WO2023148845A1 - 水処理装置および水処理方法 - Google Patents

水処理装置および水処理方法 Download PDF

Info

Publication number
WO2023148845A1
WO2023148845A1 PCT/JP2022/004074 JP2022004074W WO2023148845A1 WO 2023148845 A1 WO2023148845 A1 WO 2023148845A1 JP 2022004074 W JP2022004074 W JP 2022004074W WO 2023148845 A1 WO2023148845 A1 WO 2023148845A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode
water treatment
dielectric
treated
Prior art date
Application number
PCT/JP2022/004074
Other languages
English (en)
French (fr)
Inventor
宏祐 浅井
学 生沼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022541870A priority Critical patent/JP7203289B1/ja
Priority to PCT/JP2022/004074 priority patent/WO2023148845A1/ja
Publication of WO2023148845A1 publication Critical patent/WO2023148845A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • This application relates to water treatment equipment and water treatment methods.
  • Water to be treated flows along the electrode facing the dielectric, and active species such as ozone and hydroxyl radicals are generated by electric discharge generated in the space between the water to be treated and the dielectric, thereby sterilizing the water to be treated.
  • a water treatment technology for example, see Patent Document 1 and Non-Patent Document 1 is known.
  • the present application discloses a technique for solving the above problems, and aims to obtain a water treatment apparatus and a water treatment method that efficiently treat water to be treated with stable operation.
  • the water treatment apparatus disclosed in the present application includes a first electrode extending in the axial direction, a second electrode arranged coaxially with the first electrode so as to surround the first electrode from the outside in the radial direction, and a cylindrical shape. coaxially disposed between the first electrode and the second electrode, forming an annular gap between the first electrode and one of the second electrodes, and a dielectric that generates a dielectric barrier discharge when a voltage is applied between it and the other electrode; is formed on one end side in the axial direction, and when the one end side is directed upward and the axial direction is vertical, the water film to be treated flows toward the other end side as a water film covering the one electrode and a water film forming part for flowing down.
  • the water treatment method disclosed in the present application comprises two electrodes and a dielectric disposed therebetween, and extends with a certain distance between one of the two electrodes and the dielectric.
  • the water to be treated flows along the electrodes in the form of a water film, thereby suppressing the instability of the dielectric barrier discharge due to the adhesion of water droplets to the dielectric. and the water to be treated can be efficiently treated with stable operation.
  • FIG. 2 is an axially enlarged cross-sectional view of the vicinity of the water film forming portion for explaining the configuration of the water treatment apparatus and the water treatment method according to the first embodiment
  • FIG. 10 is an axial sectional view enlarging the vicinity of the water film forming portion for explaining the configuration of the water treatment apparatus and the water treatment method according to the second embodiment
  • FIG. 7 is a cross-sectional view perpendicular to the axis for explaining the configuration of the water treatment apparatus and the water treatment method according to the second embodiment
  • FIG. 10 is a cross-sectional view perpendicular to the axis for explaining the configuration of the water treatment device and the water treatment method according to the modification of the second embodiment;
  • FIG. 10 is an axial cross-sectional view for explaining the configuration of the water treatment apparatus and the water treatment method according to Embodiment 3;
  • FIG. 10 is an axial cross-sectional view for explaining the configuration of a water treatment apparatus and a water treatment method according to a fourth embodiment;
  • FIG. 10 is an axial cross-sectional view for explaining the configuration of a water treatment apparatus and a water treatment method according to Embodiment 5;
  • Embodiment 1. 1 and 2 are for explaining a cylindrical water treatment apparatus and a water treatment method according to a first embodiment.
  • FIG. 1 is a cross-sectional view along an axis for explaining the configuration of the water treatment apparatus
  • FIG. 2 is a cross-sectional view of the vicinity of the water film forming portion, which is an enlarged view of the portion corresponding to the region R in FIG.
  • Dielectric barrier discharge refers to a method in which one or both of a pair of electrodes facing each other with a gap is covered with a dielectric material and an AC voltage is applied to the electrodes to cause discharge in the gas in the gap. The treated water is brought into contact with the activated species to be treated.
  • the water treatment apparatus 10 includes a cylindrical dielectric 1 having a high-voltage electrode 5 arranged on the outer peripheral side, and an inner peripheral surface 1fi of the dielectric 1 spaced apart from each other.
  • a columnar ground electrode 2 is coaxially arranged with a space therebetween.
  • the dielectric 1 and the ground electrode 2 are coaxially fixed by a header member 3 arranged at one end in the axial direction.
  • the high-voltage electrode 5 has a shorter axial length than the dielectric 1 and is arranged in an intermediate portion of the dielectric 1 excluding both end portions in the axial direction.
  • the high-voltage electrode 5 and the ground electrode 2 are electrically connected to a power source 80, respectively, and a high voltage applied from the power source 80 causes a voltage between the portion of the dielectric 1 where the high-voltage electrode 5 is arranged and the ground electrode 2 to It is configured to generate a dielectric barrier discharge (discharge Dc).
  • the dielectric 1 a chemically stable material with excellent electrical insulation is suitable.
  • glass, ceramics, and resin materials can be used.
  • the ground electrode 2 a material having electrical conductivity, chemical stability, and excellent corrosion resistance is suitable.
  • stainless steel, titanium (Ti), aluminum (Al), graphite, or the like can be used.
  • the high-voltage electrode 5 can be formed, for example, by winding a metal mesh or thin metal plate around the outer peripheral surface of the dielectric 1, and can also be formed by forming a thin metal film on the outer peripheral surface of the dielectric 1 by a method such as plating or vapor deposition. is.
  • the header member 3 includes a water intake portion 3i for taking in the water 90 to be treated, and an outer peripheral surface 2fo so that the water to be treated 90 taken from the water intake portion 3i flows along the outer peripheral surface 2fo of the ground electrode 2 as a water film 91.
  • a water film forming portion 7 is provided to form an opening along the .
  • the header member 3 can be formed, for example, by resin molding.
  • An annular annular channel 7c is formed. At this time, an internal flow path is formed from the water intake portion 3i to the annular flow path 7c, and one end of the ground electrode 2 is exposed for electrical connection.
  • the power supply 80 for example, an AC power supply or a pulse power supply can be used. Pulsed power supplies are effective in forming stable discharges, but are expensive. On the other hand, as will be described later, in the water treatment device 10 of the present application, since wetting of the inner peripheral surface 1fi of the dielectric 1 by water droplets is suppressed, a relatively inexpensive AC power supply can be used, and the cost of the entire device can be suppressed. can.
  • annular gap 6 formed between the cylindrical dielectric 1 and the ground electrode 2 serves as a place for generating the discharge Dc and also functions as a space for flowing the water 90 to be treated.
