WO2023149107A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023149107A1
WO2023149107A1 PCT/JP2022/046879 JP2022046879W WO2023149107A1 WO 2023149107 A1 WO2023149107 A1 WO 2023149107A1 JP 2022046879 W JP2022046879 W JP 2022046879W WO 2023149107 A1 WO2023149107 A1 WO 2023149107A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
semiconductor element
substrate
bonding
plate portion
Prior art date
Application number
PCT/JP2022/046879
Other languages
English (en)
French (fr)
Inventor
正和 渡部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023149107A1 publication Critical patent/WO2023149107A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • the technology disclosed in this specification relates to a semiconductor device.
  • a main electrode and a control electrode are formed on one main surface of a semiconductor element. Since the current flowing through the control electrode is smaller than the current flowing through the main electrode, the area of the control electrode is smaller than that of the main electrode.
  • Patent Literature 1 exemplifies such a semiconductor device.
  • a metal block is connected to the main electrode, and a wire (bonding wire) is joined to the control electrode. Bonding wires are often made of aluminum and have a diameter of about 500 ⁇ m.
  • Patent Document 2 discloses a wiring sheet attached to one main surface of a semiconductor element. Electrode terminals connected to the main electrodes and control terminals connected to the control electrodes are arranged on one surface of the wiring sheet. A copper material having one end connected to a control terminal is provided inside the wiring sheet. The other end of the copper material is connected to a control electrode terminal, which extends out from the wiring sheet. Since the control electrode of the semiconductor element is connected to the copper material through the control terminal on the wiring sheet instead of the wire, the distance between the main electrode and the control electrode can be shortened. A flexible printed circuit board is used for the wiring sheet.
  • the control electrode Since only a small current flows through the control electrode, the control electrode may be significantly smaller than the main electrode in terms of current capacity.
  • a wire bonding wire
  • the control electrodes require an area larger than the cross-sectional area of the wires. Widening the control electrode only for wire bonding wastefully widens the area of the main surface of the semiconductor element. If the area of the control electrode can be reduced, the area of the main surface of the semiconductor element (that is, the outer dimensions of the semiconductor element) can be reduced. Since SiC substrates and GaN substrates, which have been attracting attention in recent years, are costly, reducing the area of the main surface leads to a reduction in the cost of the semiconductor device.
  • the area of the control electrode can be reduced, and the area of the main surface of the semiconductor element can be reduced accordingly.
  • the technique of Patent Document 2 uses a flexible wiring sheet, it is difficult to align the control electrodes of the semiconductor elements with the terminals on the wiring sheet.
  • a control electrode of a semiconductor device requires an area that allows for a positional error with respect to a terminal on a wiring sheet. This specification provides a technique for reducing the area of a control electrode in a semiconductor device compared to the conventional technique.
  • the semiconductor device disclosed in this specification includes a semiconductor element having a main electrode and a control electrode arranged on one main surface, and a terminal substrate to which wires are joined.
  • a bonding terminal is arranged on the front surface of the terminal substrate, a relay terminal is arranged on the rear surface of the terminal substrate, and the bonding terminal and the relay terminal are electrically connected.
  • the terminal substrate is joined to the semiconductor element so that the control electrodes and the relay terminals are in contact with each other.
  • the area of the bonding terminal is larger than the area of the control electrode.
  • a step is provided on the rear surface of the terminal substrate, and the side surface of the element substrate is in contact with the step.
  • the size of the control electrode on the main surface can be reduced. Further, by bringing the side surface of the semiconductor element into contact with the step on the back surface of the terminal board, the position of the terminal board with respect to the semiconductor element can be accurately determined. Therefore, the positional error between the control electrode of the semiconductor element and the relay terminal of the terminal substrate can be reduced, and the size of the control electrode can be reduced accordingly.
  • the terminal substrate has a thin plate portion including relay terminals and a thick plate portion including bonding terminals.
  • the thickness of the thin plate portion is thinner than the thickness of the thick plate portion.
  • the boundary between the thin plate portion and the thick plate portion corresponds to the above step.
  • the thin plate portion is bonded to the semiconductor element.
  • the back surface of the terminal board in the thick plate portion is preferably flush with the other main surface of the semiconductor element. If there is a flat surface under the semiconductor element and the thick plate portion, both the semiconductor element and the thick plate portion are supported by the flat surface. Therefore, when a wire is joined to the bonding terminal, the semiconductor element and the thick plate portion do not shift in the thickness direction.
  • a projection may be provided on the back surface of the terminal substrate, and the projection may form the above-described step. Details and further improvements of the technique disclosed in this specification are described in the following "Examples”.
