,根据传热仿真模拟,阵列凸点结构的凸点间距b取值1-2mm,凸点高度d取值0.1a~0.3a,如说明书附图图4中所示;
S2、加工后的钨板1-d依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒,烘干后,钨板1-d在高温真空去气炉中去气;
S3、提供石墨托4,石墨托4加工成X射线管设计需要的倾角,石墨托4表面加工4个对应的钼钉孔,采用两个通用钼钉耗材3将钨板1-d固定于石墨托4的钼钉孔上,固定后钨板1-d的阵列凸点结构面朝上,如图16所示;
S4、无氧铜棒2依次经过洗涤剂水溶液清洗去除表面油污、盐酸和硝酸水溶液清洗去除表面氧化膜、烘干;钼钉耗材3使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表 面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干;
S5、将安装钨板1-d后的石墨托4放入石墨坩埚5内,使钨板1-d的阵列凸点型面朝上,并将无氧铜棒2放置在钨板1-d的上方,两者之间保持1-2mm的距离;本发明提供石墨坩埚5,每个坩埚可安装钨靶材套数根据炉腔大小及实际生产情况而定,本发明实施例中石墨坩埚5可安装6套阳极钨靶材,如图17所示;
S6、将安装完成后的石墨坩埚5放入真空加热炉中进行加热铸靶,真空炉真空度在1.0×10 -5Pa,加热温度1400℃,保温40min,炉冷降温,由于无氧铜的熔点为1084℃,钨的熔点为3400℃,在真空炉加热到1400℃时,无氧铜棒2熔化,在保温过程中,液态铜均匀向下流入包覆在钨板1-d的背面与侧面,实现钨-铜的连接,停止加热后,液态铜缓慢冷却固化,形成阳极钨靶材原材料,整个过程在真空环境下进行,确保了无氧铜与钨材质不被氧化;
S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚5,取出完成铸靶后的阳极钨靶材6,如图18、图19所示,并将其加工成实际生产需要的阳极结构。
本发明中,完成铸靶后的阳极钨靶材6由钨靶62、无氧铜基体63、钼钉61组成,无氧铜基体63包覆在钨靶62的底面与侧面以及钼钉61低于钨靶62的固定部分,无氧铜与钨材料连接面积大,结合强度高、导热面积大,将阳极钨靶材6加工成X射线管所需要的阳极结构,当其密封在玻璃或陶瓷真空系统中时,钨靶62承受高速电子流轰击而产生大量的热量,热量通过与钨靶62连接的无氧铜基体63快 速传导散热,能够有效地保护钨靶62不被熔化和开裂,有效地提升X射线管使用性能与寿命。
二、实践检测部分
上述实施例1-4是将钨板背面加工成不同形状的凹凸面,以增大钨铜接触面,在实际靶材使用过程中,我们分别选取实施例1-4制作的阳极钨靶材,应用于80KV高压电源X射线管内部得到X射线管(1-4),同时选取四个平面钨板制作的阳极钨靶材应用于80KV高压电源X射线管(光管5-8)进行使用寿命对比。
Figure PCTCN2022075921-appb-000001
由上述检测和实际使用数据得知,本发明提出的制造方法生产的阳极钨靶材应用于X射线管内部,可以增加X射线管的使用寿命,同时提高钨靶的散热效果,避免靶材开裂和熔化现象发生。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种X射线管钨靶材制造方法,包括原材料:钨板(1)、无氧铜棒(2)和钼钉耗材(3);还包括制作模具:石墨托(4)、石墨坩埚(5)成型模具,其特征在于:该制造方法包括以下步骤:
