WO2023149267A1 - 熱処理小麦粉の製造方法及び熱処理小麦粉 - Google Patents

熱処理小麦粉の製造方法及び熱処理小麦粉 Download PDF

Info

Publication number
WO2023149267A1
WO2023149267A1 PCT/JP2023/001963 JP2023001963W WO2023149267A1 WO 2023149267 A1 WO2023149267 A1 WO 2023149267A1 JP 2023001963 W JP2023001963 W JP 2023001963W WO 2023149267 A1 WO2023149267 A1 WO 2023149267A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheat flour
heat
treated
sugar
amount
Prior art date
Application number
PCT/JP2023/001963
Other languages
English (en)
French (fr)
Inventor
匡 吉田
健治 中村
将幸 和田
知久 赤石
隆志 二宮
まなみ 安藤
翔平 幸西
浩一 伊藤
隆弘 柳下
Original Assignee
株式会社日清製粉ウェルナ
日清製粉プレミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日清製粉ウェルナ, 日清製粉プレミックス株式会社 filed Critical 株式会社日清製粉ウェルナ
Publication of WO2023149267A1 publication Critical patent/WO2023149267A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D6/00Other treatment of flour or dough before baking, e.g. cooling, irradiating, heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/40Products characterised by the type, form or use
    • A21D13/44Pancakes or crêpes

