WO2023149358A1 - 制御システム、制御方法、及び記憶媒体 - Google Patents

制御システム、制御方法、及び記憶媒体 Download PDF

Info

Publication number
WO2023149358A1
WO2023149358A1 PCT/JP2023/002535 JP2023002535W WO2023149358A1 WO 2023149358 A1 WO2023149358 A1 WO 2023149358A1 JP 2023002535 W JP2023002535 W JP 2023002535W WO 2023149358 A1 WO2023149358 A1 WO 2023149358A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference system
autonomous mobile
mobile body
control
Prior art date
Application number
PCT/JP2023/002535
Other languages
English (en)
French (fr)
Inventor
洋平 佐藤
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023001617A external-priority patent/JP2023112669A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023149358A1 publication Critical patent/WO2023149358A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/907Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/909Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using geographical or spatial information, e.g. location
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to control systems, control methods, storage media, and the like.
  • Patent Document 1 in the movement technology of an autonomous mobile body, it has wide-area map information and a local map that it grasps most recently, and handles the wide-area map with the global coordinate system and the local map with the local coordinate system.
  • Patent Document 1 the local coordinate system used in the technique of Patent Document 1 is set for the autonomous mobile body to use itself, and there is a problem that it does not serve as a standard for sharing position information with other devices. rice field.
  • One object of the present invention is to provide a control system using a spatio-temporal format that can share location information and spatial information with various devices.
  • a control system as one aspect of the present invention includes control means for giving control instructions to at least one or more autonomous mobile bodies, information on the type of an object existing in a space defined by a first reference system, and information on time and conversion information holding means for converting the spatial information containing the spatial information into a format and holding it in association with the unique identifier, wherein the conversion information holding means is defined by a second frame of reference different from the first frame of reference. Spatial information including information about types of objects existing in space and information about time can be associated with a unique identifier, converted into a format, and stored, and the second reference system is linked to the first reference system. means, wherein the control means generates route information relating to the moving route of the moving body based on the spatial information acquired from the conversion information holding means and the type information of the moving body.
  • FIG. 1 is a diagram showing an overall configuration example of an autonomous mobile body control system according to a first embodiment of the present invention
  • FIG. (A) is a diagram showing an example of an input screen when a user inputs position information
  • (B) is a diagram showing an example of a selection screen for selecting an autonomous mobile body to be used.
  • (A) is a diagram showing an example of a screen for confirming the current position of an autonomous mobile body
  • (B) is a diagram showing an example of a map display screen when confirming the current position of an autonomous mobile body.
  • 2 is a block diagram showing an internal configuration example of each device in FIG. 1;
  • FIG. 1 is a diagram showing an overall configuration example of an autonomous mobile body control system according to a first embodiment of the present invention
  • FIG. (A) is a diagram showing an example of an input screen when a user inputs position information
  • (B) is a diagram showing an example of a selection screen for selecting an autonomous mobile body to be used.
  • (A) is a diagram showing
  • FIG. 1 is a diagram showing the spatial positional relationship between the autonomous mobile body 12 in the real world and the pillar 99 that exists as feature information around it, and (B) shows the autonomous mobile body 12 and the pillar 99 with P0 as the origin. It is a diagram showing a state of mapping in an arbitrary XYZ coordinate system space. It is a perspective view showing a mechanical example of composition of autonomous mobile 12 concerning a 1st embodiment.
  • 3 is a block diagram showing a specific hardware configuration example of a control unit 10-2, a control unit 11-2, a control unit 12-2, a control unit 13-2, a control unit 14-3, and a control unit 15-2;
  • FIG. FIG. 4 is a sequence diagram illustrating processing executed by the autonomous mobile body control system according to the first embodiment;
  • FIG. 9 is a sequence diagram continued from FIG. 8;
  • FIG. 10 is a sequence diagram continued from FIG. 9;
  • (A) is a diagram showing latitude/longitude information of the earth, and
  • (B) is a perspective view showing the predetermined space 100 of (A).
  • 4 is a diagram schematically showing spatial information in space 100.
  • FIG. (A) is a diagram showing route information using map information
  • (B) is a diagram showing route information using position point cloud data using map information
  • (C) is a map showing route information using unique identifiers. It is the displayed figure.
  • It is a hierarchical structure diagram of each reference system.
  • 5 is a hierarchical structure diagram showing in detail the relationship between the local frame of reference 510 and the indoor frame of reference 520.
  • the mobile body may be one in which the user can operate at least a part of the movement of the mobile body. That is, for example, various displays related to the moving route and the like may be displayed to the user, and the user may perform a part of the driving operation of the moving body with reference to the display.
  • FIG. 1 is a diagram showing an overall configuration example of an autonomous mobile body control system according to a first embodiment of the present invention.
  • the autonomous mobile body control system also abbreviated as control system
  • the autonomous mobile body control system includes a system control device 10, a user interface 11, an autonomous mobile body 12, a route determination device 13, conversion information holding It includes a device 14, a sensor node 15, and the like.
  • the user interface 11 means a user terminal device.
  • each device shown in FIG. 1 is connected via the Internet 16 by respective network connection units, which will be described later.
  • network connection units such as LAN (Local Area Network) may be used.
  • part of the system control device 10, the user interface 11, the route determining device 13, the conversion information holding device 14, etc. may be configured as the same device. Also, the user interface 11, the route determining device 13, the conversion information holding device 14, and the like function as control means for executing a control process of giving control instructions to at least one or more autonomous moving bodies.
  • the system control device 10, the user interface 11, the autonomous mobile body 12, the route determination device 13, the conversion information holding device 14, and the sensor node 15 each contain information such as a CPU as a computer and ROM, RAM, HDD, etc. as storage media. Contains processing equipment. Details of the function and internal configuration of each device will be described later.
  • screen images displayed on the user interface 11 when the user browses the current position of the autonomous mobile body 12 will be described with reference to FIGS. 3(A) and 3(B). Based on these explanations, an example will be used to explain how the application is operated in the autonomous mobile body control system.
  • map display will be described on a two-dimensional plane for convenience. can also be entered. That is, according to this embodiment, a three-dimensional map can be generated.
  • Fig. 2(A) is a diagram showing an example of an input screen when a user inputs position information
  • Fig. 2(B) is a diagram showing an example of a selection screen for selecting an autonomous mobile body to be used.
  • the WEB page of the system control device 10 is displayed.
  • the input screen 40 has a list display button 48 for displaying a list of autonomous moving bodies (mobilities) to be used.
  • a list of mobilities is displayed as shown in FIG. A screen 47 is displayed.
  • the user first selects the autonomous mobile body (mobility) to be used on the list display screen 47 .
  • the autonomous mobile body mobility
  • the list display screen 47 for example, mobilities M1 to M3 are displayed in a selectable manner, but the number is not limited to this.
  • the screen automatically returns to the input screen 40 of FIG. 2(A). Also, the selected mobility name is displayed on the list display button 48 . After that, the user inputs the location to be set as the starting point in the input field 41 of "starting point".
  • the user inputs the location to be set as a transit point in the input field 42 of "transit point 1". It is possible to add a waypoint, and when the add waypoint button 44 is pressed once, an input field 46 for "waypoint 2" is additionally displayed, and the waypoint to be added can be input.
  • add waypoint button 44 Each time the add waypoint button 44 is pressed, additional input fields 46 are displayed, such as "waypoint 3" and "waypoint 4", and multiple additional waypoints can be entered. Also, the user inputs a place to be set as the arrival point in the input field 43 of "arrival point". Although not shown in the figure, when the input fields 41 to 43, 46, etc. are clicked, a keyboard or the like for inputting characters is temporarily displayed so that desired characters can be input.
  • the user can set the movement route of the autonomous mobile body 12 by pressing the decision button 45 .
  • "AAA” is set as the departure point
  • "BBB” is set as the transit point 1
  • "CCC” is set as the arrival point.
  • the text to be entered in the input field may be, for example, an address, or it may be possible to enter location information for indicating a specific location, such as latitude/longitude information, store name, and telephone number.
  • FIG. 3A is a diagram showing an example of a screen for confirming the current position of an autonomous mobile body
  • FIG. 3B is a diagram showing an example of a map display screen when confirming the current position of an autonomous mobile body. be.
  • FIG. 3(A) is a confirmation screen, which is displayed by operating an operation button (not shown) after setting the movement route of the autonomous mobile body 12 on the screen as shown in FIG. 2(A).
  • the confirmation screen 50 the current position of the autonomous mobile body 12 is displayed on the WEB page of the user interface 11 like the current location 56 . Therefore, the user can easily grasp the current position.
  • the user can update the screen display information to display the latest state. Further, the user can change the place of departure, the waypoint, and the place of arrival by pressing the change waypoint/arrival place button 54 . That is, it is possible to change by inputting the places to be reset in the input field 51 of "departure point", the input field 52 of "route point 1", and the input field 53 of "arrival point".
  • FIG. 3(B) shows an example of a map display screen 60 that switches from the confirmation screen 50 when the map display button 55 of FIG. 3(A) is pressed.
  • the current location of the autonomous mobile body 12 can be confirmed more easily by displaying the current location 62 on the map.
  • the return button 61 the display screen can be returned to the confirmation screen 50 of FIG. 3(A).
  • the user can easily set a movement route for moving the autonomous mobile body 12 from a predetermined location to a predetermined location.
  • a route setting application can also be applied to, for example, a taxi dispatch service, a drone home delivery service, and the like.
  • FIG. 4 is a block diagram showing an internal configuration example of each device in FIG.
  • the user interface 11 includes an operation unit 11-1, a control unit 11-2, a display unit 11-3, an information storage unit (memory/HD) 11-4, and a network connection unit 11-5.
  • the operation unit 11-1 is composed of a touch panel, key buttons, etc., and is used for data input.
  • the display unit 11-3 is, for example, a liquid crystal screen, and is used to display route information and other data.
  • the display screen of the user interface 11 shown in FIGS. 2 and 3 is displayed on the display unit 11-3.
  • the user can use the menu displayed on the display unit 11-3 to select a route, input information, confirm information, and the like.
  • the operation unit 11-1 and the display unit 11-3 provide an operation interface for the user to actually operate.
  • a touch panel may be used as both the operation section and the display section.
  • the control unit 11-2 incorporates a CPU as a computer, manages various applications in the user interface 11, manages modes such as information input and information confirmation, and controls communication processing. Also, it controls the processing in each part in the system controller.
  • the information storage unit (memory/HD) 11-4 is a database for holding necessary information such as computer programs to be executed by the CPU.
  • a network connection unit 11-5 controls communication performed via the Internet, LAN, wireless LAN, or the like.
  • the user interface 11 may be, for example, a device such as a smart phone, or may be in the form of a tablet terminal.
  • the user interface 11 of the present embodiment displays the departure point, waypoint, and destination input screen 40 on the browser screen of the system control device 10, and allows the user to enter positions such as the departure point, waypoint, and arrival point. Information can be entered. Furthermore, by displaying the confirmation screen 50 and the map display screen 60 on the browser screen, the current position of the autonomous mobile body 12 can be displayed.
  • the route determination device 13 includes a map information management unit 13-1, a control unit 13-2, a position/route information management unit 13-3, an information storage unit (memory/HD) 13-4, and a network connection unit 13. -5.
  • the map information management unit 13-1 holds wide-area map information, searches for route information indicating a route on the map based on designated predetermined position information, and uses the route information of the search result as a position/ It is transmitted to the route information management section 13-3.
  • the map information is three-dimensional map information that includes information such as terrain and latitude/longitude/altitude, and also includes roadway, sidewalk, direction of travel, and traffic regulation information related to the Road Traffic Act.
  • control unit 13-2 incorporates a CPU as a computer, and controls processing in each unit within the route determination device 13.
  • FIG. 1
  • the position/route information management unit 13-3 manages the position information of the autonomous mobile body acquired via the network connection unit 13-5, transmits the position information to the map information management unit 13-1, and manages the map information. It manages the route information as the search result obtained from the unit 13-1.
  • the control unit 13-2 converts the route information managed by the position/route information management unit 13-3 into a predetermined data format according to a request from the external system, and transmits the converted data to the external system.
  • the route determination device 13 is configured to search for a route in compliance with the Road Traffic Law or the like based on designated position information, and to output the route information in a predetermined data format. It is
  • the conversion information holding device 14 in FIG. -5 and a network connection unit 14-6 The conversion information holding device 14 in FIG. -5 and a network connection unit 14-6.
  • the position/route information management unit 14-1 manages predetermined position information acquired through the network connection unit 14-6, and transmits the position information to the control unit 14-3 according to a request from the control unit 14-3.
  • the control unit 14-3 incorporates a CPU as a computer, and controls processing in each unit within the conversion information holding device 14. FIG.
  • control unit 14-3 Based on the position information acquired from the position/route information management unit 14-1 and the information of the format managed by the format database 14-4, the control unit 14-3 converts the position information into the format defined in the format. unique identifier.
  • the format which will be described in detail later, assigns an identifier (hereinafter referred to as a unique identifier) to a space starting from a predetermined position, and manages the space by means of the unique identifier.
  • a unique identifier assigns an identifier (hereinafter referred to as a unique identifier) to a space starting from a predetermined position, and manages the space by means of the unique identifier.
  • a unique identifier assigns an identifier (hereinafter referred to as a unique identifier) to a space starting from a predetermined position, and manages the space by means of the unique identifier.
  • a unique identifier assigns an identifier (hereinafter referred to as a unique identifier) to a space starting from a predetermined position, and manages the space by means of the unique identifier.
  • the unique identifier management unit 14-2 manages the unique identifier converted by the control unit 14-3 and transmits it through the network connection unit 14-6.
  • the format database 14-4 manages the format information and transmits the format information to the control unit 14-3 in accordance with a request from the control unit 14-3.
  • the conversion information holding device 14 manages the information related to the space acquired by external devices, devices, and networks in association with unique identifiers. In addition, it provides information on the unique identifier and the space associated with it to external devices, devices, and networks.
  • the conversion information holding device 14 acquires the unique identifier and the information in the space based on the predetermined position information, and can share the information with external devices, devices, and networks connected to itself. managed and provided to
  • the conversion information holding device 14 converts the location information specified by the system control device 10 into the unique identifier, and provides the unique identifier to the system control device 10 .
  • the system control device 10 includes a unique identifier management section 10-1, a control section 10-2, a position/route information management section 10-3, an information storage section (memory/HD) 10-4, and a network connection section 10-. 5.
  • the position/route information management unit 10-3 holds simple map information that associates terrain information with latitude/longitude information, and stores predetermined position information and route information obtained through the network connection unit 10-5. to manage.
  • the position/route information management unit 10-3 can also divide the route information at predetermined intervals and generate position information such as the latitude/longitude of the divided locations.
  • the unique identifier management unit 10-1 manages information obtained by converting the position information and the route information into the unique identifier.
  • the control unit 10-2 incorporates a CPU as a computer, controls the communication function of the position information, the route information, and the unique identifier of the system control device 10, and controls the processing in each unit in the system control device 10. do.
  • control unit 10 - 2 provides the user interface 11 with the WEB page and transmits predetermined position information acquired from the WEB page to the route determination device 13 . Further, it acquires predetermined route information from the route determination device 13 and transmits each position information of the route information to the conversion information holding device 14 . Then, the route information converted into the unique identifier acquired from the conversion information holding device 14 is transmitted to the autonomous mobile body 12 .
  • the system control device 10 is configured to acquire predetermined position information designated by the user, transmit and receive position information and route information, generate position information, and transmit and receive route information using unique identifiers.
  • the system control device 10 collects the route information necessary for the autonomous mobile body 12 to move autonomously, and assigns a unique identifier to the autonomous mobile body 12. Provides route information using Incidentally, in this embodiment, the system control device 10, the route determination device 13, and the conversion information holding device 14 function as servers, for example.
  • the autonomous moving body 12 includes a detection unit 12-1, a control unit 12-2, a direction control unit 12-3, an information storage unit (memory/HD) 12-4, a network connection unit 12-5, and a drive unit 12. -6.
  • the detection unit 12-1 has, for example, a plurality of imaging elements, and has a function of performing distance measurement based on phase differences between a plurality of imaging signals obtained from the plurality of imaging elements.
  • detection information such as obstacles such as surrounding terrain and building walls
  • the detection unit 12-1 also has a self-position detection function such as GPS (Global Positioning System) and a direction detection function such as a geomagnetic sensor. Furthermore, based on the acquired detection information, self-position estimation information, and direction detection information, the control unit 12-2 can generate a three-dimensional map of cyber space.
  • a self-position detection function such as GPS (Global Positioning System)
  • a direction detection function such as a geomagnetic sensor.
  • the control unit 12-2 can generate a three-dimensional map of cyber space.
  • a 3D map of cyberspace is one that can express spatial information equivalent to the position of features in the real world as digital data.
  • the autonomous mobile body 12 that exists in the real world and information on features around it are held as spatially equivalent information as digital data. Therefore, by using this digital data, efficient movement is possible.
  • FIG. 5A is a diagram showing the spatial positional relationship between the autonomous mobile body 12 in the real world and a pillar 99 that exists as feature information around it.
  • FIG. 5B shows the autonomous mobile body 12 and the pillar 99. , P0 as the origin, and is mapped to an arbitrary XYZ coordinate system space.
  • the position of the autonomous mobile body 12 is determined from the latitude and longitude position information acquired by GPS or the like (not shown) mounted on the autonomous mobile body 12. identified as ⁇ 0. Also, the orientation of the autonomous mobile body 12 is specified by the difference between the orientation ⁇ Y acquired by an electronic compass (not shown) or the like and the moving direction 12Y of the autonomous mobile body 12 .
  • the position of the pillar 99 is specified as the position of the vertex 99-1 from position information measured in advance.
  • the distance measurement function of the autonomous mobile body 12 makes it possible to acquire the distance from ⁇ 0 of the autonomous mobile body 12 to the vertex 99-1.
  • FIG. 5A when the moving direction 12Y is the axis of the XYZ coordinate system and ⁇ 0 is the origin, the coordinates (Wx, Wy, Wz) of the vertex 99-1 are shown.
  • the information obtained in this way is managed as digital data, and can be reconstructed as spatial information as shown in FIG. is.
  • FIG. 5(B) shows a state in which the autonomous mobile body 12 and the pillar 99 are mapped in an arbitrary XYZ coordinate system space with P0 as the origin.
  • P0 a predetermined latitude and longitude in the real world and taking the azimuth north of the real world in the Y-axis direction
  • the autonomous mobile body 12 is expressed as P1 and the pillar 99 as P2 in this arbitrary XYZ coordinate system space. be able to.
  • the position P1 of ⁇ 0 in this space can be calculated from the latitude and longitude of ⁇ 0 and the latitude and longitude of P0.
  • the column 99 can be calculated as P2.
  • two of the autonomous mobile body 12 and the pillar 99 are represented by a three-dimensional map of cyber space, but of course, even if there are more, it is possible to treat them in the same way.
  • a three-dimensional map is a mapping of the self-position and objects in the real world in a three-dimensional space.
  • the autonomous mobile body 12 stores learning result data of object detection that has been machine-learned, for example, in an information storage unit (memory/HD) 12-4. Objects can be detected.
  • an information storage unit memory/HD
  • the detection information can also be acquired from an external system via the network connection unit 12-5 and reflected in the three-dimensional map.
  • the control unit 12-2 has a built-in CPU as a computer, controls movement, direction change, and autonomous running functions of the autonomous mobile body 12, and controls processing in each part in the autonomous mobile body 12.
  • the direction control unit 12-3 changes the moving direction of the autonomous moving body 12 by changing the driving direction of the moving body by the driving unit 12-6.
  • the driving unit 12-6 is composed of a driving device such as a motor, and generates a propulsion force for the autonomous mobile body 12.
  • the autonomous mobile body 12 reflects the self-position, detection information, and object detection information in the three-dimensional map, generates a route keeping a certain distance from the surrounding terrain, buildings, obstacles, and objects, and autonomously travels. It can be carried out.
  • the route determination device 13 mainly generates routes in consideration of regulatory information related to the Road Traffic Act.
  • the autonomous mobile body 12 more accurately detects the positions of surrounding obstacles on the route determined by the route determination device 13, and generates a route based on its own size so as to move without touching them.
  • the information storage unit (memory/HD) 12-4 of the autonomous mobile body 12 can store the mobility type of the autonomous mobile body itself.
  • the mobility type is, for example, a legally identified type of moving object, such as a car, bicycle, or drone. Formatted route information, which will be described later, can be generated based on this mobility format.
  • FIG. 6 is a perspective view showing a mechanical configuration example of the autonomous mobile body 12 according to the embodiment.
  • the autonomous mobile body 12 will be described as an example of a traveling body having wheels, but is not limited to this, and may be a flying body such as a drone.
  • the autonomous moving body 12 includes a detection unit 12-1, a control unit 12-2, a direction control unit 12-3, an information storage unit (memory/HD) 12-4, a network connection unit 12-5, a drive unit 12-6 are mounted, and each part is electrically connected to each other. At least two drive units 12-6 and direction control units 12-3 are provided in the autonomous mobile body 12.
  • FIG. 6 the autonomous moving body 12 includes a detection unit 12-1, a control unit 12-2, a direction control unit 12-3, an information storage unit (memory/HD) 12-4, a network connection unit 12-5, a drive unit 12-6 are mounted, and each part is electrically connected to each other. At least two drive units 12-6 and direction control units 12-3 are provided in the autonomous mobile body 12.
  • the direction control unit 12-3 changes the moving direction of the autonomous mobile body 12 by changing the direction of the driving unit 12-6 by rotating the shaft, and the driving unit 12-6 rotates the autonomous mobile body by rotating the shaft. Perform 12 forwards and backwards.
  • the configuration described with reference to FIG. 6 is an example, and the present invention is not limited to this.
  • an omniwheel or the like may be used to change the movement direction.
  • the autonomous mobile body 12 is, for example, a mobile body using SLAM (Simultaneous Localization and Mapping) technology. Further, based on the detection information detected by the detection unit 12-1 and the detection information of the external system obtained via the Internet 16, it is configured so that it can autonomously move along a designated predetermined route.
  • SLAM Simultaneous Localization and Mapping
  • the autonomous mobile body 12 can perform trace movement by tracing finely specified points, and can also generate route information by itself in the space between them while passing through roughly set points and move. It is possible.
  • the autonomous mobile body 12 of the present embodiment can move autonomously based on the route information using the unique identifier provided by the system control device 10.
  • the sensor node 15 is an external system such as a video surveillance system such as a roadside camera unit, and includes a detection unit 15-1, a control unit 15-2, and an information storage unit (memory/HD) 15-3. , and a network connection unit 15-4.