    S1、采用粉末冶金或者切割打磨等方式将钨板(1)的背面加工成三角波形锯齿面或者其它形状凹凸面;
    S2、加工完成的钨板(1)需要经过洗涤剂清洗去除表面油污、酸洗去除氧化膜和真空高温去气工序处理;
    S3、石墨托(4)的表面开设与钼钉耗材(3)适配的固定孔,并利用固定孔和钼钉耗材(3)将钨板(1)固定于石墨托(4)上,固定后钨板(1)的锯齿面或其他形状凹凸面朝上;
    S4、无氧铜棒(2)依次经过洗涤剂水溶液清洗去除表面油污、盐酸和硝酸水溶液清洗去除表面氧化膜、烘干;
    S5、将安装钨板(1)后的石墨托(4)放入石墨坩埚(5)内部,使钨板(1)的凹凸面朝上,并将无氧铜棒(2)放置在钨板(1)的上方,两者之间保持0~2mm的距离;
    S6、将安装完成后的石墨坩埚(5)放入真空加热炉中进行加热铸靶,真空炉的真空度控制在在1.0×10 -3~1.0×10 -5Pa之间,加热温度1200~1400℃,保温10~40min,炉冷降温;
    S7、真空加热炉冷却到80℃以下时,关闭真空并取出石墨坩埚(5),取出完成铸靶后的阳极钨靶材(6),并将其加工成实际生产需要的阳极结构。
  2. 根据权利要求1所述的一种X射线管钨靶材制造方法,其特 征在于:所述钨板(1)背面加工三角波形锯齿面或者其他形状凹凸面,在加工条件允许的情况下,加工后表面积越大越好,加工面不限于三角波锯齿型、方波齿型、波浪型、点阵型等。
  3. 根据权利要求1所述的一种X射线管钨靶材制造方法,其特征在于:所述石墨坩埚(5)为铸造熔融成型模具,其上表面开设有若干成型腔,且每个成型腔是由大直径的上圆柱腔和小直径的下圆柱腔组成,上圆柱腔的内腔造型和大小与无氧铜棒(2)适配,下圆柱腔的内腔造型和大小与石墨托(4)适配。
  4. 根据权利要求1所述的一种X射线管钨靶材制造方法,其特征在于:所述钼钉耗材(3)固定在有一定倾角的石墨托(4)的中心位置,为保证铸靶过程中钨板(1)固定牢固,所述钼钉耗材(3)固定钨板(1)时距离钨板(1)边缘的距离0~2mm。
  5. 根据权利要求1所述的一种X射线管钨靶材制造方法,其特征在于:所述步骤S7中完成铸靶后的阳极钨靶材(6)由钨靶(62)、无氧铜基体(63)、钼钉(61)组成,无氧铜基体(63)包覆在钨靶(62)的底面与侧面,钼钉(61)低于钨靶(62)的固定部分。
  6. 根据权利要求1所述的一种X射线管钨靶材制造方法,其特征在于:所述步骤S3中的钼钉耗材(3)在使用前依次经过洗涤剂水溶液清洗去除表面油污、硝酸和氢氟酸水溶液清洗去除表面氧化膜,丙酮超声波清洗去除其他微小颗粒、烘干处理。
PCT/CN2022/075921 2022-02-10 2022-02-10 一种x射线管钨靶材制造方法 WO2023150983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075921 WO2023150983A1 (zh) 2022-02-10 2022-02-10 一种x射线管钨靶材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075921 WO2023150983A1 (zh) 2022-02-10 2022-02-10 一种x射线管钨靶材制造方法