Definitions

  • the present invention relates to a method for producing heat-treated wheat flour and heat-treated wheat flour.
  • Patent Document 1 describes a method for producing heat-treated wheat flour by heating wheat flour with 20 to 55% water for 83 to 60 seconds at an ambient temperature of 80 to 120 ° C. to 80 to 100 ° C. and then pulverizing it.
  • the document describes heat-treated wheat flour with a gluten vitality of 50 to 90 when the gluten vitality of the untreated mother flour is 100.
  • Patent Document 2 cereal flour or starch is mixed with oil, and lipase is reacted with the cereal flour or starch in a pseudo-powder state having a predetermined moisture content and oil content to hydrolyze the oil.
  • a method for producing a food material characterized by producing a food material composed of these reaction mixtures.
  • Patent document 3 has a step of mixing wheat flour with one or more saccharides selected from the group consisting of oligosaccharides and sugar alcohols, and subjecting the mixture to wet heat treatment, wherein the oligosaccharide is trehalose. and maltotriose, the sugar alcohol is sorbitol, and the wet heat treatment is a process of adding water to the mixture and placing it in a sealed container at an atmospheric temperature of 100 to 120 ° C. for 3 to 60 seconds.
  • a method for producing heat-treated wheat flour is described in which the amount of water added is 5 to 20% by mass relative to the mixture.
  • the present invention relates to the following items.
  • [6] The method for producing heat-treated wheat flour according to any one of [1] to [5], wherein the mixture is heated at an ambient temperature of 100°C or higher and lower than 120°C for 3 seconds or longer and 60 seconds or shorter.
  • Heat-treated wheat flour which is (i), (ii), (iii) or (iv) below. (i) the amount of eluted sugar (mg) per 1 g of heat-treated flour is 66 mg or more and 76 mg or less; Heat-treated wheat flour having a gluten vitality of 22 or more and 50 or less when the gluten vitality when untreated is 100.
  • the eluted sugar amount (mg) per 1 g of heat-treated flour is 79 mg or more and 193 mg or less, and the eluted sugar amount (mg) is (A), After the wheat flour is heat-treated, when the amount of eluted sugar (mg) per 1 g of the heat-treated flour after the addition of the auxiliary material is defined as (B), Heat-treated wheat flour in which (A)/(B) x 100 (%) is 63% or more and 83% or less.
  • the eluted sugar amount (mg) per 1 g of heat-treated flour is 77 mg or more and 145 mg or less, and the eluted sugar amount (mg) is (A)
  • the amount of reducing ends (mg) as glucose per 1 g of heat-treated flour is (C)
  • the amount of eluted sugar (mg) per 1 g of heat-treated flour is 58 mg or more and 69 mg or less;
  • a secondary material that is any one selected from the following (1), (2) and (3)
  • Heat-treated wheat flour obtained by combining water at 70°C or higher and 100°C or lower to obtain a mixture, and heating the mixture.
  • (1) pH adjusting material (2) sugar and/or sugar alcohol (3) enzyme
  • heat-treated wheat flour refers to wheat flour that has been subjected to heat treatment.
  • the method for producing the heat-treated wheat flour of the present invention will be described.
  • 100 parts by mass of the wheat flour of the present invention at least one secondary material selected from the following (1), (2) and (3);
  • a method for producing heat-treated wheat flour comprising combining 30 parts by mass and 40 parts by mass or less of water at 70° C. or higher and 100° C. or lower to obtain a mixture, and heating the mixture.
  • (1) pH-adjusting material (2) Sugar and/or sugar alcohol (3)
  • Enzyme The present invention includes using any of the above (1), (2), and (3) as an essential ingredient.
  • the term "sub-material” simply applies to any of (1), (2), and (3).
  • One of the characteristics of the method for producing heat-treated wheat flour according to the present invention is to obtain a mixture by combining water heated to a predetermined temperature or higher in advance, wheat flour, and the above-mentioned specific auxiliary material, and to heat-treat the mixture.
  • the process of obtaining a mixture by combining water, wheat flour, and auxiliary materials is also referred to as mixing process.
  • the present invention by heat-treating a mixture obtained by mixing water heated to a predetermined temperature or higher with wheat flour and secondary materials, the following advantages can be obtained compared to mixing unheated water with wheat flour and secondary materials.
  • an acidic material promotes hydrolysis of starch sugar chains
  • an alkaline material promotes gelatinization due to dissociation of hydrogen bonds between starch sugar chains. These promoting effects are further enhanced by increasing the temperature of the object to be treated.
  • sugar or sugar alcohol enters into the sugar chain of starch and forms a steric hindrance by forming a complex, thereby suppressing recrystallization and syneresis in the starch sugar chain. and the formation of the complex is promoted by an increase in the temperature of the object to be treated.
  • the temperature of the water is 70°C or higher, preferably 75°C or higher, more preferably 80°C or higher.
  • the water temperature referred to in this specification is the water temperature under normal pressure, and the upper limit is usually 100°C.
  • the amount of water mixed with wheat flour is a predetermined amount in the mixing process.
  • the amount of water to be mixed with wheat flour is required to be more than 30 parts by mass and not more than 40 parts by mass with respect to 100 parts by mass of wheat flour.
  • Patent Document 3 states that the amount of water added to a mixture of wheat flour and sugar alcohol is preferably 20% by mass or less.
  • the present invention by increasing the amount of water to more than 30 parts by mass with respect to 100 parts by mass of wheat flour, there is an advantage of improving freezing resistance due to an increase in the gelatinization degree of starch.
  • the amount of water mixed with wheat flour is more than 30 parts by mass and 37.5 parts by mass or less with respect to 100 parts by mass of wheat flour.
  • the present inventor surprisingly found that by heat-treating a mixture obtained by mixing water at a specific temperature in the above specific amount, wheat flour, and specific secondary ingredients, bakery quality was surprisingly improved compared to the case where secondary ingredients were not added. It was found that the moist and chewy texture of food can be improved, and the decrease in texture caused by freezing can be effectively suppressed even for bakery foods such as pancakes that tend to become brittle due to long-term freezing.
  • auxiliary material used in the present invention is (1) a pH adjusting material
  • pH adjusting materials include organic acids and alkalis.
  • Organic acids include citric acid, malic acid, tartaric acid, organic carboxylic acids having hydroxyl groups such as lactic acid (especially organic carboxylic acids with a valence of 2 or more), ascorbic acid, acetic acid, succinic acid, fumaric acid, and food materials containing these. is mentioned.
  • alkalis include carbonates such as sodium carbonate and potassium carbonate, brine containing them as main ingredients, and food materials such as calcined calcium.
  • organic acids, particularly citric acid, malic acid, ascorbic acid, and food materials containing these are preferred, and citric acid is most preferred, because they are excellent in improving the texture of bakery foods and imparting freezing resistance.
  • the amount of the organic acid or alkali in the food material is preferably 0.9% by mass or more, and 1% by mass. % or more is more preferable.
  • the moist and chewy texture is improved compared to the case of heat-treating without adding the auxiliary material.
  • the freeze resistance increases.
  • the pH-adjusting material is not added during the heat treatment, and is moist and sticky compared to the case where the flour is added and mixed after the heat treatment. The texture and freeze resistance are excellent.
  • the treatment of the wheat flour and the pH-adjusting material at a high temperature and a high amount of water during the heat treatment causes the starch sugar chains to be hydrated by the acidic material.
  • One of the reasons for this is thought to be the acceleration of gelatinization due to dissociation of hydrogen bonds between starch sugar chains due to decomposition and alkaline materials.
  • the amount of the pH-adjusting material used is preferably 0.01 part by mass or more per 100 parts by mass of wheat flour, because the above-mentioned effects are easily obtained by using the pH-adjusting material, and 0.025 mass. More preferably, it is at least 1 part. From the viewpoint of the degree of denaturation of protein, it is preferable to set the blending amount to a specific amount or less because it is possible to prevent the protein from being denatured by the acidity or alkalinity of the pH-adjusting material, resulting in a brittle texture. From this point of view, the amount of the pH-adjusting material used is preferably 1.0 parts by mass or less, more preferably 0.1 parts by mass or less per 100 parts by mass of wheat flour. In addition, the preferable usage amount of the secondary material described here is the preferred amount of the dry mass of the secondary material when the secondary material is not in a solid form such as powder (the amount of the secondary material in (2) and (3) described below The same applies to the preferred usage amount).
  • the amount of the pH-adjusting material used is 0.00025 parts by mass or more in terms of organic acid or alkali based on 100 parts by mass of wheat flour.
  • the amount is preferably 0.0007 parts by mass or more, particularly preferably 0.025 parts by mass or more, because the effect is easily obtained.
  • the upper limit of the amount of the pH-adjusting material used is preferably 1.0 parts by mass or less based on the amount of organic acid or alkali based on 100 parts by mass of wheat flour in order to suppress excessive denaturation of proteins. .1 parts by mass or less is more preferable.
  • sugar or sugar alcohol examples include monosaccharides such as glucose, xylose, ribose and arabinose, disaccharides such as maltose, sucrose, trehalose and palatinose, and oligosaccharides.
  • Sugar alcohols include sorbitol, mannitol, maltitol, erythritol, xylitol and the like. Among them, at least one selected from monosaccharides, disaccharides, and sugar alcohols is preferable, and monosaccharides or disaccharides are particularly preferable, from the viewpoint of improving the texture of bakery foods and imparting resistance to freezing.
  • At least one selected from glucose, xylose, maltose, and maltitol is preferable as the specific sugar or sugar alcohol, and maltose is most preferable, from the viewpoint of the effect of improving the texture of food and the effect of imparting freeze resistance.
  • a predetermined amount of water at a predetermined temperature and sugar or sugar alcohol are mixed with wheat flour and heat-treated, resulting in a moist and chewy texture compared to the case where heat treatment is performed without adding secondary ingredients. As it improves, the freezing tolerance increases.
  • the sugar or sugar alcohol is not added during the heat treatment, and the wheat flour after the heat treatment is added and mixed. It has excellent dusty texture and freeze resistance.
  • the amount of sugar or sugar alcohol to be used is preferably 1.0 parts by mass or more per 100 parts by mass of wheat flour, because the above effect is easily obtained by using sugar or sugar alcohol, and 3.0 parts by mass or more. It is more preferably at least 1 part by mass.
  • the upper limit of the amount of sugar or sugar alcohol used is 20.0 parts by mass or less per 100 parts by mass of wheat flour in order to suppress the brittleness of the texture of flour products derived from the high sugar content. It is preferably 10 parts by mass or less, and more preferably 10 parts by mass or less.
  • Enzymes include amylase, which is a starch-degrading enzyme, and phospholipase and lipase, which are lipid-degrading enzymes.
  • amylolytic enzymes include ⁇ -amylase, ⁇ -amylase, amyloglucosidase, G4 amylase, glucosyltransferase, pullulanase, maltotriohydrolase, cyclodextrin glucanotransferase, transglucosidase, 4-a-glucanotransferase, and the like. These amylase-containing food materials can also be used.
  • food materials having ⁇ -amylase activity and ⁇ -amylase activity include malt-derived food materials.
  • malt-derived food materials include malt powder and malt syrup. Of these, any of them may be used in the present invention, but it is preferable to use either ⁇ -amylase, G4 amylase, or food materials containing these from the viewpoint of improving the texture, and ⁇ -amylase or this It is more preferable to use a food material containing
  • the amyloglucosidase includes a non-reducing end-continuous enzyme, also known as glucoamylase or glucan 1,4- ⁇ -glucosidase (EC 3.2.1.3), such as Novozyme's trade name "GoldCrust 3300BG". and enzymes that catalyze the hydrolysis of terminal (1,4)-linked ⁇ -D-glucose residues.
  • G4 amylase is an enzyme having the activity of hydrolyzing the ⁇ (1 ⁇ 4)-glucan structure of polysaccharides such as amylose to generate maltotetraose units from non-reducing ends (EC 3.2.1.
  • Glucan 1,4-alpha-maltotetraohydrolase "POWERFresh 3050 GF” (manufactured by Danisco Japan Co., Ltd.), trade name “POWERFresh 3150” (manufactured by Danisco Japan Co., Ltd.), trade name “POWERFresh 4150” (manufactured by Danisco Japan Co., Ltd.), trade name “POWERSoft 7033” (manufactured by Danisco Japan Co., Ltd.), and the like, and trade name "DenaBake (registered trademark) EXTRA” manufactured by Nagase ChemteX Corporation.
  • ⁇ -amylase (enzyme number: EC 3.2.1.1) is a general term for endo-type enzymes that randomly cleave ⁇ -1,4 bonds of starch, glycogen, and the like.
  • Spitase CP3, Spitase L (manufactured by Nagase ChemteX Japan Co., Ltd.), Cochrase (manufactured by Mitsubishi Chemical Foods Co., Ltd.), Biozyme A, Kleistase L1, Amylase AD "Amano" 1 (manufactured by Amano Enzyme Co., Ltd.) ), Fungamyl (registered trademark) 4000 SG, Fungamyl 800L (manufactured by Novozyme) and the like are known.
  • ⁇ -amylase is an exo-type enzyme that cleaves ⁇ -1,4 bonds from non-reducing ends of starch, glycogen, etc. in units of maltose.
  • Known ⁇ -amylases include ⁇ -amylase F “Amano” (manufactured by Amano Enzyme Co., Ltd.), ⁇ -amylase #1500S (trade name; manufactured by Nagase ChemteX Corporation), and Himaltosin G (trade name; manufactured by HBI). It is The optimum temperature for the amylolytic enzyme is preferably 27°C or higher, more preferably 50°C or higher, and even more preferably 60°C or higher.
  • phospholipases such as phospholipase A1, phospholipase A2, and phospholipase B that hydrolyze ester bonds of phospholipids
  • phosphodiesterases such as phospholipase C and phospholipase D
  • Various enzymes are known to hydrolyze ester bonds of triglycerides.
  • regiospecificity to specifically hydrolyze ester bonds at positions 1 and 3 of triglycerides
  • regiospecificity to specifically hydrolyze ester bonds at 2nd position of triglycerides Those that do not have lipid regiospecificity are known.
  • Both phospholipases and lipases are known to have chain length specificity for fatty acids to be hydrolyzed and those that do not.
  • lipase as a lipolytic enzyme because it has an excellent texture improving effect and freeze resistance when used in bakery foods, and in particular, it has position specificity to the 1 and 3 positions of triglycerides.
  • preferably have chain length specificity to short or medium chain fatty acids have regiospecificity to the 1,3 positions of triglycerides, and have chain length specificity to short or medium chain fatty acids is particularly preferred.
  • the chain length specificity to short-chain or medium-chain fatty acids refers to, for example, the property that fatty acids with 12 or less carbon atoms are more easily hydrolyzed than fatty acids with 18 or more carbon atoms.
  • Lipases produced by microorganisms belonging to the genus Rhizopus, Aspergillus, and Mucor can be preferably used as the lipase.
  • lipases that are said to have position specificity to the 1 and 3 positions of triglycerides include lipase A5 (manufactured by Nagase ChemteX Corporation) and lipase AS “Amano” (Amano Enzyme Co., Ltd.). ), Lipase M “Amano" 10 (Amano Enzyme Co., Ltd.), etc., which have regiospecificity to the 1 and 3 positions of triglycerides and chain length specificity to short or medium chain fatty acids.
  • lipases possessed examples include Rilipase A5 (manufactured by Nagase ChemteX Corporation) and Lipase AS “Amano” (Amano Enzyme Co., Ltd.). Also, a lipase that has no position specificity for oils and fats or no chain length specificity can be used. Denabake RICH (manufactured by Nagase ChemteX Corporation), PLA2 Nagase 10P/R (manufactured by Nagase ChemteX Corporation) and the like are known as phospholipases.
  • the optimum temperature of the lipolytic enzyme is preferably 30°C or higher, preferably 40°C or higher, and even more preferably 50°C or higher.
  • the resulting mixture has a more moist and chewy texture compared to the case where the heat treatment is performed without adding any secondary ingredients. is improved and freeze resistance is increased.
  • the amylolytic enzyme and the lipolytic enzyme were not added during the heat treatment, and added and mixed with the wheat flour after the heat treatment. As compared with the case where it is used, it has a moist and chewy texture and excellent freeze resistance.
  • the amount of enzyme used is preferably 0.01 parts by mass or more per 100 parts by mass of wheat flour, because the above effect is easily obtained by using the enzyme.
  • the upper limit of the amount of enzyme to be used is preferably 1.00 parts by mass or less per 100 parts by mass of wheat flour in terms of the blending amount and cost effectiveness.
  • the enzyme when it is an amylolytic enzyme, it is more preferably 0.01 parts by mass or more and 1.00 parts by mass or less with respect to 100 parts by mass of wheat flour in order to obtain a particularly excellent texture improving effect. More preferably, it is 0.05 parts by mass or more and 0.50 parts by mass or less.
  • the enzyme is a lipolytic enzyme, it is more preferably 0.01 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of wheat flour in order to obtain a particularly excellent effect of improving texture. It is more preferably 05 parts by mass or more and 0.5 parts by mass or less.
  • the dry mass of the material is more preferably 0.01 part by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of wheat flour. It is more preferably 0.05 parts by mass or more and 0.5 parts by mass or less.
  • the amount of activity of ⁇ -amylase to be added is preferably 70 U to 7000 U, more preferably 350 U to 3500 U, per 100 g of wheat flour.
  • a suitable activity amount of ⁇ -amylase to be added is, for example, preferably 6.5 U to 650 U, more preferably 32.5 U to 325 U, per 100 g of wheat flour.
  • a suitable amount of G4 amylase to be added is, for example, preferably 65 U to 6500 U, more preferably 325 U to 3250 U, per 100 g of wheat flour.
  • a preferable activity amount of amyloglucosidase to be added is, for example, 3.3 to 3300 U, more preferably 16.5 to 1650 U, per 100 g of wheat flour.
  • the enzymatic activity of ⁇ -amylase is based on Amano Enzyme's trade name "Biozyme A” with a titer of 7000 U/g.
  • the enzymatic activity of ⁇ -amylase is based on the trade name “ ⁇ -amylase F “Amano” manufactured by Amano Enzyme Co., Ltd., with a titer of 650 U/g.
  • the enzymatic activity of G4 amylase is based on the trade name "DenaBake (registered trademark) EXTRA” manufactured by Nagase ChemteX Co., Ltd. with a titer of 6500 U/g.
  • the enzymatic activity of amyloglucosidase is based on Novozyme's trade name "GoldCrust 3300BG” with a titer of 3300 U/g.
  • the activity measurement method a general method used in this technical field can be adopted.
  • the activity of ⁇ -amylase can be based on the amount of sugar produced in 20 minutes at pH 5.0 and 40° C. using starch as a substrate and colored with an iodine solution.
  • the enzymatic activity of ⁇ -amylase can be based on the formation of maltose in 20 minutes at pH 5.0 and 40° C. using starch as a substrate.
  • the enzymatic activity of G4 amylase can be based on the reducing power equivalent to glucose generated in 1 minute at pH 7.0 and 40° C. using soluble starch as a substrate.
  • the enzymatic activity of amyloglucosidase can be based on the amount of glucose produced in 20 minutes at pH 5.0 and 40° C. using starch as a substrate.
  • the activity of the lipolytic enzyme is preferably 25 U to 2500 U, more preferably 125 U to 1250 U, per 100 g of wheat flour.
  • the lipase with regiospecificity it is preferably 1000 U to 120000 U, more preferably 5000 U to 60000 U, per 100 g of wheat flour.
  • the definition of lipase activity without position specificity can be based on 1 g 2500 U of Amano Enzyme's lipase AY "Amano" 30SD.
  • the definition of the lipase activity with regiospecificity can be based on 1 g of 100,000 to 120,000 U of lipase A5 (manufactured by Nagase ChemteX Corporation) described in Examples below.
  • the activity measurement method a general method used in this technical field can be adopted.
  • the substrate is a triglyceride having palmitic acid, eicosapentaenoic acid or docosahexaenoic acid as a side chain
  • the substrate is decomposed at a temperature of 37° C. and pH 7.0 for a predetermined time (for example, a lipase without regiospecificity for 20 minutes).
  • Lipase specificity can be based on the amount of palmitic acid, eicosapentaenoic acid and docosahexaenoic acid produced in 60 minutes).
  • the mixture of wheat flour, water, and secondary ingredients does not need to be a homogeneous mixture, as long as it is in a mixed state.
  • an operation for homogenization such as stirring is not essential.
  • the homogenization treatment such as stirring when obtaining a mixture of wheat flour, water, and auxiliary materials is not excluded from the present invention, and can be appropriately performed according to the desired use, quality, etc. of the heat-treated flour.
  • Methods for obtaining a mixture of wheat flour, water, and secondary materials include a method of mixing wheat flour and secondary materials and then mixing water, a method of adding secondary materials to water and then mixing wheat flour, and a method of mixing wheat flour and water.
  • a method of mixing and then mixing secondary ingredients, and a method of mixing wheat flour, water and secondary ingredients at the same time can be mentioned. In the present invention, any of them may be adopted, but when the secondary material is (3) an enzyme, it is not dissolved directly in water (70 to 100 ° C.), but mixed with flour before heat treatment, and then mixed with water.
  • a method of mixing wheat flour after mixing the enzymes is preferable from the viewpoint of maintaining the enzyme activity as long as possible during the heat treatment.
  • At least one auxiliary material selected from (1) a pH-adjusting material, (2) a sugar or sugar alcohol, and (3) an enzyme may be used.
  • (1) pH-adjusting material, (2) sugar or sugar alcohol, and (3) enzyme are preferably used in order to obtain an effect of improving texture, and (1) pH-adjusting material, (2) sugar or sugar alcohol and (3) using all enzymes, and (3) using both an amylolytic enzyme and a lipolytic enzyme as enzymes.
  • a suitable mass ratio is (1) pH-adjusting material: (2) sugar or sugar alcohol, 1:20 to 1000.
  • a suitable mass ratio is (1) pH-adjusting material:(3) enzyme 1:0.01 to 50.
  • a suitable mass ratio (2):(3) is 1:0.01 to 5.
  • the former:the latter preferably has a mass ratio of 1:0.01 to 10.
  • the emulsifiers and oils are each less than 0.05% by mass, more preferably less than 0.01% by mass, relative to wheat flour. More preferably, it is used in a very small amount of less than 0.005% by mass.
  • the total amount of ingredients other than wheat flour, water and the above-mentioned auxiliary materials is preferably 10% by mass or less, more preferably 5% by mass or less, relative to wheat flour.
  • the heat treatment of the mixture of water at a predetermined temperature, wheat flour, and secondary material is preferably performed by heating the mixture at an ambient temperature of 100°C or higher and lower than 120°C for 3 seconds or more and 60 seconds or less.
  • the "ambient temperature” referred to here is the air temperature of the space around the mixture (flour) that is the object to be heated, not the temperature of the object to be heated itself (temperature of the mixture).
  • the ambient temperature is 100° C. or higher and the heating time is 3 seconds or longer, there is an advantage that sufficient starch gelatinization can be ensured.
  • the ambient temperature is less than 120° C. and the heating time is 60 seconds or less, there is an advantage of suppressing excessive stickiness due to gelatinization of starch and maintaining productivity.
  • the heating time is more preferably 4 seconds or more and 30 seconds or less. Therefore, the ambient temperature is preferably 100°C or higher and lower than 120°C.
  • the mixing and heating of the wheat flour, the water and the secondary material may be performed at the same time, or the heating may be performed after the mixing. For example, by putting wheat flour, water, and sub-materials into a container whose internal atmosphere has been heated in advance, the flour, sub-materials, and water can be mixed simultaneously with heating. Whether the mixing and heating of the wheat flour, water, and sub-materials are performed at the same time or the heating is performed after mixing, the heating time starts at the time when the flour is put into the container.