  • FIG. 1 is a perspective view of a semiconductor device according to a first embodiment;
  • FIG. 1 is an exploded perspective view of a semiconductor device (a resin package is not shown);
  • FIG. 1 is a perspective view of a semiconductor element and a terminal substrate;
  • FIG. 1 is a plan view of a semiconductor device (a resin package and an upper radiator plate are not shown);
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 4; It is a perspective view of the terminal board of a 1st modification. It is a perspective view of the terminal board of a 2nd modification. It is sectional drawing of the semiconductor device which mounted the terminal board of the 2nd modification.
  • FIG. 1 shows a perspective view of a semiconductor device 2.
  • FIG. 2 shows an exploded perspective view of the semiconductor device 2.
  • a semiconductor device 2 is a device in which a semiconductor element 20 is encapsulated in a resin package 10 .
  • the semiconductor element 20 is covered with the resin package 10 and cannot be seen.
  • FIG. 2 omits the illustration of the resin package 10 and shows the semiconductor device 2 with the first heat sink 14 removed.
  • the semiconductor element 20 is a switching element for power conversion, such as an IGBT or MOSFET, and is called a so-called power semiconductor element.
  • a first main electrode 21 and a plurality of control electrodes 23 are arranged on one main surface (first main surface 20a) of the semiconductor element 20 . In FIG. 2, the control electrode 23 is hidden by the terminal substrate 30 and cannot be seen.
  • a second main electrode 22 is arranged on the other main surface (second main surface 20b) of the semiconductor element 20 .
  • the first main electrode 21 and the second main electrode 22 are connected to the source and drain of the switching element, and a large current (for example, 10 amperes or more) flows.
  • the lower surface of the copper block 17 is joined to the first main electrode 21 on the first main surface 20a, and the first radiator plate 14 is joined to the upper surface of the copper block 17.
  • the first main terminal 11 extends from the edge of the first heat sink 14 .
  • a second main electrode 22 (see FIG. 5) is arranged on the second main surface 20b, and the second heat sink 15 is joined to the second main surface 20b including the second main electrode 22. As shown in FIG.
  • a second main terminal 12 extends from the edge of the second heat sink 15 .
  • the first heat sink 14 is exposed on one wide surface of the resin package 10, and the first main terminals 11 extend outward from the resin package 10.
  • the second heat sink 15 is not visible in FIG. 1, the second heat sink 15 is also exposed on the other wide surface of the resin package 10, and the second main terminals 12 extend outward from the resin package 10.
  • the first heat sink 14 serves both as a conductive path between the first main electrode 21 and the first main terminal 11 of the semiconductor element 20 and as a heat sink.
  • the second heat sink 15 also serves as a conduction path between the second main electrode 22 and the second main terminal 12 of the semiconductor element 20 and also as a heat sink.
  • FIG. A terminal substrate 30 is mounted on the semiconductor element 20 , and a plurality of bonding terminals 33 are exposed on the front surface 30 a of the terminal substrate 30 .
  • each of the plurality of control electrodes 23 of the semiconductor element 20 is electrically connected to each of the bonding terminals 33 .
  • One end of each bonding wire 16 is joined to each bonding terminal 33 , and the other end of each bonding wire 16 is joined to each control terminal 13 .
  • the terms “front surface” and “back surface” of the terminal board 30 are used for convenience to distinguish between a pair of surfaces facing in opposite directions.
  • the expression “front surface”/“back surface” may be rephrased as “one surface”/“the other surface” of a pair of surfaces facing in opposite directions.
  • the plurality of control terminals 13 extend outward from the resin package 10.
  • a plurality of control electrodes 23 arranged on the first main surface 20 a of the semiconductor element 20 are connected to gates, sense emitters, temperature sensors, etc. inside the semiconductor element 20 .
  • the bonding wire 16 has conductivity.
  • the plurality of control electrodes 23 of the semiconductor element 20 are electrically connected to the plurality of control terminals 13 via the terminal substrate 30 and the plurality of bonding wires 16 .
  • an external device communicates with the first main electrode 21 and the control electrode 23 of the semiconductor element 20 through the main terminals 11, 12 and the control terminal 13. conduct.
  • FIG. 3 shows a perspective view in which the terminal substrate 30 is separated from the semiconductor element 20.
  • the first main electrode 21 and the plurality of control electrodes 23 are arranged on the first main surface 20 a of the semiconductor element 20 .
  • the control electrode 23 is connected to the gate, sense emitter, and temperature sensor and carries a smaller current than the main electrode. Therefore, the area of the control electrode 23 is significantly smaller than the area of the first main electrode 21 .