  • the detection unit 15-1 acquires detection information of an area in which the detection unit 15-1 can detect itself, such as a camera, and has an object detection function and a distance measurement function.
  • the control unit 15-2 incorporates a CPU as a computer, controls the detection of the sensor node 15, data storage, and data transmission functions, and controls processing in each unit within the sensor node 15. Further, the detection information acquired by the detection unit 15-1 is stored in the information storage unit (memory/HD) 15-3, and is transmitted to the conversion information holding device 14 through the network connection unit 15-4.
  • the sensor node 15 is configured so that detection information such as image information detected by the detection unit 15-1, feature point information of a detected object, and position information can be stored in the information storage unit 15-3 and communicated. It is Further, the sensor node 15 provides the conversion information holding device 14 with the detection information of the area detectable by itself.
  • FIG. 7 is a block diagram showing a specific hardware configuration example of the control unit 10-2, the control unit 11-2, the control unit 12-2, the control unit 13-2, the control unit 14-3, and the control unit 15-2. It is a diagram.
  • 21 is a CPU as a computer that manages the calculation and control of the information processing device.
  • a RAM 22 functions as a main memory of the CPU 21, an area for execution programs, an execution area for the programs, and a data area.
  • a ROM 23 stores an operation processing procedure of the CPU 21 .
  • the ROM 23 includes a program ROM that records basic software (OS), which is a system program for controlling the information processing device, and a data ROM that records information necessary for operating the system. Note that an HDD 29, which will be described later, may be used instead of the ROM 23.
  • OS basic software
  • HDD 29 which will be described later, may be used instead of the ROM 23.
  • a network interface (NETIF) 24 controls data transfer between information processing devices via the Internet 16 and diagnoses the connection status.
  • a video RAM (VRAM) 25 develops an image to be displayed on the screen of the LCD 26 and controls the display.
  • 26 is a display device such as a display (hereinafter referred to as LCD).
  • KBC controller
  • Reference numeral 28 denotes an external input device (hereinafter abbreviated as KB) for receiving operations performed by the user, and for example, a pointing device such as a keyboard or mouse is used.
  • HDD 29 is a hard disk drive (hereinafter referred to as HDD), which is used for storing application programs and various data.
  • the application program in this embodiment is a software program or the like that executes various processing functions in this embodiment.
  • a CDD 30 is for inputting/outputting data from/to a removable medium 31 as a removable data recording medium, such as a CDROM drive, DVD drive, Blu-Ray (registered trademark) disk drive, or the like.
  • the CDD 30 is an example of an external input/output device.
  • the CDD 30 is used, for example, when reading the above-described application program from removable media.
  • 31 is a removable medium such as a CDROM disk, DVD, Blu-Ray disk, etc., which is read by the CDD 30 .
  • the removable medium may be a magneto-optical recording medium (eg, MO), a semiconductor recording medium (eg, memory card), or the like. It is also possible to store the application programs and data stored in the HDD 29 in the removable medium 31 and use them.
  • Reference numeral 20 denotes a transmission bus (address bus, data bus, input/output bus, and control bus) for connecting the units described above.
  • FIG. 8 the details of the control operation in the autonomous mobile body control system for realizing the route setting application and the like described in FIGS. 2 and 3 will be described with reference to FIGS. 8 to 10.
  • FIG. 8 the details of the control operation in the autonomous mobile body control system for realizing the route setting application and the like described in FIGS. 2 and 3 will be described with reference to FIGS. 8 to 10.
  • FIG. 8 is a sequence diagram illustrating processing executed by the autonomous mobile body control system according to the present embodiment
  • FIG. 9 is a sequence diagram following FIG. 8
  • FIG. 10 is a sequence diagram following FIG. is.
  • each step of the sequence shown in FIGS. 8 to 10 is performed by executing a computer program stored in the memory by the computer in the control section of each device.
  • step S201 the user accesses the WEB page provided by the system control device 10 using the user interface 11.
  • step S202 the system control device 10 displays the position input screen as described with reference to FIG. 2 on the display screen of the WEB page.
  • step S203 as described with reference to FIG. 2, the user selects an autonomous mobile object (mobility) and inputs location information (hereinafter referred to as location information) indicating departure/via/arrival points.
  • mobility autonomous mobile object
  • location information hereinafter referred to as location information
  • the position information may be a word (hereinafter referred to as a position word) specifying a specific place such as a building name, a station name, or an address, or a point (hereinafter referred to as a point) indicating a specific position on the map displayed on the WEB page.
  • a position word a word specifying a specific place such as a building name, a station name, or an address
  • a point hereinafter referred to as a point
  • step S204 the system control device 10 saves the type information of the selected autonomous mobile body 12 and the input position information.
  • the position information is the position word
  • the position word is stored
  • the simple map stored in the position/route information management unit 10-3 is stored. Based on the information, find the latitude/longitude corresponding to the point and save the latitude/longitude.
  • step S205 the system control device 10 designates the type of route that can be traveled (hereinafter referred to as route type) from the mobility type (type) of the autonomous mobile body 12 designated by the user. Then, in step S206, it is transmitted to the route determination device 13 together with the position information.
  • route type the type of route that can be traveled
  • the mobility type mentioned above is a legally distinct type of moving object, and means a type such as a car, bicycle, or drone.
  • the type of route is, for example, a general road, a highway, an exclusive road for automobiles, or the like, and a predetermined sidewalk, a side strip of an ordinary road, or a bicycle lane for a bicycle.
  • step S207 the route determination device 13 inputs the received position information to the owned map information as departure/via/arrival points. If the location information is the location word, search the map information by the location word and use the corresponding latitude/longitude information. When the position information is latitude/longitude information, it is used as it is input to the map information.
  • step S208 the route determination device 13 searches for a route from the departure point to the arrival point via the intermediate points.
  • the route to be searched is searched according to the route type.
  • step S209 the route determination device 13 outputs, as a result of the search, a route from the departure point to the arrival point via the waypoints (hereinafter referred to as route information) in GPX format (GPS eXchange Format), and system control is performed.
  • route information a route from the departure point to the arrival point via the waypoints
  • GPX format GPS eXchange Format
  • GPX format files are mainly divided into three types: waypoints (point information without order), routes (point information with order with time information added), and tracks (collection of multiple point information: trajectory). is configured to
  • Latitude/longitude is described as the attribute value of each point information, altitude, geoid height, GPS reception status/accuracy, etc. are described as child elements.
  • the minimum element required for a GPX file is latitude/longitude information for a single point, and any other information is optional.
  • What is output as the route information is the route, which is a set of point information consisting of latitude/longitude having an order relationship. Note that the route information may be in another format as long as it satisfies the above requirements.
  • FIG. 11(A) is a diagram showing latitude/longitude information of the earth
  • FIG. 11(B) is a perspective view showing the predetermined space 100 of FIG. 11(A).
  • the center of the predetermined space 100 is defined as the center 101.
  • FIG. 12 is a diagram schematically showing spatial information in the space 100. As shown in FIG.
  • the format divides the earth's space into three-dimensional spaces determined by ranges starting from latitude/longitude/height, and assigns a unique identifier to each space. It can be added and managed.
  • the space 100 is displayed as a predetermined three-dimensional space.
  • a space 100 is defined as a center 101 at 20 degrees north latitude, 140 degrees east longitude, and height H, and is a divided space defined with a latitudinal width of D, a longitudinal width of W, and a vertical width of T. be.
  • it is one space obtained by dividing the space of the earth into spaces determined by ranges starting from the latitude/longitude/height.
  • each of the arranged divided spaces has its horizontal position defined by latitude/longitude, overlaps in the height direction, and the position in the height direction is defined by height.
  • center 101 of the divided space is set as the starting point of the latitude/longitude/height in FIG. 11B, it is not limited to this. may be used as the starting point.
  • the shape may be roughly rectangular parallelepiped, and when considering the case of laying it on the surface of a sphere like the earth, it is better to set the top surface slightly wider than the bottom surface of the rectangular parallelepiped so that it can be placed without gaps.
  • the format database 14-4 information (spatial information) about the types of objects existing or capable of entering the space 100 and the time (spatial information) are associated with unique identifiers and formatted. It is possible to hold Also, the formatted spatial information is stored in chronological order from the past to the future.
  • the conversion information holding device 14 formats spatial information about the types of objects that exist or can enter a three-dimensional space defined by latitude/longitude/height in association with unique identifiers, and stores the formatted information in the format database 14-4. Executes the conversion information holding step.
  • the spatial information is updated based on information input by an external system (for example, the sensor node 15) communicatively connected to the conversion information holding device 14, and is updated by other information communicatively connected to the conversion information holding device 14.
  • Information is shared with external systems.
  • information on operators/individuals who have external systems, information on how to access detection information acquired by external systems, and specification information on detection information such as metadata/communication format of detection information are also used as spatial information, as unique identifiers. can be associated and managed.
  • spatial information information about the type and time of an object that can exist or enter a three-dimensional space defined by latitude/longitude/height (hereinafter referred to as spatial information) is associated with a unique identifier and formatted. converted and stored in the database. Space-time can be managed by formatted spatial information.
  • a coordinate system defined by latitude/longitude/height will be used as the coordinate system that defines the position of the space (voxel).
  • the coordinate system is not limited to this, and various coordinate systems can be used, such as an XYZ coordinate system having arbitrary coordinate axes, or using MGRS (Military Grid Reference System) as horizontal coordinates. .
  • a pixel coordinate system that uses the pixel positions of an image as coordinates, or a tile coordinate system that divides a predetermined area into units called tiles and expresses them by arranging them in the X/Y directions.
  • Embodiments include those that use at least one of the plurality of coordinate systems described above.
  • step S210 the system control device 10 confirms the interval between each piece of point information in the received route information.
  • Positional point cloud data (hereinafter referred to as positional point cloud data) is created by matching the interval of the point information with the interval between the starting point positions of the divided spaces defined by the format.
  • the system control device 10 thins out the point information in the route information according to the interval of the starting point positions of the divided spaces. group data. Further, when the interval of the point information is larger than the interval between the starting point positions of the divided spaces, the system control device 10 interpolates the point information within a range that does not deviate from the route information to obtain position point group data.
  • the intervals between the position point cloud data may be adjusted appropriately according to the conditions such as the granularity of specifying the movement route to the autonomous mobile body 12 and the amount of data that can be handled. Also, it is possible to partially change the interval between the position point cloud data to set a more optimal route.
  • step S211 in Fig. 9 the system control device 10 transmits the latitude/longitude information of each point information of the position point cloud data to the conversion information holding device 14 in the order of the route.
  • step S212 the conversion information holding device 14 searches the format database 14-4 for a unique identifier corresponding to the received latitude/longitude information, and transmits it to the system control device 10 in step S213.
  • step S214 the system control device 10 arranges the received unique identifiers in the same order as the original position point cloud data, and stores them as route information using the unique identifiers (hereinafter referred to as format route information).
  • the system control device 10 acquires the spatial information from the database of the conversion information holding device 14, and based on the acquired spatial information and the type information of the mobile object, the route related to the movement route of the mobile object is calculated. generating information.
  • FIG. 13(A) is an image diagram of route information displayed as map information
  • FIG. 13(B) is an image diagram of route information using position point cloud data displayed as map information
  • FIG. 13(C) is an image diagram using unique identifiers.
  • FIG. 10 is an image diagram showing route information as map information;
  • 120 is route information
  • 121 is a non-movable area through which the autonomous mobile body 12 cannot pass
  • 122 is a movable area where the autonomous mobile body 12 can move.
  • the route information 120 generated by the route determination device 13 based on the positional information of the departure point, waypoint, and arrival point specified by the user passes through the departure point, waypoint, and arrival point, and is displayed on the map. It is generated as a route passing over the movable area 122 on the information.
  • 123 is a plurality of pieces of position information on the route information.
  • the system control device 10 that has acquired the route information 120 generates the position information 123 arranged at predetermined intervals on the route information 120 .
  • the position information 123 can be represented by latitude/longitude/height, respectively, and this position information 123 is called position point cloud data in this embodiment. Then, the system control device 10 transmits the latitude/longitude/height of each point of the position information 123 one by one to the conversion information holding device 14 and converts them into unique identifiers.
  • 124 is positional space information in which the positional information 123 is converted into unique identifiers one by one, and the spatial range defined by the unique identifiers is represented by a rectangular frame.
  • the location space information 124 is obtained by converting the location information into a unique identifier.
  • the route represented by the route information 120 is converted into continuous position space information 124 and represented.
  • Each piece of position space information 124 is associated with information about the types of objects that exist or can enter the range of the space and the time.
  • This continuous position space information 124 is called format route information in this embodiment.
  • step S215 the system control device 10 downloads the spatial information associated with each unique identifier of the format path information from the conversion information holding device 14.
  • step S216 the system control device 10 converts the spatial information into a format that can be reflected in the three-dimensional map of the cyberspace of the autonomous mobile body 12, and identifies the positions of multiple objects (obstacles) in a predetermined space. Create the information shown (hereafter, cost map).
  • the cost map may be created for all route spaces in the format route information at first, or may be created in a form divided by fixed areas and updated sequentially.
  • step S217 the system control device 10 associates the format route information and the cost map with the unique identification number assigned to the autonomous mobile body 12 and stores them.
  • the autonomous mobile body 12 monitors (hereinafter, polls) its own unique identification number via the network at predetermined time intervals, and downloads the associated cost map in step S218.
  • step S219 the autonomous mobile body 12 reflects the latitude/longitude information of each unique identifier of the format route information as route information on the three-dimensional map of cyberspace created by itself.
  • step S220 the autonomous mobile body 12 reflects the cost map on the three-dimensional map of cyberspace as obstacle information on the route.
  • the cost map is created in a form divided at regular intervals, after moving the area in which the cost map was created, the cost map of the next area is downloaded and the cost map is updated.
  • step S221 the autonomous mobile body 12 moves along the route information while avoiding the objects (obstacles) input in the cost map. That is, movement control is performed based on the cost map.
  • step S222 the autonomous mobile body 12 moves while performing object detection, and moves while updating the cost map using the object detection information if there is a difference from the cost map.
  • step S223 the autonomous mobile body 12 transmits the difference information from the cost map to the system control device 10 together with the corresponding unique identifier.
  • the system control device 10 that has acquired the difference information between the unique identifier and the cost map transmits the spatial information to the conversion information holding device 14 in step S224 of FIG. Update the spatial information of the unique identifier.
  • the content of the spatial information updated here does not directly reflect the difference information from the cost map, but is abstracted by the system control device 10 and then sent to the conversion information holding device 14 . Details of the abstraction will be described later.
  • step S226 the autonomous mobile body 12 that is moving based on the format route information tells the system controller 10 that the space it is currently passing through each time it passes through the divided space linked to each unique identifier. Send the unique identifier associated with the .
  • the system control device 10 grasps the current position of the autonomous mobile body 12 on the format route information.
  • the system control device 10 can grasp where the autonomous mobile body 12 is currently located in the format route information. Note that the system control device 10 may stop holding the unique identifier of the space through which the autonomous mobile body 12 has passed, thereby reducing the holding data capacity of the format route information.
  • step S227 the system control device 10 creates the confirmation screen 50 and the map display screen 60 described with reference to FIGS. do.
  • the system control device 10 updates the confirmation screen 50 and the map display screen 60 each time the autonomous mobile body 12 transmits the unique identifier indicating the current position to the system control device 10 .
  • the sensor node 15 saves the detection information of the detection range, abstracts the detection information in step S229, and transmits it to the conversion information holding device 14 as the spatial information in step S230.
  • the abstraction is, for example, information such as whether or not an object exists, or whether or not the existence state of the object has changed, and is not detailed information about the object.
  • the conversion information holding device 14 stores the spatial information, which is the abstracted detection information, in association with the unique identifier of the position corresponding to the spatial information.
  • the spatial information is stored in one unique identifier in the format database.
  • the external system uses the spatial information in the conversion information holding device 14 to convert the information in the sensor node 15 via the conversion information holding device 14.
  • the detection information is acquired and utilized.
  • the conversion information holding device 14 also has a function of connecting the communication standards of the external system and the sensor node 15 .
  • the conversion information holding device 14 has a function of connecting data of multiple devices with a relatively small amount of data.
  • steps S215 and S216 when the system control device 10 needs detailed object information when creating the cost map, detailed information is downloaded from an external system storing detailed detection information of spatial information. should be used.
  • the sensor node 15 updates the spatial information on the route of the format route information of the autonomous mobile body 12 .
  • the sensor node 15 acquires the detection information in step S232, generates abstracted spatial information in step S233, and transmits it to the conversion information holding device 14 in step S234.
  • the conversion information holding device 14 stores the spatial information in the format database 14-4 in step S235.
  • the system control device 10 checks changes in the spatial information in the managed format path information at predetermined time intervals, and if there is a change, downloads the spatial information in step S236.
  • step S237 the cost map associated with the unique identification number assigned to the autonomous mobile body 12 is updated.
  • step S238, the autonomous mobile body 12 recognizes the update of the cost map by polling, and reflects it on the three-dimensional map of the cyberspace created by itself.
  • the autonomous mobile body 12 can recognize in advance changes in the route that the autonomous mobile body 12 cannot recognize, and can respond to such changes.
  • a unique identifier is transmitted in step S240.
  • the system control device 10 Upon recognizing the unique identifier, the system control device 10 displays an arrival indication on the user interface 11 in step S241, and terminates the application.
  • the format database 14-4 contains information (spatial information) about types of objects existing or capable of entering the space 100 and time (spatial information) from the past. It is stored in chronological order such as the future.
  • the spatial information is updated based on information input from an external sensor or the like communicatively connected to the conversion information holding device 14, and is shared with other external systems that can be connected to the conversion information holding device 14.
  • the type information of objects in the space is information that can be obtained from map information, such as roadways, sidewalks, and bicycle lanes on roads.
  • map information such as roadways, sidewalks, and bicycle lanes on roads.
  • information such as the traveling direction of mobility on a roadway, traffic regulations, etc. can also be defined as type information.
  • type information it is also possible to define type information in the space itself.
  • the format divides the earth's space into divided spaces determined by the ranges based on the latitude/longitude/height, and each space can be managed by adding a unique identifier. explained that it should
  • position information that expresses a position on the earth other than latitude/longitude/height, such as the MGRS (Military Grid Reference System), may be used as the position reference for defining the space.
  • MGRS Micro Grid Reference System
  • the spatio-temporal format aims to uniquely identify the space in the world by recognizing the unique identifier, and to share location information and spatial information with other devices using the unique identifier. Therefore, it is desirable to build on the basis of common positional standards in the world.
  • the standard of the spatio-temporal format defined by setting the standard parameters is hereinafter referred to as the "reference system”. Reference parameters will be explained later.
  • a “global reference system” defined as a unified reference system around the world, a “local reference system” defined in each region such as each country and prefecture, and a standard system defined indoors such as inside buildings and tunnels. It is assumed that there is a reference system called “indoor reference system”, and its relationship will be explained.
  • FIG. 14 is a diagram expressing each reference system in a hierarchical structure.
  • FIG. 15 is a diagram showing a hierarchical structure showing in detail the relationship between the local reference system 510 and the indoor reference system 520 in FIG.
  • the world reference system 500 is an outdoor world reference system constructed using reference parameters, and is a coordinate system having three coordinate axes 502x, 502y, and 502z with an origin 501 as the origin.
  • the world reference system 500 is shown as a plane for easy understanding, but the world reference system 500 is actually a three-dimensional coordinate system having a height axis in the direction of the coordinate axis 502z.
  • the grid 503 is a grid defined at equal intervals in parallel with the coordinate axes 502x and 502y in the world reference system 500.
  • the grid 503 is also provided in the direction of the coordinate axis 502z, and defines spatial division positions in the height direction.
  • the space partitioned by this grid 503 is defined as a divided space that is divided and managed by the spatio-temporal format.
  • a unique identifier is assigned to the divided space according to a predetermined rule with respect to the reference position (here, the center of the divided space).
  • the autonomous mobile body control system can uniquely identify each divided space divided by the grid 503 in the global frame of reference 500 by using the unique identifier.
  • the predetermined rule for assigning unique identifiers can use, for example, an assignment rule such as Morton's order.
  • the predetermined rule for assigning unique identifiers is not limited to this, and may be a rule such as arranging and assigning in order from an arbitrary reference.
  • the reference position of the divided space may be, for example, the corner of the space or the center of the bottom instead of the center of the divided space.
  • the world reference system 500 is an outdoor reference system. Therefore, when the autonomous mobile body 12 moves using the world frame of reference 500, the autonomous mobile body 12 can mainly acquire GPS information and recognize its own position.
  • the present embodiment is not limited to this, and the autonomous mobile body 12 may acquire its own position by other methods.
  • the autonomous mobile body 12 may use a method of recognizing its own position by detecting the relative distance between itself and Landmark (feature), for example.
  • Landmark has position information linked to the divided space of the world frame of reference.
  • the autonomous mobile body 12 detects the relative distance between the Landmark and itself in the physical space by using its own ranging function.
  • the autonomous mobile body 12 may use other self-position estimation methods.
  • the reference parameters of the world reference system 500 are the position of the origin 501 described above, the setting specifications of the coordinate axes 502x, 502y, and 502z, the rule of assigning unique identifiers, the reference position of the divided space, the method of estimating the self-position, and the like.
  • the divided space will be a rectangular parallelepiped.
  • the shape of the divided space may become an irregular shape such as a parallelepiped.