  • the temperature of the mixture is also preferable to set the temperature of the mixture to 90°C or higher and 120°C or lower in the heat treatment. There is an advantage that sufficient gelatinization can be ensured because the temperature of the mixture is 90°C or higher. In addition, when the temperature is 120° C. or lower, there is an advantage that excessive denaturation of proteins can be suppressed and workability of bakery foods can be maintained. From these points, the temperature of the mixture is preferably 90° C. or higher and 120° C. or lower, more preferably 95° C. or higher and 110° C. or lower. In the method for producing heat-treated wheat flour of the present invention, the temperature of the mixture may reach 90° C. or higher and 120° C.
  • the temperature of the mixture can be measured when the heat treatment is completed. It may be outside the range of 90°C or higher and 120°C or lower.
  • the temperature and amount of water to be combined with the wheat flour in the mixing process should be within the above range, and the time from the time when the flour and water are mixed to the start of the heat treatment is adjusted, and then the atmosphere temperature and the heating time in the heat treatment are adjusted within the above ranges. It is preferable to continuously mix and heat the wheat flour, water at a predetermined temperature, and the auxiliary material so that the temperature of the mixture upon completion of heating is within the range described below.
  • “Continuously” means, for example, that the mixing of wheat flour, water at a predetermined temperature, and the auxiliary material and the start of heating are performed within a few seconds. and sub-materials, respectively.
  • the temperature of the mixture can be the temperature of the mixture at the outlet.
  • the heat treatment according to the present invention is not particularly limited, and can be carried out using a known heating device.
  • a device that adds water to gelatinize the starch in the wheat flour for heat treatment can be used.
  • Heat treatment can be performed using a known heating device such as an autoclave or a steam oven.
  • a known heating device such as an autoclave or a steam oven.
  • wheat flour, water, and sub-materials are enclosed and sealed in an aluminum pouch or the like, or in a heatable closed container with a heat jacket or the like, and heated under pressure.
  • the internal atmosphere of the closed container may be preheated to a desired temperature prior to the introduction of the flour and water.
  • a mechanism for appropriately stirring may be provided inside the sealed container.
  • Pressurization may also be accomplished by heated steam in a closed vessel.
  • wheat flour, water and auxiliary materials are introduced into a closed container, and the mixture is stirred as necessary, simultaneously with the introduction, before the introduction, or Later (preferably at the same time or before the introduction), saturated steam is introduced into the container and heated under pressure (in this case, the amount of saturated steam is the amount of water added to the flour). shall not be included in the quantity).
  • saturated steam is introduced into the container and heated under pressure (in this case, the amount of saturated steam is the amount of water added to the flour). shall not be included in the quantity).
  • These treatments can be performed using, for example, single or twin screw extruders.
  • under pressure means a state in which pressure is generated mainly by steam filling the container, and an object such as an extruder (a member corresponding to the screw provided in the extruder) is brought into contact with the raw material wheat. It does not refer to the case where the raw material wheat is put into a pressurized state by pressing.
  • the steam flow rate is preferably adjusted so that the pressure in the vessel is within the range of gauge pressure 10 to 100 kPa.
  • Examples of the wheat flour used as a raw material for the heat-treated wheat flour of the present invention include strong flour, semi-strong flour, medium-strength flour, weak flour, durum wheat flour, etc., and these may be used alone or in combination of two or more. can be done.
  • wheat flour obtained by milling domestically produced (Japanese) wheat hereinafter also referred to as “domestic wheat flour” is preferable.
  • the present invention aims to improve the texture of heat-treated wheat flour without being limited to the amylose content in the starch of the wheat flour. It is suitable because the effect of improving the texture is particularly remarkable.
  • the obtained heat-treated wheat flour may be pulverized.
  • the heated mixture when pulverization is performed after heat treatment, the heated mixture is preferably pulverized without undergoing a granulation step.
  • the granulation step refers to the step of granulating the heated mixture into dough particles. Examples of the granulation process include granulation processes using an extrusion granulator, a mixing granulator, and the like.
  • the stretched dough is cut and granulated, or when a kneader is used for the heat treatment described above, the mixture extruded from the kneader is cut into small pieces. and granulating.
  • the particle size of the dough particles is 1 mm to 50 mm, preferably 5 mm to 20 mm.
  • the method of pulverization is not particularly limited and a known method can be used. Among them, pin mill pulverization or airflow pulverization can be preferably used.
  • the heat-treated wheat flour may be dried prior to the pulverization.
  • the heat-treated wheat flour is usually in a wet state, so drying it before grinding allows the grinding process to be performed more appropriately. Drying can be carried out by known methods such as shelf drying, hot air drying, fluidized bed drying and the like.
  • the drying temperature at the time of drying is preferably 6 hours or more and 24 hours or less for low temperature drying of 30 ° C or higher and 70 ° C or lower, and preferably 5 seconds or more and 120 seconds or less for high temperature drying of 100 ° C or higher and 180 ° C or lower. 40° C. or higher and 60° C. or lower is more preferable, and in high temperature drying, 120° C. or higher and 160° C. or less is more preferable. Drying may be performed at the same time as pulverization.
  • Preferred examples of the heat-treated wheat flour of the present invention include the following four forms (i), (ii), (iii), and (iv).
  • the amount of eluted sugar (mg) per 1 g of heat-treated flour is 66 mg or more and 76 mg or less;
  • the gluten vitality is 22 or more and 50 or less when the gluten vitality when untreated is 100.
  • the gluten vitality when the gluten vitality at the time of untreatment is set to 100 may be described as "GV".
  • the amount of eluted sugar (mg) per 1 g of heat-treated flour is 79 mg or more and 193 mg or less, and the elution equivalent (mg) is (A), After the wheat flour is heat-treated, when the amount of eluted sugar (mg) per 1 g of the heat-treated flour after the addition of the auxiliary material is defined as (B), (A)/(B) ⁇ 100(%) is 63% or more and 83% or less.
  • the eluted sugar amount (mg) per 1 g of heat-treated flour is 77 mg or more and 145 mg or less, and the eluted sugar amount (mg) is (A),
  • the amount of reducing ends (mg) as glucose per 1 g of heat-treated flour is (C)
  • (A)/(C) is 5 or more and 18 or less.
  • the amount of eluted sugar (mg) per 1 g of heat-treated flour is 58 mg or more and 69 mg or less; The degree of complex formation by iodine colorimetry is 27% or more and 81% or less.
  • the heat-treated wheat flour of the first form has an amount of eluted sugar (mg) per 1 g of heat-treated wheat flour of 66 mg or more and 76 mg or less, and a gluten vitality of 22 or more and 50 or less when the gluten vitality when untreated is 100. .
  • a higher amount of eluted sugar than in the case of conventional heat treatment without the addition of auxiliary ingredients indicates a high swelling degree of starch and a large amount of decomposition products of sugar chains in the production of breads and cakes.
  • a large amount of eluted sugar leads to suppression of texture deterioration during frozen storage.
  • a low gluten vitality suggests protein denaturation, and a low eluted sugar content leads to brittle texture and poor processability.
  • the amount of eluted sugar is within a predetermined range, even if the gluten vitality is lower than that of Patent Document 1, this disadvantage does not occur, and rather, the gluten vitality is lower than that of Patent Document 1. Since the value is low, swelling and decomposition of the starch are promoted at the same time, which is considered to have the merit of improving freeze resistance.
  • the amount of eluted sugar (mg) is more preferably 66 mg or more and 76 mg or less, and the gluten vitality when the gluten vitality when untreated is 100 is more preferably 40 or more and 50 or less.
  • the method for measuring the eluted sugar amount (mg) and gluten vitality will be described later.
  • the heat-treated wheat flour of the first form preferably has (v) a pH of 5 or more and 6 or less.
  • the heat-treated wheat flour of the present embodiment has a particularly excellent texture-improving effect by having a pH of 5 or more and 6 or less, and having a slightly acidic to neutral pH.
  • the pH of heat-treated wheat flour refers to the pH of a suspension of 1 g of heat-treated wheat flour suspended in 10 mL of purified water at 25°C.
  • the heat-treated wheat flour of the first form can be obtained by using (1) a pH-adjusting material and adjusting the heat treatment conditions and auxiliary material addition conditions in the above-described method for producing heat-treated flour.
  • the heat-treated wheat flour of the present embodiment preferably contains a pH-adjusting material.
  • per 1 g of heat-treated wheat flour containing secondary materials means per 1 g of wheat flour containing secondary materials.
  • the heat-treated wheat flour of the second form has an elution sugar amount (mg) per 1 g of 79 mg or more and 193 mg or less, and the elution equivalent (mg) is (A), (A)/(B) ⁇ 100 (%) is 63%, where (B) is the amount of eluted sugar (mg) per 1 g of the heat-treated wheat flour obtained by adding auxiliary ingredients after heat-treating the wheat flour. 83% or less.
  • the eluted sugar amount (mg) (A) per 1 g of heat-treated flour is as large as 79 mg or more and 193 mg or less.
  • the amount of eluted sugar (mg) (B) in the case of mixing sub-materials after heat treatment is clearly smaller.
  • the starch in the wheat flour and the auxiliary material are combined by heat treatment, forming steric hindrance within the sugar chain of the starch, or exhibiting water retention within the sugar chain. It is considered to be excellent in improvement effect.
  • the present inventors have found that the structure of this embodiment has a particularly good effect of improving texture.
  • the amount of eluted sugar in (B) is 98-259 mg.
  • the value of (A)/(B) ⁇ 100(%) is preferably 63% or more and 82.1% or less.
  • the heat-treated wheat flour production method of the present invention for example, the heat-treated wheat flour production method of Comparative Example 5 of this specification.
  • the brand/variety of wheat used as the raw material flour shall be the same as the heat-treated flour to be measured in (A)/(B).
  • the heat-treated wheat flour and the secondary material are mixed by, for example, putting 100 g of wheat flour in a container such as a bowl, adding the secondary material to it, and mixing it with a Hobart mixer or a bread mixer. and stirring at about 60 rpm for 10 minutes.
  • the heat-treated wheat flour of the second form can be obtained by using (2) sugar or sugar alcohol in the method for producing heat-treated wheat flour, and adjusting the heat treatment conditions, the addition conditions of auxiliary materials, and the like.
  • the heat-treated wheat flour of the present embodiment preferably contains sugar or sugar alcohol.
  • the eluted sugar amount (mg) per 1 g of heat-treated flour is 77 mg or more and 145 mg or less, and the eluted sugar amount (mg) is (A), (A)/(C) is 5 or more and 18 or less, where (C) is the amount (mg) of reducing ends as glucose per 1 g of heat-treated wheat flour.
  • the high amount of eluted sugar (mg) suggests that the gelatinization and swelling of starch due to heat treatment is progressing, and that the decomposition of starch sugar chains by enzymes is progressing during heat treatment.
  • the ratio (A)/(C) between the amount of reducing ends (mg) and the amount of eluted sugar (mg) is the average sugar chain length of the eluted sugar, and constitutes the sugar chain dissolved in deionized water from the flour sample. It means the average sugar chain length obtained by dividing the sugar content by the number of sugar chain terminals.
  • the sugar chain of this chain length interacts with starch in wheat flour, suppressing recrystallization and syneresis of starch, thereby improving aging resistance and freezing resistance. and thereby contribute to the texture effect when bakery foods are prepared. In this form, it is considered that the excellent effect of improving the texture is due to the excellent balance of these.
  • the eluted sugar amount (mg) (A) is preferably 77 mg or more and 145 mg or less, more preferably 103 mg or more and 145 mg or less, from the viewpoint of excellent effect of improving texture in this embodiment.
  • (A)/(C) is preferably 5 or more and 18 or less, more preferably 5 or more and 8 or less.
  • the amount of reducing ends (mg) (C) is preferably 5 mg or more and 26 mg or less, more preferably 10 mg or more and 26 mg or less.
  • the heat-treated wheat flour of the third form can be obtained by using an amylolytic enzyme as the (3) enzyme in the method for producing the heat-treated wheat flour, and adjusting the heat treatment conditions and the conditions for adding auxiliary ingredients.
  • the heat-treated wheat flour of the present embodiment preferably contains an amylolytic enzyme.
  • the fourth mode of the present invention is also called the fourth mode of the present invention.
  • the amount of eluted sugar (mg) per gram of heat-treated flour is 58 mg or more and 69 mg or less, and the degree of complex formation by iodine colorimetry is 27% or more and 81% or less.
  • the heat-treated wheat flour of the present form forms a complex of lipids and starch while contributing to a moist and chewy texture due to a certain amount of eluted sugar, thereby regenerating starch sugar chains. It has the effect of suppressing crystallization and syneresis, and it is shown that this effect can also enhance the moist and chewy texture.
  • the lipid referred to here is preferably derived from wheat flour.
  • the amount of eluted sugar (mg) per 1 g of heat-treated wheat flour is preferably 58 mg or more and 69 mg or less. Further, the degree of complex formation by iodine colorimetry is more preferably 58% or more and 81% or less.
  • the heat-treated wheat flour of the fourth form can be obtained by using a lipolytic enzyme as the enzyme (3) in the method for producing heat-treated wheat flour and adjusting the heat treatment conditions and the conditions for adding auxiliary materials.
  • the heat-treated wheat flour of this form preferably contains a lipolytic enzyme.
  • the amount of eluted sugar refers to the amount of sugar constituting the sugar chain eluted from the grain sample into deionized water.
  • the measuring method is based on the phenol-sulfuric acid method and is as follows. A 1 g sample of flour is combined with 20 ml of room temperature deionized water and shaken at 125 rpm for 30 minutes, and the supernatant is recovered after centrifugation at 4700 rpm for 10 minutes.
  • the terminal amount (mg) refers to the amount of reducing sugar present at the terminal of the sugar chain dissolved in deionized water from the flour sample.
  • the measurement method is based on the Somogyi-Nelson method and is as follows. A 1 g sample of flour is shaken with 20 ml of room temperature deionized water for 30 minutes at 125 rpm and the supernatant is collected after centrifugation at 4700 rpm for 10 minutes.
  • ⁇ Degree of complex formation (%)> The degree of complex formation is determined by the following formula, where ⁇ is the absorbance of flour that does not form a complex with lipid, and ⁇ is the absorbance of flour that forms a complex with lipid. Degree of complex formation (%) ( ⁇ - ⁇ ) / ⁇ ⁇ 100
  • a method for measuring the degree of complex formation (%) is called an iodine colorimetric method, and is as follows.
  • a 1 g sample of flour is shaken with 20 ml of room temperature deionized water for 30 minutes at 125 rpm and the supernatant is collected after centrifugation at 4700 rpm for 10 minutes.
  • 40 ⁇ l of iodine solution is added to 1.0 ml of appropriately diluted supernatant, and after stirring, the absorbance (690 nm) is measured.
  • the measured value is introduced into the defined equation to calculate the degree of complex formation.
  • the above dilution is preferably carried out so that the absorbance is in the range of 0.1 to 2.0.
  • flour complexed with lipids refers to heat-treated wheat flour
  • “flour not complexed with lipids” refers to untreated flour.
  • the untreated flour is untreated wheat flour of the same variety and brand as the heat-treated flour.
  • the dial 4 uses the Keltec decomposition furnace (DIGESTION SYSTEM 20 1015 type) incorporated in the Keltec Auto System described above, the dial 4 performs decomposition for 1 hour, and the dial 9 or 10 automatically performs the decomposition for 1 hour. Subsequently, the decomposition treatment was continuously and automatically performed using a Keltec distillation titration system (KJELTEC AUTO 1030 type) incorporated in the same Keltec Auto system.
  • KJELTEC AUTO 1030 type Keltec distillation titration system
  • the heat-treated wheat flour obtained by the heat-treated wheat flour production method of the present invention is also included in the present invention.
  • the present inventor found that by using the heat-treated wheat flour obtained by the method for producing heat-treated wheat flour of the present invention, when it is used for the preparation of bread, etc., the moist and sticky texture is effectively improved, and hot cakes are obtained. It was found that deterioration over time during freezing can be effectively suppressed for bakery foods that tend to become brittle.
  • the fact that the heat-treated wheat flour is obtained by the method for producing heat-treated wheat flour of the present invention is also defined in the scope of claims as the constitution of the heat-treated wheat flour.
  • the heat-treated wheat flour of the present invention can be used for various food applications by secondary processing, and bakery foods are typical applications.
  • the bakery food referred to in the present invention is a fermented or non-fermented dough obtained by using grain flour as the main raw material and optionally adding secondary ingredients such as yeast, leavening agent, water, salt, sugar, etc. It refers to food obtained by heat treatment such as frying.
  • Examples of bakery foods to which the present invention can be applied include breads and confectionery. Examples of bread include white bread, French bread, roll bread, copdozens bread, croissants, pizza and the like. Confectionery includes donuts, dorayaki, sponge cakes, butter cakes, hot cakes, pancakes, muffins, cookies and the like.
  • the heat-treated wheat flour of the present invention can also be used as a bakery food mix, and may contain non-heat-treated wheat flour in addition to the heat-treated wheat flour obtained by the method for producing the heat-treated wheat flour of the present invention or the heat-treated wheat flour of the present invention.
  • non-heat-treated wheat flour untreated wheat flour that has not been heat-treated can be used. The above can be used in combination.
  • the blending amount of the heat-treated wheat flour is preferably 1 part by mass or more and 40 parts by mass or less in a total of 100 parts by mass of the heat-treated wheat flour and the non-heat-treated wheat flour.
  • the present invention has been described above based on its preferred embodiments, it is possible to combine the preferred configurations described in the examples above or below with any other preferred configurations described above or below.
  • the preferred configuration here means that any stage can be combined with any stage regardless of the stage such as more preferable or particularly preferable.
  • the present invention will be described below using examples, but the present invention is not limited to the following examples.
  • the enzyme was mixed with wheat flour and then mixed with a predetermined amount of water at a predetermined temperature.
  • saturated steam was introduced into the container during the heat treatment, and the mixture was heated under pressure.
  • the temperature of steam circulated in the container was 98 to 110° C., and the pressure inside the container was within the above range.
  • Example 1 when mixing the wheat flour and the heated water, the pH-adjusting materials shown in Table 1 were mixed in the amounts shown in Table 1, and the flour and the heated water were used to adjust the pH. A mixture of materials was obtained. After that, the mixture was heated in a closed container set at an ambient temperature of 103° C. for 5 seconds and discharged from the closed container. The temperature of the mixture at the completion of heating (the temperature of the mixture at the outlet of the closed container) was the temperature shown in Table 1. During the heat treatment, saturated steam was introduced into the container to heat the mixture. The heat-treated mixture is dried in a constant temperature oven at 50° C.
  • the heat-treated wheat flour obtained by mixing a pH-adjusting material, a predetermined amount of water, and wheat flour at a predetermined temperature and heating is superior in freeze resistance of bakery foods compared to the case where the pH-adjusting material is not added. It turns out.
  • the heat-treated wheat flour having a predetermined eluted sugar amount and a predetermined gluten vitality is also superior in freeze resistance of bakery foods as compared to the heat-treated wheat flour of Comparative Examples 1 to 5, which do not satisfy the above constitution.
  • Example 8-15 (Preparation of heat-treated wheat flour) Heat-treated wheat flour was obtained in the same manner as in Example 1 except that the sugar or sugar alcohol shown in Table 2 was used in the amount shown in Table 2 instead of the pH-adjusting material shown in Table 1.
  • the heat-treated wheat flour obtained by mixing sugar or sugar alcohol, a predetermined temperature and a predetermined amount of water, and wheat flour and heating it has a higher freezing resistance of bakery foods than the case where sugar or sugar alcohol is not added. It is found to be superior to
  • the heat-treated wheat flour having a predetermined amount of eluted sugar and a predetermined (A) / (B) ratio is also superior in freeze resistance of bakery foods compared to the heat-treated wheat flour of Comparative Examples 1 to 5, which does not satisfy the above composition. I know.
  • the freeze resistance of the bakery food is improved compared to when it is added after the heat treatment.
  • Example 16-22 Preparation of heat-treated wheat flour
  • Heat-treated wheat flour was obtained in the same manner as in Example 1 except that the amylolytic enzymes (including starch-containing enzyme-containing materials) listed in Table 3 were used in the amounts listed in Table 3 instead of the pH-adjusting materials listed in Table 1.
  • the enzymes in Table 3 the following were used.
  • - Amyloglucosidase Trade name "GoldCrust 3300BG” manufactured by Novozyme
  • ⁇ -amylase trade name “ ⁇ -amylase F “Amano”” manufactured by Amano Enzyme, titer 650 U / g, optimum temperature 55 ° C.
  • Example 3 the heat-treated wheat flour of Comparative Example 5 was mixed with 0.1 part by mass of ⁇ -amylase per 100 parts by mass of wheat flour in the same manner as in Example 20.
  • the heat-treated wheat flour obtained by mixing a predetermined amount of water and wheat flour at a predetermined temperature with an amylolytic enzyme is superior in freeze resistance of bakery foods compared to the case where the amylolytic enzyme is not added. It turns out.
  • the heat-treated wheat flour having a predetermined amount of eluted sugar and a predetermined (A) / (C) ratio is also superior in freeze resistance of bakery foods compared to the heat-treated wheat flour of Comparative Examples 1 to 5, which does not satisfy the above composition. I know.
  • Example 23-27 (Preparation of heat-treated wheat flour) Heat-treated wheat flour was obtained in the same manner as in Example 1 except that the lipolytic enzymes shown in Table 4 were used in the amounts shown in Table 4 instead of the pH-adjusting materials shown in Table 1.
  • the phospholipase PLA2 Nagase 10P/R manufactured by Nagase ChemteX Corporation was used.
  • lipase 1 Amano Enzyme's lipase AY "Amano" 30SD (titer 2500 U/g, optimum temperature 40°C) was used.
  • As the lipase 2 Nagase Chemtex's lipase A5 (titer 100,000 to 120,000 U/g, optimum temperature 50° C.) was used.
  • Example 28 and 29 Preparation of heat-treated wheat flour
  • the pH adjusting material, sugar or sugar alcohol, amylolytic enzyme, and lipolytic enzyme shown in Table 5 were used in the amounts shown in Table 5 instead of the pH adjusting material shown in Table 1. to obtain heat-treated wheat flour.
  • the heat-treated wheat flour of each example exhibits a good effect of improving the texture of bread.
  • the present invention provides a bakery food product that provides a moist and chewy texture, and maintains the moist and chewy texture even when relatively fragile bakery foods such as pancakes are stored frozen for a long period of time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Cereal-Derived Products (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