  • the surface facing the +Z direction of the terminal substrate 30 will be referred to as the front surface 30a, and the surface facing the -Z direction will be referred to as the back surface 30b.
  • the upper right of FIG. 3 shows a view in which the terminal board 30 drawn on the left is turned upside down.
  • FIG. 4 shows a plan view of the semiconductor device 2
  • FIG. 5 shows a cross-sectional view taken along line VV in FIG.
  • the resin package 10, the first heat sink 14, and the copper block 17 are omitted.
  • illustration of the internal structure of the semiconductor element 20 is omitted.
  • the structure of the terminal board 30 will be described in detail with reference to FIGS. 3 to 5.
  • a plurality of bonding terminals 33 are arranged on the front surface 30a of the terminal substrate 30, and a plurality of relay terminals 34 are arranged on the back surface 30b. Each of the plurality of bonding terminals 33 is electrically connected to each of the plurality of relay terminals 34 inside the terminal substrate 30 .
  • the terminal board 30 is divided into a thin plate portion 31 with a small thickness and a thick plate portion 32 with a large thickness.
  • the thickness of the thin plate portion 31 is thinner than the thickness of the thick plate portion 32 .
  • a plurality of relay terminals 34 are arranged on the back surface 30 b of the thin plate portion 31 .
  • a boundary between the thin plate portion 31 and the thick plate portion 32 forms a step 35 on the rear surface 30 b of the terminal substrate 30 .
  • the terminal substrate 30 is joined to the semiconductor element 20 so that each of the plurality of relay terminals 34 is in contact with each of the plurality of control electrodes 23 and is electrically connected.
  • the terminal substrate 30 is fixed to the semiconductor element 20 so that the side surface 20c of the semiconductor element 20 contacts the step 35 (more precisely, the side surface of the step) (see FIG. 5).
  • the corner of the first main surface 20 a and the side surface 20 c of the semiconductor element 20 is in contact with the corner of the step 35 .
  • Each of the plurality of relay terminals 34 is arranged so as to face each of the plurality of control electrodes 23 when the side surface 20 c of the semiconductor element 20 contacts the step 35 .
  • each of the plurality of relay terminals 34 is in contact with each of the plurality of control electrodes 23 to establish electrical continuity.
  • the step 35 serves to accurately position the terminal board 30 with respect to the semiconductor element 20 to a target position.
  • the bonding wire 16 is often made of aluminum and has a diameter of about 500 ⁇ m. As shown in FIG. 5, the tip of the bonding wire 16 (the tip joined to the bonding terminal 33) is melted by heat and is larger than the diameter. As best shown in FIGS. 3-5, the bonding terminals 33 have a sufficient area to secure the bonding wires 16. As shown in FIG. In other words, the area of the bonding terminal 33 is larger than the cross-sectional area of the bonding wire 16 . On the other hand, since the terminal substrate 30 is accurately positioned with respect to the semiconductor element 20 by the steps 35, the control electrodes 23 and the relay terminals 34 are reliably brought into contact with each other even if their areas are small. The area of the bonding terminal 33 is significantly larger than the areas of the control electrode 23 and the relay terminal 34 . In other words, the area of the control electrode 23 and the relay terminal 34 is smaller than the area of the bonding terminal 33 .
  • the terminal substrate 30 secures the bonding terminals 33 having a sufficient area for bonding the bonding wires 16, and the control electrodes provided on the first main surface 20a of the semiconductor element 20 are provided. 23 can be made smaller. As a result, the main surface of the semiconductor element 20 can be made smaller. That is, the semiconductor element 20 can be miniaturized.
  • the bonding terminals 33 provided on the front surface 30a of the terminal substrate 30 and the relay terminals 34 provided on the back surface 30b are connected to the conductive pattern 38 inside the terminal substrate 30. conducted by
  • the bonding terminals 33 are provided on the thick plate portion 32 of the terminal substrate 30
  • the relay terminals 34 are provided on the thin plate portion 31
  • the thin plate portion 31 is joined to the first main surface 20 a of the semiconductor element 20 .
  • the rear surface 30b of the thick plate portion 32 is flush with the second main surface 20b of the semiconductor element 20, and both the rear surface 30b and the second main surface 20b are flat second radiator plates. 15 abuts.
  • the terminal board 30 is in contact with the second heat sink 15 at its rear surface 30 b while being joined to the semiconductor element 20 . Therefore, when bonding the bonding wires 16 to the bonding terminals 33 , the terminal substrate 30 does not shift with respect to the semiconductor element 20 .
  • FIG. 6 shows a perspective view of the terminal board 130 of the first modification.