  • a parameter for setting the shape of the divided space may be added as a setting parameter for the reference system.
  • a coordinate point 504 indicates the position of the origin 511 of the local reference system, which will be described later, on the world reference system.
  • a coordinate point 505 indicates the position of the origin 531 of the indoor reference system on the world reference system.
  • a coordinate point 506 indicates the position of the origin 541 of the indoor reference system on the world reference system.
  • the local reference system 510 is an outdoor local reference system constructed using reference parameters, and is a coordinate system having three coordinate axes 512x, 512y, and 512z with an origin 511 as the origin.
  • the grid 513 is a grid defined at equal intervals in the local reference system 510 parallel to the coordinate axes 512x and 512y.
  • the grid 513 is also provided in the direction of the coordinate axis 512z, and defines the spatial division positions in the height direction.
  • the space partitioned by this grid 513 is defined as a divided space that is divided and managed by the spatio-temporal format.
  • a unique identifier is assigned to the divided space according to a predetermined rule with respect to the reference position (here, the center of the divided space).
  • the autonomous mobile body control system can uniquely identify each divided space divided by the grid 513 in the local frame of reference 510 by using the unique identifier.
  • the local frame of reference 510 is an outdoor frame of reference similar to the global frame of reference 500 . For this reason, when the autonomous mobile body 12 moves using the local reference system 510, the autonomous mobile body 12 can mainly acquire GPS information and recognize its own position. self-position estimation method may be used.
  • a boundary 516 indicated by a thick line indicates the boundary between the global frame of reference 500 and the local frame of reference 510 . Since local frame of reference 510 is outdoors, boundary 516 is the perimeter of the area occupied by local frame of reference 510 .
  • the divided space may have an irregular shape, and a parameter for setting the shape of the divided space may be added as a setting parameter of the reference system.
  • a coordinate point 514 indicates the position of the origin 521 of the indoor reference system, which will be described later, on the local reference system 510 .
  • a coordinate point 515 indicates the position of the origin 531 of the indoor reference system on the local reference system 510 .
  • Indoor reference systems 520, 530, and 540 will be explained.
  • the explanation of the parts overlapping with the explanation of the world reference system 500 is omitted.
  • Indoor frames of reference 520, 530, 540 are indoor frames of reference constructed indoors using reference parameters.
  • the indoor reference system 520 is a coordinate system having three coordinate axes 522x, 522y, and 522z with an origin 521 as the origin.
  • the indoor reference system 530 is a coordinate system having three coordinate axes 532x, 532y, and 532z with an origin 531 as the origin.
  • the indoor reference system 540 is a coordinate system having three coordinate axes 542x, 542y, and 542z with an origin 541 as the origin.
  • the grid 523 is a grid that is parallel to the coordinate axes 522x and 522y and defined at equal intervals in the indoor reference system 520.
  • the grid 523 is also provided in the direction of the coordinate axis 522z, and defines spatial division positions in the height direction.
  • the space partitioned by this grid 523 is defined as a divided space that is divided and managed by the spatio-temporal format.
  • the grid 533 is a grid that is defined parallel to the coordinate axes 532x and 532y at equal intervals in the indoor reference system 530.
  • the grid 533 is also provided in the direction of the coordinate axis 532z, and defines the spatial division positions in the height direction.
  • the space partitioned by this grid 533 is defined as a divided space that is divided and managed by the spatio-temporal format.
  • the grid 543 is a grid defined at equal intervals in the indoor reference system 540 parallel to the coordinate axes 542x and 542y.
  • the grid 543 is also provided in the direction of the coordinate axis 542z, and defines the spatial division positions in the height direction.
  • the space partitioned by this grid 543 is defined as a divided space that is divided and managed by the spatio-temporal format.
  • a unique identifier is assigned to the divided space according to a predetermined rule with respect to the reference position (here, the center of the divided space).
  • the autonomous mobile body control system uses the unique identifier to uniquely identify the divided space divided by the grids 523, 533, and 543 in the indoor reference system 520, the indoor reference system 530, and the indoor reference system 540 in each reference system. can be identified.
  • the indoor reference system 520, the indoor reference system 530, and the indoor reference system 540 are indoor reference systems. For this reason, when the autonomous mobile body 12 moves using the indoor reference system 520, the indoor reference system 530, and the indoor reference system 540, the self-position is recognized mainly using the self-position estimation method specified by the indoor reference system. do.
  • the method using the aforementioned Landmark and the method of estimating the position from the calculation of the amount of movement using odometry can be considered, but either method can be used.
  • a boundary portion 524 indicated by a thick line indicates a boundary portion between the global frame of reference 500 or the local frame of reference 510 and the indoor frame of reference 520 .
  • Boundary 534 indicated by a thick line indicates the boundary between global frame of reference 500 or local frame of reference 510 and indoor frame of reference 530 .
  • a boundary portion 544 indicated by a thick line indicates a boundary portion between the global frame of reference 500 or the local frame of reference 510 and the indoor frame of reference 540 .
  • indoor reference systems 520, 530, and 540 are all indoors. is the access part (entrance, etc.).
  • the indoor reference system 530 includes the position of the origin 531 described above, the setting specifications of the coordinate axes 532x, 532y, and 532z, the rule of assigning unique identifiers, the reference position of the divided space, the method of estimating the self-position, the position and range of the boundary 534, and the like. It is a reference parameter.
  • the indoor reference system 540 includes the position of the origin 541 described above, the setting specifications of the coordinate axes 542x, 542y, and 542z, the rule of assigning unique identifiers, the reference position of the divided space, the method of estimating the self-position, the position and range of the boundary 544, and the like. It is a reference parameter.
  • a reference system setting area 550 indicated by a dotted line frame is an area indicating a space that is larger than the space occupied by the indoor reference system 520 by a predetermined amount. Details of the reference system setting area 550 will be described later.
  • the coordinate point 504 of the world reference system 500 indicates the position of the origin 511 of the local reference system 510 on the world reference system 500 as described above. This indicates that the existence of the local frame of reference 510 is registered in the world frame of reference 500 and that the reference parameters of the local frame of reference 510 including the origin 511 are registered in the world frame of reference 500 .
  • the registration described here means that the existence of the local frame of reference 510 and the reference parameters of the local frame of reference 510 including the origin 511 are linked to the unique identifier of the global frame of reference 500 as spatial information.
  • the indoor frame of reference 520 and the indoor frame of reference 530 are registered with the local frame of reference 510
  • the indoor frame of reference 530 and the indoor frame of reference 540 are registered with the global frame of reference 500 .
  • a local reference system 510 is registered with respect to the world reference system 500, and an indoor reference system 520 is registered with respect to the local reference system 510.
  • Each is registered in a hierarchical structure. It has a structure that can be
  • the autonomous mobile body control system of this embodiment has a structure in which both the local frame of reference 510 and the indoor frame of reference 530 can be registered with respect to the global frame of reference 500 .
  • the autonomous mobile body control system of this embodiment can be directly registered in the global reference system 500 without going through the local reference system 510 even if it is a lower layer of the local reference system 510 like the indoor reference system 540. have a structure.
  • the world reference system 500 is the highest reference system, and the local reference system 510 or the indoor reference systems 520, 530, 540 are linked as lower reference systems of the world reference system 500. have a structure.
  • the world reference system 500 is constructed using universal reference parameters such as the latitude and longitude of the world geodetic system as the highest reference system.
  • the local reference system 510 is constructed with arbitrary reference parameters set for the purpose of being used only within each region, such as the latitude and longitude of geodetic systems defined by each country, and is a reference system having an upper reference system. .
  • the upper reference system is the global reference system 500 in which the local reference system 510 itself and the indoor reference system 540 are registered.
  • the upper reference system refers to a reference system in which the own reference system and at least one other reference system are registered.
  • the local reference system 510 may be a local reference system with the local reference system X as an upper reference system. .
  • the local reference system is not limited to the upper reference system, and may be directly registered in location information such as latitude and longitude and MGRS (Military Grid Reference System). As described above, the local reference system can be arbitrarily set by the setter.
  • the local reference system 510 registers its own reference parameters in the global reference system 500, which is the upper reference system, and also registers the reference parameters of the world reference system 500 as spatial information.
  • the reference parameters of the local reference system 510 are set as spatial information in a divided space within a range of a reference system setting area (not shown) that is larger than the divided space within the range to which the local reference system 510 corresponds in the world reference system 500 by a predetermined amount. be registered. Details of the reference system setting area will be described as a reference system setting area 550 of the indoor reference system 520 in FIG.
  • the reference parameters of the global reference system 500 are registered as spatial information in all the divided spaces of the local reference system 510 or the divided spaces around the boundary 516 .
  • an autonomous mobile body moving in the global reference system 500 and attempting to move to the local reference system 510 can recognize the existence of the local reference system 510 from the spatial information of the reference system setting area.
  • the autonomous mobile body can smoothly transition from the global frame of reference 500 to the local frame of reference 510.
  • the autonomous moving body that is about to move to the world frame of reference 500 acquires the reference parameters of the world frame of reference 500 from the spatial information of the local frame of reference 510 when approaching the boundary 516. do. This allows the autonomous mobile body to smoothly transition from the local frame of reference 510 to the global frame of reference 500 .
  • a specific moving method when the autonomous mobile body straddles another reference system will be described later.
  • the indoor reference system 520 will be described as a representative example using FIG. 15, but the other indoor reference systems 530 and 540 have the same relationship.
  • the indoor reference system 520 is, for example, a reference system constructed with arbitrary reference parameters set for the purpose of being used only within each building (such as a building), and having an upper reference system. Therefore, like the local reference system, it can be arbitrarily set by the setter, but the difference from the local reference system is that it is mainly used for setting the reference system indoors.
  • the indoor reference system 520 registers its own reference parameters in the local reference system 510, which is the upper reference system, and also registers the reference parameters of the local reference system 510 as spatial information.
  • the reference parameters of the indoor reference system 520 are registered as spatial information in the divided space in the range of the reference system setting area 550 that is larger by a predetermined amount than the divided space in the range to which the indoor reference system 520 corresponds in the local reference system 510.
  • Reference parameters of the local reference system 510 are registered as spatial information in all divided spaces of the indoor reference system 520 or divided spaces around the boundary 524 .
  • an autonomous mobile body moving in the local frame of reference 510 and attempting to move into the indoor frame of reference 520 can recognize the presence of the indoor frame of reference 520 from the spatial information of the reference frame setting area 550 .
  • the autonomous mobile body can smoothly transition from the local frame of reference 510 to the indoor frame of reference 520.
  • the autonomous moving body moving in the indoor reference system 520 and trying to move to the local reference system 510 acquires the reference parameters of the local reference system 510 from the spatial information of the indoor reference system 520 when approaching the boundary 524. do.
  • the autonomous mobile body can smoothly transition from the indoor reference system 520 to the local reference system 510.
  • a specific moving method when the autonomous mobile body straddles another reference system will be described later.
  • each reference system is constructed in a hierarchical structure, and the reference systems linked in the hierarchical structure have mutual reference parameters.
  • the method of registering the reference parameters described above is an example.
  • the reference parameters of all reference systems are aggregated in the highest reference system and a predetermined DB that manages the reference systems in an integrated manner, and each reference system registers only the reference parameters of the highest reference system. You can use it.
  • FIG. 16 is a flow chart showing processing from creation to registration of a reference system.
  • the indoor reference system 520 in FIG. 15 will be taken as a specific example.
  • the format including the unique identifier information for each reference system is managed by the format database 14-4 of the conversion information holding device 14.
  • FIG. 16 The processing in FIG. 16 is executed by the control section 14-3 of the conversion information holding device 14.
  • control unit 14-3 starts processing.
  • control unit 14-3 sets reference parameters for indoor reference system 520 to be newly registered. Specifically, a setter who newly sets the indoor reference system 520 operates the user interface 11 to input parameters for the indoor reference system 520 .
  • the setter is, for example, the building owner.
  • the system control device 10 receives parameters input via the user interface 11 from the user interface 11 .
  • the system control device 10 transmits the parameters received from the user interface 11 to the conversion information holding device 14 .
  • the control unit 14-3 of the conversion information holding device 14 sets the parameters received from the system control device 10.
  • the position of the origin 521, the axial directions of the coordinate axes 522x, 522y, and 522z, the size of the divided space, the reference position of the divided space, and the like are set.
  • the unique identifier assignment rule, the method of estimating the self-position, the position and size of the boundary part 524, the range of the reference system setting area 550, and the like are further set.
  • step S602 the control unit 14-3 searches for the upper reference frame in which the indoor reference frame 520 is registered. Specifically, control unit 14-3 searches for a higher reference system than indoor reference system 520 for which reference parameters have been set in step S601.
  • the control unit 14-3 uses, for example, the Internet to search for a method of acquiring spatial information of an area to which the indoor reference system 520 of the world reference system 500 corresponds, and whether or not there is reference system information linked to latitude and longitude.
  • the search target at this time is not limited to databases connected to the Internet, but may be any database in which reference system information is managed.
  • the search for the upper reference system may employ a method in which the setter operates a device other than the autonomous mobile body control system to search, and inputs the search result to the autonomous mobile body control system.
  • step S603 the control unit 14-3 determines whether or not there is an upper reference system.
  • the process of step S605 is executed.
  • step S605 the control unit 14-3 determines whether or not to set the upper reference system. Specifically, for example, the autonomous mobile body control system inquires of the setting person via the user interface 11 whether or not to set the upper reference system.
  • the control unit 14-3 After setting the upper reference system, the process proceeds to step S609 and terminates.
  • the setter newly sets the local reference system as the upper reference system, or sets the indoor reference system 520 as the upper reference system. can be registered.
  • step S602 When the setting person's input to the user interface 11 as a response to the inquiry as to whether to set the upper reference system is an input indicating that the upper reference system is not to be set, the control unit 14-3 The process of step S602 is executed. That is, if the configurator does not want to set a new local reference system, or does not want to set the indoor reference system 520 as the higher reference system, the upper reference system is searched again by another means.
  • step S603 the global reference system 500 and the local reference system 510 exist as the upper reference system of the indoor reference system 520 will be described.
  • step S604 When the control unit 14-3 determines in step S603 that there is an upper reference system, the process of step S604 is executed. For example, in step S603, when the control unit 14-3 finds the reference parameters of the local reference system 510 in the spatial information of the global reference system 500 of the area to which the indoor reference system 520 corresponds, the process of step S604 is executed. .
  • step S604 the control unit 14-3 confirms the setter's access right to the applicable upper reference system. Specifically, here, it is checked whether the setter satisfies the access rights to the local frame of reference 510 .
  • the access right to the reference system is, for example, permission to register the reference system, share the reference parameters, provide spatial information, etc. only when the setter Y, who is different from the setter who set the relevant reference system, has the prescribed qualifications. It is like doing Predetermined qualifications include, for example, being a person related to a company managed by the setter Y, and the like.
  • step S604 the control unit 14-3 determines whether or not the setter satisfies the access right to the corresponding upper reference system. If the control unit 14-3 determines that the setter does not satisfy the access right, the process of step S602 is executed to search another upper reference system again. When the control unit 14-3 determines that the setter satisfies the access right, the process of step S607 is executed.
  • step S607 the control unit 14-3 acquires the reference parameters of the local reference system 510, which is the higher reference system, and adds the spatial information of all the divided spaces of the indoor reference system 520 to the spatial information of the local reference system 510 as the higher reference system. Register the reference parameters.
  • This process is an example of a linking step (linking means) that links the indoor reference system 520 as the first reference system with the local reference system 510 as the second reference system.
  • these first and second reference systems are the coordinate system defined by latitude/longitude/height, arbitrary XYZ coordinate system, MGRS, pixel coordinate system, tile coordinate system. including at least one of
  • step S608 the control unit 14-3 notifies the reference parameters of the indoor reference system 520 to the local reference system 510, which is the upper reference system. Also, in step S608, the control unit 14-3 registers the reference parameters of the indoor reference frame 520 as the lower reference frame in the spatial information of all divided spaces of the local reference frame 510.
  • FIG. This process is an example of linking means for linking the indoor frame of reference 520 to the local frame of reference 510 .
  • Access rights for each reference system may or may not be set, but when setting access rights, they may be set in the processing of step S607 or step S608. After step S608, the process proceeds to step S609 and ends.
  • the present invention is not limited to this, and other control units such as the control unit 10-2 of the system control device 10 may be the main control unit.
  • the configurator takes the lead in performing each process, such as searching for the upper reference system in another system and inputting the search results into the autonomous mobile control system according to this embodiment. You may
  • the autonomous mobile body control system automatically detects the local reference system or indoor reference system set in the area to which the self corresponds, for example, in the upper reference system, and uses a method of immediately registering good too.
  • FIG. 17 is a flow chart showing the operation of an autonomous mobile body that moves across a plurality of reference systems.
  • the current position of the autonomous mobile body 12 is the point A, and it demonstrates as what is moving.
  • the coordinate system of the autonomous mobile body 12 is defined by the origin 511 and the coordinate axes 512x, 512y, and 512z.
  • the autonomous mobile body 12 synchronizes the local reference system 510, in which the size and position of the space is defined by the grid 513, with its own cyber space described above with reference to FIG. can be utilized.
  • the autonomous mobile body 12 has an arbitrary XYZ coordinate system space with P0 as the origin. Therefore, the autonomous mobile body 12 sets the origin 511 of the local reference system 510 to P0, and constructs its own arbitrary XYZ coordinates based on the coordinate axes 512x, 512y, and 512z of the local reference system 510. In this way, the autonomous mobile body 12 can synchronize the local frame of reference 510 with the cyberspace of the autonomous mobile body 12 .
  • the autonomous mobile body 12 can identify the space corresponding to any unique identifier and its position by using the unique identifier assignment rule set as the reference parameter of the local reference system 510 . Also, the autonomous mobile body 12 can associate the spatial information previously associated with the unique identifier with the space and its position in its own cyberspace.
  • the autonomous mobile body 12 reflects the feature information in its own cyberspace and moves to avoid the recognized feature. It is possible to do As described above, the autonomous mobile body 12 can move using the local reference system 510 .
  • FIG. 15 the autonomous mobile body 12 will be described as moving from point A (the area of the local reference system 510) to point B (the area of the indoor reference system 520).
  • step S700 the autonomous mobile body 12 starts processing.
  • step S701 the autonomous mobile body 12 acquires reference parameters of the local reference system 510 at point A in FIG.
  • the autonomous mobile body 12 synchronizes the local frame of reference 510 to its own cyberspace using the method described above.
  • the autonomous mobile body 12 reflects spatial information (for example, feature information, etc.) associated with the divided space of the local reference system 510 in its own cyberspace.
  • spatial information for example, feature information, etc.
  • step S704 the autonomous mobile body 12 performs self-position estimation (for example, using GPS information) and reflects the estimated self-position in cyberspace, thereby detecting obstacles indicated by the feature information reflected in cyberspace. Move autonomously while avoiding.
  • self-position estimation for example, using GPS information
  • step S705 the autonomous mobile body 12 moves while searching for reference system information in the space information in the traveling direction in which it moves.
  • the process of step S704 is executed, and the autonomous mobile body 12 continues to move.
  • the process of step S706 is executed.
  • the autonomous mobile body 12 determines that the space information in the traveling direction includes the reference system information of the indoor reference system 520, and the process of step S706 is executed.
  • step S705 the autonomous mobile body 12 detects that the spatial information of the local reference system 510 includes the reference system information of the indoor reference system 520. Thereby, the autonomous mobile body 12 recognizes the presence of the indoor reference system 520 .
  • step S706 the autonomous mobile body 12 reflects information on the position and size of the boundary 524 set as the reference parameters of the indoor reference system 520 in its own cyberspace. Thereby, the autonomous mobile body 12 can recognize the entrance for moving inside the indoor reference frame 520 . After that, the autonomous mobile body 12 moves to the boundary part 524 in step S707.
  • step S708 the autonomous mobile body 12 acquires reference parameters other than the boundary portion 524, such as the origin and coordinate axes of the indoor reference system 520 at the boundary portion 524.
  • the autonomous vehicle 12 synchronizes the indoor frame of reference 520 to its cyberspace in the manner described above.
  • the autonomous mobile body 12 reflects spatial information (for example, feature information) associated with the divided spaces of the indoor reference system 520 in its own cyberspace.
  • step S711 the autonomous mobile body 12 performs self-position estimation (using, for example, self-position estimation means using an indoor Landmark), reflects the self-position in cyberspace, and reflects the feature reflected in cyberspace. It moves autonomously while avoiding obstacles indicated by information.
  • self-position estimation using, for example, self-position estimation means using an indoor Landmark
  • the autonomous mobile body 12 can move from point A (local reference system 510 area) to point B (indoor reference system 520 area).
  • point B indoor reference system 520 area
  • point A local reference system 510 area
  • the local reference system 510 Synchronize with your own cyberspace.
  • the setter can arbitrarily set the reference system. Further, according to the second embodiment, even in spaces in which spatio-temporal formats of various reference systems are set in the world, various devices appropriately share positional information and spatial information, and are suitable for each positional space. It is possible to move
  • the format of the digital architecture and the autonomous mobile body control system using the same are provided more efficiently while considering safety.
  • the mobile body of the present invention is not limited to an autonomous mobile body such as an AGV (Automated Guided Vehicle) or an AMR (Autonomous Mobile Robot).
  • AGV Automated Guided Vehicle
  • AMR Autonomous Mobile Robot
  • it can be any mobile device that moves, such as automobiles, trains, ships, airplanes, robots, and drones.
  • a part of the control system of the present invention may or may not be mounted on those moving bodies.
  • the present invention can also be applied to remote control of a moving body.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or device via a network or a storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.
  • a circuit for example, ASIC
  • a computer program that implements the functions of the above embodiments may be supplied to the control system or the like via a network or various storage media for part or all of the control in the above embodiments.
  • a computer or CPU, MPU, etc.
  • the control system or the like may read and execute the program.
  • the program and the storage medium storing the program constitute the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Navigation (AREA)