Publications (1)

Publication Number Publication Date
WO2023150983A1 true WO2023150983A1 (zh) 2023-08-17

Family

ID=87563461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075921 WO2023150983A1 (zh) 2022-02-10 2022-02-10 一种x射线管钨靶材制造方法

Country Status (1)

Country Link
WO (1) WO2023150983A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB459103A (en) * 1935-06-03 1937-01-01 Philips Nv Method of increasing the tenacity of metal articles
US2250322A (en) * 1939-03-06 1941-07-22 Gen Electric X Ray Corp Anode and alloy for making same
GB618824A (en) * 1945-11-13 1949-02-28 British Thomson Houston Co Ltd Improvements in and relating to methods of casting electrodes for x-ray tubes and casting moulds therefor
CN101494322A (zh) * 2009-02-27 2009-07-29 西安交通大学 一种钨铜连接方法
CN108145131A (zh) * 2018-02-09 2018-06-12 中国科学技术大学 一种基于真空热熔与爆炸复合相结合的换热器的制作方法
CN110303141A (zh) * 2019-07-10 2019-10-08 株洲未铼新材料科技有限公司 一种x射线管用单晶铜固定阳极靶材及其制备方法
CN210198074U (zh) * 2019-04-04 2020-03-27 爱克斯瑞真空技术(苏州)有限公司 一种x射线管阳极头铸靶坩埚装置
CN113523238A (zh) * 2020-04-13 2021-10-22 上海超群无损检测设备有限责任公司 一种x射线管钨靶材制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB459103A (en) * 1935-06-03 1937-01-01 Philips Nv Method of increasing the tenacity of metal articles
US2250322A (en) * 1939-03-06 1941-07-22 Gen Electric X Ray Corp Anode and alloy for making same
GB618824A (en) * 1945-11-13 1949-02-28 British Thomson Houston Co Ltd Improvements in and relating to methods of casting electrodes for x-ray tubes and casting moulds therefor
CN101494322A (zh) * 2009-02-27 2009-07-29 西安交通大学 一种钨铜连接方法
CN108145131A (zh) * 2018-02-09 2018-06-12 中国科学技术大学 一种基于真空热熔与爆炸复合相结合的换热器的制作方法
CN210198074U (zh) * 2019-04-04 2020-03-27 爱克斯瑞真空技术(苏州)有限公司 一种x射线管阳极头铸靶坩埚装置
CN110303141A (zh) * 2019-07-10 2019-10-08 株洲未铼新材料科技有限公司 一种x射线管用单晶铜固定阳极靶材及其制备方法
CN113523238A (zh) * 2020-04-13 2021-10-22 上海超群无损检测设备有限责任公司 一种x射线管钨靶材制造方法

Similar Documents

Publication Publication Date Title
JP2642858B2 (ja) セラミックスヒーター及び加熱装置
TWI404815B (zh) Sputtering target structure
CN104582026B (zh) 一种金属/陶瓷层状复合材料内加热器
CN102219218B (zh) 带有隆起边缘的锥形石墨电极
CN110465643A (zh) 一种铜铌复合材料的制备方法
WO2023150983A1 (zh) 一种x射线管钨靶材制造方法
JP5072936B2 (ja) 複合ルツボ及びその製造方法
CN106424733A (zh) 一种CoCrMo 合金牙冠3D 打印与电解抛光复合加工系统
CN113523238A (zh) 一种x射线管钨靶材制造方法
TW201133543A (en) Discharge lamp
CN216006085U (zh) 坩埚组合
CN105543564B (zh) 含高熔点组元的镍基三元中间合金及其制备方法
US4394953A (en) Method of joining individual parts of an X-ray anode, in particular of a rotating anode
JPH11204239A (ja) プレート型ヒータおよびその製造方法および薄膜製造装置
JP3603676B2 (ja) シリコン連続鋳造方法
JP3817054B2 (ja) 蒸着源用るつぼ、及び蒸着装置
CN107326225A (zh) 铝合金及其制备方法、靶材组件及其制造方法
CN101748369A (zh) 电子束蒸发装置
WO2005069349A1 (ja) 放電電極、放電ランプ、放電電極の製造方法および製造装置
KR101133151B1 (ko) 증착 공정용 전극 제조 방법
JP3889129B2 (ja) ヒートシンクの製造方法
KR101266302B1 (ko) 알루미늄 기재에 내열성 세라믹 코팅막을 형성하는 방법
CN217709657U (zh) 一种用于晶圆背面金属化蒸镀的锅体结构
CN113053705B (zh) 一种耐电弧烧蚀的铪铜复合电极及其制备方法
KR100548900B1 (ko) 저항가열 보트의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925345

Country of ref document: EP

Kind code of ref document: A1