  • the water film forming portion 7 is interposed between the dielectric 1 and the ground electrode 2 and has an inner diameter Di7 which is larger than the outer diameter Dx2 of the ground electrode 2 and smaller than the inner diameter Di1 of the dielectric 1. It has an inner peripheral surface 7fi and an outer peripheral surface in close contact with the inner peripheral surface 1fi of the dielectric 1, forming an annular shape. As a result, an annular opening is formed between the inner peripheral surface 7fi of the water film forming portion 7 and the outer peripheral surface 2fo of the ground electrode 2 within a range not reaching the inner peripheral surface 1fi of the dielectric 1 at the tip surface 7e. An annular flow path 7c is formed. As a result, the water to be treated 90 flows out from the water film forming portion 7 into the gap portion 6 in the form of a water film 91 along the outer peripheral surface 2fo of the ground electrode 2 .
  • the axial direction is such that the water film 91 flowing out of the water film forming portion 7 flows along the outer peripheral surface 2fo from one end side where the header member 3 is provided in the axial direction to the other end side in the space portion 6 . is set vertically and the header member 3 is set upward.
  • a gas introducing portion 4 for introducing gas into the gap portion 6 is provided in a portion of the dielectric 1 located between the water film forming portion 7 and the high-voltage electrode 5 in the axial direction. .
  • the gas introduced from the gas introducing portion 4 flows in the space formed between the inner peripheral surface 1 fi of the dielectric 1 and the water film 91 in the gap portion 6 . Therefore, active species such as ozone, hydrogen peroxide, oxygen atoms, and hydroxyl radicals generated in the gas supplied by the discharge Dc act on (the water film 91 of) the water 90 to be treated, so that water treatment can be performed. .
  • the type of gas to be introduced from the gas introduction section 4 can be arbitrarily determined according to the application. For example, if a gas containing oxygen (oxygen, air, etc.) is supplied, ozone and oxygen atoms can be generated by the discharge Dc. Also, if a rare gas (helium, argon, etc.) is used, it is possible to efficiently generate hydroxyl radicals (OH) and hydrogen peroxide from water vapor evaporated from the water 90 to be treated. Further, if a nitrogen-containing gas (nitrogen, air, etc.) is used, it is possible to generate peroxynitrite, peroxynitric acid, etc., which have a high bactericidal action.
  • a gas containing oxygen oxygen, air, etc.
  • ozone and oxygen atoms can be generated by the discharge Dc.
  • a rare gas helium, argon, etc.
  • OH hydroxyl radicals
  • hydrogen peroxide from water vapor evaporated from the water 90 to be treated.
  • the “treatment” of the water 90 to be treated means any physical, chemical, or biological change of the water 90 to be treated caused by the active species generated by the discharge Dc. sterilization, virus inactivation, decomposition of organic matter, etc. It also applies to, for example, generating functional water by dissolving active species generated in the discharge Dc in the water 90 to be treated.
  • the water to be treated 90 supplied from the water intake part 3i is passed through the annular flow path 7c narrower than the gap 6 formed between the outer peripheral surface 2fo of the ground electrode 2 and the , forming a water film 91 flowing down along the surface of the ground electrode 2 .
  • a space is formed between the water film 91 and the inner peripheral surface 1fi of the dielectric 1 within the gap 6, and furthermore, adhesion of water droplets to the inner surface (inner peripheral surface 1fi) of the dielectric 1 is prevented.
  • the treated water 90 may adhere to the dielectric 1 due to slight ripples in the water film 91, and stable discharge may not be possible. This is because if the gap G6 is thicker than 5 mm, a very high voltage is required to form the discharge Dc, which causes problems such as an increase in the cost of the power supply 80 and an increase in the size of the device due to an increase in insulation distance.
  • the thickness of the water film 91 must be thinner than the interval G6 of the narrow gap 6 described above, and specifically, it is preferably 0.1 mm or more and 3 mm or less. In order to make the thickness of the water film 91 less than 0.1 mm, the flow rate of the water to be treated 90 must be significantly reduced, and water treatment with a large flow rate cannot be performed. Also, if the thickness of the water film 91 is thicker than 3 mm, the water surface becomes rippling, and there is a possibility that the water droplets adhere to the inner peripheral surface 1fi of the dielectric 1 .
  • the opening range G7 is preferably set to 0.1 mm or more and 3 mm or less (Equation 2). Furthermore, it is preferable that the inner peripheral surface 7fi of the water film forming portion 7 is positioned closer to the outer peripheral surface 2fo of the ground electrode 2 than the inner peripheral surface 1fi of the dielectric 1 is. 0.1 mm ⁇ G7 ⁇ 3 mm (2)
  • the thickness of the water film 91 is controlled by the difference between the inner diameter Di7 of the water film forming portion 7 and the outer diameter Dx2 of the ground electrode 2 (opening range G7).
  • the flow rate is increased, water droplets are more likely to scatter, so it is necessary to set the interval G6 of the gap 6 wider.
  • the operation of the water treatment device 10, that is, the water treatment method will be described.
  • Gas is supplied from the gas introduction part 4 at a predetermined flow rate, and the power source 80 is operated to apply a high voltage between the high voltage electrode 5 and the ground electrode 2 .
  • a discharge Dc is formed in the gap 6 in the range where the high-voltage electrode 5 is arranged in the axial direction.
  • the water to be treated 90 supplied to the water intake portion 3i passes through the internal flow path formed in the header member 3 and is discharged from the annular flow path 7c of the water film forming portion 7 toward the gap portion 6. .
  • the water to be treated 90 flows down along the axial direction on the outer peripheral surface 2fo of the ground electrode 2 while forming a water film 91 in the space 6 . Therefore, active species such as ozone, hydrogen peroxide, oxygen atoms, and hydroxyl radicals generated by the discharge Dc act on the water film 91 to be treated, whereby the water to be treated 90 is treated.
  • the water 90 to be treated covers the outer peripheral surface 2fo of the ground electrode 2 as the water film 91, the contact area between the active species and the water to be treated 90 can be widened, and short-lived active species such as oxygen atoms and hydroxyl radicals can be removed. However, it can be used effectively and the efficiency of water treatment is improved.
  • the water to be treated 90 is suppressed from scattering in the form of water droplets, a wide discharge area can be formed in the flowing direction of the water to be treated 90 . As a result, local temperature rise is suppressed, thermal decomposition of ozone, hydrogen peroxide, etc. useful for water treatment is suppressed, and efficient water treatment becomes possible.
  • the gas introduction part 4 does not necessarily have to be formed in the dielectric 1 as shown in FIG.
  • the gas discharge port to the void portion 6 may be arranged downstream of the opening of the water film forming portion 7 or along the inner peripheral surface 1fi of the dielectric 1 .
  • Embodiment 2 In the water treatment apparatus according to the second embodiment, an example will be described in which projections having rectifying action are formed on the portion of the outer peripheral surface of the ground electrode that faces the inner peripheral surface of the water film forming portion.
  • 3 and 4 are for explaining the configuration of the water treatment apparatus according to the second embodiment, and FIG. 3 is an enlarged view of the water film forming portion for explaining the configuration of the water treatment apparatus according to the first embodiment.
  • FIG. 4 is a cross-sectional view perpendicular to the axis of the water treatment apparatus along line AA of FIG. 5 is a cross-sectional view perpendicular to the axis corresponding to FIG. 4 of the water treatment apparatus according to the modification.
  • the second embodiment is the same as the first embodiment except that the ground electrode is provided with a projection.