Abstract

様々なデバイスと位置情報及び空間情報を共有できる時空間フォーマットを用いた制御システムであって、少なくとも一台以上の自律移動体に制御指示を行う制御手段と、第1の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持する変換情報保持手段と、を有し、前記変換情報保持手段は、前記第1の基準系と異なる第2の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持可能であり、前記第1の基準系に前記第2の基準系を紐づける紐づけ手段をさらに有し、前記制御手段は、前記変換情報保持手段から取得した空間情報と、前記移動体の種別情報に基づき該移動体の移動経路に関する経路情報を生成する。

Description

制御システム、制御方法、及び記憶媒体
 本発明は、制御システム、制御方法、及び記憶媒体等に関するものである。
 近年、世界では自律走行モビリティや空間認識システムなどの技術革新に伴い、異なる組織や社会の構成員の間でデータやシステムをつなぐ全体像(以下、デジタルアーキテクチャ)の開発が進んでいる。
 例えば特許文献1では、自律移動体の移動技術において、広域の地図情報と自己が直近で把握する局所地図を有し、広域地図をグローバル座標系で、局所地図をローカル座標系で扱っている。
特開2021-157283号公報
 しかしながら、上記特許文献1の技術で用いられているローカル座標系は自律移動体が自ら使うために設定したものであって、他のデバイスと位置情報の共有を図る基準にはならないという問題があった。
 本発明は、様々なデバイスと位置情報及び空間情報を共有できる時空間フォーマットを用いた制御システムの提供を1つの目的とする。
 本発明の1側面としての制御システムは、少なくとも一台以上の自律移動体に制御指示を行う制御手段と、第1の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持する変換情報保持手段と、を有し、前記変換情報保持手段は、前記第1の基準系と異なる第2の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持可能であり、前記第1の基準系に前記第2の基準系を紐づける紐づけ手段をさらに有し、前記制御手段は、前記変換情報保持手段から取得した空間情報と、前記移動体の種別情報に基づき該移動体の移動経路に関する経路情報を生成する、ことを特徴とする。
 本発明によれば、様々なデバイスと位置情報及び空間情報を共有できる時空間フォーマットを用いた制御システムを提供することが出来る。
本発明の第1の実施形態にかかる自律移動体制御システムの全体構成例を示す図である。 (A)はユーザが位置情報を入力する際の入力画面の例を示す図、(B)は使用する自律移動体を選択するための選択画面の例を示す図である。 (A)は自律移動体の現在位置を確認するための画面の例を示す図、(B)は自律移動体の現在位置を確認する際の地図表示画面の例を示す図である。 図1の各装置の内部構成例を示したブロック図である。 (A)は、現実世界における自律移動体12とその周辺の地物情報として存在する柱99の空間的位置関係を示した図、(B)は自律移動体12と柱99をP0を原点とする任意のXYZ座標系空間にマッピングした状態を示した図である。 第1の実施形態に係る自律移動体12の機械的な構成例を示す斜視図である。 制御部10-2、制御部11-2、制御部12-2、制御部13-2、制御部14-3、制御部15-2の具体的なハードウェア構成例を示すブロック図である。 第1の実施形態に係る自律移動体制御システムが実行する処理を説明するシーケンス図である。 図8の続きのシーケンス図である。 図9の続きのシーケンス図である。 (A)は地球の緯度/経度情報を示す図であり、(B)は(A)の所定の空間100を示す斜視図である。 空間100内の空間情報を模式的に示した図である。 (A)は経路情報を地図情報で表示した図、(B)は位置点群データを用いた経路情報を地図情報で表示した図、(C)は固有識別子を用いた経路情報を地図情報で表示した図である。 各基準系の階層構造図である。 ローカル基準系510と屋内基準系520の関係性を詳細に示した階層構造図である。 基準系の作成から登録までのフローチャートである。 基準系をまたぐ移動を行う自立移動体の動作のフローチャートである。
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されるものではない。尚、各図において、同一の部材または要素については同一の参照番号を付し、重複する説明は省略または簡略化する。
 尚、実施形態においては自律移動体の制御に適用した例について説明するが、移動体はユーザが移動体の移動に関して少なくとも1部を操作可能なものであっても良い。即ち、例えばユーザに対して移動経路等に関する各種表示等を行い、その表示を参照してユーザが移動体の運転操作の一部を行う構成であっても良い。
(第1の実施形態)
 図1は本発明の第1の実施形態にかかる自律移動体制御システムの全体構成例を示す図である。図1に示すように、本実施形態の自律移動体制御システム(制御システムと略すこともある。)は、システム制御装置10、ユーザインターフェース11、自律移動体12、経路決定装置13、変換情報保持装置14、センサノード15等を備える。尚、ここで、ユーザインターフェース11はユーザ端末装置を意味する。
 尚、本実施形態では、図1に示される各装置はインターネット16を介して、後述される夫々のネットワーク接続部によって接続されている。しかし、例えば、LAN(Local Area Network)等の他のネットワークシステムを用いてもかまわない。
 又、システム制御装置10、ユーザインターフェース11、経路決定装置13、変換情報保持装置14等の一部は同一装置として構成しても良い。又、ユーザインターフェース11、経路決定装置13、変換情報保持装置14等は、少なくとも一台以上の自律移動体に制御指示を行う制御工程を実行する制御手段として機能している。
 システム制御装置10、ユーザインターフェース11、自律移動体12、経路決定装置13、変換情報保持装置14、センサノード15は夫々、コンピュータとしてのCPUや、記憶媒体としてのROM、RAM、HDD等からなる情報処理装置を含んでいる。各装置の機能及び内部構成の詳細については後に説明する。
 次に、前記自律移動体制御システムによって提供されるサービスアプリケーションソフトウェア(以下、アプリと略す。)について説明する。尚、説明にあたっては、先ず、ユーザが位置情報を入力する際にユーザインターフェース11に表示される画面イメージを図2(A)、(B)を用いて説明する。
 続いて、ユーザが自律移動体12の現在位置を閲覧する際のユーザインターフェース11に表示される画面イメージを図3(A)、図3(B)を用いて説明する。これらの説明により、前記自律移動体制御システムにおいて、どのようにしてアプリの操作がされるのかを例を用いて説明する。
 尚、本説明において、便宜上、地図表示は二次元の平面で説明するが、本実施形態において、ユーザは「高さ」も含めた3次元的な位置指定が可能であり、「高さ」情報を入力することもできる。即ち、本実施形態によれば3次元地図を生成することができる。
 図2(A)はユーザが位置情報を入力する際の入力画面の例を示す図、図2(B)は使用する自律移動体を選択するための選択画面の例を示す図である。ユーザがユーザインターフェース11の表示画面を操作して、インターネット16にアクセスし、自律移動体制御システムの例えば経路設定アプリを選択すると、システム制御装置10のWEBページが表示される。
 WEBページに先ず表示されるのは、自律移動体12を移動させる際に、出発地、経由地、到着地を設定するための出発地、経由地、到着地の入力画面40である。入力画面40には使用する自律移動体(モビリティ)の一覧を表示させるための一覧表示ボタン48があり、ユーザが一覧表示ボタン48を押下すると、図2(B)で示すようにモビリティの一覧表示画面47が表示される。
 ユーザは先ず、一覧表示画面47において使用する自律移動体(モビリティ)を選択する。一覧表示画面47においては例えばM1~M3のモビリティが選択可能に表示されているが、数はこれに限定されない。
 ユーザがM1~M3のいずれかのモビリティをクリック操作等によって選択すると、自動的に図2(A)の入力画面40に戻る。又、一覧表示ボタン48には、選択されたモビリティ名が表示される。その後ユーザは出発地として設定する場所を「出発地」の入力フィールド41に入力する。
 又、ユーザは経由地として設定する場所を「経由地1」の入力フィールド42に入力する。尚、経由地は追加可能となっており、経由地の追加ボタン44を1回押下すると、「経由地2」の入力フィールド46が追加表示され、追加する経由地を入力することができる。
 経由地の追加ボタン44を押下する度に、「経由地3」、「経由地4」のように、入力フィールド46が追加表示され、追加する経由地を複数地点入力することができる。又、ユーザは到着地として設定する場所を「到着地」の入力フィールド43に入力する。尚、図には示していないが、入力フィールド41~43、46等をクリックすると、文字を入力するためのキーボード等が一時的に表示され、所望の文字を入力可能になっている。
 そして、ユーザは決定ボタン45を押下することにより、自律移動体12の移動経路を設定することができる。図2の例では、出発地として”AAA”、経由地1として”BBB”、到着地として”CCC”と設定している。入力フィールドに入力する文言は、例えば住所等であっても良いし、緯度/経度情報や店名や電話番号などの、特定の位置を示すための位置情報を入力できるようにしても良い。
 図3(A)は自律移動体の現在位置を確認するための画面の例を示す図、図3(B)は自律移動体の現在位置を確認する際の地図表示画面の例を示す図である。
 図3(A)の50は確認画面であり、図2(A)のような画面で自律移動体12の移動経路を設定した後に、不図示の操作ボタンの操作をすることによって表示される。確認画面50では、自律移動体12の現在位置が例えば現在地56のように、ユーザインターフェース11のWEBページに表示される。従ってユーザは容易に現在位置を把握できる。
 又、ユーザは更新ボタン57を押下することにより、画面表示情報を更新して最新状態を表示することができる。又、ユーザは経由地/到着地変更ボタン54を押下することにより、出発地、経由地、到着地を変更することができる。即ち、「出発地」の入力フィールド51、「経由地1」の入力フィールド52、「到着地」の入力フィールド53に夫々再設定したい場所を入力することで変更することができる。
 図3(B)には、図3(A)の地図表示ボタン55を押下した場合に、確認画面50から切り替わる地図表示画面60の例が示されている。地図表示画面60では、現在地62の位置を地図上で表示することによって、自律移動体12の現在地をよりわかりやすく確認する。又、ユーザが戻るボタン61を押下した場合には、図3(A)の確認画面50に表示画面を戻すことができる。
 以上のように、ユーザはユーザインターフェース11の操作により、自律移動体12を所定の場所から所定の場所まで移動するための移動経路を容易に設定できる。尚、このような経路設定アプリは、例えばタクシーの配車サービスや、ドローンの宅配サービスなどにも適用することができる。
 次に図1における10~15の構成例と機能例に関して図4を用いて詳細に説明する。図4は、図1の各装置の内部構成例を示したブロック図である。
 図4において、ユーザインターフェース11は操作部11-1、制御部11-2、表示部11-3、情報記憶部(メモリ/HD)11-4、ネットワーク接続部11-5を備える。操作部11-1は、タッチパネルやキーボタンなどで構成されており、データの入力のために用いられる。表示部11-3は例えば液晶画面などであり、経路情報やその他のデータを表示するために用いられる。
 図2、図3において示したユーザインターフェース11の表示画面は表示部11-3に表示される。ユーザは表示部11-3に表示されたメニューを用いて、経路の選択、情報の入力、情報の確認等を行うことができる。
 つまり操作部11-1及び表示部11-3はユーザが実際に操作をするための操作用のインターフェースを提供している。尚、操作部11-1と表示部11-3を別々に設ける代わりに、タッチパネルによって操作部と表示部を兼用しても良い。
 制御部11-2は、コンピュータとしてのCPUを内蔵し、ユーザインターフェース11における各種アプリの管理や、情報入力、情報確認などのモード管理を行い、通信処理を制御する。又、システム制御装置内の各部における処理を制御する。
 情報記憶部(メモリ/HD)11-4は、例えばCPUが実行するためのコンピュータプログラム等の、必要な情報を保有しておくためのデータベースである。ネットワーク接続部11-5は、インターネットやLAN、無線LANなどを介して行われる通信を制御する。尚、ユーザインターフェース11は例えばスマートフォンのようなデバイスであっても良いし、タブレット端末のような形態であっても良い。
 このように、本実施形態のユーザインターフェース11は、システム制御装置10のブラウザ画面に前記出発地、経由地、到着地を入力画面40を表示し、ユーザによる出発地点、経由地点、到着地点といった位置情報の入力が可能である。更に又、前記ブラウザ画面に前記確認画面50及び地図表示画面60を表示することで、自律移動体12の現在位置を表示することができる。
 図4における、経路決定装置13は、地図情報管理部13-1、制御部13-2、位置/経路情報管理部13-3、情報記憶部(メモリ/HD)13-4、ネットワーク接続部13-5を備える。地図情報管理部13-1は、広域の地図情報を保有しており、指定された所定の位置情報に基づいて地図上のルートを示す経路情報を探索するとともに、探索結果の経路情報を位置/経路情報管理部13-3に送信する。
 前記地図情報は地形や緯度/経度/高度といった情報を含む3次元の地図情報であると共に、車道、歩道、進行方向、交通規制といった道路交通法に関わる規制情報なども併せて含む。
 又、例えば時間帯によって一方通行となる場合や、時間帯によって歩行者専用道路となるものなど、時間によって変化する規制情報も、それぞれの時間情報とともに含んでいる。制御部13-2は、コンピュータとしてのCPUを内蔵し、経路決定装置13内の各部における処理を制御する。
 位置/経路情報管理部13-3は、ネットワーク接続部13-5を介して取得した自律移動体の位置情報を管理するとともに、地図情報管理部13-1に前記位置情報送信し、地図情報管理部13-1から取得した前記探索結果としての前記経路情報を管理する。制御部13-2は、外部システムの要求に従って、位置/経路情報管理部13-3で管理されている前記経路情報を所定のデータ形式に変換するとともに、外部システムに送信する。
 以上のように、本実施形態においては、経路決定装置13は、指定された位置情報に基づいて道路交通法等に則した経路を探索し、経路情報を所定のデータ形式で出力できるように構成されている。
 図4における、変換情報保持装置14は、位置/経路情報管理部14-1、固有識別子管理部14-2、制御部14-3、フォーマットデータベース14-4、情報記憶部(メモリ/HD)14-5、ネットワーク接続部14-6を備える。
 位置/経路情報管理部14-1は、ネットワーク接続部14-6を通して取得した所定の位置情報を管理するとともに、制御部14-3の要求に従って前記位置情報を制御部14-3に送信する。制御部14-3は、コンピュータとしてのCPUを内蔵し、変換情報保持装置14内の各部における処理を制御する。
 制御部14-3は、位置/経路情報管理部14-1から取得した前記位置情報と、フォーマットデータベース14-4で管理されているフォーマットの情報に基づいて、前記位置情報を前記フォーマットで規定された固有識別子に変換する。
 そして、固有識別子管理部14-2に送信する。前記フォーマットについては後に詳しく説明するが、所定の位置を起点とした空間に識別子(以下、固有識別子)を割り振り、固有識別子によって空間を管理するものである。本実施形態においては、所定の位置情報を基に、対応する固有識別子や空間内の情報を取得することができる。
 固有識別子管理部14-2は、制御部14-3にて変換した前記固有識別子を管理するとともにネットワーク接続部14-6を通じて送信する。フォーマットデータベース14-4は、前記フォーマットの情報を管理するとともに、制御部14-3の要求に従って、前記フォーマットの情報を制御部14-3に送信する。
 又、ネットワーク接続部14-6を通じて取得した前記空間内の情報を前記フォーマットを用いて管理する。変換情報保持装置14(変換情報保持手段)は、外部の機器、装置、ネットワークにより取得された前記空間に関する情報を、固有識別子と紐づけて管理する。又、外部の機器、装置、ネットワークに対して固有識別子及びそれに紐づく前記空間に関する情報を提供する。
 以上のように、変換情報保持装置14は、所定の位置情報を基に、固有識別子と空間内の情報を取得し、その情報を自身に接続された外部の機器、装置、ネットワークが共有できる状態に管理、提供する。
 又、変換情報保持装置14は、システム制御装置10に指定された前記位置情報を、前記固有識別子に変換し、システム制御装置10に提供する。
 図4において、システム制御装置10は固有識別子管理部10-1、制御部10-2、位置/経路情報管理部10-3、情報記憶部(メモリ/HD)10-4、ネットワーク接続部10-5を備える。位置/経路情報管理部10-3は、地形情報と緯度/経度情報の対応付けをした簡易的な地図情報を保持するとともに、ネットワーク接続部10-5を通して取得した所定の位置情報及び経路情報を管理する。
 また位置/経路情報管理部10-3は、前記経路情報を所定の間隔で区切るとともに、区切った場所の緯度/経度といった位置情報を生成することもできる。固有識別子管理部10-1は、前記位置情報及び前記経路情報を前記固有識別子に変換した情報を管理する。
 制御部10-2は、コンピュータとしてのCPUを内蔵し、システム制御装置10の前記位置情報、前記経路情報、前記固有識別子の通信機能の制御を司り、システム制御装置10内の各部における処理を制御する。
 又、制御部10-2は、ユーザインターフェース11にWEBページを提供するとともに、WEBページから取得した所定の位置情報を、経路決定装置13に送信する。又、経路決定装置13から所定の経路情報を取得し、経路情報の各位置情報を変換情報保持装置14に送信する。そして、変換情報保持装置14から取得した固有識別子に変換された経路情報を自律移動体12に送信する。
 以上のように、システム制御装置10はユーザの指定する所定の位置情報の取得、位置情報及び経路情報の送受信、位置情報の生成、固有識別子を用いた経路情報の送受信を行えるように構成されている。
 又、システム制御装置10は、ユーザインターフェース11に入力された前記位置情報に基づいて、自律移動体12が自律移動を行うのに必要な前記経路情報を収集するとともに、自律移動体12に固有識別子を用いた経路情報を提供する。尚、本実施形態では、システム制御装置10と経路決定装置13、変換情報保持装置14は例えばサーバーとして機能している
 図4において、自律移動体12は検出部12-1、制御部12-2、方向制御部12-3、情報記憶部(メモリ/HD)12-4、ネットワーク接続部12-5、駆動部12-6を備える。検出部12-1は、例えば複数の撮像素子を有し、複数の撮像素子から得られた複数の撮像信号の位相差に基づき測距を行う機能を有する。
 又、周辺の地形・建物の壁などの障害物といった検出情報(以下、検出情報)を取得し、検出情報と地図情報に基づき自己位置を推定する自己位置推定機能を有する。
 又、検出部12-1は、GPS(Global Positioning System)などの自己位置検出機能と、例えば地磁気センサなどの方向検出機能を有する。更に、取得した前記検出情報と自己位置推定情報と方向検出情報を基に、前記制御部12-2はサイバー空間の3次元マップを生成することができる。
 ここで、サイバー空間の3次元マップとは、現実世界の地物位置と等価な空間情報を、デジタルデータとして表現可能なものである。このサイバー空間の3次元マップ内には、現実世界に存在する自律移動体12や、その周辺の地物情報が、デジタルデータとして空間的に等価な情報として保持されている。従って、このデジタルデータを用いることで、効率的な移動が可能である。
 以下図5を例として、本実施形態で用いるサイバー空間の3次元マップについて説明する。図5(A)は、現実世界における自律移動体12とその周辺の地物情報として存在する柱99の空間的位置関係を示した図、図5(B)は自律移動体12と柱99を、P0を原点とする任意のXYZ座標系空間にマッピングした状態を示した図である。
 図5(A)、(B)において、自律移動体12の位置は、自律移動体12に搭載された不図示のGPS等によって取得された緯度経度の位置情報から、自律移動体12内の位置α0として特定される。又、自律移動体12の方位は不図示の電子コンパス等によって取得された方位αYと自律移動体12に移動方向12Yの差分によって特定される。