本発明は、 小麦粉100質量部と、 (1)pH調整素材、(2)糖及び/又は糖アルコール並びに(3)酵素から選ばれる少なくとも一種と、 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法を提供する。(3)酵素が、澱粉分解酵素及び脂質分解酵素から選択される少なくとも一種であることが好ましい。前記混合物を100℃以上120℃未満の雰囲気温度で3秒間以上60秒間以下加熱することが好ましい。

Description

熱処理小麦粉の製造方法及び熱処理小麦粉
 本発明は、熱処理小麦粉の製造方法及び熱処理小麦粉に関する。
 従来、ベーカリー食品等に用いる熱処理穀粉の製造方法としては、種々の方法が知られている。
 例えば特許文献1には、80~120℃の雰囲気温度で、小麦粉に加水20~55%、83~60秒加熱して80~100℃とした後、粉砕する熱処理小麦粉の製造方法が記載されている。また同文献には、未処理の母体粉のグルテンバイタリティを100とした際、グルテンバイタリティが50~90の熱処理小麦粉が記載されている。
 特許文献2には、穀粉又は澱粉と、油脂を混合し、リパーゼを該穀粉又は澱粉に対して所定の水分含有率並びに油脂含有率の擬似粉末状態で反応させて、油脂を加水分解することにより、これら反応混合物から構成される食品素材を製造することを特徴とする該食品素材の製造方法が記載されている。
 特許文献3には、小麦粉と、オリゴ糖及び糖アルコールからなる群から選択される1種以上の糖質とを混合し、その混合物に湿熱処理を施す工程を有し、前記オリゴ糖は、トレハロース及びマルトトリオースであり、前記糖アルコールは、ソルビトールであり、前記湿熱処理は、前記混合物に加水したものを雰囲気温度100~120℃の密閉容器内に3~60秒間収容する処理であり、その加水量は、該混合物に対して5~20質量%である、熱処理小麦粉の製造方法が記載されている。
WO2021/095827A1 特開2015-107097号公報 特許2017-175954号公報
 しかしながら特許文献1~3を含め従来技術では、ベーカリー食品を調製した際にしっとり且つもっちり(以下単に「しっとりもっちり」とも記載する。)した食感を呈しつつ、ベーカリー食品の種類によっては長期冷凍に伴う食感低下を抑制できる熱処理小麦粉の構成について、十分に検討されていなかった。
 本発明は、以下の事項に関する。
〔1〕小麦粉100質量部と、
 以下の(1)、(2)及び(3)から選ばれる少なくとも一種である副素材と、
 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
(1)pH調整素材
(2)糖及び/又は糖アルコール
(3)酵素 
〔2〕小麦粉100質量部と、
 pH調整素材と、
 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
〔3〕小麦粉100質量部と、
 糖及び/又は糖アルコールと、
 糖70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
〔4〕小麦粉100質量部と、
 酵素と、
 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
〔5〕小麦粉100質量部と、
 pH調整素材と、
 糖及び/又は糖アルコールと、
 酵素と、
 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
〔6〕前記混合物を100℃以上120℃未満の雰囲気温度で3秒間以上60秒間以下加熱する、〔1〕から〔5〕のいずれかに記載の熱処理小麦粉の製造方法。
〔7〕以下、(i)、(ii)、(iii)又は(iv)である、熱処理小麦粉。
(i)熱処理小麦粉1g当たりの溶出糖量(mg)が、66mg以上76mg以下であり、
 未処理のときのグルテンバイタリティを100とした場合にグルテンバイタリティが、22以上50以下である、熱処理小麦粉。
(ii)熱処理小麦粉1g当たりの溶出糖量(mg)が、79mg以上193mg以下であり、当該溶出糖量(mg)を(A)とし、
 小麦粉を熱処理した後、副素材を添加後の熱処理小麦粉の1g当たりの溶出糖量(mg)を(B)とした場合の、
 (A)/(B)×100(%)が、63%以上83%以下である、熱処理小麦粉。
(iii)熱処理小麦粉1g当たりの溶出糖量(mg)が、77mg以上145mg以下であり、当該溶出糖量(mg)を(A)とし、
 熱処理小麦粉1g当たりのグルコースとしての還元末端量(mg)を(C)とした場合の、
 (A)/(C)が、5以上18以下である、熱処理小麦粉。
(iv)熱処理小麦粉1g当たりの溶出糖量(mg)が、58mg以上69mg以下であり、
 ヨウ素比色による複合体形成度が、27%以上81%以下である、熱処理小麦粉。
(v)pHが、5以上6以下である、(i)に記載の熱処理小麦粉。
〔8〕小麦粉100質量部と、
 以下の(1)、(2)及び(3)から選ばれる何れか一種である副素材と、
 70℃以上100℃以下の水と、を合わせて混合物を得、該混合物を加熱してなる熱処理小麦粉。
(1)pH調整素材
(2)糖及び/又は糖アルコール
(3)酵素
 以下、本発明をその好ましい実施形態に基づき説明する。本明細書において熱処理小麦粉とは、熱処理が施された小麦粉を指す。
 まず、本発明の熱処理小麦粉の製造方法について説明する。本発明の小麦粉100質量部と、
 以下の(1)、(2)及び(3)から選ばれる少なくとも一種である副素材と、
 70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法である。
(1)pH調整素材
(2)糖及び/又は糖アルコール
(3)酵素
 本発明は、上記(1)、(2)、(3)のいずれを必須成分として使用することも含む。
 以下では単に副素材という場合、(1)、(2)、(3)のいずれにも該当する。
 本発明の熱処理小麦粉の製造方法は、予め所定温度以上に加熱した水と、小麦粉と、上記特定の副素材とを合わせて混合物を得、該混合物に加熱処理を行うことを特徴の一つとする。以下、水と、小麦粉と、副素材を合わせて混合物を得る処理を混合処理ともいう。本発明では、所定温度以上に加熱した水を小麦粉及び副素材と混合した混合物を加熱処理することで、加温していない水を小麦粉及び副素材に混合させる場合と比較して以下の利点を有すると考えられる。
 (1)pH調整素材を用いる場合には、後述するように、酸性素材により澱粉糖鎖の加水分解が促進されたり、アルカリ性素材による澱粉糖鎖間の水素結合の乖離による糊化が促進され、処理対象の温度上昇によりこれらの促進作用が更に亢進される。
 (2)糖又は糖アルコールを用いる場合には、後述する通り澱粉の糖鎖内に糖又は糖アルコールが入り込み複合化することで立体障害を形成し、澱粉糖鎖における再結晶化と離水の抑制をもたらすと考えられ、処理対象の温度上昇により、当該複合体の形成が促進される。
 (3)澱粉分解酵素を用いる場合には、処理対象の温度上昇により、澱粉分解反応が促進される。脂質分解酵素を用いる場合には、処理対象の温度上昇により、脂質分解物と澱粉の複合体形成が促進される。
 水の温度は70℃以上であり、好ましくは75℃以上、更に好ましくは80℃以上に加熱する。小麦粉に混合する水の水温を70℃以上とすることで、小麦粉中の澱粉が十分にα化され、ベーカリー食品のしっとりもっちりした食感が優れ、且つ当該食感の経時変化も抑制されたものとなる。本明細書でいう水温とは常圧下での水温であり、上限は通常100℃である。
 本発明の熱処理小麦粉の製造方法では、前記の混合処理において、小麦粉と混合する水の量が所定量である。小麦粉と混合する水の量は小麦粉100質量部に対して30質量部超40質量部以下であることを要する。例えば特許文献3には、小麦粉と糖アルコール等との混合物に対し加水量を20質量%以下にすることが好ましいとされている。これに対し、本発明では、小麦粉100質量部に対して水の量を30質量部超にすることで澱粉の糊化度の上昇による冷凍耐性向上の利点がある。一方水の量を、40質量部以下とすることで、製造時の乾燥及び粉砕効率向上による生産性確保の利点がある。これらの観点から、小麦粉と混合する水の量は小麦粉100質量部に対して30質量部超37.5質量部以下であることが特に好ましい。
 次いで、本発明で用いる副素材について説明する。本発明者は、上記特定量で特定温度の水と、小麦粉と、特定の副素材とを混合した混合物を加熱処理することで、驚くべきことに、副素材未添加の場合に比してベーカリー食品のしっとりもっちりした食感が向上し、且つホットケーキ等の長期冷凍により脆くなりやすいベーカリー食品についても冷凍に伴う食感低下を効果的に抑制できることを知見した。
 本発明で用いる副素材が(1)pH調整素材である場合について説明する。
 pH調整素材としては、有機酸又はアルカリが挙げられる。有機酸としては、クエン酸、リンゴ酸、酒石酸、乳酸等の水酸基を有する有機カルボン酸(特に2価以上の有機カルボン酸)や、アスコルビン酸、酢酸、コハク酸、フマル酸、これらを有する食品素材が挙げられる。アルカリとしては、炭酸ナトリウム、炭酸カリウムなどの炭酸塩やそれらを主成分とするかん水、焼成カルシウム等の食品素材などが挙げられる。中でもベーカリー食品の食感改良効果、冷凍耐性付与効果に優れる点から、有機酸、とりわけ、クエン酸、リンゴ酸、アスコルビン酸やこれらを含む食品素材が好ましく、クエン酸が最も好ましい。
 pH調整素材として、有機酸又はアルカリそのものではなく、有機酸又はアルカリを含む食品素材を用いる場合、食品素材中の有機酸又はアルカリの量は0.9質量%以上であることが好ましく、1質量%以上であることがより好ましい。
 本発明は、所定量且つ所定温度の水と、pH調整素材を小麦粉に混合して熱処理することで、副素材を添加せずに熱処理をする場合に比してしっとりもっちりした食感が向上するとともに冷凍耐性が高まる。また本形態では、後述する参考例1と実施例4との比較の通り、pH調整素材を熱処理時に添加せず、熱処理後の小麦粉に対して添加混合する場合に比してもしっとりもっちりした食感及び冷凍耐性が優れたものとなる。
 これらの理由は明確ではないが、澱粉糖鎖の分解及び糊化の観点では、熱処理時の高温且つ高加水状態で小麦粉とpH調整素材が処理されることにより、酸性素材による澱粉糖鎖の加水分解や、アルカリ性素材による澱粉糖鎖間の水素結合の乖離による糊化が促進されることが理由の一つとして考えられる。
(1)pH調整素材の使用量としては、小麦粉100質量部に対し、0.01質量部以上であることが、pH調整素材を用いることによる上記効果が得やすい点から好ましく、0.025質量部以上であることがより好ましい。
 また、タンパク質の変性度の観点では、配合量を特定量以下とすることで、pH調整素材の酸又はアルカリ性によりタンパク質が変性して食感に脆さが生じることを防止できるため好ましい。この観点から、pH調整素材の使用量は、小麦粉100質量部に対し、1.0質量部以下であることが好ましく、0.1質量部以下であることがより好ましい。
 なお、ここで述べる副素材の好ましい使用量は、副素材が粉末等の固形状でない場合は、副素材の乾燥質量の好ましい量である(以下で述べる(2)及び(3)の副素材の好ましい使用量についても同様)。
 また、(1)pH調整素材の使用量としては、小麦粉100質量部に対し、有機酸又はアルカリ基準の量としては、0.00025質量部以上であることが、pH調整素材を用いることによる上記効果が得やすい点から好ましく、0.0007質量部以上であることがより好ましく、0.025質量部以上であることが特に好ましい。一方、pH調整素材の使用量の上限としては、有機酸又はアルカリ基準の量として、小麦粉100質量部に対し、1.0質量部以下であることがタンパク質の過剰な変性を抑える点で好ましく0.1質量部以下であることがより好ましい。
 本発明で用いる副素材が(2)糖又は糖アルコールである場合について説明する。
 (2)糖又は糖アルコールにおける糖としては、グルコース、キシロース、リボース、アラビノース等の単糖、マルトース、スクロース、トレハロース、パラチノース等の二糖、オリゴ糖類が挙げられる。糖アルコールとしては、ソルビトール、マンニトール、マルチトール、エリスリトール、キシリトール等が挙げられる。中でもベーカリー食品の食感改良効果、冷凍耐性付与効果に優れる点から、単糖、二糖、糖アルコールから選ばれる少なくとも一種が好ましく、単糖又は二糖が特に好ましい。食品の食感改良効果、冷凍耐性付与効果に優れる点から、具体的な糖又は糖アルコールとしては、グルコース、キシロース、マルトース、マルチトールから選ばれる少なくとも一種が好ましく、マルトースが最も好ましい。
 本形態では所定量且つ所定温度の水と、糖又は糖アルコールとを、小麦粉に混合して熱処理することで副素材を添加せずに熱処理をする場合に比してしっとりもっちりした食感が向上するとともに冷凍耐性が高まる。また、本形態では、後述する参考例2と実施例13との比較の通り、糖又は糖アルコールを熱処理時に添加せず、熱処理後の小麦粉に対して添加混合する場合に比してもしっとりもっちりした食感及び冷凍耐性が優れたものとなる。
 これらの理由は明確ではないが、本発明者は、熱処理時の所定の高温の水による多量の加水により糊化した澱粉の糖鎖内に糖又は糖アルコールが入り込み複合化することで立体障害を形成し、澱粉糖鎖の再結晶化と離水の抑制をもたらすことが理由ではないかと推測している。
 (2)糖又は糖アルコールの使用量としては、小麦粉100質量部に対し、1.0質量部以上であることが糖又は糖アルコールを用いることによる上記効果が得やすい点から好ましく、3.0質量部以上であることがより好ましい。
 一方、糖又は糖アルコールの使用量の上限としては、小麦粉100質量部に対し、20.0質量部以下であることが糖の高配合に由来する小麦粉製品の食感の脆さを抑える点で好ましく、10質量部以下であることがより好ましい。
 副素材が(3)酵素である場合について説明する。
 酵素としては、澱粉分解酵素であるアミラーゼ、脂質分解酵素であるホスホリパーゼ、リパーゼが挙げられる。
 澱粉分解酵素としては、α-アミラーゼ、β-アミラーゼ、アミログルコシダーゼ、G4アミラーゼ、グルコシルトランスフェラーゼ、プルラナーゼ、マルトトリオヒドラーゼ、サイクロデキストリングルカノトランスフェラーゼ、トランスグルコシダーゼ、4-a‐グルカノトランスフェラーゼ等が知られており、これらのアミラーゼ含有食品素材を使用することもできる。例えばα-アミラーゼ活性及びβ-アミラーゼ活性を有する食品素材として、麦芽由来食品素材がある。麦芽由来食品素材の例としては、モルトパウダーやモルトシロップが挙げられる。
 これらのうち、本発明ではいずれを用いてもよいが、食感改良効果に優れる点から、α-アミラーゼ、G4アミラーゼ及びこれらを含む食品素材の何れかを用いることが好ましく、α-アミラーゼ又はこれを含む食品素材を用いる事がより好ましい。
 例えばアミログルコシダーゼとしては、ノボザイム社製の商品名「GoldCrust3300BG」等、グルコアミラーゼまたはグルカン1,4-α-グルコシダーゼ(EC 3.2.1.3)としても知られる、非還元性末端から連続して末端(1,4)結合α-D-グルコース残基の加水分解を触媒する酵素が挙げられる。G4アミラーゼとしてはアミロース等の多糖類のα(1→4)-グルカン構造を加水分解して、非還元性末端からマルトテトラオース単位を生成する活性を備えた酵素(EC 3.2.1.60、別名:Glucan 1,4-alpha-maltotetraohydrolase)であればよく)、「POWERFresh 3050 GF」(ダニスコジャパン株式会社製)、商品名「POWERFresh 3150」(ダニスコジャパン株式会社製)、商品名「POWERFresh 4150」(ダニスコジャパン株式会社製)、商品名「POWERSoft 7033」(ダニスコジャパン株式会社製)、等のほか、ナガセケムテックス社製の商品名「デナベイク(登録商標)EXTRA」等が挙げられる。
 α-アミラーゼ(酵素番号:EC 3.2.1.1)は、デンプン、グリコーゲンなどのα-1,4結合をランダムに切断するエンド型の酵素の総称である。例えば、スピターゼCP3、スピターゼL(以上、ナガセケムテックスジャパン(株)製)、コクラーゼ(三菱化学フーズ(株)製)、ビオザイムA、クライスターゼL1、アミラーゼAD「アマノ」1(天野エンザイム株式会社製)、Fungamyl(登録商標)4000 SG、Fungamyl800L(ノボザイム社製)等が知られている。
 β-アミラーゼはデンプン、グリコーゲンなどの非還元性末端からα-1,4結合をマルトース単位で切断するエキソ型の酵素である。β-アミラーゼとしては、β-アミラーゼF「アマノ」(天野エンザイム株式会社製)、β-アミラーゼ#1500S(商品名;ナガセケムテックス社製)、ハイマルトシンG(商品名;エイチビィアイ社製)等が知られている。