  • the annular flow path 7c faces the inner peripheral surface 7fi of the water film forming portion 7 in the axial direction of the outer peripheral surface 2fo of the ground electrode 2.
  • the projecting portion 2p has a plurality of rib-like structures projecting radially from the outer peripheral surface 2fo of the ground electrode 2. As shown in FIG.
  • the water film 91 is formed by the water to be treated 90 flowing through the narrow annular channel 7c formed between the outer peripheral surface 2fo of the ground electrode 2 and the inner peripheral surface 7fi of the water film forming portion 7. formed.
  • the flow rate (flow velocity) of the water to be treated 90 is high, the surface of the water film 91 ripples due to pressure changes before and after the water film forming part 7 , and the water to be treated 90 adheres to the dielectric 1 . sometimes.
  • Embodiment 2 the flow of the water 90 to be treated is rectified by the existence of the protrusion 2p in the annular flow path 7c, so that the water film 91 is suppressed from waving. Therefore, even at a higher flow rate of the water 90 to be treated, the discharge Dc can be stably formed and the treatment can be performed.
  • the shape of the protrusion 2p is not limited to the plurality of radially protruding rib-like structures shown in FIG.
  • the projecting portion 2p does not necessarily need to be formed integrally with the ground electrode 2, and may be formed using a construction method such as fastening or joining a separate member to the ground electrode 2.
  • Embodiment 3 In Embodiments 1 and 2 above, the example in which only the path along the outer peripheral surface of the columnar ground electrode is provided as the flow path of the water to be treated in the gap has been described. In the third embodiment, an example will be described in which a ground electrode made of a porous material in a cylindrical shape is used, and a flow path for the water to be treated is also formed inside the ground electrode.
  • FIG. 6 is a cross-sectional view along the axis for explaining the configuration of the water treatment device according to Embodiment 3.
  • FIG. The third embodiment is the same as the first embodiment except that the ground electrode is made of a porous material and has a cylindrical shape. The opening range and the like of the water film forming portion in FIG.
  • the water treatment apparatus 10 is configured in a cylindrical shape in which a water conduit 2c is formed through the ground electrode 2 with a porous material in the axial direction.
  • a porous material forming the ground electrode 2 for example, a member obtained by molding metal mesh, punching metal, or the like (plate or sheet material thereof) into a cylindrical shape can be used.
  • the ground electrode 2 can be formed by forming a plurality of radial through holes in a metal tube. Furthermore, it can also be formed of a sintered metal.
  • the water to be treated 90 supplied from the water intake portion 3i to the internal flow path of the header member 3 not only flows down along the annular flow path 7c, but also flows inside the tube wall 2w of the ground electrode 2. It also enters the water conduit 2c through the pores and flows down the water conduit 2c.
  • short-lived active species such as oxygen atoms and hydroxyl radicals among the active species generated by the discharge Dc form a water film 91 on the water 90 to be treated. acts locally near the surface of
  • long-lived active species such as ozone and hydrogen peroxide are dissolved in the water to be treated 90 from the surface of the water film 91, and the water to be treated flows from the pores of the porous material forming the ground electrode 2 into the conduit 2c.
  • Spreading to 90 provides extensive processing.
  • the area through which the water to be treated 90 flows is limited to the surface (outer peripheral surface 2fo) of the ground electrode 2, so that the short-lived active species can be effectively removed.
  • the flow rate of the water 90 to be treated is relatively small.
  • the water to be treated 90 flows not only on the surface of the ground electrode 2 but also inside (water conduit 2c), so the flow rate can be increased. At this time, even the water to be treated 90 flowing inside the ground electrode 2 can be efficiently treated by the action of the long-lived active species.
  • Embodiment 4 In Embodiments 1 to 3 above, an example in which the outer diameter of the ground electrode is constant along the axial direction has been described. In the fourth embodiment, an example will be described in which an inclined portion is provided in which the outer diameter of the ground electrode changes along the axial direction.
  • FIG. 7 is for explaining the configuration of the water treatment apparatus according to Embodiment 4, and is a cross-sectional view along the axis.
  • the fourth embodiment is the same as the first embodiment except that the ground electrode is provided with an inclined portion. do.
  • the outer diameter Dx2 of the ground electrode 2 extends along the direction in which the water to be treated 90 flows. It has an inclined portion 2t that becomes smaller as the distance increases.
  • Other structures and operations are the same as those of the first embodiment.
  • the ground electrode 2 having the constant outer diameter Dx2 as exemplified in the first to third embodiments when the water to be treated 90 flows down along the outer peripheral surface 2fo of the ground electrode 2, the fluidic resistance As a result, the water film 91 becomes thicker toward the downstream side (downward in the figure). For this reason, the distance (discharge distance) of the space formed between the water film 91 and the inner peripheral surface 1fi of the dielectric 1 narrows toward the downstream side, and the discharge Dc becomes uneven between the upstream side and the downstream side. There is Further, when trying to expand the area (discharge area) in which the discharge Dc is generated in the axial direction, the water to be treated 90 may adhere to the dielectric 1 on the downstream side where the gap is narrowed, preventing normal discharge. becomes higher.
  • the sloped portion 2t having the outer diameter Dx2 that decreases toward the downstream side is provided in the portion corresponding to the discharge region of the ground electrode 2, the water film along the flow direction is provided. It is possible to compensate for variations in the thickness of 91 and keep the discharge distance constant in the discharge area. Therefore, the discharge Dc can be stably formed in a wider area, and the processing flow rate can be increased.
  • the range (the length in the axial direction) and the slope of the inclined portion 2t can be appropriately designed according to the range of the discharge region and the flow rate of the water 90 to be treated. Also, the formation of the inclined portion 2t is not limited to the portion facing the high-voltage electrode 5 as shown in FIG. That is, the setting range of the inclined portion 2t in the axial direction may be longer or shorter than that of the high voltage electrode 5. FIG.
  • Embodiment 5 In Embodiments 1 to 4 above, the examples in which the high-voltage electrodes are continuously present in the axial direction have been described. In the fifth embodiment, an example in which high-voltage electrodes are arranged intermittently along the axial direction will be described.
  • FIG. 8 is for explaining the configuration of the water treatment apparatus according to Embodiment 5, and is a cross-sectional view along the axis.
  • the fifth embodiment is the same as the first embodiment except that the high-voltage electrodes are arranged intermittently along the axial direction.
  • the used FIG. 2 is used.
  • three electrodes are intermittently arranged on the outer peripheral surface of the dielectric 1 . That is, a plurality of electrodes (the first electrode 51, the second electrode 52, and the third electrode 53) are spaced apart from each other in order from the upstream side of the flow of the water 90 to be treated.
  • discharges Dc1, Dc2, and Dc3 are formed at positions corresponding to the first electrode 51, the second electrode 52, and the third electrode 53, respectively.
  • Other configurations and operations are the same as those of the first embodiment.