 又、柱99の位置は、予め測定された位置情報から頂点99-1の位置として特定される。また自律移動体12の測距機能によって、自律移動体12のα0から頂点99-1までの距離を取得することが可能である。図5(A)においては移動方向12YをXYZ座標系の軸としてα0を原点とした場合に、頂点99-1の座標(Wx,Wy,Wz)として示される。
 サイバー空間の3次元マップでは、この様に取得された情報がデジタルデータとして管理され、図5(B)のような空間情報としてシステム制御装置10、経路決定装置13等で再構成することが可能である。
 図5(B)においては、自律移動体12と柱99を、P0を原点とする任意のXYZ座標系空間にマッピングした状態を示している。P0を現実世界の所定の緯度経度に設定し、現実世界の方位北をY軸方向に取ることで、この任意のXYZ座標系空間で自律移動体12を、P1と柱99をP2として表現することができる。
 具体的には、α0の緯度経度とP0の緯度経度から、この空間におけるα0の位置P1を算出できる。又、同様に柱99をP2として算出できる。この例では、自律移動体12と柱99の2つをサイバー空間の3次元マップで表現しているが、勿論もっと多数あっても同様に扱うことが可能である。以上のように、3次元空間に現実世界の自己位置や物体をマッピングしたものが3次元マップである。
 図4に戻り、自律移動体12は、機械学習を行った物体検出の学習結果データを、例えば情報記憶部(メモリ/HD)12-4に記憶しており、機械学習を用いて撮影画像から物体検出することができる。
 尚、前記検出情報に関しては、ネットワーク接続部12-5を経由して、外部のシステムから取得して、3次元マップに反映することもできる。尚、制御部12-2は、コンピュータとしてのCPUを内蔵し、自律移動体12の移動、方向転換、自律走行機能の制御を司り、自律移動体12内の各部における処理を制御する。
 方向制御部12-3は、駆動部12-6による移動体の駆動方向を変更することで、自律移動体12の移動方向の変更を行う。駆動部12-6は、モータなどの駆動装置からなり、自律移動体12の推進力を発生させる。自律移動体12は前記3次元マップ内に前記自己位置及び検出情報、物体検出情報を反映し、周辺の地形・建物・障害物・物体から一定の間隔を保った経路を生成し、自律走行を行うことができる。
 尚、経路決定装置13は主に道路交通法に関わる規制情報を考慮した経路生成を行う。一方、自律移動体12は経路決定装置13による経路において、周辺障害物の位置をより正確に検出し、自分のサイズに基づき、それらに接触せずに移動するための経路生成を行う。
 又、自律移動体12の情報記憶部(メモリ/HD)12-4には自律移動体自身のモビリティ形式を格納することも出来る。このモビリティ形式とは例えば法的に識別された移動体の種別であり、例えば自動車、自転車、ドローンなどの種別を意味する。このモビリティ形式に基づいて、後述するフォーマット経路情報の生成を行うことが出来る。
 ここで本実施形態における自律移動体12の本体構成について図6を用いて説明する。図6は実施形態に係る自律移動体12の機械的な構成例を示す斜視図である。尚、本実施形態においては、自律移動体12は、車輪を有する走行体の例を説明するがこの限りではなく、ドローンなどの飛行体であっても良い。
 図6において、自律移動体12には検出部12-1、制御部12-2、方向制御部12-3、情報記憶部(メモリ/HD)12-4、ネットワーク接続部12-5、駆動部12-6が搭載されており、各部は互いに電気的に接続されている。駆動部12-6、方向制御部12-3は自律移動体12に少なくとも2つ以上配備されている。
 方向制御部12-3は軸の回転駆動により駆動部12-6の方向を変更することで、自律移動体12の移動方向を変更し、駆動部12-6は、軸の回転により自律移動体12の前進、後退を行う。尚、図6を用いて説明した構成は1例であって、これに限定するものではなく、例えば移動方向の変更をオムニホイール等を用いて行っても良い。
 尚、自律移動体12は例えばSLAM(Simultaneous Localization and Mapping)技術を用いた移動体である。又、検出部12-1により検出した検出情報や、インターネット16を介して取得した外部システムの検出情報を基に、指定された所定の経路を自律移動できるように構成されている。
 自律移動体12は細かく指定された地点をトレースするようなトレース移動も可能であるし、大まかに設定された地点を通過しながらその間の空間においては自身で経路情報を生成し、移動することも可能である。
 以上のように、本実施形態の自律移動体12は、システム制御装置10により提供された前記固有識別子を用いた経路情報に基づき自律移動を行うことができる。
 図4に戻り、センサノード15は、例えばロードサイドカメラユニットのような映像監視システムなどの外部システムであり、検出部15-1、制御部15-2、情報記憶部(メモリ/HD)15-3、ネットワーク接続部15-4を備える。検出部15-1は、例えばカメラのような自身が検出可能なエリアの検出情報を取得するとともに、物体検出機能、測距機能を有する。
 制御部15-2は、コンピュータとしてのCPUを内蔵し、センサノード15の検出、データ保管、データ送信機能の制御を司り、センサノード15内の各部における処理を制御する。又、検出部15-1で取得した検出情報を情報記憶部(メモリ/HD)15-3に保管するとともに、ネットワーク接続部15-4を通じて変換情報保持装置14に送信する。
 以上のように、センサノード15は、検出部15-1で検出した画像情報、検出した物体の特徴点情報、位置情報などの検出情報を情報記憶部15-3に保存及び通信できるように構成されている。又、センサノード15は、自身が検出可能なエリアの前記検出情報を、前記変換情報保持装置14に提供する。
 次に、図4における各制御部の具体的なハードウェア構成に関して説明する。
 図7は、制御部10-2、制御部11-2、制御部12-2、制御部13-2、制御部14-3、制御部15-2の具体的なハードウェア構成例を示すブロック図である。
 図7において、21は情報処理装置の演算・制御を司るコンピュータとしてのCPUである。22はRAMであり、CPU21の主メモリとして、及び実行プログラムの領域や該プログラムの実行エリアならびにデータエリアとして機能する。23はCPU21の動作処理手順を記憶しているROMである。
 ROM23は情報処理装置の機器制御を行うシステムプログラムである基本ソフト(OS)を記録したプログラムROMと、システムを稼働するために必要な情報等が記録されているデータROMとを備える。尚、ROM23の代わりに、後述のHDD29を用いても良い。
 24はネットワークインターフェース(NETIF)であり、インターネット16を介して情報処理装置間のデータ転送を行うための制御や接続状況の診断を行う。25はビデオRAM(VRAM)であり、LCD26の画面に表示させるための画像を展開し、その表示の制御を行う。26はディスプレイ等の表示装置(以下、LCDと記す)である。
 27は外部入力装置28からの入力信号を制御するためのコントローラ(以下、KBCと記す)である。28は利用者が行う操作を受け付けるための外部入力装置(以下、KBと記す)であり、例えばキーボードやマウス等のポインティングデバイスが用いられる。
 29はハードディスクドライブ(以下、HDDと記す)であり、アプリケーションプログラムや各種データ保存用に用いられる。本実施形態におけるアプリケーションプログラムとは、本実施形態における各種処理機能を実行するソフトウェアプログラム等である。
 30はCDDであり、例えばCDROMドライブ、DVDドライブ、Blu-Ray(登録商標)ディスクドライブ等の、取り外し可能なデータ記録媒体としてのリムーバブル・メディア31とデータを入出力するためのものである。
 CDD30は、外部入出力装置の一例である。CDD30は、上述したアプリケーションプログラムをリムーバブル・メディアから読み出す場合等に用いられる。31はCDD30によって読み出しされる、例えば、CDROMディスク、DVD、Blu―Rayディスク等のリムーバブル・メディアである。
 尚、リムーバブル・メディアは、光磁気記録媒体(例えば、MO)、半導体記録媒体(例えば、メモリカード)等であっても良い。尚、HDD29に格納するアプリケーションプログラムやデータをリムーバブル・メディア31に格納して利用することも可能である。20は上述した各ユニット間を接続するための伝送バス(アドレスバス、データバス、入出力バス、及び制御バス)である。
 次に、図2、図3で説明したような経路設定アプリ等を実現するための自律移動体制御システムにおける制御動作の詳細について図8~図10を用いて説明する。
 図8は本実施形態に係る自律移動体制御システムが実行する処理を説明するシーケンス図であり、図9は、図8の続きのシーケンス図であり、図10は、図9の続きのシーケンス図である。
 図8~図10は、ユーザがユーザインターフェース11に前記位置情報を入力してから自律移動体12の現在位置情報を受け取るまでの、各装置が実行する処理を示している。尚、各装置内の制御部内のコンピュータがメモリに記憶されたコンピュータプログラムを実行することによって図8~図10のシーケンスの各ステップの動作が行われる。
 先ず、ステップS201において、ユーザがユーザインターフェース11でシステム制御装置10が提供するWEBページにアクセスする。ステップS202において、システム制御装置10はWEBページの表示画面に図2で説明したような位置入力画面を表示させる。ステップS203において、図2で説明したように、ユーザは自律移動体(モビリティ)を選択し、出発/経由/到着地点を示す位置情報(以下、位置情報)を入力する。
 前記位置情報は、例えば建物名や駅名や住所など、特定の場所を指定するワード(以下、位置ワード)でも良いし、前記WEBページに表示された地図の特定の位置をポイント(以下、ポイント)として指定する手法でも良い。
 ステップS204において、システム制御装置10は選択された自律移動体12の種別情報と、入力された前記位置情報を保存する。この時、前記位置情報が前記位置ワードの場合は、前記位置ワードを保存し、前記位置情報が前記ポイントの場合は、位置/経路情報管理部10-3に保存してある前記簡易的な地図情報を基に、ポイントに該当する緯度/経度を探索し、緯度/経度を保存する。
 次に、ステップS205において、システム制御装置10はユーザによって指定された自律移動体12のモビリティ形式(種別)から、移動できる経路の種別(以下、経路種別)を指定する。そして、ステップS206において、前記位置情報とともに経路決定装置13に送信する。
 前記モビリティ形式とは法的に区別された移動体の種別であり、例えば自動車、自転車、ドローンなどの種別を意味する。又、経路の種別とは、例えば自動車であれば一般道や高速道路、自動車専用道路等であり、自転車であれば所定の歩道、一般道の路側帯、自転車専用レーンなどである。
 ステップS207において、経路決定装置13は、受信した前記位置情報を、所有する地図情報に出発/経由/到着地点として入力する。前記位置情報が前記位置ワードの場合は、位置ワードにより地図情報で探索し、該当する緯度/経度情報を使用する。前記位置情報が緯度/経度情報の場合はそのまま地図情報に入力して使用する。
 続いて、ステップS208で、経路決定装置13は出発地点から経由地点を経由して到着地点までの経路を探索する。この時、探索する経路は前記経路種別に則った経路を検索する。そして、ステップS209で、経路決定装置13は探索の結果として、出発地点から経由地点を経由して到着地点までの経路(以下、経路情報)をGPX形式(GPS eXchange Format)で出力し、システム制御装置10に送信する。
 GPX形式のファイルは、ウェイポイント(順序関係を持たない地点情報)、ルート(時間情報を付加した順序関係を持つ地点情報)、トラック(複数の地点情報の集合体:軌跡)の3種類で主に構成されている。
 各地点情報の属性値としては緯度/経度、子要素として標高やジオイド高、GPS受信状況・精度などが記載される。GPXファイルに必要な最小要素は、単一ポイントの緯度/経度情報で、それ以外の情報の記述は任意である。前記経路情報として出力するのは前記ルートであり、順序関係を持つ緯度/経度からなる地点情報の集合体である。尚、経路情報は上記を満足できれば他の形式であっても良い。 
 ここで、前記変換情報保持装置14のフォーマットデータベース14-4で管理しているフォーマットの構成例に関して図11(A)、図11(B)、図12を参照して詳しく説明する。
 図11(A)は地球の緯度/経度情報を示す図であり、図11(B)は図11(A)の所定の空間100を示す斜視図である。又、図11(B)において所定の空間100の中心を中心101とする。図12は空間100内の空間情報を模式的に示した図である。
 図11(A)、図11(B)において、フォーマットは、地球の空間を緯度/経度/高さを起点とした範囲によって決定される3次元の空間に分割し、夫々の空間に固有識別子を付加して管理可能とするものである。
 例えばここでは所定の3次元の空間として空間100を表示する。空間100は、北緯20度、東経140度、高さHを中心101に規定され、緯度方向の幅をD、経度方向の幅をW、高さ方向の幅をTと規定された分割空間である。又、地球の空間を前記緯度/経度/高さを起点とした範囲によって決定される空間に分割した1つの空間である。
 図11(A)においては便宜上、空間100のみを表示しているが、フォーマットの規定においては前述のとおり空間100と同じように規定された空間が緯度/経度/高さ方向に並んで配置されているものとする。そして配置された各分割空間は夫々緯度/経度によって水平位置を定義されているとともに、高さ方向にも重なりを持ち、高さによって高さ方向の位置を定義されているものとする。
 尚、図11(B)において前記緯度/経度/高さの起点として、前記分割空間の中心101を設定しているが、これに限定するものではなく、例えば空間の角部や、底面の中心を前記起点としても良い。
 又、形状も略直方体であればよく、地球のような球体表面上に敷き詰める場合を考えた時は、直方体の底面よりも天面のほうをわずかに広く設定したほうが、より隙間なく配置できる。
 図12において前記空間100を例にすると、前記フォーマットデータベース14-4には空間100の範囲に存在又は進入可能な物体の種別と時間に関する情報(空間情報)が夫々固有識別子と関連付けてフォーマット化されて保持可能となっている。又、フォーマット化された空間情報は、過去から未来といった時系列に保管されている。
 即ち、変換情報保持装置14は、緯度/経度/高さによって定義される3次元の空間に存在又は進入可能な物体の種別に関する空間情報を固有識別子と関連付けてフォーマット化しフォーマットデータベース14-4に保存する変換情報保持工程を実行する。
 前記空間情報は、変換情報保持装置14に通信可能に接続された外部システム(例えばセンサノード15)などにより入力された情報に基づき更新され、変換情報保持装置14に通信可能に接続された他の外部システムに情報共有される。
 また、外部システムを有する事業者/個人の情報、外部システムが取得した検出情報へのアクセス方法の情報、検出情報のメタデータ/通信形式などの検出情報の仕様情報も空間情報として、固有識別子と関連付けて管理することができる。
 以上のように、本実施形態では、緯度/経度/高さによって定義される3次元の空間に存在又は進入可能な物体の種別と時間に関する情報(以下、空間情報)を固有識別子と関連付けてフォーマット化してデータベースに保存している。そしてフォーマット化された空間情報によって時空間を管理可能としている。
 なお、本実施形態においては空間(ボクセル)の位置を規定する座標系として緯度/経度/高さによって定義される座標系を用いて説明する。しかし、座標系はこれに限定されたものではなく、例えば任意の座標軸を有するXYZ座標系や、水平方向の座標としてMGRS(Military Grid Reference System)を用いるなど、様々な座標系を用いることができる。
 その他、画像の画素位置を座標として利用するピクセル座標系や、所定の領域をタイルという単位で分割し、X/Y方向に並べて表現するタイル座標系を用いることもできる。本実施例は、上記の複数の座標系の少なくとも1つを用いるものを含む。
 図8に戻り、改めて自律移動体制御システムが実行する処理の続きを説明していく。ステップS210において、システム制御装置10は、受信した前記経路情報内の各地点情報間の間隔を確認する。そして、地点情報の間隔と前記フォーマットで規定する分割空間の起点位置同士の間隔とを整合したものを、位置点群データ(以下、位置点群データ)として作成する。
 この時、前記地点情報の間隔が前記分割空間の起点位置同士の間隔より小さい場合、システム制御装置10は分割空間の起点位置間隔に合わせて前記経路情報内の地点情報を間引いたものを位置点群データとする。又、前記地点情報の間隔が前記分割空間の起点位置同士の間隔より大きい場合、システム制御装置10は経路情報から逸脱しない範囲で地点情報を補間して位置点群データとする。
 尚、本実施形態では、位置点群データから後述するフォーマット経路情報を作成する際にフォーマット経路情報を構成する固有識別子によって特定される空間(=ボクセル)が隙間なく数珠繋ぎとなるように、位置点群データの間引き/補間を行っている。
 しかしこれに限定されるものではなく、少なくとも位置点群データを構成する地点情報の間隔は、分割空間の起点(=基準点)位置同士の間隔以上とし、分割空間同士が被らないようにして移動経路を設定できる。
 位置点群データ同士の間隔が詰まっているほど、より詳細に移動経路を指定することが可能となるが、その反面、移動経路全体のデータ量は増大する。また、位置点群データ同士の間隔が大きければ、移動経路の詳細な指定はできないが移動経路全体のデータ量は抑えることができる。
 つまり、自律移動体12への移動経路の指示粒度や、扱えるデータ量などの条件に合わせて、位置点群データ同士の間隔を適切に調整可能としても良い。また、部分的に位置点群データ同士の間隔を変更し、より最適な経路設定とすることも可能である。
 次に、図9のステップS211に示すように、システム制御装置10は、前記位置点群データの各地点情報の緯度/経度情報を、変換情報保持装置14に経路の順番に送信する。又、ステップS212において、変換情報保持装置14は受信した緯度/経度情報に該当する固有識別子をフォーマットデータベース14-4から探索し、ステップS213において、システム制御装置10に送信する。
 ステップS214において、システム制御装置10は受信した固有識別子を元の位置点群データと同じ順に並べ、固有識別子を用いた経路情報(以下、フォーマット経路情報)として保管する。このように、ステップS214においては、システム制御装置10は、変換情報保持装置14のデータベースから空間情報を取得し、取得した空間情報と、移動体の種別情報に基づき前記移動体の移動経路に関する経路情報を生成している。
 ここで、前記経路情報から前記位置点群データを生成し、固有識別子を用いた経路情報に変換する過程を、図13(A)、図13(B)、図13(C)を参照して詳細に説明する。図13(A)は経路情報を地図情報で表示したイメージ図、図13(B)は位置点群データを用いた経路情報を地図情報で表示したイメージ図、図13(C)は固有識別子を用いた経路情報を地図情報で表示したイメージ図である。
 図13(A)において、120は経路情報、121は自律移動体12が通過できない移動不可領域、122は自律移動体12が移動可能な移動可能領域である。前記ユーザが指定した出発地点、経由地点、到着地点の位置情報をもとに、前記経路決定装置13により生成された経路情報120は、前記出発地点、経由地点、到着地点を通過し、かつ地図情報上で移動可能領域122上を通る経路として生成されている。
 図13(B)において、123は前記経路情報上の複数の位置情報である。前記経路情報120を取得したシステム制御装置10は、経路情報120上に、所定の間隔で配置した前記位置情報123を生成する。
 前記位置情報123は夫々緯度/経度/高さで表すことができ、これら位置情報123を本実施形態では位置点群データと呼ぶ。そして、システム制御装置10はこれら位置情報123の各点の緯度/経度/高さを1つずつ前記変換情報保持装置14に送信し、固有識別子に変換する。
 図13(C)において、124は前記位置情報123を1つずつ固有識別子に変換し、固有識別子が規定する空間範囲を四角い枠で表現した位置空間情報である。前記位置情報を固有識別子に変換することで、位置空間情報124が得られる。
 これにより、前記経路情報120が表現していた経路を、連続した位置空間情報124に変換して表現する。尚、各位置空間情報124には、前記空間の範囲に存在又は進入可能な物体の種別と時間に関する情報が紐づけられている。この連続した位置空間情報124を本実施形態ではフォーマット経路情報と呼ぶ。