  • the terminal substrate 130 has a step 135 on the rear surface 130b, and the step 135 has side surfaces 135a and 135b in two directions. Side 135a and side 135b are orthogonal. Side surfaces 135a and 135b of the step 135 face the -X direction and -Y direction of the coordinate system in the figure, respectively.
  • Side surfaces 135a and 135b of the stepped portion 135 are brought into contact with the side surfaces 20c and 20d of the semiconductor element 20, respectively. Side 20d intersects side 20c.
  • the second radiator plate 15 may be provided with a ridge guide.
  • the Y-direction surfaces of the terminal substrate 30 and the semiconductor element 20 of the first embodiment are pressed against the ridge guide. Then, the terminal board 30 can be accurately positioned with respect to the semiconductor element 20 also in the Y direction.
  • FIG. 7 shows a perspective view of the terminal board 230 and the semiconductor element 20.
  • FIG. 8 shows a cross-sectional view of the semiconductor device 202 with the terminal board 230 attached.
  • the upper right of FIG. 7 shows a perspective view in which the terminal board 230 on the left is turned upside down. 7 corresponds to FIG. 3 and FIG. 8 corresponds to FIG.
  • the terminal board 230 has a plurality of protrusions 231 instead of the thick plate portion 32 of the terminal board 30 of the first embodiment.
  • the top right of FIG. 7 shows a view of the terminal substrate 230 with the rear surface 230b facing upward.
  • a plurality of bonding terminals 33 are arranged on the front surface 230a of the terminal substrate 230, and a plurality of relay terminals 34 are arranged on the rear surface 230b.
  • Each of the bonding terminals 33 is electrically connected to each of the relay terminals 34 inside the terminal substrate 230 .
  • a plurality of projections 231 are provided on the rear surface 230b of the terminal substrate 230.
  • the side surface of the protrusion 231 corresponds to the step 35 of the terminal board 30 of the first embodiment. More precisely, the height difference between the rear surface 230b of the terminal substrate 230 and the tip surface of the projection 231 corresponds to the step.
  • the side surface of the protrusion 231 contacts the side surface 20 c of the semiconductor element 20 .
  • the position of the terminal substrate 230 with respect to the semiconductor element 20 in the X direction can be determined accurately.
  • the terminal substrate 30 ( 130 , 230 ) is made of the same material as the resin package 10 covering the semiconductor element 20 .
  • a typical material is polyimide or polyamide.