  • Embodiment 5 a plurality of electrodes (the first electrode 51, the second electrode 52, and the third electrode 53) are intermittently arranged along the flow direction of the water 90 to be treated. , the installation range per electrode is narrower than when a series of high-voltage electrodes 5 are used. Therefore, even when the water film 91 is disturbed by each electrode, the water surface of the water film 91 is stabilized again in the region where the high voltage electrode 5 is not arranged, that is, the region where the external electric field does not exist.
  • the present application shows an example in which the high-voltage electrode 5 is arranged on the outer peripheral side so as to surround the ground electrode 2 arranged at the center of the axis, but the present invention is not limited to this.
  • a high-voltage electrode may be provided on the shaft center side, and a ground electrode may be provided on the outer peripheral side.
  • the dielectric 1 is arranged on the inner peripheral surface side of the electrode on the outer peripheral side (high voltage electrode 5 in the above example), and along the outer peripheral surface (outer peripheral surface 2fo) of the electrode on the axial center side (ground electrode 2 in the above example)
  • the present invention is not limited to this.
  • a dielectric may be arranged along the outer peripheral surface of the electrode on the axial center side, and the water film 91 may be formed along the inner peripheral surface of the electrode on the outer peripheral side.
  • a dielectric may be placed on each of the two electrodes, and the water film 91 may be formed on the side facing at least one of the dielectrics.
  • the dielectric is arranged along the inner peripheral surface of the electrode on the outer peripheral side, if a transparent material such as quartz is used, the state of formation of the water film 91 and thus the scattering state of the water droplets can be easily monitored from the outside of the device. can be grasped. Therefore, for example, by adjusting the amount of water while checking the state of the water film 91, the amount of the water to be treated 90 can be easily increased to the upper limit at which water droplets do not scatter.
  • a water treatment method an example using a cylindrical water treatment device 10 capable of realizing control of the flow of water and gas with a short gun configuration has been described, but it is not limited to this.
  • a water film 91 having a thickness thinner than the gap G6 is formed on the electrode (ground electrode 2) facing the dielectric 1 generating the dielectric barrier discharge with a gap G6 therebetween. should be made to flow along Therefore, when the active species generated by the dielectric barrier discharge act on the water 90 to be treated, the control of the flow of water and gas becomes complicated. Processing methods are applicable.
  • the first electrode extending in the axial direction (for example, the ground electrode 2) is arranged coaxially with the first electrode so as to surround the first electrode from the outside in the radial direction.
  • a second electrode e.g., high voltage electrode 5
  • cylindrical and coaxially disposed between the first and second electrodes, and one of the first and second electrodes e.g., A dielectric 1 that forms an annular gap (air gap 6) between itself and the ground electrode 2 and generates a dielectric barrier discharge by applying a voltage between one electrode and the other electrode, and one electrode (for example, the ground electrode 2) along the circumferential direction, the annular flow path opening toward the annular gap (gap 6) at an interval (opening range G7) narrower than the annular gap (gap 6).
  • a water film 91 covering one electrode (the outer peripheral surface 2fo of the ground electrode 2) is formed toward the other end side. It is configured to include a water film forming part 7 for causing the water 90 to be treated to flow down. Therefore, since the water 90 to be treated flows down along the surface of the electrode (outer peripheral surface 2fo) as a water film 91 having a thickness thinner than the gap G6 of the gap 6, the adhesion of water droplets to the dielectric 1 causes dielectric barrier discharge. can be suppressed, and the water to be treated 90 can be efficiently treated with stable operation.
  • the distance G6 between one electrode (for example, the ground electrode 2) and the dielectric 1 is 1 mm or more and 5 mm or less, there is no need to apply an excessive voltage, and the scattering of water droplets on the dielectric 1 can be effectively prevented. can be suppressed to form a stable and efficient dielectric barrier discharge (Dc).
  • Dc dielectric barrier discharge
  • the opening interval (opening range G7) is 0.1 mm or more and 3 mm or less
  • the thickness of the water film 91 can be controlled to 0.1 mm or more and 3 mm or less.
  • water droplets do not scatter on the dielectric 1, and the water 90 to be treated can be treated with a high throughput.
  • the other electrode (for example, the high-voltage electrode 5) is arranged with a space between it and the water film forming portion 7 in the axial direction. provided between the water film 91 and the dielectric 1 to supply gas to the space formed between the water film 91 and the dielectric 1, the type of active species generated by the type of gas introduced can be controlled.
  • one electrode (ground electrode 2) is provided with a protrusion 2p projecting toward the annular flow path 7c in the region forming the annular flow path 7c, the water to be treated 90 Even if the flow rate increases, the rectifying action of the protrusions 2p suppresses the ripples of the water film 91, and the scattering of water droplets on the dielectric 1 can be suppressed more efficiently.
  • a region of one electrode (ground electrode 2) facing the other electrode (high-voltage electrode 5) has a diameter along the axial direction so that the distance G6 from the dielectric 1 widens along the direction of flow.
  • the other electrode (high-voltage electrode) is composed of a plurality of electrodes (first electrode 51 to third electrode 53) spaced apart in the axial direction, the water film 91 is formed on each electrode by an electric field. Even if disturbance occurs, the water surface of the water film 91 is stabilized again in the area where the external electric field does not exist until reaching the next electrode.
  • a dielectric barrier discharge is generated in a wide area (discharge Dc1+discharge Dc2+discharge Dc3) as the discharge Dc, the adhesion of the water 90 to be treated to the dielectric 1 is suppressed, and a stable discharge Dc is generated. can be formed.
  • the first electrode for example, the ground electrode 2 located on the axial center side
  • the water film 91 is formed on the outer peripheral surface 2fo. will cover the top. Therefore, if a transparent dielectric 1 such as quartz glass is used, the surface of the water film 91 can be observed from the outside in the radial direction through the dielectric 1, and the thickness of the water film 91 can be easily adjusted. .
  • the first electrode located on the axial center side has a circular tube shape with a water conduit 2c extending in the axial direction formed inside in the radial direction, and at least a part of the pipe wall 2w extends from the outer peripheral surface 2fo to the water conduit.
  • 2c long-life active species such as ozone and hydrogen peroxide are dissolved in the water to be treated 90 from the surface of the water film 91, forming the porous ground electrode 2. It diffuses into the water to be treated 90 flowing through the conduit 2c through the pores of the material.
  • a wide range of treatments can be performed by effectively utilizing the long-lived active species, and the flow rate of the water to be treated 90, that is, the treatment amount can be increased.