 澱粉分解酵素の至適温度は27℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることが更に好ましい。
 また脂質分解酵素のうち、ホスホリパーゼとしてはホスホリパーゼA1、ホスホリパーゼA2、ホスホリパーゼB等のリン脂質のエステル結合を加水分解する酵素や、ホスホリパーゼC、ホスホリパーゼD等のホスホジエステラーゼが知られており、リパーゼとしては、トリグリセリドのエステル結合を加水分解する各種酵素が知られている。リパーゼとしては、油脂位置特異性に関して、トリグリセリドの1,3位のエステル結合を特異的に加水分解する位置特異性や、トリグリセリドの2位のエステル結合を特異的に加水分解する位置特異性や、油脂位置特異性を有しないものが知られている。またホスホリパーゼ、リパーゼとも、加水分解対象の脂肪酸の鎖長特異性を有するものや有しないものが知られている。
 本発明ではベーカリー食品に用いた場合の食感改善効果や冷凍耐性に優れることから、脂質分解酵素として、リパーゼを用いる事が好ましく、とりわけ、トリグリセリドの1,3位への位置特異性を有するか、短鎖又は中鎖の脂肪酸への鎖長特異性を有するものが好ましく、トリグリセリドの1,3位への位置特異性を有し、短鎖又は中鎖の脂肪酸への鎖長特異性を有するものが特に好ましい。なお、短鎖又は中鎖の脂肪酸への鎖長特異性とは、例えば炭素原子数12以下の脂肪酸に対し、炭素原子数18以上の脂肪酸に比して加水分解しやすい性質を指す。
 リパーゼとしては、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属の微生物が生産するリパーゼを好適に使用することができる。
 例えば市販の脂質分解酵素製剤のなかでもトリグリセリドの1,3位への位置特異性を有するとされるリパーゼとしては、リリパーゼA5(ナガセケムテックス社製)、リパーゼ AS「アマノ」 (天野エンザイム株式会社)、リパーゼM「アマノ」10(天野エンザイム株式会社)等が挙げられ、トリグリセリドの1,3位への位置特異性を有し、且つ、短鎖又は中鎖の脂肪酸への鎖長特異性を有するリパーゼとしては、リリパーゼA5(ナガセケムテックス社製)、リパーゼ AS「アマノ」(天野エンザイム株式会社)等が挙げられる。
 また油脂位置特異性や、鎖長特異性のないリパーゼも使用でき、例えば天野エンザイム社製リパーゼAY「アマノ」30SD等が挙げられる。
 ホスホリパーゼとしてはデナベイクRICH(ナガセケムテックス社製)、PLA2ナガセ10P/R(ナガセケムテックス社製)等が知られている。
 脂質分解酵素の至適温度は30℃以上であることが好ましく、40℃以上であることが好ましく、50℃以上であることが更に一層好ましい。
 本発明では、所定量且つ所定温度の水と澱粉分解酵素や脂質分解酵素を小麦粉に混合して熱処理することで副素材を添加せずに熱処理をする場合に比してしっとりもっちりした食感が向上するとともに冷凍耐性が高まる。また、参考例3と実施例20との比較、及び参考例4と実施例25との比較の通り、澱粉分解酵素や脂質分解酵素を熱処理時に添加せず、熱処理後の小麦粉に対して添加混合する場合に比してもしっとりもっちりした食感及び冷凍耐性が優れたものとなる。
 これらの理由は明確ではないが、小麦粉と酵素との混合から昇温による酵素失活までの間に、澱粉分解酵素については酵素分解が起こりやすい糊化澱粉と澱粉分解酵素が共在して澱粉分解が適度のものとなるためであり、脂質分解酵素については小麦粉の脂質分解生成物と複合体を形成しやすい糊化澱粉が共在して、該複合体が形成しやすくなるためではないかと発明者は推測している。
 (3)酵素の使用量としては、小麦粉100質量部に対し、0.01質量部以上であることが酵素を用いることによる上記効果が得やすい点から好ましい。一方、酵素の使用量の上限としては、小麦粉100質量部に対し、1.00質量部以下であることが配合量との費用対効果の点で好ましい。
 とりわけ、酵素が澱粉分解酵素である場合、特に優れた食感改善効果を得る点から、小麦粉100質量部に対し、0.01質量部以上1.00質量部以下であることがより好ましく、0.05質量部以上0.50質量部以下であることがより好ましい。
 また酵素が脂質分解酵素である場合、特に優れた食感改善効果を得る点から、小麦粉100質量部に対し、0.01質量部以上1.0質量部以下であることがより好ましく、0.05質量部以上0.5質量部以下であることがより好ましい。
 なお本発明が酵素として、酵素を含む素材を用いる場合も、当該素材の乾燥質量が、小麦粉100質量部に対し、0.01質量部以上1.0質量部以下であることがより好ましく、0.05質量部以上0.5質量部以下であることがより好ましい。
 澱粉分解酵素やそれを含む食品素材を用いる場合、α-アミラーゼの好適な添加活性量としては例えば小麦粉100gあたり、70U~7000Uであることが好ましく、350U~3500Uであることがより好ましい。
 β-アミラーゼの好適な添加活性量としては例えば小麦粉100gあたり、6.5U~650Uであることが好ましく、32.5U~325Uであることが更に好ましい。
 G4アミラーゼの好適な添加活性量としては例えば小麦粉100gあたり、65U~6500Uであることが好ましく、325U~3250Uであることがより好ましい。
 アミログルコシダーゼの好適な添加活性量としては例えば小麦粉100gあたり、3.3~3300Uであることが好ましく、16.5~1650Uであることがより好ましい。
 α-アミラーゼの酵素活性は、天野エンザイム社製の商品名「ビオザイムA」、力価7000U/gを基準とする。α-アミラーゼの酵素活性は、天野エンザイム社製の商品名「β-アミラーゼF「アマノ」」、力価650U/gを基準とする。G4アミラーゼの酵素活性は、ナガセケムテックス社製の商品名「デナベイク(登録商標)EXTRA」、力価6500U/gを基準とする。アミログルコシダーゼの酵素活性は、ノボザイム社製の商品名「GoldCrust3300BG」、力価3300U/gを基準とする。
 活性測定方法については本技術分野で使用される一般的な方法を採用できる。例えば、α-アミラーゼの活性は、デンプンを基質としてpH5.0、40℃において20分間に生成し、ヨウ素液で呈色される糖量に基づくものとすることができる。例えば、β-アミラーゼの酵素活性は、デンプンを基質としてpH5.0,40℃において20分間に生成するマルトースにもとづくものとすることができる。例えば、G4アミラーゼの酵素活性は、可溶性デンプンを基質としてpH7.0、40℃において1分間に生成するグルコース相当の還元力に基づくものとすることができる。例えば、アミログルコシダーゼの酵素活性はデンプンを基質としてpH5.0,40℃において20分間に生成するグルコース量に基づくものとすることができる。
 脂質分解酵素の好適な添加量の活性量としては位置特異性のないリパーゼの場合は、小麦粉100gに対し、25U~2500Uであることが好ましく、125U~1250Uであることがより好ましい。また位置特異性のあるリパーゼの場合は、小麦粉100gに対し、1000U~120000Uであることが好ましく、5000U~60000Uであることがより好ましい。
 例えば位置特異性のないリパーゼの活性の定義としては、天野エンザイム社製リパーゼAY「アマノ」30SDの1g2500Uを基準とすることができる。位置特異性のあるリパーゼの活性の定義としては、下記実施例で記載のリリパーゼA5(ナガセケムテックス社製)の1g100000~120000Uを基準とすることができる。
 活性測定方法については本技術分野で使用される一般的な方法を採用できる。例えば、基質をパルミチン酸、エイコサペンタエン酸又はドコサヘキサエン酸を側鎖として有するトリグリセリドとしたときに、温度37℃、pH7.0で基質分解により所定時間(例えば位置特異性がないリパーゼは20分間、位置特異性があるリパーゼは60分間)に生成するパルミチン酸やエイコサペンタエン酸、ドコサヘキサエン酸の量に基づくものとすることができる。
 混合処理において、小麦粉と水と副素材との混合物は均質な混合物であることを要さず、混在状態であればよい。また、本明細書において、小麦粉と水と副素材との混合物を得るための小麦粉と水と副素材との混合処理では、撹拌等の均質化のための操作を必須としない。しかし、小麦粉と水と副素材の混合物を得る際における撹拌等の均質化処理は、本発明から除外されるものではなく、求められる熱処理小麦粉の用途や品質等に応じて適宜行うことができる。
 小麦粉と水と副素材との混合物を得る方法としては、小麦粉と副素材を混合し、次いで水を混合する方法や、水に副素材を添加し、次いで小麦粉を混合する方法、小麦粉と水を混合し、次いで副素材を混合する方法、小麦粉と水と副素材とを同時に混合する方法が挙げられる。本発明では、いずれを採用してもよいが、副素材が(3)酵素である場合は水(70~100℃)に直接溶解させるのではなく熱処理前の小麦粉と混合させた後に、水と酵素混合後の小麦粉を混合する方法が、熱処理時にできるだけ長く酵素活性を維持する観点から好適である。
 本発明の製造方法では、(1)pH調整素材、(2)糖又は糖アルコール及び(3)酵素から選ばれる少なくとも一種の副素材を用いればよいが、複数種組み合わせることが好ましく、特に顕著な食感改善効果が得られる点から、(1)pH調整素材、(2)糖又は糖アルコール及び(3)酵素を全て用いる事が好ましく、(1)pH調整素材、(2)糖又は糖アルコール及び(3)酵素を全て用い、且つ、(3)酵素として、澱粉分解酵素と脂質分解酵素を併用することが更に好ましい。
 例えば(1)及び(2)の成分を併用する場合の好適な質量比率は、(1)pH調整素材:(2)糖又は糖アルコールで1:20~1000が挙げられる。また(1)及び(3)の成分を併用する場合の好適な質量比率は(1)pH調整素材:(3)酵素で1:0.01~50が挙げられる。更に、(2)糖又は糖アルコール及び(3)の成分を併用する場合の好適な質量比率は(2):(3)で1:0.01~5が挙げられる。また酵素として、澱粉分解酵素と脂質分解酵素を併用する場合は前者:後者の好適な質量比率は1:0.01~10が挙げられる。
 なお、本発明において小麦粉の熱処理時に乳化剤、油脂等を用いる必要はなく、添加させる場合には、乳化剤、油脂はそれぞれ小麦粉に対して0.05質量%未満、より好ましくは0.01質量%未満、更に好ましくは0.005質量%未満とごく微量の使用量とすることが好ましい。
 混合物中、小麦粉、水分及び上記副素材以外の成分は合計で、小麦粉に対し、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 所定温度の水と小麦粉と副素材とを合わせてなる混合物の加熱処理は、当該混合物を100℃以上120℃未満の雰囲気温度で3秒間以上60秒間以下加熱することが好ましい。ここでいう「雰囲気温度」は、被加熱物である混合物(小麦粉)の周囲の空間の気温であり、被加熱物自体の温度(混合物の温度)ではない。雰囲気温度が100℃以上及び加熱時間が3秒間以上であることで、充分な澱粉の糊化を確保できる利点がある。また雰囲気温度が120℃未満及び加熱時間が60秒間以下であることで、澱粉の糊化による過剰なベタつきの発生を抑制し、生産性を維持する利点がある。これらの点から、より好ましくは、加熱時間は4秒間以上30秒間以下である。従って、好ましくは、雰囲気温度は100℃以上120℃未満である。なお、本発明において、小麦粉と水分と副素材との混合と、加熱とを同時に行ってもよいし、混合後に加熱を行ってもよい。例えば、予め内部雰囲気を加熱しておいた容器内に、小麦粉と水分と副素材をそれぞれ投入することで、加熱と同時に、小麦粉と副素材と水分との混合を行うことができる。小麦粉と水分と副素材との混合と、加熱とを同時に行う場合も、混合後に加熱を行う場合も、加熱時間の開始は、容器内への小麦粉の投入時点となる。
 本発明の熱処理小麦粉の製造方法は、加熱処理において、混合物の温度を90℃以上120℃以下とすることも好ましい。混合物の温度が90℃以上であることで、十分な糊化を確保できる利点がある。また、120℃以下であることにより、タンパク質の過剰な変性を抑制し、ベーカリー食品などの加工性を維持できる利点がある。これらの点から、混合物の温度は90℃以上120℃以下であることが好ましく、95℃以上110℃以下であることがより好ましい。本発明の熱処理小麦粉の製造方法において、混合物の温度は、加熱処理中に一度でも90℃以上120℃以下に達していればよい。例えば混合物の温度は加熱処理完了時に測定することができるが、上述した通り、加熱処理中に一度でも混合物の温度が90℃以上120℃以下となっていれば、加熱処理完了の混合物の温度が90℃以上120℃以下の範囲外であってもよい。混合物の温度を前記範囲内とするためには、前記混合処理で小麦粉と合わせる水の温度や量を前記の範囲内とするとともに、小麦粉と水とが混合した時点から加熱処理開始時点までの時間を調整し、更に加熱処理における雰囲気温度及び加熱時間を前記範囲内とするなどの調整を行えばよい。小麦粉、所定温度の水及び副素材の混合と加熱処理とは連続的に行うことが加熱完了時の混合物の温度を後述する範囲内とするために好ましい。連続的とは、例えば、小麦粉と所定温度の水と副素材との混合と加熱開始までを数秒内で行うことを指し、上述した、予め内部雰囲気を加熱しておいた容器内に小麦粉と水と副素材とをそれぞれ投入する場合を含む。なお、加熱処理装置において上述した混合物の温度を測定する場合、例えば、加熱処理に内部のエクストルーダーにより内容物を容器中で入口から出口まで移送させながら加熱する装置を用いる場合は、混合物の温度は出口における混合物の温度とすることができる。
 本発明に係る加熱処理は特に限定されず公知の加熱装置を用いて実施できるが、好ましくは、小麦粉中の澱粉を糊化させるために水を添加して加熱処理をする装置を用いることができる。加熱処理は、例えば、オートクレーブ、スチームオーブン等の公知の加熱装置を用いて実施できる。本発明に係る加熱処理の一例として、小麦粉と水と副素材とをアルミパウチ等、或いはヒートジャケット等で加熱可能な密閉容器に封入密閉し、加圧下で加熱する処理が挙げられる。小麦粉と水の導入前に、密閉容器の内部雰囲気を予め望ましい温度に加熱していてもよい。また密閉容器内部に適宜撹拌を行う機構を設けてもよい。また加圧は密閉容器中の加熱された水蒸気によりなされるものであってよい。また、本発明に係る加熱処理の他の一例として、小麦粉、水及び副素材を密閉容器内に導入し、必要に応じてそれらの混合物を攪拌しつつ、当該導入と同時又は当該導入より前若しくは後に(好ましくは該導入と同時又は該導入より前に)、該容器内に飽和水蒸気を導入して加圧下で加熱する処理が挙げられる(この場合の飽和水蒸気の量は小麦粉に添加する水の量に含めないものとする)。これらの処理は、例えば一軸又は二軸型エクストルーダーを用いて実施できる。ここでいう「加圧下」は、主として容器内に充満する蒸気によって加圧状態となった場合を意味し、押出具(エクストルーダーが備えるスクリューに相当する部材)のような物体を原料小麦に接触させることによって該原料小麦を加圧状態とした場合を指すわけではない。水蒸気流量は容器内の圧力はゲージ圧10~100kPaの範囲内となるように調整されることが好ましい。
 本発明の熱処理小麦粉の原料として使用する小麦粉としては、例えば、強力粉、準強力粉、中力粉、薄力粉、デュラム小麦粉等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。特に、本発明の熱処理小麦粉の原料としては、国内産(日本産)麦を製粉した小麦粉(以下、「国内産麦小麦粉」ともいう。)が好ましい。
 前記の現存する国内産小麦品種としては、現在までに日本で品種登録された小麦品種として下記のものを例示できる。
 あおばの恋、あきたっこ、アブクマワセ、あやひかり、イワイノダイチ、キタカミコムギ、きたさちほ、キタノカオリ、きたほなみ、きたもえ、きぬあかり、きぬあずま、きぬいろは、きぬの波、キヌヒメ、コユキコムギ、さとのそら、さぬきの夢2000、さぬきの夢2009、しゅんよう、シラサギコムギ、シラネコムギ、シロガネコムギ、せときらら、タイセツコムギ、タクネコムギ、ダブル8号、タマイズミ、チクゴイズミ、ちくしW2号、チホクコムギ、つるきち、つるぴかり、ナンブコムギ、ニシノカオリ、ニシホナミ、ネノリゴシ、ネバリゴシ、ハナマンテ、ハルイブ、はるきらり、はるひので、ハルユタカ、ハレイブキ、ハレユタカ、バンドウワセ、フウセツ、ふくあかり、ふくさやか、ふくはるか、ふくほのか、ホクシン、ホロシリコムギ、もち姫、ゆきちから、ゆきはるか、ゆめあかり、ユメアサヒ、ゆめかおり、ゆめきらり、ユメシホウ、ユメセイキ、ゆめちから、銀河のちから、香育21号、春のかがやき、春よ恋、長崎W2号、東海103号、東海104号、東山42号、農林61号、福井県大3号、利根3号、ダブレ8号、ミナミノカオリ。本発明は、小麦粉の澱粉中のアミロース含量に限定されずに熱処理小麦粉による食感改善を図るものであるが、原料となる小麦粉は、澱粉中のアミロース含量が25%以下であると、もちもちしっとりした食感改善効果が特に顕著となるため好適である。