  • a plurality of terminal boards may be attached to one semiconductor element.
  • the plurality of control electrodes may be dispersedly arranged at a plurality of locations on the first main surface of the semiconductor element 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

本明細書は、主面上に主電極と制御電極を有する半導体素子を備える半導体装置に関し、制御電極を小さくする技術を提供する。 本明細書が開示する半導体装置は、一方の主面に主電極と制御電極が形成されている半導体素子と、ワイヤが接合される端子基板を備える。端子基板のおもて面にボンディング端子が形成されており、端子基板の裏面に中継端子が形成されており、ボンディング端子と中継端子が導通している。端子基板は、制御電極と中継端子が接触するように半導体素子に接合されている。ボンディング端子の面積が制御電極の面積よりも大きい。そして、端子基板の裏面に段差が設けられており、その段差に素子基板の側面が当接している。ワイヤが接合されるボンディング端子を半導体素子とは別の基板(端子基板)に設けることで、制御電極を小さくすることができる。

Description

半導体装置
 本明細書が開示する技術は、半導体装置に関する。
 従来の半導体装置(特に、電力変換用のパワー半導体装置)では、半導体素子の一方の主面に主電極と制御電極が形成されている。制御電極には主電極に流れる電流よりも小さい電流が流れるため、制御電極の面積は主電極の面積よりも小さい。特許文献1に、そのような半導体装置が例示されている。従来の半導体装置では、主電極には金属ブロックが接続され、制御電極にワイヤ(ボンディングワイヤ)が接合されていた。ボンディングワイヤはアルミニウムで作られることが多く、その直径は500μm程度である。
 特許文献2には、半導体素子の一方の主面に貼着される配線シートが開示されている。配線シートの一方の表面には、主電極と接続される電極端子と、制御電極と接続される制御端子が配置されている。配線シートの内部には、一端が制御端子に接続される銅材が備えられている。銅材の他端は制御電極端子に接続され、制御電極端子は配線シートから外へ延びている。半導体素子の制御電極がワイヤではなく配線シート上の制御端子を介して銅材と接続されるため、主電極と制御電極の間の距離を短くすることができる。配線シートにはフレキシブルプリント基板が用いられる。
特開2020-161807号公報 特開2013-073945号公報
 制御電極には小電流しか流れないため、電流容量の観点では制御電極は主電極に比べて顕著に小さくてよい。しかし、従来の半導体装置では、制御電極にワイヤ(ボンディングワイヤ)が接合されていた。ワイヤを接合するために、制御電極には、ワイヤの断面積よりも広い面積が必要となる。ワイヤを接合するためだけに制御電極を広くすることは、半導体素子の主面の面積を無駄に広げることになる。制御電極の面積を小さくすることができれば、半導体素子の主面の面積(すなわち半導体素子の外形寸法)を小さくすることができる。近年注目されているSiC基板やGaN基板はコストが嵩むため、主面の面積を小さくすることは、半導体装置のコストを低減することにつながる。
 特許文献2の技術によれば、制御電極の面積を小さくすることができ、その分、半導体素子の主面の面積を小さくすることができる。しかしながら、特許文献2の技術では、柔軟な配線シートを用いているため、半導体素子の制御電極と配線シート上の端子を位置合わせすることが難しい。半導体素子の制御電極には、配線シート上の端子との位置誤差を許容するだけの面積が必要とされる。本明細書は、半導体装置において従来よりも制御電極の面積を小さくする技術を提供する。
 本明細書が開示する半導体装置は、一方の主面に主電極と制御電極が配置されている半導体素子と、ワイヤが接合される端子基板を備える。端子基板のおもて面にボンディング端子が配置されており、端子基板の裏面に中継端子が配置されており、ボンディング端子と中継端子が導通している。端子基板は、制御電極と中継端子が接触するように半導体素子に接合されている。ボンディング端子の面積が制御電極の面積よりも大きい。そして、端子基板の裏面に段差が設けられており、その段差に素子基板の側面が当接している。
 ワイヤが接合されるボンディング端子を半導体素子とは別の基板(端子基板)に設けることで、主面上の制御電極を小さくすることができる。また、端子基板の裏面の段差に半導体素子の側面を当接させることで、半導体素子に対する端子基板の位置を正確に定めることができる。それゆえ、半導体素子の制御電極と端子基板の中継端子の位置誤差を小さくすることができ、その分、制御電極を小さくすることができる。
 段差の一例は次の通りである。端子基板は、中継端子を含んでいる薄板部と、ボンディング端子を含んでいる厚板部を有している。薄板部の厚みが厚板部の厚みよりも薄い。端子基板の裏面において、薄板部と厚板部の境界が上記した段差に相当する。薄板部が半導体素子と接合されている。さらに、厚板部における端子基板の裏面が半導体素子の他方の主面と面一であるとよい。半導体素子と厚板部の下に平面があれば、半導体素子と厚板部はともに平面に支えられる。それゆえ、ボンディング端子にワイヤを接合する際に、半導体素子と厚板部が厚み方向でずれることがない。
 端子基板の裏面に突起が設けられており、突起が上記した段差を形成してもよい。本明細書が開示する技術の詳細とさらなる改良は以下の「実施例」にて説明する。
第1実施例の半導体装置の斜視図である。 半導体装置の分解斜視図である(樹脂パッケージは不図示)。 半導体素子と端子基板の斜視図である。 半導体装置の平面図である(樹脂パッケージと上放熱板は不図示)。 図4のV-V線に沿った断面図である。 第1変形例の端子基板の斜視図である。 第2変形例の端子基板の斜視図である。 第2変形例の端子基板を装着した半導体装置の断面図である。