  • two electrodes (the ground electrode 2 and the high-voltage electrode 5) and the dielectric 1 disposed therebetween are provided, and one of the two electrodes (for example, A water treatment method using a water treatment device 10 in which a gap (gap portion 6) extending at a constant interval is formed between the outer peripheral surface 2fo) of the ground electrode 2 and the dielectric 1, a step of applying a voltage between two electrodes to generate a dielectric barrier discharge (discharge Dc) to generate active species;
  • discharge Dc dielectric barrier discharge
  • a water film 91 having a thickness smaller than that of the electrode and covering one electrode (outer peripheral surface 2fo) is configured to flow down toward the other end side. Therefore, the water 90 to be treated flows along the outer peripheral surface 2fo in the form of a water film, thereby suppressing destabilization of the dielectric barrier discharge due to the adhesion of water droplets to the dielectric 1, and stably operating and efficiently performing the treatment. Treated water 90 can be treated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

軸方向に延びる接地電極(2)、接地電極(2)を径方向の外側から囲むように同軸配置された高圧電極(5)、接地電極(2)との間に環状の空隙を形成し、誘電体バリア放電を発生させる誘電体(1)、および接地電極(2)との間で周方向に沿って環状の空隙よりも狭い間隔で環状の空隙に向けて開口する環状流路(7c)を軸方向における一端側に形成し、一端側を上方に向けて軸方向を鉛直にした際、接地電極(2)を覆う水膜(91)として他端側に向かって被処理水(90)を流下させる水膜形成部(7)、を備える。

Description

水処理装置および水処理方法
 本願は、水処理装置および水処理方法に関するものである。
 誘電体と対向する電極に沿って被処理水を流し、被処理水と誘電体との空間内で生じさせた放電によってオゾン、ヒドロキシラジカル等の活性種を発生させ、被処理水の殺菌等の処理を行う水処理技術(例えば、特許文献1、非特許文献1参照。)が知られている。
特開2013-206767号公報(段落0025~0038、図2、図7)
Niels Wardenier et al., Journal of Hazardous Materials,(米), 362(2019) p.238-245
 しかしながら、上記水処理技術では、大量の水を処理するために被処理水の流量を増加させようとすると、被処理水の一部が水滴状に飛散して誘電体の内面に付着する。誘電体の内面に被処理水が付着すると、誘電体の内面上を電流が流れるようになるため、誘電体バリア放電を均一かつ安定に形成することができなくなり、放電の局在化等により誘電体が破損するおそれがある。
 一方、安定した誘電体バリア放電を形成しようとする場合、例えば、吐出口の近傍等、被処理水の水滴が付着しない領域に限定して高電圧電極を設ける必要があり、放電領域が狭くなり、処理できる水量が制限される。それに対して、狭い放電領域に高い電力を集中させて活性種の発生量を増加させようとすると、誘電体の温度が上昇して、水処理に有用な活性種が分解されるためにかえって処理性能が低下する。また仮に、発生量を増加させることができたとしても、活性種は短寿命であるため、被処理水との接触面積が減少するため効率的な水処理が行えないといった課題があり、結果的に処理できる水量が制限され、効率的な水処理を行うことが困難であった。
 本願は、上記のような課題を解決するための技術を開示するものであり、安定した動作で効率的に被処理水を処理する水処理装置および水処理方法を得ることを目的としている。
 本願に開示される水処理装置は、軸方向に延びる第一電極、前記第一電極を径方向の外側から囲むように前記第一電極と同軸配置された第二電極、円筒状をなして前記第一電極と前記第二電極との間に介在して同軸配置され、前記第一電極と前記第二電極のうちの一方の電極との間に環状の空隙を形成し、前記一方の電極と他方の電極との間への電圧印可によって誘電体バリア放電を発生させる誘電体、および前記一方の電極との間で周方向に沿って前記環状の空隙よりも狭い間隔で前記環状の空隙に向けて開口する環状流路を軸方向における一端側に形成し、前記一端側を上方に向けて軸方向を鉛直にした際、前記一方の電極を覆う水膜として他端側に向かって被処理水を流下させる水膜形成部、を備えたことを特徴とする。
 本願に開示される水処理方法は、2つの電極とその間に配置された誘電体を備え、前記2つの電極のうちの一方の電極と前記誘電体との間に一定の間隔を有して延在する空隙が形成された水処理装置を用いた水処理方法であって、前記2つの電極間に電圧を印加して誘電体バリア放電を発生させて活性種を生成する工程、前記空隙の延在方向における一端側から被処理水を導入する工程、および前記導入した被処理水に前記生成した活性種を作用させる工程、を含み、前記被処理水を導入する工程では、前記一端側を上方に向けて前記延在方向を鉛直にし、前記被処理水を前記一定の間隔よりも薄い厚みを有し、前記一方の電極を覆う水膜にして、他端側に向かって流下させることを特徴とする。
 本願に開示される水処理装置あるいは水処理方法によれば、被処理水が電極に沿って水膜状に流れることで、誘電体への水滴の付着による誘電体バリア放電の不安定化を抑制し、安定した動作で効率的に被処理水を処理することができる。
実施の形態1にかかる水処理装置の構成および水処理方法を説明するための軸に沿った断面図である。 実施の形態1にかかる水処理装置の構成および水処理方法を説明するための水膜形成部近傍部分を拡大した軸に沿った断面図である。 実施の形態2にかかる水処理装置の構成および水処理方法を説明するための水膜形成部近傍部分を拡大した軸に沿った断面図である。 実施の形態2にかかる水処理装置の構成および水処理方法を説明するための軸に垂直な断面図である。 実施の形態2の変形例にかかる水処理装置の構成および水処理方法を説明するための軸に垂直な断面図である。 実施の形態3にかかる水処理装置の構成および水処理方法を説明するための軸に沿った断面図である。 実施の形態4にかかる水処理装置の構成および水処理方法を説明するための軸に沿った断面図である。 実施の形態5にかかる水処理装置の構成および水処理方法を説明するための軸に沿った断面図である。
実施の形態1.