 本発明の熱処理小麦粉の製造方法においては、小麦粉と加温した水とを含む混合物を前記のように加熱処理した後、得られた熱処理小麦粉を粉砕してもよい。本発明では、加熱処理の後、粉砕を行う場合は、加熱した混合物を、粒状化工程を経ることなく粉砕することが好ましい。粒状化工程とは、加熱した混合物を粒子状にして生地粒子とする工程を指す。粒状化工程の例としては、押出し造粒機、混合造粒機などを用いた造粒工程が挙げられる。また加熱した混合物を2つのロールにて延伸した後、延伸された生地を切断して粒状化したり、前述した加熱処理に混練機を用いた場合に該混練機から押し出されてくる混合物を小さく切断して粒状化する工程が挙げられる。生地粒子の粒子径としては、1mm~50mmが挙げられ、好ましくは5mm~20mmである。
 加熱処理により得られた熱処理小麦粉を粉砕する場合、粉砕処理の方法は特に限定されず公知の方法を用いることができ、例えば、ロール式粉砕、衝撃式粉砕、気流式粉砕、ピンミル式粉砕等が挙げられるが、このうち、ピンミル式粉砕又は気流式粉砕を好適に使用できる。
 なお熱処理小麦粉の粉砕を行う場合、粉砕に先立ち、該熱処理小麦粉に乾燥処理を施してもよい。前述の通り熱処理小麦粉は通常湿潤状態であるため、粉砕前に乾燥することによって粉砕処理をより適切に行うことができる。乾燥処理としては、棚乾燥、熱風乾燥、流動層乾燥等の公知の方法によって実施できる。乾燥時の乾燥温度は、低温乾燥の30℃以上70℃以下では6時間以上24時間以下の処理が好ましく、高温乾燥の100℃以上180℃以下では5秒以上120秒以下が好ましく、低温乾燥では40℃以上60℃以下がより好ましく、高温乾燥では120℃以上160℃以下がより好ましい。
 また、粉砕と同時に乾燥を行ってもよい。
 次いで、本発明の熱処理小麦粉の好適な形態について説明する。本発明の熱処理小麦粉における好適な例として、以下の(i)、(ii)、(iii)、(iv)の4つの形態を挙げることができる。
(i)熱処理小麦粉1g当たりの溶出糖量(mg)が、66mg以上76mg以下であり、
 未処理のときのグルテンバイタリティを100とした場合にグルテンバイタリティが、22以上50以下である。以下の実施例では、未処理のときのグルテンバイタリティを100とした場合のグルテンバイタリティを「GV」と記載する場合がある。
(ii)熱処理小麦粉1g当たりの溶出糖量(mg)が、79mg以上193mg以下であり、当該溶出当量(mg)を(A)とし、
 小麦粉を熱処理した後、副素材を添加後の熱処理小麦粉の1g当たりの溶出糖量(mg)を(B)とした場合の、
 (A)/(B)×100(%)が、63%以上83%以下である。
(iii)熱処理小麦粉1g当たりの溶出糖量(mg)が、77mg以上145mg以下であり、当該溶出糖量(mg)を(A)とし、
 熱処理小麦粉1g当たりのグルコースとしての還元末端量(mg)を(C)とした場合の、
 (A)/(C)が、5以上18以下である。
(iv)熱処理小麦粉1g当たりの溶出糖量(mg)が、58mg以上69mg以下であり、
 ヨウ素比色による複合体形成度が、27%以上81%以下である。
 上記(i)を満たす場合を本発明の第1形態という。第1形態の熱処理小麦粉は、熱処理小麦粉1g当たりの溶出糖量(mg)が、66mg以上76mg以下であり、未処理のときのグルテンバイタリティを100とした場合にグルテンバイタリティが22以上50以下である。従来副素材を添加せずに熱処理していた場合に比して溶出糖量が高いことは、パン類やケーキ類の製造において澱粉の膨潤度の高さや糖鎖の分解物の多さを示す。溶出糖量が多いことは冷凍保管中の食感劣化の抑制につながる。またグルテンバイタリティが低いことは、タンパク質の変性を示唆し、溶出糖量が少ない場合は食感の脆さや加工性の低下につながる。一方で、本形態では、溶出糖量が所定範囲であるために、特許文献1に比してグルテンバイタリティが低くても、当該デメリットが生じず、むしろ、グルテンバイタリティが特許文献1に比して低い値であるために、同時に澱粉の膨潤、分解が進み、それらに伴い冷凍耐性が向上するメリットがあると考えられる。とりわけ食感改善の点から、前記溶出糖量(mg)は、66mg以上76mg以下がより好ましく、未処理のときのグルテンバイタリティを100とした場合のグルテンバイタリティが、40以上50以下がより好ましい。溶出糖量(mg)及びグルテンバイタリティの測定方法については後述する。
 また第1形態の熱処理小麦粉は、(v)pHが、5以上6以下であることが好ましい。(v)pHが、5以上6以下であり、やや酸性から中性のpHを有することで、本形態の熱処理小麦粉は特に食感改善効果に優れたものとなる。本明細書において、熱処理小麦粉のpHとは、熱処理小麦粉1gを10mLの精製水に懸濁させた25℃の懸濁液のpHをいう。
 上記第1形態の熱処理小麦粉は上記の熱処理小麦粉の製造方法において(1)pH調整素材を用い、熱処理条件及び副素材添加条件等を調整して得ることができる。本形態の熱処理小麦粉は、pH調整素材を含有することが好ましい。なお、本明細書において副素材を含有する熱処理小麦粉に関する1g当たりとは、副素材を含む小麦粉として1g当たりという意味である。
 上記(ii)を満たす場合を本発明の第2形態という。第2形態の熱処理小麦粉は、1g当たりの溶出糖量(mg)が、79mg以上193mg以下であり、当該溶出当量(mg)を(A)とし、
 小麦粉を熱処理した後、副素材を添加してなる熱処理小麦粉の1g当たりの溶出糖量(mg)を(B)とした場合の、(A)/(B)×100(%)が、63%以上83%以下である。本形態では、熱処理小麦粉の1g当たりの溶出糖量(mg)(A)が79mg以上193mg以下と大きいが、一方で溶出糖量(mg)(A)は、副素材を添加せずに熱処理し、熱処理後に副素材を混合した場合の溶出糖量(mg)(B)に比して明らかに小さなものとなる。このような形態は、小麦粉中の澱粉と副素材が熱処理により複合化し、澱粉糖鎖内部で立体障害を形成、もしくは糖鎖内部で保水性を発揮するため、ベーカリー食品を調製した場合の食感改善効果に優れると考えられる。実際に本発明者は本形態の構成について特に良好な食感改善効果を見出した。例えば(B)の溶出糖量としては、98~259mgが例示される。
 (A)/(B)×100(%)の値は、63%以上82.1%以下が好ましい。
 ここで、小麦粉を熱処理した後、副素材を添加後の熱処理小麦粉の1g当たりの溶出糖量(mg)(B)を測定するにあたり、副素材を後添加する対象となる熱処理小麦粉の製造方法としては、(A)/(B)を測定対象とする熱処理小麦粉と、副素材を熱処理時に添加していない点以外は同様の製造方法とすることが好ましい。或いは便宜上の基準として、本発明の熱処理小麦粉の製法、例えば本明細書の比較例5の熱処理小麦粉の製造方法を採用することが可能である。原料小麦粉の小麦の銘柄・品種は、(A)/(B)の測定対象とする熱処理小麦粉と同じものとする。
 (B)の溶出糖量を測定するにあたり、熱処理小麦粉と副素材との混合は、例えばボウル等の容器に小麦粉100gを入れて、それに対して副素材を加えて、ホバートミキサーや製パン用ミキサーを用いて60rpm程度で10分間撹拌する等の操作が挙げられる。
 上記第2形態の熱処理小麦粉は上記の熱処理小麦粉の製造方法において(2)糖又は糖アルコールを用い、熱処理条件及び副素材添加条件等を調整して得ることができる。本形態の熱処理小麦粉は、糖又は糖アルコールを含有することが好ましい。
 上記(iii)を満たす場合を本発明の第3形態ともいう。本形態は熱処理小麦粉1g当たりの溶出糖量(mg)が、77mg以上145mg以下であり、当該溶出糖量(mg)を(A)とし、
 熱処理小麦粉1g当たりのグルコースとしての還元末端量(mg)を(C)とした場合の、(A)/(C)が、5以上18以下である。上述した通り、溶出糖量(mg)が高いことは熱処理による澱粉の糊化・及び膨潤が進んでいること、熱処理時に酵素による澱粉糖鎖の分解が進んでいることを示唆し、澱粉の糊化・及び膨潤と酵素による分解を通じてベーカリー食品を調製した場合の食感効果に寄与する。また、還元末端量(mg)と溶出糖量(mg)の比率(A)/(C)は、溶出糖の平均糖鎖長であり、穀粉試料から脱イオン水に溶け出す糖鎖を構成する糖量を、糖鎖の末端数で除して得られる平均的な糖鎖の長さを意味する。本形態では、この平均糖鎖長が所定範囲であることで、当該鎖長の糖鎖が小麦粉中の澱粉と相互作用し、澱粉の再結晶化と離水を抑制することで老化耐性や冷凍耐性の効果を有し、それにより、ベーカリー食品を調製した場合の食感効果に寄与しうる。本形態では、これらのバランスに優れることで食感改善効果に優れるものと考えられる。
 本形態における食感改善効果に優れる点から、溶出糖量(mg)(A)は77mg以上145mgが好ましく、103mg以上145mg以下がより好ましい。
 また(A)/(C)は5以上18以下が好ましく、5以上8以下がより好ましい。
 更に還元末端量(mg)(C)は5mg以上26mg以下が好ましく、10mg以上26mg以下がより好ましい。
 上記第3形態の熱処理小麦粉は上記の熱処理小麦粉の製造方法において(3)酵素として澱粉分解酵素を用い、熱処理条件及び副素材添加条件等を調整して得ることができる。本形態の熱処理小麦粉は、澱粉分解酵素を含有することが好ましい。
 上記(iv)を満たす場合を本発明の第4形態ともいう。本形態は(iv)熱処理小麦粉1g当たりの溶出糖量(mg)が、58mg以上69mg以下であり、ヨウ素比色による複合体形成度が、27%以上81%以下である。このような構成は、本形態の熱処理小麦粉が一定程度の溶出糖量により、しっとりもっちりした食感に寄与しながら、脂質と澱粉との複合体を形成し、これにより、澱粉糖鎖の再結晶化と離水を抑制する効果を有し、当該効果によっても、しっとりもっちりした食感を高めることができることを示す。ここでいう脂質の由来は、小麦粉であることが好適である。より優れた食感改善効果を得る観点から、本形態において、熱処理小麦粉1g当たりの溶出糖量(mg)は58mg以上69mg以下が好ましい。またヨウ素比色による複合体形成度は58%以上81%以下であることがより好ましい。
 上記第4形態の熱処理小麦粉は上記の熱処理小麦粉の製造方法において(3)酵素として脂質分解酵素を用い、熱処理条件及び副素材添加条件等を調整して得ることができる。本形態の熱処理小麦粉は、脂質分解酵素を含有することが好ましい。
 以下、溶出糖量(mg)、グルテンバイタリティ、還元末端量(mg)、ヨウ素比色による複合体形成度の測定方法を説明する。
<溶出糖量(mg/穀粉試料1g)>
 溶出糖量とは、穀粉試料から脱イオン水に溶け出す糖鎖を構成する糖量を指す。
 測定方法はフェノール硫酸法によるものであり、以下の通りである。
 穀粉試料1gを常温の脱イオン水20mlと合せて30分125rpmで振盪し、4700rpm10分遠心分離後に上清を回収する。脱イオン水で適宜希釈した上清0.5mlと5質量%フェノール水溶液0.5mlを混合、硫酸3mlを滴下後に室温にて30分間静置する。その後、溶液の吸光度を分光光度計(490nm)にて測定する。グルコース水溶液で引いた検量線を基に、溶出した糖量を算出する。なお、上記の希釈は吸光度が0.1~2.0の範囲となるように行うことが好ましい。
<還元末端量(mg/穀粉試料1g)>
 末端量(mg)とは、穀粉試料から脱イオン水に溶け出す糖鎖の末端に存在する還元糖の量を指す。
 測定方法はソモギーネルソン法によるものであり、以下の通りである。
 穀粉試料1gを常温の脱イオン水20mlと30分125rpmで振盪し、4700rpm10分遠心分離後に上清を回収する。脱イオン水で適宜希釈した上清0.5mlとソモギー銅液0.5mlを混合後、密閉し、100℃のオイルバスにて正確に10分加熱後、氷冷し、ネルソン試薬1.0mlを加え撹拌して30分間静置する。溶液に脱イオン水を加えて希釈後、吸光度を分光光度計(520nm)にて測定する。測定値をグルコース水溶液で引いた検量線を基に、還元糖量を算出する。なお、上記の希釈は吸光度が0.1~2.0の範囲となるように行うことが好ましい。
<複合体形成度(%)>
 複合体形成度は、αを、脂質と複合体を形成していない穀粉の吸光度、βを脂質と複合体を形成した穀粉の吸光度としたときに以下の式で求められる。
     複合体形成度(%)=(α-β)/α×100
 複合体形成度(%)の測定方法はヨウ素呈色比色法と呼ばれ、以下の通りである。
 穀粉試料1gを常温の脱イオン水20mlと30分125rpmで振盪し、4700rpm10分遠心分離後に上清を回収する。適宜希釈した上清1.0mlにヨウ素液40μlを加え、撹拌後、吸光度(690nm)を測定する。測定値を定義の式に導入し、複合体形成度を算出する。なお、上記の希釈は吸光度が0.1~2.0の範囲となるように行うことが好ましい。
 ここで、「脂質と複合体を形成した穀粉」とは熱処理小麦粉を指し、「脂質と複合体を形成していない穀粉」とは未処理粉を指す。未処理粉は、品種・銘柄が熱処理粉と同じ未熱処理小麦粉である。
<グルテンバイタリティの測定>
 (1)小麦粉の可溶性粗タンパク含量の測定:
 (a)100mL容のビーカーに試料(熱処理小麦粉/未処理小麦粉)を2g精秤して入れる。
 (b)前記のビーカーに0.05規定酢酸40mLを加えて、室温で60分間撹拌して懸濁液を調製する。
 (c)前記(b)で得た懸濁液を遠沈管に移して、5000rpmで5分間遠心分離を行った後、濾紙を用いて濾過し、濾液を回収する。
 (d)前記で用いたビーカーを0.05規定酢酸40mLで洗って洗液を遠沈管に移して、5000rpmで5分間遠心分離を行った後、濾紙を用いて濾過し、濾液を回収する。
 (e)前記(c)及び(d)で回収した濾液を一緒にして100mLにメスアップする。
 (f)ティケーター社(スウェーデン)のケルテックオートシステムのケルダールチューブに前記(e)で得られた液体の25mLをホールピペットで入れて、分解促進剤(日本ゼネラル株式会社製「ケルタブC」;硫酸カリウム:硫酸銅=9:1(質量比))1錠及び濃硫酸15mLを加える。
 (g)前記したケルテックオートシステムに組み込まれているケルテック分解炉(DIGESTION SYSTEM 20 1015型)を用いて、ダイヤル4で1時間分解処理を行い、さらにダイヤル9又は10で1時間分解処理を自動的に行った後、この分解処理に続いて連続的に且つ自動的に、同じケルテックオートシステムに組み込まれているケルテック蒸留滴定システム(KJELTEC AUTO 1030型)を用いて、その分解処理を行った液体を蒸留及び滴定して(滴定には0.1規定硫酸を使用)、下記の数式により、試料(熱処理小麦粉/未処理小麦粉)の可溶性粗タンパク含量を求める。
 (数1)
 可溶性粗タンパク含量(%)=0.14×(T-B)×F×N×(100/S)×(1/25)
式中、
 T=滴定に要した0.1規定硫酸の量(mL)
 B=ブランクの滴定に要した0.1規定硫酸の量(mL)
 F=滴定に用いた0.1規定硫酸の力価(用時に測定するか又は力価の表示のある市販品を用いる)
 N=窒素タンパク質換算係数(5.70)
 S=試料の秤取量(g)
 (2)小麦粉の全粗タンパク含量の測定:
 (a)前記(1)で用いたのと同じティケーター社のケルテックオートシステムのケルダールチューブに、試料(熱処理小麦粉/未処理小麦粉)を0.5g精秤して入れ、これに前記(1)の(f)で用いたのと同じ分解促進剤1錠及び濃硫酸5mLを加える。
 (b)前記(1)で用いたのと同じケルテックオートシステムのケルテック分解炉を用いて、ダイヤル9又は10で1時間分解処理を行った後、この分解処理に続いて連続的に且つ自動的に、同じケルテックオートシステムに組み込まれている前記(1)で用いたのと同じケルテック蒸留滴定システムを用いて、前記で分解処理を行った液体を蒸留及び滴定して(滴定には0.1規定硫酸を使用)、下記の数式により、試料(熱処理小麦粉/未処理小麦粉)の全粗タンパク含量を求める。
 (数2)
 全粗タンパク含量(%)=(0.14×T×F×N)/S
 式中、
 T=滴定に要した0.1規定硫酸の量(mL)
 F=滴定に用いた0.1規定硫酸の力価(用時に測定)
 N=窒素タンパク質換算係数(5.70)
 S=試料の秤取量(g)
 (3)グルテンバイタリティの算出:
 前記(1)で求めた試料の可溶性粗タンパク含量及び前記(2)で求めた試料の全粗タンパク含量から、下記の数式により試料のグルテンバイタリティを求める。
 (数3)グルテンバイタリティ(%)=(可溶性粗タンパク含量/全粗タンパク含量)×100
 このようにして得られたグルテンバイタリティの未処理粉の値を100としたときの相対値を熱処理小麦粉のグルテンバイタリティとする。
 本発明の熱処理小麦粉の製造方法で得られた熱処理小麦粉も、本発明に含まれるものである。本発明者は、本発明の熱処理小麦粉の製造方法で得られた熱処理小麦粉を用いることで、パン等の調製に供した場合に、しっとりもっちりした食感が効果的に改善され、かつホットケーキ等の脆くなりやすいベーカリー食品について冷凍時の経時的な劣化が効果的に抑制できることを見出した。しかしながら、本発明の熱処理小麦粉の製造方法により得られた熱処理小麦粉の物性や特性は種々のものが存在し、全てを明らかにして出願することは、物性の特定方法から開発する必要があるため長期の研究が必要であり、製品寿命の短い食品の分野において実際的には不可能である。そこで、本出願においては、本発明の熱処理小麦粉の製造方法で得られた熱処理小麦粉であることも、熱処理小麦粉の構成として特許請求の範囲に規定することとした。以上の通り、出願時において本明細書に記載されていること以外に当該物をその構造又は特性により直接特定することが不可能であるか、又はおよそ実際的でないという事情が存在した。
 本発明の熱処理小麦粉は、二次加工して種々の食品用途に用いることができ、代表的な用途としてベーカリー食品が挙げられる。本発明でいうベーカリー食品は、穀粉を主原料とし、これに必要に応じてイーストや膨張剤、水、食塩、砂糖等の副材料を加えて得られた発酵又は非発酵生地を、焼成、蒸し、フライ等の加熱処理に供して得られる食品をいう。本発明が適用可能なベーカリー食品の例としては、パン類、菓子類が挙げられる。パン類としては、食パン、フランスパン、ロールパン、コッペパン、クロワッサン、ピザ等が挙げられる。菓子類としては、ドーナツ、どら焼き、スポンジケーキ、バターケーキ、ホットケーキ、パンケーキ、マフィン、クッキー等が挙げられる。なお、冷凍時に脆くなりやすいベーカリー食品の例としては、パン類の内、食パン、フランスパン、ロールパン、コッペパン、ピザ等や、菓子類の内、ホットケーキ、どら焼き、スポンジケーキ、バターケーキ、ホットケーキ、パンケーキ、マフィンなどが挙げられる。
 本発明の熱処理小麦粉は、ベーカリー食品用ミックスとしても使用でき、本発明の熱処理小麦粉の製造方法で得られた熱処理小麦粉又は本発明の熱処理小麦粉に加えて、非熱処理小麦粉を含有させてもよい。非熱処理小麦粉としては、熱処理されていない未処理の小麦粉を用いることができ、例えば、強力粉、準強力粉、中力粉、薄力粉、デュラム粉等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。ベーカリー食品用ミックスが非熱処理小麦粉を含む場合、熱処理小麦粉の配合量は、熱処理小麦粉と非熱処理小麦粉の合計100質量部中、1質量部以上40質量部以下が好適に挙げられる。
 以上、本発明をその好ましい実施形態に基づき説明したが、上記又は下記の実施例に記載の好ましい構成を上記又は下記に記載の別の任意の好ましい構成と組み合わせることが可能である。なお、ここでいう好ましい構成とは更に好ましい、特に好ましい等の段階を一切問わず何れの段階のものを何れの段階のものとも組み合わせ可能とする。
 以下、実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されない。
 以下の実施例のうち、副素材として酵素を用いた例においては、酵素を小麦粉と混合させた後に所定温度の所定量の水と混合させた。また、以下で熱処理した実施例、比較例においては、熱処理時に容器内に飽和水蒸気を導入して加圧下で混合物を加熱した。容器内に流通させた水蒸気温度は98~110℃であり、容器内が上記圧力範囲内であった。
(比較例1及び2)
 表1に示す銘柄の小麦の粉砕物をそのまま比較例の小麦粉とした。
(比較例3~5、実施例1~7)
(熱処理小麦粉の調製)
 ヒートジャケットと1軸エクストルーダーを備えた密閉容器を、あらかじめ103℃の雰囲気温度に達温させた。具体的には、蒸気を熱源としたヒートジャケットにより、密閉容器をその外部から加温し、容器内の雰囲気温度を103℃に達温させた。
 その後、表1に記載した品種・銘柄の小麦を製粉した小麦粉を用意した。
 80℃に加熱した水を小麦粉に対し表1に記載の量用意した。
 比較例3~5では小麦粉に副素材は添加せず、小麦粉と、前記の加熱した水を混合し、前記所定の雰囲気温度に設定された該密閉容器内にて5秒間加熱した後、密閉容器から排出した。
 また、実施例1~7では、小麦粉と前記の加熱した水を混合するにあたり、表1に記載のpH調整素材を、表1に記載の量混合し、小麦粉と前記の加熱した水とpH調整素材との混合物を得た。その後、前記混合物を103℃の雰囲気温度に設定された密閉容器にて5秒間加熱し、密閉容器から排出した。
 加熱完了時の混合物の温度(密閉容器出口における混合物の温度)は表1に示す温度であった。なお熱処理時に容器内に飽和水蒸気を導入して混合物を加熱したが、加熱完了時の混合物の温度を表1の温度とするために、容器内における水蒸気の流量を調整した。
 加熱処理後の混合物を、50℃で12-24時間恒温庫で乾燥した後、ピンミル(ホソカワミクロン社製コロプレックス160Z)で粉砕後、熱処理小麦粉を200μmの篩を通し、篩下を熱処理小麦粉として回収した。
 なお表1におけるかん水としては、オリエンタル酵母工業株式会社社製の商品名「粉末かん水赤」を用いた。梅肉粉末としては、株式会社ナチュラルキッチン株式会社社製の商品名「梅干しパウダー」(クエン酸含量3.4質量%)を用いた。アセロラ粉末としては、株式会社ニチレイ社製の商品名「アセロラパウダーVC20」(クエン酸含量1.1質量%)を用いた。レモン粉末としては、日研フード社製の商品名「レモンパウダーNV-31」(クエン酸含量6.5質量%)を用いた。
 参考例1として、比較例5の熱処理小麦粉にクエン酸を実施例4と同様に小麦粉100質量部に対して0.025質量部混合したものを調製した。
 〔評価及び測定〕
 比較例1、2の非熱処理小麦粉、比較例3~5及び実施例1~7の熱処理小麦粉について溶出糖量、GV(未処理のときのグルテンバイタリティを100とした場合のグルテンバイタリティ、各表では「(%)」で表示)、pHを上記方法にて測定した。参考例1の熱処理小麦粉について溶出糖量、GVを上記方法にて測定した。結果を表1に示す。
 (評価試験例1)
 比較例1、2の非熱処理小麦粉、比較例3~5及び実施例1~7の熱処理小麦粉、参考例1の別添熱処理小麦粉を評価対象として、下記方法によりベーカリー食品の一種であるパンケーキを製造した。
 ボウル内に、粉体原料として、非熱処理小麦粉(銘柄:日清製粉株式会社製フラワー)40g、評価対象の小麦粉10g、上白糖12.5g、ベーキングパウダー2.5gを混合後、当該ボウル内に、液体原料として、サラダ油5g、全卵液15g、牛乳40g、水30gを加え、ホイッパーを用い、ハンドミキシングにて1分120prmで撹拌後、180℃にて、表3分、裏2分の条件で焼成した。焼成物を27℃30分放冷後、包装し、30日間、-5℃にて保管し、食感の評価に用いた。
 冷凍したパンケーキを27℃、2時間解凍した。次いで、パンケーキの食感を10名の専門パネラーに下記評価基準に基づいて評価してもらった。パネラー10名の評価点の平均を表1に示す。
(パンケーキの食感の評価基準:しっとり) 
5点:非常にしっとりし、非常に良好な食感。 
4点:しっとりし、良好な食感。
3点:ややしっとりし、やや良好な食感。
2点:ややパサつき、やや好ましくない食感。 
1点:非常にパサつき、非常に好ましくない食感。
(パンケーキの食感の評価基準:もちもち) 
5点:非常にもっちりし、非常に良好な食感。 
4点:もっちりし、良好な食感。
3点:ややもっちりし、やや良好な食感。
2点:やや脆く、やや好ましくない食感。 
1点:非常に脆く、非常に好ましくない食感。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の通り、pH調整素材と所定温度で所定量の水と小麦粉とを混合して加熱した熱処理小麦粉は、pH調整素材を添加しない場合に比して、ベーカリー食品の冷凍耐性に優れることが判る。また、所定の溶出糖量及び所定のグルテンバイタリティを有する熱処理小麦粉も、当該構成を満たさない比較例1~5の熱処理小麦粉に比して、ベーカリー食品の冷凍耐性に優れることが判る。
(実施例8~15)
(熱処理小麦粉の調製)
 表1に記載のpH調整素材に換えて表2に記載の糖又は糖アルコールを表2に記載の量用いた以外は実施例1と同様にして熱処理小麦粉を得た。
 〔評価及び測定〕
 実施例8~15の熱処理小麦粉について溶出糖量(A)を測定した。また比較例5の熱処理小麦粉に対し、当該実施例で用いた種類の糖又は糖アルコールを当該実施例と同じ量にて、上述した後添加条件にて混合した後に、上記方法にて溶出糖量(B)を測定し、(A)/(B)×100(%)の値を求めた。結果を表2に示す。
 また実施例8~15の熱処理小麦粉について(評価試験例1)の評価を行った。結果を表2に示す。
 また、上記の(B)を求める際に、比較例5の熱処理小麦粉に実施例13と同じ糖アルコールを実施例13と同様の量後添加して得た熱処理小麦粉について、(評価試験例1)の評価を行った結果も参考例2として併せて表2に示す。
 表2には、比較例1~5の処理内容及び評価結果も併せて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に記載の通り、糖又は糖アルコールと所定温度及び所定量の水と小麦粉とを混合して加熱した熱処理小麦粉は、糖又は糖アルコールを添加しない場合に比して、ベーカリー食品の冷凍耐性に優れることが判る。また、所定の溶出糖量、所定の(A)/(B)比を有する熱処理小麦粉も、当該構成を満たさない比較例1~5の熱処理小麦粉に比して、ベーカリー食品の冷凍耐性に優れることが判る。また、参考例2と実施例13との対比の通り、副素材を熱処理時に小麦粉に添加した場合、熱処理後に添加する場合に比してベーカリー食品の冷凍耐性が向上することが判る。
(実施例16~22)
(熱処理小麦粉の調製)
 表1に記載のpH調整素材に換えて表3に記載の澱粉分解酵素(澱粉含有酵素含有素材を含む)を表3に記載の量用いた以外は実施例1と同様にして熱処理小麦粉を得た。なお、表3の酵素としては以下のものを用いた。
・アミログルコシダーゼ:ノボザイム社製の商品名「GoldCrust3300BG」、力価3300U/g
・β-アミラーゼ:天野エンザイム社製の商品名「β-アミラーゼF「アマノ」」、力価650U/g、至適温度 55℃
・G4アミラーゼ:ナガセケムテックス社製の商品名「デナベイク(登録商標)EXTRA」、力価6500U/g、至適温度 50℃
・モルトパウダー:オリエンタル酵母工業社製の商品名「モルトパウダー」
・α-アミラーゼ:天野エンザイム社製の商品名「ビオザイムA」、力価7000U/g、至適温度 50℃
 参考例3として、比較例5の熱処理小麦粉にα-アミラーゼを実施例20と同様に小麦粉100質量部に対して0.1質量部混合したものを調製した。
 〔評価及び測定〕
 実施例16~22の熱処理小麦粉について溶出糖量(A)を測定した。また熱処理小麦粉1g当たりのグルコースとしての還元末端量(mg)を(C)を求め、平均糖鎖長((A)/(C)×100(%))を算出した。結果を表3に示す。
 また実施例16~22の熱処理小麦粉、参考例3の別添熱処理小麦粉について(評価試験例1)と同様の評価を行った。結果を表3に示す。
 表3には、比較例1~5の処理内容及び評価結果も併せて示す。
Figure JPOXMLDOC01-appb-T000003
 表3に記載の通り、澱粉分解酵素と所定温度で所定量の水と小麦粉とを混合して加熱した熱処理小麦粉は、澱粉分解酵素を添加しない場合に比して、ベーカリー食品の冷凍耐性に優れることが判る。また、所定の溶出糖量及び所定の(A)/(C)比を有する熱処理小麦粉も、当該構成を満たさない比較例1~5の熱処理小麦粉に比して、ベーカリー食品の冷凍耐性に優れることが判る。
(実施例23~27)
(熱処理小麦粉の調製)
 表1に記載のpH調整素材に換えて表4に記載の脂質分解酵素を表4に記載の量用いた以外は実施例1と同様にして熱処理小麦粉を得た。
 なお、ホスホリパーゼとしては、ナガセケムテックス社製PLA2ナガセ10P/Rを用いた。
 リパーゼ1としては、天野エンザイム社製リパーゼAY「アマノ」30SD(力価 2500U/g、至適温度40℃)を用いた。
 リパーゼ2としては、ナガセケムテックス社製リリパーゼA5(力価 100000~120000U/g、至適温度50℃)を用いた。
 また参考例4として、比較例5の熱処理小麦粉を実施例25と同様に小麦粉100質量部に対して同様の量混合したものを調製した。
 〔評価及び測定〕
 実施例23~27の熱処理小麦粉について溶出糖量(A)を測定した。またヨウ素比色による複合体形成度を上記方法にて算出した。結果を表4に示す。
 また実施例23~27の熱処理小麦粉について(評価試験例1)と同様の評価を行った。結果を表4に示す。
 表4には、比較例1~5の処理内容及び評価結果も併せて示す。
Figure JPOXMLDOC01-appb-T000004
(実施例28、29)
(熱処理小麦粉の調製)
 表1に記載のpH調整素材に換えて表5に記載のpH調整素材、糖又は糖アルコール、澱粉分解酵素、及び脂質分解酵素をそれぞれ表5に記載の量用いた以外は実施例1と同様にして熱処理小麦粉を得た。
 〔評価〕
 実施例28、29の熱処理小麦粉について(評価試験例1)と同様の評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に記載の通り、pH調整素材、糖又は糖アルコール、及び酵素を用いる事で、ベーカリー食品の冷凍耐性が顕著に優れたものとなることが判る。
 (パン評価)
 比較例1,2の小麦粉並びに比較例4、実施例4、13、20、25、28で得られた熱処理小麦粉を評価対象として用いて、下記方法によりベーカリー食品の一種である食パンを製造した。
 市販の製パン用ミキサー(株式会社ダルトン製、万能混合機 型式5DM-03-r)におけるミキシングボウルに、小麦ミリオンを製粉した小麦粉320gと、評価対象の小麦粉80gと、食塩8gと、砂糖32gと、生イースト(オリエンタル酵母工業製「オリエンタルイースト」)9.2gと、イーストフード(オリエンタル酵母工業製「Cイーストフード」)0.4gと、適正量の水とを投入し、ミキシング工程を実施してパン生地を調製した。
 具体的には低速で4分間ミキシングを行った後、高速で2分間ミキシングを行い、さらに、16gの油脂を添加して低速で4分間ミキシングを行った後、高速で1分間混捏した(捏上温度27℃)。こうして得られたパン生地を、温度27℃、相対湿度75%の条件下で1時間発酵させた後、450gに分割して丸め、ベンチタイムを30分間とった後、パン生地を棒状にして食パン型に詰めた。そして、ホイロ(温度38℃、相対湿度85%の雰囲気下)を60分間行った後、温度200℃で30分間焼成して食パンを得た。
 得られた食パンを4℃で1日間静置した後、得られた食パンの食感を10名の専門パネラーに下記評価基準に基づいて評価してもらった。パネラー10名の評価点の平均を表6に示す。
(食パンの食感の評価基準:しっとり) 
5点:全体が充分にしっとりした食感を有し、食味・食感は良好。 
4点:部分的にしっとり感やソフト感に欠ける場合があるものの、全体としてはしっとりした食感を有し、食味・食感は問題ない。
3点:しっとり感が少し感じられる。 
2点:全体にしっとり感が少なく、部分的にパサつく。
1点:全体にパサついた食感であり、食味・食感は不良。
(食パンの食感の評価基準:もちもち) 
5点:全体が充分にもっちりした食感を有し、食味・食感は良好。 
4点:部分的にもっちり感やソフト感に欠ける場合があるものの、全体としてはもっちりした食感を有し、食味・食感は問題ない。
3点:もっちり感が少し感じられる。
2点:全体にもっちり感が少ない。
1点:全体に軟らか過ぎる等、もっちり感に劣る食感であり、食味・食感は不良。
Figure JPOXMLDOC01-appb-T000006
 表6に示す通り、各実施例の熱処理小麦粉は、パンについても、良好な食感改善効果を示す。
 本発明は、しっとりもっちりした食感を有するベーカリー食品が得られ、且つホットケーキ等比較的脆いベーカリー食品を長期冷凍保存した場合にもしっとりもっちりした食感が維持されるベーカリー食品を製造し得うる熱処理小麦粉の製造方法及び熱処理小麦粉を提供する。
 