 (第1実施例)図面を参照しつつ第1実施例の半導体装置2を説明する。図1に、半導体装置2の斜視図を示す。図2に半導体装置2の分解斜視図を示す。半導体装置2は、樹脂パッケージ10に半導体素子20を封止したデバイスである。図1では、半導体素子20は樹脂パッケージ10に覆われているので見えない。図2は、樹脂パッケージ10の図示を省略し、第1放熱板14を外した状態の半導体装置2を示している。
 半導体素子20は、IGBTやMOSFETなど、電力変換用のスイッチング素子であり、いわゆるパワー半導体素子と呼ばれる。半導体素子20の一方の主面(第1主面20a)には第1主電極21と複数の制御電極23(図5参照)が配置されている。図2では制御電極23は端子基板30に隠れて見えない。半導体素子20の他方の主面(第2主面20b)には、第2主電極22が配置されている。第1主電極21と第2主電極22は、スイッチング素子のソースやドレインに接続され、大電流(例えば10アンペア以上)が流れる。
 第1主面20aの第1主電極21には銅ブロック17の下面が接合されており、銅ブロック17の上面には第1放熱板14が接合される。第1放熱板14の縁から第1主端子11が延びている。第2主面20bには第2主電極22(図5参照)が配置されており、第2主電極22を含む第2主面20bには第2放熱板15が接合される。第2放熱板15の縁から第2主端子12が延びている。
 図1に示されているように、第1放熱板14は樹脂パッケージ10の一方の幅広面に露出しており、また第1主端子11は樹脂パッケージ10から外へ延びている。図1では第2放熱板15は見えないが、第2放熱板15も樹脂パッケージ10の他方の幅広面に露出しており、第2主端子12は樹脂パッケージ10から外へ延びている。第1放熱板14は、半導体素子20の第1主電極21と第1主端子11の間の導通経路と放熱板を兼ねている。第2放熱板15も同様に、半導体素子20の第2主電極22と第2主端子12の間の導通経路と放熱板を兼ねている。
 図1、2では見えないが、半導体素子20の第1主面20aには、第1主電極21とともに、複数の制御電極23が露出している。半導体素子20の上に端子基板30が取り付けられており、端子基板30のおもて面30aに複数のボンディング端子33が露出している。詳しくは後述するが、半導体素子20の複数の制御電極23のそれぞれは、ボンディング端子33のそれぞれと導通する。それぞれのボンディング端子33にはそれぞれのボンディングワイヤ16の一端が接合されており、それぞれのボンディングワイヤ16の他端はそれぞれの制御端子13に接合されている。なお、端子基板30の「おもて面」、「裏面」との表現は、互いに反対方向を向く一対の面を区別するための便宜上のものである。「おもて面」/「裏面」との表現は、互いに反対方向を向く一対の面のうちの「一方の面」/「他方の面」と換言してもよい。
 図1に示されているように、複数の制御端子13は、樹脂パッケージ10から外へ延びている。半導体素子20の第1主面20aに配置されている複数の制御電極23は、半導体素子20の内部でゲート、センスエミッタ、温度センサなどにつながっている。ボンディングワイヤ16は導電性を有している。半導体素子20の複数の制御電極23は、端子基板30と複数のボンディングワイヤ16を介して複数の制御端子13と導通する。
 半導体素子20と端子基板30は樹脂パッケージ10に覆われているが、主端子11、12、制御端子13を介して、外部のデバイスが半導体素子20の第1主電極21や制御電極23などと導通する。
 図3に、半導体素子20から端子基板30を分離した斜視図を示す。先に述べたように、半導体素子20の第1主面20aに、第1主電極21とともに複数の制御電極23が配置されている。先に述べたように、制御電極23は、ゲート、センスエミッタ、温度センサに繋がっており、主電極に流れる電流よりも小さい電流しか流れない。それゆえ、制御電極23の面積は第1主電極21の面積よりも顕著に小さい。
 説明の便宜上、端子基板30の+Z方向を向いている面をおもて面30aと称し、ーZ方向を向いている面を裏面30bと称する。図3の右上には、左側に描かれた端子基板30を上下反転させた図を示してある。
 図4に半導体装置2の平面図を示し、図5に、図4のV-V線に沿った断面図を示す。ただし、図4では、樹脂パッケージ10と第1放熱板14と銅ブロック17は図示を省略した。図5では、半導体素子20の内部構造は図示を省略した。図3~図5を参照しつつ、端子基板30の構造について詳しく説明する。
 端子基板30のおもて面30aには、複数のボンディング端子33が配置されており、裏面30bには複数の中継端子34が配置されている。複数のボンディング端子33のそれぞれは、複数の中継端子34のそれぞれと、端子基板30の内部で導通している。
 端子基板30は、厚みの小さい薄板部31と、厚みの大きい厚板部32に分けられる。薄板部31の厚みは厚板部32の厚みよりも薄い。複数の中継端子34は、薄板部31の裏面30bに配置されている。端子基板30の裏面30bにて、薄板部31と厚板部32の境界が段差35を形成している。
 端子基板30は、複数の中継端子34のそれぞれが、複数の制御電極23のそれぞれと接触して導通するように、半導体素子20に接合される。このとき、半導体素子20の側面20cが段差35(より正確には、段差の側面)に当接するように、端子基板30は半導体素子20に固定される(図5参照)。別言すれば、半導体素子20の第1主面20aと側面20cの角が、段差35の角に接している。
 複数の中継端子34のそれぞれは、半導体素子20の側面20cが段差35に当接したときに複数の制御電極23のそれぞれと対向するように配置されている。側面20cが段差35に当接するように端子基板30が半導体素子20に取り付けられると、複数の中継端子34のそれぞれが、複数の制御電極23のそれぞれと接触し、導通する。段差35は、半導体素子20に対する端子基板30の位置を正確に目標位置に定める役割を果たす。