 図1と図2は、実施の形態1にかかる円筒状の水処理装置、および水処理方法について説明するためのものであり。図1は水処理装置の構成を説明するための軸に沿った断面図、図2は図1における領域Rに対応する部分を拡大した水膜形成部近傍部分の断面図である。
 本願の水処理装置は、誘電体バリア放電を利用した流水型水処理装置である。誘電体バリア放電は間隙をあけて対向する対の電極の片方または両方を誘電体で覆い、交流電圧を電極に印加することで間隙のガス中で放電させる手法のことを指し、この放電で発生させた活性種を被処理水に接触させて処理を行うものである。
 実施の形態1にかかる水処理装置10は、図1に示すように、外周側に高圧電極5が配置された円筒状の誘電体1と、誘電体1の内周面1fiに対して間隔をあけて同軸上に配置された柱状の接地電極2を備えている。誘電体1と接地電極2は、軸方向の一端に配置されたヘッダ部材3によって同軸関係を固定されている。
 ただし、高圧電極5は、軸方向長さが誘電体1よりも短く、誘電体1に対して軸方向における両端部分を除いた中間部分に配置されている。そして、高圧電極5と接地電極2はそれぞれ電源80と電気的に接続され、電源80から印加される高電圧によって、誘電体1の高圧電極5が配置された部分と接地電極2との間で誘電体バリア放電(放電Dc)を生じさせるように構成している。
 誘電体1としては、電気絶縁性に優れ、化学的に安定な材料が好適である。例えば、ガラス、セラミックス、樹脂材料を用いることができる。接地電極2としては、電気伝導性を有し、化学的に安定で耐食性に優れた材料が好適である。例えばステンレス、チタン(Ti)、アルミニウム(Al)、グラファイトなどを用いることができる。高圧電極5は、例えば金属メッシュあるいは金属薄板を誘電体1の外周面に巻き付けることで形成可能であり、誘電体1の外周面にメッキ、蒸着等の手法により金属薄膜を形成することでも形成可能である。
 ヘッダ部材3は、被処理水90を取水するための取水部3iと、取水部3iから取水された被処理水90が接地電極2の外周面2foに沿って水膜91として流れるよう外周面2foに沿った開口を形成する水膜形成部7が設けられている。ヘッダ部材3は、例えば樹脂成形により形成することができ、接地電極2と誘電体1を軸方向に嵌め込んだ際に、接地電極2の外周面2foと水膜形成部7との間で円環状の環状流路7cが形成される。その際、取水部3iから環状流路7cに至る内部流路が形成されるとともに、電気接続のために接地電極2の一端が露出する。
 電源80として、例えば交流電源、あるいはパルス電源を用いることができる。パルス電源は安定した放電を形成するうえで有効ではあるが高価である。一方、後述するように本願の水処理装置10では、水滴による誘電体1の内周面1fiの濡れが抑制されるため、比較的安価な交流電源を使用可能であり、装置全体のコストを抑制できる。
 さらに、円筒状の誘電体1と接地電極2との間に形成された円環状の空隙部6は放電Dcを生じさせる場であるとともに、被処理水90を流すための空間としても機能する。
 水膜形成部7は、図2に示すように、誘電体1と接地電極2の間に介在し、接地電極2の外径Dx2よりも大きく、誘電体1の内径Di1よりも小さな内径Di7を有する内周面7fiと、誘電体1の内周面1fiに密着する外周面を有して円環状をなす。これにより、水膜形成部7の内周面7fiと接地電極2の外周面2foとの間には、先端面7e部分で、誘電体1の内周面1fiに達しない範囲で円環状に開口する環状流路7cが形成される。その結果、被処理水90は、接地電極2の外周面2foに沿った水膜91状で水膜形成部7から空隙部6内に流れ出る。
 そして、水膜形成部7から流れ出た水膜91が、空隙部6内で軸方向のヘッダ部材3が設けられた一端側から他端側に向かって外周面2foに沿って流れるよう、軸方向を鉛直にし、ヘッダ部材3を上方にして設置されるように構成している。
 さらに、誘電体1のうち、軸方向において水膜形成部7と高圧電極5との間に位置する部分には、空隙部6内にガスを導入するためのガス導入部4が設けられている。ガス導入部4から導入されたガスは、空隙部6のうち誘電体1の内周面1fiと水膜91との間に形成された空間内を流れることになる。そのため、放電Dcによって供給されたガス中で生じたオゾン、過酸化水素、酸素原子、ヒドロキシラジカル等の活性種を被処理水90(の水膜91)に作用させ、水処理を行うことができる。
 なお、ガス導入部4から導入するガス種は、用途に応じて任意に決めることができる。例えば酸素を含むガス(酸素、空気等)を供給すれば、放電Dcによりオゾン、および酸素原子を生成することができる。また、希ガス(ヘリウム、アルゴン等)を用いれば、被処理水90から蒸発した水蒸気から効率的にヒドロキシラジカル(OH)、および過酸化水素を生成することができる。また、窒素を含むガス(窒素、空気等)を用いれば、高い殺菌作用を有する過酸化亜硝酸、過酸化硝酸等を生成することができる。
 ここで、被処理水90の「処理」とは、放電Dcで生成された活性種によって生じる被処理水90の何らかの物理・化学・生物学的変化を意味し、例えば被処理水90中の菌の殺菌、ウイルスの不活化、有機物の分解などが該当する。また、例えば放電Dcで生じた活性種を被処理水90に溶解させることにより機能水を生成することも該当する。
 水膜形成部7では、取水部3iから供給された被処理水90を接地電極2の外周面2foとの間に形成された(空隙部6よりも)狭隘な環状流路7cを通すことで、接地電極2の表面に沿って流下する水膜91を形成する。この時、空隙部6内で、水膜91と誘電体1の内周面1fiの間に空間が形成され、さらに、誘電体1の内表面(内周面1fi)への水滴の付着を防止する必要があり、水膜91の厚さを制御する必要がある。そこで、水膜形成部7の内径Di7と接地電極2の外径Dx2との差で定められる水膜形成部7の径方向における開口範囲G7(=(Di7-Dx2)/2)を調節する。
 一方、接地電極2と誘電体1の間に形成された空隙部6の径方向の寸法(間隔G6=(Di1-Dx2)/2)は、式(1)に示すように、誘電体バリア放電を効率よく実施するために1mm~5mm程度に設定される。
  1mm≦ (Di1-Dx2)/2 ≦ 5mm  (1)
 間隔G6を1mm未満に小さくすると、水膜91の僅かな波立ちによって誘電体1に被処理水90が付着し、安定な放電が行えなくなるおそれがある。間隔G6を5mmより厚くすると、放電Dcの形成に非常に高い電圧が必要となり、電源80の高コスト化、絶縁距離の増大による装置大型化が問題となるからである。
 水膜91の厚みは上述した狭隘な空隙部6の間隔G6よりも薄くする必要があり、具体的には、0.1mm以上、3mm以下が好適である。水膜91の厚さを0.1mm未満とするためには、被処理水90の流量を著しく少なくする必要があり、大流量の水処理が行えない。また、水膜91の厚さを3mmより厚くすると、水面の波立ちが顕著に生じるようになり、誘電体1の内周面1fiに水滴となって付着するおそれがあるからである。
 さらに、水膜91の厚さを水膜91と内周面1fiとの間に形成される空間の厚み(=間隔G6-水膜91の厚み)よりも薄くすることが好適である。水膜91の厚さが空間の厚みよりも厚くなると、高圧電極5に電圧を印加した際、被処理水90が静電気的に誘電体1側に引き寄せられ、誘電体1に付着する問題が生じる。一方、水膜91の厚さが空間の厚さよりも薄い場合にはこの問題はほとんど生じないためである。
 そのため、水膜形成部7と接地電極2との間の開口範囲G7は間隔G6よりも小さな値に設定する必要がある。具体的には開口範囲G7は、0.1mm以上、3mm以下(式2)に設定することが好ましい。さらには、水膜形成部7の内周面7fiが、誘電体1の内周面1fiよりも接地電極2の外周面2foに近い位置にあることが好ましい。
  0.1mm ≦ G7 ≦ 3mm  (2)
 上記のように、水膜形成部7の内径Di7と接地電極2の外径Dx2との差(開口範囲G7)によって、水膜91の厚さを制御するが、同じ開口範囲G7を実現する場合、接地電極2の外径Dx2が大きいほど好ましい。これは水膜形成部7の流路断面積(=(Di7-Dx2)×π/4)が大きくなり、被処理水90の流量を増加させることができるためである。しかし、流量を増加する際には水滴の飛散が起こりやすくなるため、空隙部6の間隔G6を広めに設定する必要がある。
 上述した構成を前提として、水処理装置10の動作、つまり水処理方法について説明する。ガス導入部4から所定の流量でガスを供給するとともに、電源80を動作させて高圧電極5と接地電極2の間に高電圧を印加する。これにより、空隙部6のうち、軸方向において高圧電極5が配置された範囲で放電Dcが形成される。
 一方、取水部3iに供給された被処理水90はヘッダ部材3に形成された内部流路を通り、水膜形成部7の円環状の環状流路7cから空隙部6に向かって放出される。このとき、被処理水90は空隙部6内を水膜91として、接地電極2の外周面2fo上を軸方向に沿って流下する。そのため、放電Dcによって生成されたオゾン、過酸化水素、酸素原子、ヒドロキシラジカル等の活性種が水膜91状の被処理水90に作用することで、被処理水90の処理が行われる。
 被処理水90が水膜91として接地電極2の外周面2foを覆っているため、活性種と被処理水90の接触面積を広くとることができ、酸素原子、ヒドロキシラジカルなどの短寿命活性種でも有効に活用でき水処理の効率が向上する。また、被処理水90が水滴状に飛散することが抑制されるため、被処理水90の流下方向にかけて放電面積を広く形成することができる。これにより、局所的な温度上昇が抑制され、水処理に有用なオゾン、過酸化水素等の熱分解が抑制され、効率的な水処理が可能となる。
 なお、以降の実施の形態も含め、ガス導入部4は図1のように必ずしも誘電体1に形成されている必要はなく、ヘッダ部材3に形成することもできる。この場合、例えば、ガスの空隙部6への放出口を、水膜形成部7の開口よりも下流、あるいは誘電体1の内周面1fiに沿って配置とするとよい。これにより、ガスと被処理水90が混ざりあうことによる水滴の発生を防止できる。
実施の形態2.