 図9に戻り、改めて自律移動体制御システムが実行する処理の続きを説明する。ステップS214の次に、ステップS215において、システム制御装置10は前記フォーマット経路情報の各固有識別子に紐づけられた前記空間情報を変換情報保持装置14からダウンロードする。
 そしてステップS216で、システム制御装置10は、前記空間情報を、自律移動体12の前記サイバー空間の3次元マップに反映できる形式に変換して、所定空間内の複数物体(障害物)の位置を示す情報(以下、コストマップ)を作成する。前記コストマップは、前記フォーマット経路情報のすべての経路の空間に関して初めに作成しても良いし、一定領域で区切った形で作成し、順次更新していく方法で作成しても良い。
 次に、ステップS217において、システム制御装置10は、前記フォーマット経路情報と前記コストマップを、自律移動体12に割り当てられた固有識別番号に紐づけて保管する。自律移動体12は所定時間間隔で、自己の前記固有識別番号をネットワークを介して監視(以下、ポーリング)しており、ステップS218において、紐づけられたコストマップをダウンロードする。
 自律移動体12はステップS219において、前記フォーマット経路情報の各固有識別子の緯度/経度情報を、自己が作成したサイバー空間の3次元マップに対して経路情報として反映させる。
 次に、ステップS220において、自律移動体12は前記コストマップをルート上の障害物情報としてサイバー空間の3次元マップに反映する。前記コストマップが一定間隔で区切った形で作成されている場合は、前記コストマップが作成された領域を移動した後に、次の領域のコストマップをダウンロードし、コストマップを更新する。
 ステップS221において、自律移動体12は、前記経路情報に沿って前記コストマップで入力された物体(障害物)を回避しながら移動する。即ち、コストマップに基づき移動制御を行う。この時、ステップS222において、自律移動体12は物体検出を行いながら移動し、前記コストマップとの差異があれば物体検出情報を用いてコストマップを更新しつつ移動する。
 又、ステップS223において、自律移動体12はコストマップとの差異情報を、対応する固有識別子とともにシステム制御装置10に送信する。固有識別子と、コストマップとの差異情報を取得したシステム制御装置10は、図10のステップS224において、変換情報保持装置14に空間情報を送信し、ステップS225で、変換情報保持装置14は該当する固有識別子の空間情報を更新する。
 ここで更新する空間情報の内容は、コストマップとの差異情報をそのまま反映するわけではなく、システム制御装置10にて抽象化されてから変換情報保持装置14に送信される。前記抽象化の詳細な内容に関しては後述する。
 前記フォーマット経路情報に基づき移動している自律移動体12は、ステップS226において、各固有識別子に紐づけられた分割空間を通過するごとにシステム制御装置10に対して現在自身が通過している空間に紐づけられた固有識別子を送信する。
 又は前記ポーリング時に、自身の前記固有識別番号に紐づけても良い。システム制御装置10は、自律移動体12から受け取る、空間の固有識別子情報を基に、フォーマット経路情報上の自律移動体12の現在位置を把握する。
 前記ステップS226を繰り返すことで、システム制御装置10は前記フォーマット経路情報の中で、自律移動体12が現在どこにいるのかを把握することができる。尚、自律移動体12が通過した空間の固有識別子に関して、システム制御装置10は保持することをやめてもよく、それにより前記フォーマット経路情報の保持データ容量を削減することもできる。
 ステップS227において、システム制御装置10は把握した自律移動体12の現在位置情報を基に、図2及び図3で説明した確認画面50及び地図表示画面60を作成し、WEBページの表示画面に表示する。自律移動体12により、現在位置を示す前記固有識別子がシステム制御装置10に送信されるたびに、システム制御装置10は前記確認画面50及び地図表示画面60を更新する。
 一方、ステップS228において、センサノード15は検出範囲の検出情報を保存するとともに、ステップS229において前記検出情報を抽象化して、ステップS230において前記空間情報として変換情報保持装置14に送信する。前記抽象化とは、例えば物体が存在しているか否か、物体の存在状態に変化があったか否かといった情報であり、物体に関する詳細情報ではない。
 物体に関する詳細情報はセンサノード内のメモリに保管される。そして、ステップS231において、変換情報保持装置14は、抽象化された検出情報である前記空間情報を、空間情報に対応する位置の固有識別子に紐づけて保管する。これにより、フォーマットデータベース内の1つの固有識別子に前記空間情報が格納されたことになる。
 又、センサノード15とは異なる外部システムが前記空間情報を活用する場合、外部システムは変換情報保持装置14内の前記空間情報を基に、変換情報保持装置14を経由してセンサノード15内の前記検出情報を取得して活用する。この時、変換情報保持装置14は外部システムとセンサノード15の通信規格をつなぐ機能も有する。
 上記のような空間情報の格納をセンサノード15に限らず複数デバイス間で行うことで、変換情報保持装置14は比較的軽量なデータ量にて複数のデバイスのデータをつなぐ機能を有する。尚、ステップS215、S216においてシステム制御装置10がコストマップを作成の際に詳細な物体情報を必要とする場合は、空間情報の詳細な検出情報を保管している外部システムから詳細情報をダウンロードして使用すれば良い。
 ここで、自律移動体12の前記フォーマット経路情報の経路上において、センサノード15が前記空間情報を更新したとする。この時、ステップS232でセンサノード15は前記検出情報を取得し、ステップS233で抽象化された空間情報を生成して、ステップS234で変換情報保持装置14に送信する。変換情報保持装置14は、ステップS235で前記空間情報をフォーマットデータベース14-4に格納する。
 システム制御装置10は、管理する前記フォーマット経路情報における前記空間情報の変化を所定の時間間隔で確認しており、変化があればステップS236で空間情報をダウンロードする。
 そして、ステップS237で自律移動体12に割り当てられた固有識別番号に紐づけられたコストマップを更新する。自律移動体12はステップS238において、ポーリングにてコストマップの更新を認識し、自己が作成したサイバー空間の3次元マップに反映する。
 以上のように、複数デバイスで共有された空間情報を活用することで、自律移動体12は自己が認識できないルート上の変化を事前に認識でき、その変化に対応することができる。上記一連のシステムを遂行し、ステップS239で自律移動体12が到着地点に到着した場合には、ステップS240で固有識別子を送信する。
 これにより固有識別子を認識したシステム制御装置10は、ステップS241で、到着表示をユーザインターフェース11に表示し、アプリを終了する。
 本実施形態によれば、以上のようにしてデジタルアーキテクチャのフォーマット及びそれを用いた自律移動体制御システムを提供することができる。
 図11(A)、(B)、図12で説明したように、前記フォーマットデータベース14-4には空間100の範囲に存在又は進入可能な物体の種別と時間に関する情報(空間情報)が過去から未来といった時系列に保管されている。又、前記空間情報は、変換情報保持装置14に通信可能に接続された外部センサなどから入力された情報に基づき更新され、変換情報保持装置14に接続可能な他の外部システムに情報共有されている。
 これらの空間情報の1つとして、空間内の物体の種別情報がある。ここでの空間内の物体の種別情報は例えば道路における車道、歩道、自転車専用道路等、地図情報より取得可能な情報である。また他には車道におけるモビリティの進行方向や交通規制等の情報も同様に種別情報と定義することが出来る。更に後述するように空間自体に種別情報を定義することも出来る。
(第2の実施形態)
 本実施形態では、第1の実施形態に加えて、図11(A)、図11(B)、図12を参照して上述したフォーマットの構成例におけるフォーマットの基準位置、座標系を自由に設定する方法について以降で説明する。
 上述のフォーマットの構成の項目において、フォーマットは地球の空間を緯度/経度/高さを位置基準とした範囲によって決定される分割空間に分割し、それぞれの空間に固有識別子を付加して管理可能とするものであることを説明した。
 また、空間を規定する位置基準としては、MGRS(Military Grid Reference System)など、緯度/経度/高さ以外の地球上の位置を表現する位置情報を用いて規定してもよいことも説明した。
 時空間フォーマットは、固有識別子を認識することで、世界の空間を一意に特定でき、他のデバイスと固有識別子を用いて位置情報、空間情報を共有することが目指される。そのため、世界で共通の位置基準をもとに構築されることが望ましい。
 しかしながら、現状の地球上の位置を示す規定である緯度/経度でさえも世界測地系とは別に、各国が異なる測地系を採用している現状があり、時空間フォーマットにおいても、各地域において最適な基準設定が行われると予想される。
 また、ビルなどの建物内においては、建物の形状、各階の高さなどの特徴に合わせた基準を設定することが最も空間を表現するうえで効率的であり、世界で統一した基準及び各地域で設定した基準とは異なる基準を設定することが考えられる。
 そこで、世界で様々な基準の時空間フォーマットが規定された空間であっても、各種デバイスが位置情報、空間情報を適切に共有することを可能とするために、各基準で設定された時空間フォーマット同士の関係性を定義する必要がある。
 本実施形態では、基準パラメータを設定することで規定された時空間フォーマットの基準を、以下「基準系」と呼ぶ。基準パラメータに関しては後に説明する。また、世界で統一の基準系として規定された「世界基準系」と、各国、各県などの各地域で規定された「ローカル基準系」と、ビルやトンネルの内部などの屋内で規定された「屋内基準系」という基準系が存在するものとし、その関係性について説明していく。
 図14、図15を参照して、「世界基準系」「ローカル基準系」「屋内基準系」の関係性について説明していく。図14は各基準系を階層構造で表現した図である。図15は、図14におけるローカル基準系510と屋内基準系520の関係性を詳細に示した階層構造を示す図である。
 まずは図14を用いて、世界基準系500、ローカル基準系510、屋内基準系520、530、540の基準系構造及び基準パラメータに関して説明する。
 初めに世界基準系500に関して説明する。世界基準系500は、基準パラメータを用いて構築された屋外の世界基準系であり、原点501を原点とする3軸の座標軸502x、502y、502zを座標軸とする座標系である。図14においてはわかりやすさのために平面で表示しているが、世界基準系500は、実際には座標軸502z方向に高さの軸を持つ三次元座標系である。
 グリッド503は、世界基準系500において、座標軸502x、502yに対して平行でかつ等間隔で規定されたグリッドである。グリッド503は、座標軸502z方向にも設けられており、高さ方向の空間分割位置を規定している。このグリッド503で仕切られた空間が時空間フォーマットが分割して管理する分割空間として規定される。
 分割空間には、基準位置(ここでは分割空間の中心)に対して所定の法則で固有識別子が割り当てられる。自律移動体制御システムは、固有識別子によって、世界基準系500内のグリッド503で分割された分割空間それぞれを一意に特定できる。
 本実施形態において、固有識別子を割り当てる所定の法則は、例えばモートンオーダなどの割り当て法則を用いることができる。本実施形態において、固有識別子を割り当てる所定の法則は、これに限ったものではなく、任意の基準から順に並べて割り当てる等の法則でも構わない。分割空間の基準位置は、図11を参照して説明した空間100と同様に、分割空間の中心ではなく、例えば空間の角部や、底面の中心を基準位置としてもよい。
 本実施形態では、世界基準系500は屋外の基準系である。このため、自律移動体12が世界基準系500を用いて移動する場合、自律移動体12は主にGPS情報を取得して自己位置を認識することができる。
 しかし本実施形態はこれに限らず、自律移動体12は他の方法で自己位置を取得してもよい。自律移動体12は、例えばLandmark(特徴物)と自身との相対距離を検出することで自己位置を認識する手法を用いてもよい。
 この場合、Landmarkは、世界基準系の分割空間に紐づけられた位置情報を有する。自律移動体12は、現実空間において、自身が搭載する測距機能を用いてLandmarkと自身との相対距離を検出する。自律移動体12は、その他の自己位置推定方法を用いてもよい。
 以上説明した原点501の位置、座標軸502x、502y、502zの設定仕様、固有識別子の割り当て法則、分割空間の基準位置、自己位置の推定方法などが世界基準系500の基準パラメータである。
 なお、原点501にて座標軸502x、502y、502zがそれぞれが直角に交わるように設定された座標系であれば分割空間は直方体となる。しかしながら、原点501及び座標軸502x、502y、502zの軸設定によっては、分割空間の形状が例えば平行六面体などの異形状となる可能性もある。その場合は、基準系の設定パラメータとして、分割空間の形状を設定するパラメータを追加してもよい。
 座標点504は、後述するローカル基準系の原点511の世界基準系上の位置を示す。座標点505は、屋内基準系の原点531の世界基準系上の位置を示す。座標点506は、屋内基準系の原点541の世界基準系上の位置を示す。
 続いてローカル基準系510について説明する。ローカル基準系510の説明において、世界基準系500の説明内容と重複する部分は説明を割愛する。ローカル基準系510は、基準パラメータ用いて構築された屋外のローカル基準系であり、原点511を原点とする3軸の座標軸512x、512y、512zを座標軸とする座標系である。
 グリッド513は、ローカル基準系510において、座標軸512x、512yに対して平行でかつ等間隔で規定されたグリッドである。グリッド513は、座標軸512z方向にも設けられており、高さ方向の空間分割位置を規定している。このグリッド513で仕切られた空間が時空間フォーマットが分割して管理する分割空間として規定される。
 分割空間には、基準位置(ここでは分割空間の中心)に対して所定の法則で固有識別子が割り当てられる。自律移動体制御システムは、固有識別子によって、ローカル基準系510内のグリッド513で分割された分割空間それぞれを一意に特定できる。
 本実施形態では、ローカル基準系510は、世界基準系500と同様に屋外の基準系である。このため、自律移動体12がローカル基準系510を用いて移動する場合、自律移動体12は主にGPS情報を取得して自己位置を認識することができるが、世界基準系500と同様にその他の自己位置推定方法を用いてもよい。
 太線で示す境界部516は、世界基準系500とローカル基準系510との境界部を示す。ローカル基準系510は屋外であるため、境界部516はローカル基準系510が占める領域の外周である。
 以上説明した原点511の位置、座標軸512x、512y、512zの設定仕様、固有識別子の割り当て法則、分割空間の基準位置、自己位置の推定方法、境界部516の位置や範囲などがローカル基準系510の基準パラメータである。
 なお、ローカル基準系510においても、その分割空間は異形状となる可能性があり、基準系の設定パラメータとして、分割空間の形状を設定するパラメータを追加してもよい。
 座標点514は、後述する屋内基準系の原点521のローカル基準系510上の位置を示す。座標点515は、屋内基準系の原点531のローカル基準系510上の位置を示す。
 続いて屋内基準系520、530、540について説明する。屋内基準系520、530。540の説明において、世界基準系500の説明内容と重複する部分は説明を割愛する。屋内基準系520、530、540は、基準パラメータ用いて屋内に構築された屋内基準系である。
 屋内基準系520は、原点521を原点とする3軸の座標軸522x、522y、522zを座標軸とする座標系である。屋内基準系530は、原点531を原点とする3軸の座標軸532x、532y、532zを座標軸とする座標系である。屋内基準系540は、原点541を原点とする3軸の座標軸542x、542y、542zを座標軸とする座標系である。
 グリッド523は、屋内基準系520において、座標軸522x、522yに対して平行でかつ等間隔で規定されたグリッドである。グリッド523は、座標軸522z方向にも設けられており、高さ方向の空間分割位置を規定している。このグリッド523で仕切られた空間が時空間フォーマットが分割して管理する分割空間として規定される。
 グリッド533は、屋内基準系530において、座標軸532x、532yに対して平行でかつ等間隔で規定されたグリッドである。グリッド533は、座標軸532z方向にも設けられており、高さ方向の空間分割位置を規定している。このグリッド533で仕切られた空間が時空間フォーマットが分割して管理する分割空間として規定される。
 グリッド543は、屋内基準系540において、座標軸542x、542yに対して平行でかつ等間隔で規定されたグリッドである。グリッド543は、座標軸542z方向にも設けられており、高さ方向の空間分割位置を規定している。このグリッド543で仕切られた空間が時空間フォーマットが分割して管理する分割空間として規定される。
 分割空間には、基準位置(ここでは分割空間の中心)に対して所定の法則で固有識別子が割り当てられる。自律移動体制御システムは、固有識別子によって、屋内基準系520、屋内基準系530、屋内基準系540内のグリッド523、グリッド533、グリッド543で分割された分割空間を、それぞれの基準系において一意に特定できる。
 本実施形態では、屋内基準系520、屋内基準系530、屋内基準系540は、屋内の基準系である。このため、自律移動体12が屋内基準系520、屋内基準系530、屋内基準系540を用いて移動する場合、主にその屋内基準系で規定された自己位置推定方法を用いて自己位置を認識する。
 屋内での自己位置推定方法としては、前述のLandmarkを用いる方法や、オドメトリを使用した移動量の算出から位置を推定する手法が考えられるが、いずれの方法を用いても構わない。
 太線で示す境界部524は、世界基準系500又はローカル基準系510と、屋内基準系520との境界部を示す。太線で示す境界部534は、世界基準系500又はローカル基準系510と、屋内基準系530との境界部を示す。
 太線で示す境界部544は、世界基準系500又はローカル基準系510と、屋内基準系540との境界部を示す。本実施形態では、屋内基準系520、屋内基準系530、屋内基準系540はいずれも屋内であるため、境界部524、534、544は屋内基準系520、屋内基準系530、屋内基準系540へのアクセス部(出入口等)である。
 以上説明した原点521の位置、座標軸522x、522y、522zの設定仕様、固有識別子の割り当て法則、分割空間の基準位置、自己位置の推定方法、境界部524の位置や範囲などが屋内基準系520の基準パラメータである。
 以上説明した原点531の位置、座標軸532x、532y、532zの設定仕様、固有識別子の割り当て法則、分割空間の基準位置、自己位置の推定方法、境界部534の位置や範囲などが屋内基準系530の基準パラメータである。
 以上説明した原点541の位置、座標軸542x、542y、542zの設定仕様、固有識別子の割り当て法則、分割空間の基準位置、自己位置の推定方法、境界部544の位置や範囲などが屋内基準系540の基準パラメータである。
 以下、各基準系同士の関係性について図14、図15を用いて説明する。図14、図15に関して、重複する説明は割愛する。図15において、点線枠で示す基準系設定領域550は、屋内基準系520が占める空間よりも所定の量だけ大きい空間を示す領域である。基準系設定領域550の詳細に関しては後述する。
 図14において、前述のように世界基準系500の座標点504は、ローカル基準系510の原点511の世界基準系500上の位置を示す。これは世界基準系500にローカル基準系510の存在が登録されていることを示すとともに、原点511を含めたローカル基準系510の基準パラメータが世界基準系500に登録されていることを示す。
 ここで説明する登録とは、ローカル基準系510の存在や原点511を含めたローカル基準系510の基準パラメータが、世界基準系500の固有識別子に空間情報として紐づけられていることを示す。
 同様に、屋内基準系520及び屋内基準系530は、ローカル基準系510に登録され、また屋内基準系530及び屋内基準系540は、世界基準系500に登録されていることを示す。
 本実施形態の自律移動体制御システムは、世界基準系500に対してローカル基準系510が登録され、ローカル基準系510に対して屋内基準系520が登録されるという、階層構造でそれぞれが登録されうる構造を有する。
 また本実施形態の自律移動体制御システムは、世界基準系500に対してローカル基準系510及び屋内基準系530がどちらも登録されうる構造を有する。