 ボンディングワイヤ16はアルミニウムで作られることが多く、その直径は500μm程度である。図5に示されているように、ボンディングワイヤ16の先端(ボンディング端子33に接合している先端)は、熱で溶かされるため、直径よりも大きくなっている。図3-図5によく示されているように、ボンディング端子33は、ボンディングワイヤ16を固定するのに十分な面積を有している。別言すれば、ボンディング端子33の面積は、ボンディングワイヤ16の断面積よりも大きい。一方、端子基板30は段差35によって半導体素子20に対して正確に位置が定まるので、制御電極23と中継端子34は、面積が小さくても確実に接触する。ボンディング端子33の面積は、制御電極23や中継端子34の面積よりも顕著に大きい。別言すれば、制御電極23と中継端子34の面積は、ボンディング端子33の面積よりも小さい。
 第1実施例の半導体装置2は、端子基板30によってボンディングワイヤ16を接合するのに十分な面積を有するボンディング端子33を確保しつつ、半導体素子20の第1主面20aに設けられた制御電極23を小さくすることができる。その結果、半導体素子20の主面を小さくすることができる。すなわち、半導体素子20を小型化することができる。
 なお、図5に示されているように、端子基板30のおもて面30aに設けられたボンディング端子33と裏面30bに設けられた中継端子34は、端子基板30の内部にて導電パターン38によって導通する。
 ボンディング端子33の大部分は端子基板30の厚板部32に設けられており、中継端子34は薄板部31に設けられており、薄板部31が半導体素子20の第1主面20aに接合される。図5に示されているように、厚板部32における裏面30bは、半導体素子20の第2主面20bと面一であり、裏面30bと第2主面20bはともに平坦な第2放熱板15に当接している。端子基板30は半導体素子20と接合した状態で裏面30bが第2放熱板15に接する。それゆえ、ボンディングワイヤ16をボンディング端子33に接合する際、端子基板30が半導体素子20に対してずれることがない。
 (第1変形例)図6に、第1変形例の端子基板130の斜視図を示す。端子基板130は、裏面130bに段差135を備えており、段差135は、2方向の側面135a、135bを有している。側面135aと側面135bは直交する。段差135の側面135a、135bは、それぞれ、図中の座標系の-X方向、-Y方向を向いている。端子基板130を半導体素子20に取り付ける際、段差135の側面135a、135bはそれぞれ半導体素子20の側面20c、20dに当接する。側面20dは側面20cと交差する。2方向の側面135a、135bを有する段差135を備えることで、端子基板130は、直交する2方向において半導体素子20に対して正確に位置決めされる。
 なお、段差135に2個目の側面135bを設ける代わりに、第2放熱板15に凸条ガイドを設けてもよい。第1実施例の端子基板30と半導体素子20のそれぞれのY方向を向く面を凸条ガイドに押し当てる。そうすると、半導体素子20に対して端子基板30をY方向でも正確に位置決めすることができる。
 (第2変形例)図7と図8を参照して第2変形例の端子基板230を説明する。図7に、端子基板230と半導体素子20の斜視図を示す。図8に、端子基板230を装着した半導体装置202の断面図を示す。図7の右上に、左側の端子基板230を上下反転させた斜視図を示す。図7は図3に対応し、図8は図5に対応する。
 端子基板230は、第1実施例の端子基板30の厚板部32のかわりに複数の突起231を備えている。図7の右上に、端子基板230の裏面230bを上に向けた図を示してある。端子基板230のおもて面230aには複数のボンディング端子33が配置されており、裏面230bには複数の中継端子34が配置されている。ボンディング端子33のそれぞれは、中継端子34のそれぞれと端子基板230の内部で導通している。
 端子基板230の裏面230bには複数の突起231が設けられている。突起231の側面が第1実施例の端子基板30の段差35に対応する。より正確には、端子基板230の裏面230bと突起231の先端面の高低差が段差に相当する。
 端子基板230を半導体素子20に取り付ける際、突起231の側面(段差の側面に相当)が半導体素子20の側面20cに当接する。突起231の側面を半導体素子20の側面20cに当接させることで、X方向における半導体素子20に対する端子基板230の位置を正確に定めることができる。
 実施例の半導体装置2(202)に関する他の特徴を述べる。端子基板30(130、230)は、半導体素子20を覆う樹脂パッケージ10と同じ材料で作られる。材料の典型は、ポリイミドあるいはポリアミドである。端子基板30(130、230)を樹脂パッケージ10と同じ材料で作ることで、樹脂パッケージ10を射出成型する際、樹脂パッケージ10と端子基板30(130、230)の境界近傍で発生する応力を小さくすることができる。
 実施例で説明した技術に関する留意点を述べる。1個の半導体素子に対して複数の端子基板が取り付けられていてもよい。また、複数の制御電極は半導体素子20の第1主面上の複数の箇所に分散して配置されてもよい。
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (5)

  1.  一方の主面に主電極と制御電極が配置されている半導体素子と、
     おもて面にワイヤが接合されるボンディング端子が配置されており、裏面に中継端子が配置されており、前記ボンディング端子と前記中継端子が導通している端子基板と、
    を備えており、
     前記ボンディング端子の面積が前記制御電極の面積よりも大きく、
     前記制御電極と前記中継端子が接触するように前記端子基板が前記半導体素子に接合されており、
     前記裏面に段差が設けられており、前記段差に前記半導体素子の側面が当接している、半導体装置。
  2.  前記端子基板は、前記中継端子を含んでいる薄板部と、前記ボンディング端子を含んでいる厚板部を有しており、
     前記薄板部の厚みが前記厚板部の厚みよりも薄く、
     前記薄板部と前記厚板部の境界が前記段差に相当し、
     前記薄板部が前記半導体素子と接合されている、
    請求項1に記載の半導体装置。