Claims (13)

  1.  小麦粉100質量部と、
     以下の(1)、(2)及び(3)から選ばれる少なくとも一種である副素材と、
     70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱する、熱処理小麦粉の製造方法。
    (1)pH調整素材
    (2)糖及び/又は糖アルコール
    (3)酵素 
  2.  前記副素材として、前記(1)pH調整素材を用いる、請求項1に記載の熱処理小麦粉の製造方法。
  3.  前記副素材として、前記(2)糖及び/又は糖アルコールを用いる、請求項1に記載の熱処理小麦粉の製造方法。
  4.  前記副素材として、前記(3)酵素を用いる、請求項1に記載の熱処理小麦粉の製造方法。
  5.  前記副素材として、前記(1)pH調整素材と、前記(2)糖及び/又は糖アルコールと、前記(3)酵素とを用いる、請求項1に記載の熱処理小麦粉の製造方法。
  6.  前記(3)酵素が、澱粉分解酵素及び脂質分解酵素から選択される少なくとも一種である、請求項1から5のいずれか1項に記載の熱処理小麦粉の製造方法。
  7.  前記混合物を100℃以上120℃未満の雰囲気温度で3秒間以上60秒間以下加熱する、請求項1から6のいずれか1項に記載の熱処理小麦粉の製造方法。
  8.  熱処理小麦粉1g当たりの溶出糖量(mg)が、66mg以上76mg以下であり、
     未処理のときのグルテンバイタリティを100とした場合にグルテンバイタリティが、22以上50以下である、熱処理小麦粉。
  9.  pHが、5以上6以下である、請求項6に記載の熱処理小麦粉。
  10.  熱処理小麦粉1g当たりの溶出糖量(mg)が、79mg以上193mg以下であり、当該溶出糖量(mg)を(A)とし、
     小麦粉を熱処理した後、副素材を添加後の熱処理小麦粉の1g当たりの溶出糖量(mg)を(B)とした場合の、
     (A)/(B)×100(%)が、63%以上83%以下である、熱処理小麦粉。
  11.  熱処理小麦粉1g当たりの溶出糖量(mg)が、77mg以上145mg以下であり、当該溶出糖量(mg)を(A)とし、
     熱処理小麦粉1g当たりのグルコースとしての還元末端量(mg)を(C)とした場合の、
     (A)/(C)が、5以上18以下である、熱処理小麦粉。
  12.  熱処理小麦粉1g当たりの溶出糖量(mg)が、58mg以上69mg以下であり、
     ヨウ素比色による複合体形成度が、27%以上81%以下である、熱処理小麦粉。
  13.  小麦粉100質量部と、
     以下の(1)、(2)及び(3)から選ばれる少なくとも一種である副素材と、
     70℃以上100℃以下の水30質量部超40質量部以下と、を合わせて混合物を得、該混合物を加熱してなる熱処理小麦粉。
    (1)pH調整素材
    (2)糖及び/又は糖アルコール
    (3)酵素 
PCT/JP2023/001963 2022-02-01 2023-01-23 熱処理小麦粉の製造方法及び熱処理小麦粉 WO2023149267A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-014484 2022-02-01
JP2022014484 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149267A1 true WO2023149267A1 (ja) 2023-08-10

Family

ID=87552165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001963 WO2023149267A1 (ja) 2022-02-01 2023-01-23 熱処理小麦粉の製造方法及び熱処理小麦粉

Country Status (1)

Country Link
WO (1) WO2023149267A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170137A (en) * 1981-04-10 1982-10-20 Ajinomoto Kk Coated seasoning composition for baking
JPH1056948A (ja) * 1996-08-22 1998-03-03 Nitto Seifun Kk 酵素処理小麦粉の製造法
JP2008000133A (ja) * 2006-05-22 2008-01-10 Omu Milk Products Co Ltd 食品の品質改良材
KR20100099368A (ko) * 2009-03-03 2010-09-13 주식회사한국야쿠르트 유기산을 이용한 저 지아이 소맥분의 제조방법 및 그 방법에 의해 제조된 저 지아이 소맥분
JP2014036611A (ja) * 2012-08-16 2014-02-27 Nisshin Flour Milling Inc 熱処理小麦粉の製造方法
JP2015192657A (ja) * 2014-03-26 2015-11-05 日清製粉株式会社 膨化粉体の製造方法
JP2017035074A (ja) * 2015-08-07 2017-02-16 日清フーズ株式会社 粉砕熱処理小麦粉の製造方法及びベーカリー食品用ミックスの製造方法
JP2017175954A (ja) * 2016-03-28 2017-10-05 日清フーズ株式会社 熱処理小麦粉の製造方法及びベーカリー食品用ミックスの製造方法
WO2021095827A1 (ja) * 2019-11-15 2021-05-20 日清製粉プレミックス株式会社 粉砕熱処理小麦粉の製造方法、粉砕熱処理小麦粉並びにベーカリー食品用ミックス及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170137A (en) * 1981-04-10 1982-10-20 Ajinomoto Kk Coated seasoning composition for baking
JPH1056948A (ja) * 1996-08-22 1998-03-03 Nitto Seifun Kk 酵素処理小麦粉の製造法
JP2008000133A (ja) * 2006-05-22 2008-01-10 Omu Milk Products Co Ltd 食品の品質改良材
KR20100099368A (ko) * 2009-03-03 2010-09-13 주식회사한국야쿠르트 유기산을 이용한 저 지아이 소맥분의 제조방법 및 그 방법에 의해 제조된 저 지아이 소맥분
JP2014036611A (ja) * 2012-08-16 2014-02-27 Nisshin Flour Milling Inc 熱処理小麦粉の製造方法
JP2015192657A (ja) * 2014-03-26 2015-11-05 日清製粉株式会社 膨化粉体の製造方法
JP2017035074A (ja) * 2015-08-07 2017-02-16 日清フーズ株式会社 粉砕熱処理小麦粉の製造方法及びベーカリー食品用ミックスの製造方法
JP2017175954A (ja) * 2016-03-28 2017-10-05 日清フーズ株式会社 熱処理小麦粉の製造方法及びベーカリー食品用ミックスの製造方法
WO2021095827A1 (ja) * 2019-11-15 2021-05-20 日清製粉プレミックス株式会社 粉砕熱処理小麦粉の製造方法、粉砕熱処理小麦粉並びにベーカリー食品用ミックス及びその製造方法

Similar Documents

Publication Publication Date Title
JP6555484B2 (ja) パンその他穀物粉膨化食品の凝集性改善剤
JP4682117B2 (ja) ベーカリー食品用小麦粉代替物及びベーカリー食品
JP7422174B2 (ja) ベーカリー用油脂組成物
JP6721392B2 (ja) 製パン練り込み用油脂組成物
WO2003063596A1 (fr) Procede pour produire du pain fermente compose de farine de riz comme ingredient principal
KR20160129001A (ko) 베이커리 제품 및 그 제조 방법
WO2018151185A1 (ja) 酵素を用いた湯種パンの製造方法
CA2954220C (en) Sugar-producing and texture-improving bakery methods and products formed therefrom
JP2000116312A (ja) 小麦粉焼成品、その製造方法および品質改良剤
JP3650067B2 (ja) パン類およびその製造方法
JP4482505B2 (ja) パン品質改良方法、冷凍パン生地の製造方法、並びに糖質とその使用
JPH01312959A (ja) 酵素で処理された低水分の食用可能製品
JP4706607B2 (ja) 冷凍パン生地の製造方法及び冷凍パン生地用品質改良剤
JP2007325515A (ja) パン用品質改良剤ならびにそれを配合してなるパンおよびその製造方法
WO2023149267A1 (ja) 熱処理小麦粉の製造方法及び熱処理小麦粉
JP2004113051A (ja) 冷凍パン生地改良剤
US20230404087A1 (en) A process for the production of a baked product without addition of sugar
JPH04207144A (ja) 品質改良剤
JP6203018B2 (ja) パン
JP7245715B2 (ja) パン類用品質向上剤、パン類の品質向上方法およびパン類の製造方法
JP2004208561A (ja) 米粉パンの製造法及び本法によって得られるパン類
US4851234A (en) Process for preparing an antistaling agent for baked goods
JP7212917B2 (ja) 焼菓子用品質改良剤及び焼菓子の製造方法
JP2019180268A (ja) パン類用品質改良剤及びパン類用組成物、並びに前記パン類品質改良剤又はパン類用組成物を用いたパン類用生地及びパン類
JP7017288B2 (ja) ベーカリー生地及びベーカリー食品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749583

Country of ref document: EP

Kind code of ref document: A1