 本実施の形態2にかかる水処理装置では、接地電極の外周面うち水膜形成部の内周面に対向する部分に、整流作用を有する突起部を形成する例について説明する。図3と図4は実施の形態2にかかる水処理装置の構成について説明するめのもので、図3は水処理装置の構成を説明するための水膜形成部分を拡大した実施の形態1の図2に対応する断面図、図4は図3のA-A線による水処理装置の軸に垂直な断面図である。また、図5は変形例にかかる水処理装置の図4に対応する軸に垂直な断面図である。
 なお、本実施の形態2において、接地電極に突起部を設けたこと以外については実施の形態1と同様であり、同様部分の説明を省略するとともに、実施の形態1で用いた図1における電源部を含めた構成、図2における水膜形成部の開口範囲等については援用する。
 実施の形態2にかかる水処理装置10は、図3と図4に示すように接地電極2の外周面2foの軸方向における水膜形成部7の内周面7fiと対向して環状流路7cを形成する箇所において、突起部2pを設けている。そして突起部2pは接地電極2の外周面2foから放射状に突き出した複数のリブ状構造となっている。
 実施の形態1では、接地電極2の外周面2foと水膜形成部7の内周面7fiとの間に形成された狭隘な環状流路7c内を被処理水90が流れることによって水膜91を形成した。しかしながら、被処理水90の流量(流速)が高い場合などは、水膜形成部7前後の圧力変化等が原因となって水膜91の表面が波立ち、誘電体1に被処理水90が付着する場合がある。
 それに対して、本実施の形態2では、環状流路7c内に突起部2pが存在することによって被処理水90の流れが整流されるため、水膜91の波立ちが抑制される。このため、より高い被処理水90の流量においても安定的に放電Dcを形成し処理を行うことができる。
 なお、突起部2pの形状は、図4で示した放射状に突き出した複数のリブ状構造に限ることはない。例えば、図5の変形例にかかる水処理装置10に示すように、接地電極2の外周面2foから放射状に突き出した複数の山形状の凸部で突起部2pを形成してもよい。さらには、被処理水90の整流効果が得られる限りにおいて適宜設計することができる。また、突起部2pは必ずしも接地電極2と一体で形成する必要はなく、別部材を接地電極2に締結、接合等の工法を用いて形成してもよい。
実施の形態3.
 上記実施の形態1および2では、空隙における被処理水の流通経路として、柱状の接地電極の外周面に沿った経路のみを有する例について説明した。本実施の形態3においては、多孔性材料で円管形状に構成した接地電極を用い、接地電極の内部にも被処理水の流通経路が形成された例について説明する。
 図6は実施の形態3にかかる水処理装置の構成について説明するための軸に沿った断面図である。なお、本実施の形態3において、接地電極を多孔性材料で円管形状に構成したこと以外については実施の形態1と同様であり、同様部分の説明を省略するとともに、実施の形態1で用いた図2における水膜形成部の開口範囲等については援用する。
 実施の形態3にかかる水処理装置10は、図6に示すように、接地電極2を多孔性材料で軸方向に貫通する導水路2cが形成された円管形状で構成した。その他の構成および動作は実施の形態1と同様である。接地電極2を形成する多孔性材料として、例えば金属メッシュまたはパンチングメタル等(の板材またはシート材)を円管形状に成型した部材を用いることができる。あるいは、金属管に複数の径方向の貫通孔を形成することで接地電極2を形成することができる。さらには、焼結金属で形成することもできる。
 本実施の形態3において、取水部3iからヘッダ部材3の内部流路に供給された被処理水90は、環状流路7cに沿って流下するだけでなく、接地電極2の管壁2w内の細孔内を通って導水路2c内にも進入し、導水路2c内を流下する。
 このような構成において空隙部6内で放電Dcを生じさせると、放電Dcで生成された活性種のうち酸素原子、ヒドロキシラジカル等の短寿命活性種は、被処理水90に対して水膜91の表面近傍で局所的に作用する。一方、オゾン、過酸化水素などの長寿命活性種は水膜91の表面から被処理水90に溶解し、接地電極2を形成する多孔質材料の細孔から導水路2c内を流れる被処理水90に拡散することで広範な処理が行われる。
 実施の形態1、2のように柱状の接地電極2を用いた場合、被処理水90が流れる領域が接地電極2の表面(外周面2fo)に限定されるため、短寿命活性種を効率的に作用させる点では有効であるが、被処理水90の流量が比較的少なくなる課題がある。一方、本実施の形態3では、被処理水90は接地電極2の表面に加えて内部(導水路2c)も流れるため、流量を大きくすることができる。この際、長寿命活性種の作用により、接地電極2の内部を流れる被処理水90においても効率的に処理を行うことができる。
実施の形態4.