  3.  前記厚板部における前記裏面が半導体素子の他方の主面と面一である、請求項2に記載の半導体装置。
  4.  前記裏面に前記段差を形成する突起が設けられている、請求項1に記載の半導体装置。
  5.  前記半導体素子と前記端子基板を覆う樹脂パッケージを備えており、
     前記樹脂パッケージと前記端子基板が同じ材料で作られている、
    請求項1から4のいずれか1項に記載の半導体装置。
PCT/JP2022/046879 2022-02-04 2022-12-20 半導体装置 WO2023149107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016678 2022-02-04
JP2022016678A JP2023114355A (ja) 2022-02-04 2022-02-04 半導体装置

Publications (1)

Publication Number Publication Date
WO2023149107A1 true WO2023149107A1 (ja) 2023-08-10

Family

ID=87552192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046879 WO2023149107A1 (ja) 2022-02-04 2022-12-20 半導体装置

Country Status (2)

Country Link
JP (1) JP2023114355A (ja)
WO (1) WO2023149107A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170645A (ja) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd 電力変換装置及びその製造方法
JP2013073945A (ja) * 2011-09-26 2013-04-22 Sumitomo Electric Ind Ltd 配線シート付き電極端子、配線構造体、半導体装置、およびその半導体装置の製造方法
JP2018056538A (ja) * 2016-09-26 2018-04-05 株式会社パウデック 半導体パッケージ、モジュールおよび電気機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170645A (ja) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd 電力変換装置及びその製造方法
JP2013073945A (ja) * 2011-09-26 2013-04-22 Sumitomo Electric Ind Ltd 配線シート付き電極端子、配線構造体、半導体装置、およびその半導体装置の製造方法
JP2018056538A (ja) * 2016-09-26 2018-04-05 株式会社パウデック 半導体パッケージ、モジュールおよび電気機器

Also Published As

Publication number Publication date
JP2023114355A (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
US7898080B2 (en) Power semiconductor device comprising a semiconductor chip stack and method for producing the same
US7816784B2 (en) Power quad flat no-lead semiconductor die packages with isolated heat sink for high-voltage, high-power applications, systems using the same, and methods of making the same
US20230238312A1 (en) Semiconductor device
WO2017169820A1 (ja) 回路構成体
US11881444B2 (en) Semiconductor device
US10079120B2 (en) Power electronic switching device, arrangement herewith and methods for producing the switching device
JP2023181544A5 (ja)
JP2007027404A (ja) 半導体装置
JP2002124548A (ja) テープキャリア及びそれを用いた半導体装置
JP2003250278A (ja) 半導体装置
CN116097439A (zh) 半导体装置
WO2023149107A1 (ja) 半導体装置
US20220392834A1 (en) Semiconductor device
JP4449724B2 (ja) 半導体モジュール
JP3658946B2 (ja) 電力用トランジスタの実装構造
JP2019140236A (ja) 半導体装置
US11557564B2 (en) Semiconductor device
JP2021190556A (ja) 半導体装置の実装構造
JP2020107685A (ja) 半導体モジュール
US11776937B2 (en) Electronic module
JP2000156430A (ja) 半導体装置
US20200358211A1 (en) Semiconductor module
US20230282632A1 (en) Semiconductor module
US20240047433A1 (en) Semiconductor device
JP7264630B2 (ja) 電子モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925011

Country of ref document: EP

Kind code of ref document: A1