 また本実施形態の自律移動体制御システムは、屋内基準系540のように、ローカル基準系510の下位層であってもローカル基準系510を介さずに、直接に世界基準系500に登録されうる構造を有する。
 以上のように、自律移動体制御システムにおいては、様々な基準系の関係性が考えられる。本実施形態の自律移動体制御システムは、世界基準系500を最上位の基準系とし、ローカル基準系510又は屋内基準系520、530、540が世界基準系500の下位の基準系として紐づく階層構造を有する。
 なお、世界基準系500は、前述のように最上位の基準系として、例えば世界測地系の緯度経度などの世界共通の基準パラメータを用いて構築されている。
 ローカル基準系510は、例えば各国が規定した測地系の緯度経度など、各地域内でのみ使用することを目的として設定された任意の基準パラメータで構築されており、上位基準系を有する基準系である。
 上位基準系とは、例えばローカル基準系510であれば、ローカル基準系510自身及び屋内基準系540が登録されている世界基準系500である。つまり上位基準系とは、自身の基準系とそれ以外の基準系が少なくとも一つ登録されている基準系を指す。
 よって例えばローカル基準系510と他の基準系が登録された他のローカル基準系X(不図示)があれば、ローカル基準系510はローカル基準系Xを上位基準系としたローカル基準系としてもよい。
 またローカル基準系は、上位基準系に限らず、緯度経度やMGRS(Military Grid Reference System)などの位置情報に直接登録してもよい。以上のように、ローカル基準系はその設定者によって任意に設定することが可能である。
 また前述のように、ローカル基準系510は、上位基準系である世界基準系500に自身の基準パラメータを登録するとともに、世界基準系500の基準パラメータを空間情報として登録している。
 ローカル基準系510の基準パラメータは、世界基準系500におけるローカル基準系510が該当する範囲の分割空間よりも、所定の量だけ大きい基準系設定領域(不図示)の範囲の分割空間に空間情報として登録される。基準系設定領域の詳細に関しては、図15にて屋内基準系520の基準系設定領域550として図示して説明するが、ローカル基準系510にも同様に設定されているものとする。
 世界基準系500の基準パラメータは、ローカル基準系510のすべての分割空間、又は境界部516周辺の分割空間に空間情報として登録される。これにより、世界基準系500を移動しつつ、ローカル基準系510に移動しようとしている自律移動体は、基準系設定領域の空間情報からローカル基準系510の存在を認識することが可能となる。
 自律移動体は、ローカル基準系510の存在を認識することで、世界基準系500からローカル基準系510にスムーズに移行することができる。
 また、ローカル基準系510を移動しつつ、世界基準系500に移動しようとしている自律移動体は、境界部516に接近した際に世界基準系500の基準パラメータをローカル基準系510の空間情報から取得する。これにより、自律移動体は、ローカル基準系510から世界基準系500にスムーズに移行することができる。なお、自律移動体が別の基準系を跨ぐ場合の具体的な移動方法に関しては後述する。
 屋内基準系に関しては屋内基準系520を代表例として図15を用いて説明するが、他の屋内基準系である屋内基準系530及び540も同様の関係性である。
 屋内基準系520は、例えば各建造物(ビルなど)内でのみ使用することを目的として設定された任意の基準パラメータで構築されており、上位基準系を有する基準系である。よって、ローカル基準系と同様に、設定者によって任意に設定することが可能であるが、ローカル基準系との違いとしては、主に屋内における基準系設定に用いるという点である。
 つまり屋内向けに使用することを目的として設定したローカル基準系と同義であり、「屋内基準系」としての設定は必須ではないが、本実施形態においてはわかりやすさのために「屋内基準系」として説明する。
 屋内基準系520は、ローカル基準系と同様に、上位基準系であるローカル基準系510に自身の基準パラメータを登録するとともに、ローカル基準系510の基準パラメータを空間情報として登録している。
 屋内基準系520の基準パラメータは、ローカル基準系510における屋内基準系520が該当する範囲の分割空間よりも、所定の量だけ大きい基準系設定領域550の範囲の分割空間に空間情報として登録される。ローカル基準系510の基準パラメータは屋内基準系520のすべての分割空間、又は境界部524周辺の分割空間に空間情報として登録される。
 これにより、ローカル基準系510を移動しつつ、屋内基準系520に移動しようとしている自律移動体は、基準系設定領域550の空間情報から屋内基準系520の存在を認識することが可能となる。自律移動体は、屋内基準系520の存在を認識することで、ローカル基準系510から屋内基準系520にスムーズに移行することができる。
 また、屋内基準系520を移動しつつ、ローカル基準系510に移動しようとしている自律移動体は、境界部524に接近した際にローカル基準系510の基準パラメータを屋内基準系520の空間情報から取得する。
 これにより、自律移動体は、屋内基準系520からローカル基準系510にスムーズに移行することができる。なお、前述と同様に、自律移動体が別の基準系を跨ぐ場合の具体的な移動方法に関しては後述する。
 以上のように、各基準系は階層構造で構築され、かつ階層構造で紐づけられた基準系同士は互いの基準パラメータを有している。なお、前述の基準パラメータの登録方法は一例である。例えば最上位基準系や基準系を統合管理する所定のDBなどにすべての基準系の基準パラメータを集約し、各基準系は最上位基準系の基準パラメータのみを登録するなど、その他の登録方法を用いても構わない。
 ここで、ローカル基準系及び屋内基準系の作成から登録までの具体的な処理に関して、図15及び図16を参照して説明する。図16は、基準系の作成から登録までの処理を示すフローチャートである。
 なお説明にあたって、図15における屋内基準系520を具体例として取り上げて説明する。前述のように、基準系毎の固有識別子の情報を含むフォーマットは、変換情報保持装置14のフォーマットデータベース14-4で管理される。図16の処理は、変換情報保持装置14の制御部14-3で実行される。
 ステップS600において、制御部14-3は処理を開始する。ステップS601において、制御部14-3は、新たに登録する屋内基準系520についての基準パラメータを設定する。具体的には、新たに屋内基準系520を設定する設定者は、ユーザインターフェース11を操作して屋内基準系520についてのパラメータを入力する。
 設定者は、例えばビルオーナーである。システム制御装置10は、ユーザインターフェース11で入力されたパラメータを、ユーザインターフェース11から受信する。システム制御装置10は、ユーザインターフェース11から受信したパラメータを、変換情報保持装置14に送信する。
 変換情報保持装置14の制御部14-3は、システム制御装置10から受信したパラメータを設定する。屋内基準系520の設定としては、原点521の位置、座標軸522x、522y、522zの軸方向、分割空間の大きさ、分割空間の基準位置などを設定する。屋内基準系520の設定としては、さらに、固有識別子の割り当て法則、自己位置の推定方法、境界部524の位置及び大きさ、基準系設定領域550の範囲などを設定する。
 続いて、ステップS602において、制御部14-3は、屋内基準系520を登録する上位基準系を検索する。具体的には、制御部14-3は、ステップS601で基準パラメータを設定した屋内基準系520の上位基準系を検索する。
 制御部14-3は、例えば世界基準系500の屋内基準系520が該当するエリアの空間情報を取得する方法や、緯度経度に紐づく基準系情報の有無を例えばインターネットなどを用いて検索する。
 このときの検索対象はインターネットに接続されているデータベース等に限らず、基準系情報が管理されている如何なるデータベース等であっても構わない。なお、上位基準系の検索は、設定者が自律移動体制御システム以外の装置を操作して検索し、検索結果を自律移動体制御システムに入力する方法を採用してもよい。
 ステップS603において、制御部14-3は、上位基準系の有無を判断する。制御部14-3が上位基準系なしと判断した場合、ステップS605の処理が実行される。ステップS605において、制御部14-3は、上位基準系の設定をするか否かを判断する。具体的には、例えば、自律移動体制御システムは、ユーザインターフェース11を介して、設定者に上位基準系の設定をするか否かを問い合わせる。
 上位基準系の設定をするか否かの問い合わせへの応答としての設定者によるユーザインターフェース11への入力が、上位基準系の設定をする旨の入力であった場合、制御部14-3は、上位基準系の設定をした後にステップS609へ進み終了する。
 上位基準系の設定として、世界基準系500及びローカル基準系510が存在しなかったとすると、設定者は新たにローカル基準系を設定し上位基準系とするか、屋内基準系520を上位基準系として登録することができる。
 上位基準系の設定をするか否かの問い合わせへの応答としての設定者によるユーザインターフェース11への入力が、上位基準系の設定をしない旨の入力であった場合、制御部14-3は、ステップS602の処理を実行する。すなわち、設定者が新たにローカル基準系を設定したくない、又は屋内基準系520を上位基準系として設定したくない場合、改めて別の手段で上位基準系を検索する。
 以下では、ステップS603において、屋内基準系520の上位基準系として、世界基準系500及びローカル基準系510が存在すると判断した場合について説明を続ける。
 ステップS603において制御部14-3が上位基準系ありと判断した場合、ステップS604の処理が実行される。例えば、ステップS603において、制御部14-3が、屋内基準系520が該当するエリアの世界基準系500の空間情報にローカル基準系510の基準パラメータを発見した場合、ステップS604の処理が実行される。
 ステップS604において、制御部14-3は、該当する上位基準系に対する、設定者のアクセス権を確認する。具体的には、ここでは、設定者が、ローカル基準系510へのアクセス権を満たしているかどうかを確認する。
 基準系のアクセス権とは、例えば該当する基準系を設定した設定者とは異なる設定者Yが、所定の資格を有する場合のみ、基準系登録や基準パラメータの共有、空間情報の提供等を許可するようなものである。所定の資格としては、例えば設定者Yが運営する企業の関係者であることなどが挙げられる。
 ステップS604において、制御部14-3は、設定者が、該当する上位基準系に対するアクセス権を満たしているか否かを判断する。制御部14-3が、設定者がアクセス権を満たしていないと判断した場合、ステップS602の処理が実行され、別の上位基準系を改めて検索することになる。制御部14-3が、設定者がアクセス権を満たしていると判断した場合、ステップS607の処理が実行される。
 ステップS607において、制御部14-3は、上位基準系であるローカル基準系510の基準パラメータを取得し、屋内基準系520のすべての分割空間の空間情報に、上位基準系としてローカル基準系510の基準パラメータを登録する。
 この処理は、例えば第1の基準系としての屋内基準系520に、第2の基準系としてのローカル基準系510を紐づける紐づけ工程(紐づけ手段)の一例である。尚、前述のように、これらの第1の基準系及び第2の基準系は、緯度/経度/高さによって定義される座標系、任意のXYZ座標系、MGRS、ピクセル座標系、タイル座標系の少なくとも1つを含む。
 ステップS608において、制御部14-3は、上位基準系であるローカル基準系510に対して屋内基準系520の基準パラメータを通知する。またステップS608において、制御部14-3は、ローカル基準系510のすべての分割空間の空間情報に、下位基準系として屋内基準系520の基準パラメータを登録する。この処理は、ローカル基準系510に屋内基準系520を紐づける紐づけ手段の一例である。
 各基準系に対するアクセス権は設定してもしなくてもよいが、アクセス権を設定する場合には、ステップS607又はステップS608の処理で設定すればよい。ステップS608に続いては、ステップS609へ進み終了する。
 上述した説明は、具体例として屋内基準系を新たに登録する処理について説明しているが、本実施形態は、ローカル基準系を設定する場合も同様の処理を実行して基準系の登録を行う。以上のように、本実施形態によれば、新たにローカル基準系もしくは屋内基準系を登録することができる。
 なお、上述した処理は、制御部14-3が主体となって新たな基準系を登録する処理であったが、本発明はこれに限られず、システム制御装置10の制御部10-2など他の制御部が主体となってもよい。また、設定者が主体となって上位基準系の検索を別のシステムで行い、検索結果を本実施形態にかかる自律移動体制御システムに入力するなど、各処理を設定者が主体となって実行してもよい。
 本実施形態にかかる自律移動体制御システムは、例えば上位基準系にて自己が該当する領域内に設定されたローカル基準系又は屋内基準系を自動的に検出し、即座に登録する手法を用いてもよい。
 次に、基準系を用いて自立移動体が移動する際の動作及び複数の基準系をまたぐ移動を行う際の動作に関して、図15及び図17を参照して説明する。図17は、複数の基準系をまたぐ移動を行う自立移動体による動作を示すフローチャートである。
 まずは基準系を用いて自立移動体が移動する方法について図15を参照して説明する。図15において、自律移動体12の現在位置は地点Aであって、移動中であるものとして説明していく。
 ローカル基準系510の地点Aを自律移動体12が走行しているとき、自律移動体12は、原点511、座標軸512x、512y、512zによって座標系が規定される。自律移動体12は、グリッド513によって空間の大きさと位置が規定されたローカル基準系510を、図4等を参照して上述した自身のサイバー空間に同期させることで、ローカル基準系510の空間情報を活用することができる。
 ここで、ローカル基準系510と自律移動体12のサイバー空間の同期方法と空間情報の活用方法を図5を参照して説明する。
 図4等を参照して上述した通り、自律移動体12は、P0を原点とする任意のXYZ座標系空間を有する。このことから、自律移動体12は、ローカル基準系510の原点511をP0とし、ローカル基準系510の座標軸512x、512y、512zをもとに、自身の任意のXYZ座標を構築する。このようにすることで、自律移動体12は、ローカル基準系510を自律移動体12のサイバー空間に同期させることができる。
 さらに自律移動体12は、ローカル基準系510の基準パラメータとして設定されている固有識別子の割り当て法則を用いることで、任意の固有識別子に対応する空間及びその位置を特定することができる。また自律移動体12は、固有識別子にあらかじめ紐づけられた空間情報と、自身のサイバー空間内の空間及びその位置を対応付けることができる。
 よって、自律移動体12は、例えば空間情報として任意の固有識別子に地物情報が紐づけられていた場合、その地物情報を自身のサイバー空間に反映し、認識した地物を避けるような移動を行うことが可能となる。以上により、自律移動体12は、ローカル基準系510を用いて移動することができる。
 次に、基準系をまたいで自律移動体が移動する際の動作について図15及び図17を参照して説明する。図15において、自律移動体12は、地点A(ローカル基準系510の領域)から地点B(屋内基準系520の領域)まで移動を行うとして説明していく。
 ステップS700において、自律移動体12は、処理を開始する。ステップS701において、自律移動体12は、図15の地点Aにおいて、ローカル基準系510の基準パラメータを取得する。
 ステップS702において、自律移動体12は、上述の方法を用いてローカル基準系510を自身のサイバー空間に同期する。
  ステップS703において、自律移動体12は、ローカル基準系510の分割空間に紐づく空間情報(例えば地物情報など)を自身のサイバー空間に反映する。
 ステップS704において、自律移動体12は、自己位置推定を行い(例えばGPS情報を用いる)、推定した自己位置をサイバー空間に反映することで、サイバー空間に反映された地物情報が示す障害物を避けながら自律移動する。
 ステップS705において、自律移動体12は、移動の際、自身が移動する進行方向の空間情報に基準系情報があるかどうかを検索しながら移動する。自律移動体12が進行方向の空間情報に基準系情報がないと判断した場合、ステップS704の処理が実行され、自律移動体12は移動を継続する。自律移動体12が進行方向の空間情報に基準系情報があると判断した場合、ステップS706の処理が実行される。
 ここで、図15における基準系設定領域550まで自律移動体12が移動してきたとする。この場合、自律移動体12は、進行方向の空間情報に屋内基準系520の基準系情報があると判断し、ステップS706の処理が実行される。
 この時、ステップS705において、自律移動体12は、ローカル基準系510の空間情報に、屋内基準系520の基準系情報があることを検出する。これにより、自律移動体12は、屋内基準系520の存在を認識する。
 ステップS706において、自律移動体12は、屋内基準系520の基準パラメータとして設定されている境界部524の位置及び大きさの情報を自身のサイバー空間に反映する。これにより、自律移動体12は、屋内基準系520の内部に移動するための入り口を認識することができる。その後、ステップS707において、自律移動体12は、境界部524まで移動する。
 ステップS708において、自律移動体12は、境界部524にて屋内基準系520の原点や座標軸といった境界部524以外の基準パラメータを取得する。ステップS709において、自律移動体12は、上述の方法で屋内基準系520を自身のサイバー空間に同期する。ステップS710において、自律移動体12は、屋内基準系520の分割空間に紐づく空間情報(例えば地物情報など)を自身のサイバー空間に反映する。
 ステップS711おいて、自律移動体12は、自己位置推定を行い(例えば屋内のLandmarkを用いた自己位置推定手段などを用いる)、自己位置をサイバー空間に反映し、サイバー空間に反映された地物情報が示す障害物を避けながら自律移動する。
 以上の動作により、自律移動体12は、地点A(ローカル基準系510領域)から地点B(屋内基準系520領域)まで移動することが可能である。また、自律移動体12は、逆に地点B(屋内基準系520領域)から地点A(ローカル基準系510領域)まで移動する場合には上記動作と同様に、境界部524にてローカル基準系510を自身のサイバー空間に同期すればよい。
 以上説明した第2の実施形態によれば、設定者は基準系を任意に設定することができる。また、第2の実施形態によれば、世界で様々な基準系の時空間フォーマットが設定された空間であっても、各種デバイスが位置情報、空間情報を適切に共有し、各位置空間に適した移動を行うことが可能となる。
 以上の説明のように、本発明の各実施形態によれば、デジタルアーキテクチャのフォーマット及びそれを用いた自律移動体制御システムが安全性を考慮したうえでより効率的に提供される。
 尚、上述の各実施形態においては自律移動体に制御システムを適用した例について説明した。しかし、本発明の移動体は、AGV(Automated Guided Vehicle)やAMR(Autonomous Mobile Robot)などの自律移動体に限らない。
 例えば自動車、列車、船舶、飛行機、ロボット、ドローンなどの移動をする移動装置であればどのようなものであってもよい。また、本発明の制御システムは一部がそれらの移動体に搭載されていても良いし、搭載されていなくても良い。また、移動体をリモートでコントロールする場合にも本発明を適用することができる。
(その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。又、本発明は上記の複数の実施形態の組み合わせを含む。
 尚、上記実施形態における制御の一部又は全部を上述した実施形態の機能を実現するコンピュータプログラムをネットワーク又は各種記憶媒体を介して制御システム等に供給するようにしてもよい。そしてその制御システム等におけるコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行するようにしてもよい。その場合、そのプログラム、及び該プログラムを記憶した記憶媒体は本発明を構成することとなる。
(関連出願の相互参照)
 本出願は、先に出願された、2022年2月1日に出願された日本特許出願第2022-014166号、2022年7月22日に出願された日本特許出願第2022-117189号、2023年1月10日に出願された日本特許出願第2023-001617号の利益を主張するものである。また、上記日本特許出願の内容は本明細書において参照によりその全体が本明細書に組み込まれる。

 

Claims (9)

  1.  少なくとも一台以上の自律移動体に制御指示を行う制御手段と、
     第1の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持する変換情報保持手段と、
    を有し、
     前記変換情報保持手段は、前記第1の基準系と異なる第2の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持可能であり、
     前記第1の基準系に前記第2の基準系を紐づける紐づけ手段をさらに有し、
     前記制御手段は、前記変換情報保持手段から取得した空間情報と、前記移動体の種別情報に基づき該移動体の移動経路に関する経路情報を生成する、
    ことを特徴とする制御システム。
  2.  前記紐づけ手段は、前記第1の基準系に前記第2の基準系の基準パラメータを登録することで、前記第1の基準系に前記第2の基準系を紐づける、
    ことを特徴とする請求項1に記載の制御システム。
  3.  前記基準パラメータは、該基準パラメータが示す基準系についての、少なくとも原点の位置、座標軸の設定仕様、固有識別子の割り当て法則、分割空間の基準位置、及び自己位置の推定方法を含む、
    ことを特徴とする請求項2に記載の制御システム。
  4.  前記第1の基準系と前記第2の基準系とは階層構造を有する、
    ことを特徴とする請求項1に記載の制御システム。
  5.  前記紐づけ手段は、前記第1の基準系に前記第2の基準系の基準パラメータを登録し、前記第2の基準系に前記第1の基準系の前記基準パラメータを登録することで、前記第2の基準系に前記第1の基準系を紐づける、
    ことを特徴とする請求項1に記載の制御システム。
  6.  前記第1の基準系及び前記第2の基準系は、緯度/経度/高さによって定義される座標系、任意のXYZ座標系、MGRS、ピクセル座標系、タイル座標系の少なくとも1つを含むことを特徴とする請求項1に記載の制御システム。
  7.  前記移動経路を構成する位置点群データ同士の間隔を調整可能としたことを特徴とする請求項1に記載の制御システム。
  8.  少なくとも一台以上の自律移動体に制御指示を行う制御工程と、
     第1の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持する変換情報保持工程と、
    を有し、
     前記変換情報保持工程は、前記第1の基準系と異なる第2の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持可能であり、
     前記第1の基準系に前記第2の基準系を紐づける紐づけ工程をさらに有し、
     前記制御工程は、前記変換情報保持工程から取得した空間情報と、前記移動体の種別情報に基づき該移動体の移動経路に関する経路情報を生成する、
    ことを特徴とする制御方法。
  9.  以下の制御方法の各工程を実行させるためのコンピュータプログラムを記憶した記憶媒体であって、制御方法は、
     少なくとも一台以上の自律移動体に制御指示を行う制御工程と、
     第1の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持する変換情報保持工程と、
    を有し、
     前記変換情報保持工程は、前記第1の基準系と異なる第2の基準系によって定義される空間に存在する物体の種別に関する情報及び時間に関する情報を含む空間情報を固有識別子と関連付けてフォーマットに変換し保持可能であり、
     前記第1の基準系に前記第2の基準系を紐づける紐づけ工程をさらに有し、
     前記制御工程は、前記変換情報保持工程から取得した空間情報と、前記移動体の種別情報に基づき該移動体の移動経路に関する経路情報を生成することを特徴とする。
     
     

     
PCT/JP2023/002535 2022-02-01 2023-01-26 制御システム、制御方法、及び記憶媒体 WO2023149358A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-014166 2022-02-01
JP2022014166 2022-02-01
JP2022-117189 2022-07-22
JP2022117189 2022-07-22
JP2023001617A JP2023112669A (ja) 2022-02-01 2023-01-10 制御システム、制御方法、及びコンピュータプログラム
JP2023-001617 2023-01-10

Publications (1)

Publication Number Publication Date
WO2023149358A1 true WO2023149358A1 (ja) 2023-08-10

Family

ID=87552299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002535 WO2023149358A1 (ja) 2022-02-01 2023-01-26 制御システム、制御方法、及び記憶媒体

Country Status (1)

Country Link
WO (1) WO2023149358A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185202A (ja) * 2011-03-03 2012-09-27 Toyota Central R&D Labs Inc 局所地図生成装置、グローバル地図生成装置、及びプログラム
JP2018106504A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 情報管理制御装置、情報管理制御プログラム
WO2019230920A1 (ja) * 2018-06-01 2019-12-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP2020067439A (ja) * 2018-10-26 2020-04-30 富士通株式会社 移動体位置推定システムおよび移動体位置推定方法
JP2020095336A (ja) * 2018-12-10 2020-06-18 株式会社Subaru 自動運転支援装置
US20200208994A1 (en) * 2016-10-28 2020-07-02 Zoox, Inc. Verification and updating of map data
JP2021103091A (ja) * 2019-12-24 2021-07-15 トヨタ自動車株式会社 ルート検索システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185202A (ja) * 2011-03-03 2012-09-27 Toyota Central R&D Labs Inc 局所地図生成装置、グローバル地図生成装置、及びプログラム
US20200208994A1 (en) * 2016-10-28 2020-07-02 Zoox, Inc. Verification and updating of map data
JP2018106504A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 情報管理制御装置、情報管理制御プログラム
WO2019230920A1 (ja) * 2018-06-01 2019-12-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP2020067439A (ja) * 2018-10-26 2020-04-30 富士通株式会社 移動体位置推定システムおよび移動体位置推定方法
JP2020095336A (ja) * 2018-12-10 2020-06-18 株式会社Subaru 自動運転支援装置
JP2021103091A (ja) * 2019-12-24 2021-07-15 トヨタ自動車株式会社 ルート検索システム

Similar Documents

Publication Publication Date Title
CN110914777B (zh) 用于自主车辆的高清地图以及路线存储管理系统
US11768863B2 (en) Map uncertainty and observation modeling
US11598876B2 (en) Segmenting ground points from non-ground points to assist with localization of autonomous vehicles
US11619724B2 (en) Calibration of multiple lidars mounted on a vehicle using localization based on a high definition map
US20230016153A1 (en) Map Feature Identification Using Motion Data and Surfel Data
WO2005098362A1 (en) Navigation system and method
Li et al. Survey on indoor map standards and formats
Rackliffe et al. Using geographic information systems (GIS) for UAV landings and UGV navigation
WO2023149358A1 (ja) 制御システム、制御方法、及び記憶媒体
JP2023112669A (ja) 制御システム、制御方法、及びコンピュータプログラム
WO2023149353A1 (ja) 制御システム、制御方法、及び記憶媒体
WO2023149349A1 (ja) 制御システム、制御方法、及び記憶媒体
WO2023149288A1 (ja) 情報処理装置、情報処理方法、及び記憶媒体
WO2023149370A1 (ja) 制御システム、制御方法、及び記憶媒体
WO2023149308A1 (ja) 制御システム、制御方法、及び記憶媒体
WO2023149319A1 (ja) 自律移動体制御システム、制御方法
WO2023149346A1 (ja) 情報処理装置、制御システム、制御方法、及び記憶媒体
WO2023149264A1 (ja) 制御システム、制御方法、及び記憶媒体
JP2023112672A (ja) 情報処理装置、情報処理方法、及びコンピュータプログラム
JP2023112658A (ja) 制御システム、制御方法、及びコンピュータプログラム
WO2023149376A1 (ja) 制御システム、制御方法、及び記憶媒体
WO2023149373A1 (ja) 制御システム、制御方法、及び記憶媒体
JP2023112666A (ja) 制御システム、制御方法、及びコンピュータプログラム
JP2023112656A (ja) 制御システム、制御方法、及びコンピュータプログラム
JP2023112668A (ja) 制御システム、制御方法、及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749674

Country of ref document: EP

Kind code of ref document: A1