 上記実施の形態1~3においては、接地電極の外径が軸方向に沿って一定である例につて説明した。本実施の形態4においては、接地電極の外径が軸方向に沿って変化する傾斜部を設けた例について説明する。
 図7は実施の形態4にかかる水処理装置の構成について説明するめのもので、軸に沿った断面図である。なお、本実施の形態4において、接地電極に傾斜部を設けたこと以外については実施の形態1と同様であり、同様部分の説明を省略するとともに、実施の形態1で用いた図2を援用する。
 実施の形態4にかかる水処理装置10では、図7に示すように、軸方向における高圧電極5が形成された領域において、接地電極2の外径Dx2が被処理水90の流下する方向に沿って小さくなる傾斜部2tを有している。その他の構造と動作は実施の形態1と同様である。
 例えば、実施の形態1~3で例示した一定の外径Dx2を有する接地電極2を用いた場合、被処理水90が接地電極2の外周面2foに沿って流下する際、流体的な抵抗作用により、下流側(図中下方)に進むほど水膜91が厚くなる。このため、下流に進むにつれて水膜91と誘電体1の内周面1fiとの間に形成される空間の間隔(放電距離)が狭まり、上流側と下流側で放電Dcが不均一化することがある。また、軸方向における放電Dcを生じさせる領域(放電領域)を拡張しようとした場合、間隔が狭くなった下流側で被処理水90が誘電体1に付着し、正常な放電が行えなくなる可能性が高くなる。
 それに対して、本実施の形態4によれば、接地電極2のうち、放電領域に対応する部分に下流に行くほど外径Dx2が小さくなる傾斜部2tを設けたため、流れ方向に沿った水膜91の厚さの変化を補償し、放電領域における放電距離を一定に保つことが可能となる。このため、より広い領域で安定的に放電Dcを形成できるようになり、処理流量の拡大が実現できる。
 なお、傾斜部2tを設ける範囲(軸方向での長さ)および傾斜は、放電領域の範囲および被処理水90の流量に応じて適宜設計することができる。また、傾斜部2tの形成は、図7のように高圧電極5に対向する箇所に限定されることはなく、安定的な放電Dcの形成を達成できれば適宜設計可能である。すなわち、軸方向における傾斜部2tの設定範囲が高圧電極5より長くても短くても構わない。
実施の形態5.
 上記実施の形態1~4では、高圧電極が軸方向で連続して存在する例について説明した。本実施の形態5では、高圧電極を軸方向に沿って間欠的に配置した例について説明する。
 図8は実施の形態5かかる水処理装置の構成について説明するめのもので、軸に沿った断面図である。なお、本実施の形態5おいて、軸方向に沿って高圧電極を間欠的に配置したこと以外については実施の形態1と同様であり、同様部分の説明を省略するとともに、実施の形態1で用いた図2を援用する。
 実施の形態5にかかる水処理装置10では、図8に示すように、高圧電極5として、被処理水90の流れ方向(軸方向:図8の上下方向)に沿って3つの電極(第一電極51、第二電極52、第三電極53)を間欠的に誘電体1の外周面に配置している。すなわち、被処理水90の流れの上流側から順に複数の電極(第一電極51、第二電極52、第三電極53)が互いに間隔をあけて配置されている。
 これにより、第一電極51、第二電極52、第三電極53それぞれに対応する位置において、放電Dc1、放電Dc2、放電Dc3が形成される。その他の構成と動作は実施の形態1と同様である。
 例えば、実施の形態1~4で例示したような軸方向に連続する高圧電極5を用い、軸方向での設置範囲を拡張しようとした場合、放電Dcを形成するための外部電界の影響により水膜91が擾乱を受け、下流に進むにつれて水面が波立ちやすくなる。その結果、誘電体1に水滴が付着しやすくなることが考えられる。
 それに対して、本実施の形態5においては、複数の電極(第一電極51、第二電極52、第三電極53)が被処理水90の流れ方向に沿って間欠的に配置されているため、一続きの高圧電極5を用いる場合よりも、一つの電極当たりの設置範囲が狭くなる。そのため、電極それぞれで水膜91に擾乱が生じた場合においても、高圧電極5が配置されていない領域、すなわち外部電界が存在しない領域において再び水膜91の水面が安定化する。この作用により、放電Dc(放電Dc1+放電Dc2+放電Dc3)として広い領域に誘電体バリア放電を生じさせた場合においても、被処理水90の誘電体1への付着を抑制し、安定した放電Dcを形成することができる。
 さらに、本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 例えば、本願では軸中心に配置した接地電極2を囲むように外周側に高圧電極5を配置した例を示したがこれに限ることはない。軸中心側を高圧電極、外周側を接地電極にしてもよい。また、外周側の電極(上記例では高圧電極5)の内周面側に誘電体1を配置し、軸中心側の電極(上記例では接地電極2)の外周面(外周面2fo)に沿って水膜91を形成する例を示したがこれに限ることはない。軸中心側の電極の外周面に沿って誘電体を配置し、外周側の電極の内周面に沿って水膜91を形成してもよい。
 さらには、両極それぞれに誘電体を配置してもよく、少なくとも一方の誘電体に対向する側に水膜91を形成するようにすればよい。また、外周側の電極の内周面に沿って誘電体を配置する場合、石英等の透明材料を用いるようにすれば、水膜91の形成状態、ひいては水滴の飛散状態を装置の外側から容易に把握することができる。そのため、例えば、水膜91の状態を確認しながら、水量を調整することで、水滴が飛散しない上限まで被処理水90の処理量を容易に増加させることができる。
 また、水処理方法としては、水とガスの流れの制御を短銃な構成で実現できる円筒状の水処理装置10を用いた例について説明したが、これに限ることはない。要するに誘電体バリア放電を発生させる誘電体1と間隔G6をあけて対向する電極(接地電極2)に対し、間隔G6よりも厚みが薄い水膜91を形成して電極の表面(外周面2fo)に沿って流れるようにすればよい。そのため、誘電体バリア放電で生じさせた活性種を被処理水90に作用させる場合には、水とガスの流れの制御は複雑になるが、平行平板など、電極形状によらず、本願の水処理方法は適用可能である。
 以上のように、本願の水処理装置10によれば、軸方向に延びる第一電極(例えば、接地電極2)、第一電極を径方向の外側から囲むように第一電極と同軸配置された第二電極(例えば、高圧電極5)、円筒状をなして第一電極と第二電極との間に介在して同軸配置され、第一電極と第二電極のうちの一方の電極(例えば、接地電極2)との間に環状の空隙(空隙部6)を形成し、一方の電極と他方の電極との間への電圧印可によって誘電体バリア放電を発生させる誘電体1、および一方の電極(例えば、接地電極2)との間で周方向に沿って環状の空隙(空隙部6)よりも狭い間隔(開口範囲G7)で環状の空隙(空隙部6)に向けて開口する環状流路7cを軸方向における一端側に形成し、一端側を上方に向けて軸方向を鉛直にした際、一方の電極(接地電極2の外周面2fo)を覆う水膜91として他端側に向かって被処理水90を流下させる水膜形成部7、を備えるように構成した。そのため、被処理水90が電極の表面(外周面2fo)に沿って空隙部6の間隔G6よりも薄い厚みの水膜91として流下するので、誘電体1への水滴の付着による誘電体バリア放電の不安定化を抑制し、安定した動作で効率的に被処理水90を処理することができる。
 一方の電極(例えば、接地電極2)と誘電体1との間隔G6が、1mm以上、5mm以下であれば、過大な電圧をかける必要がなく、かつ誘電体1への水滴の飛散を効果的に抑制でき、安定で効率的な誘電体バリア放電(Dc)を形成することができる。
 とくに開口の間隔(開口範囲G7)が、0.1mm以上、3mm以下であれば、水膜91の厚みを0.1mm以上、3mm以下に制御することができる。その結果、誘電体1に水滴が飛散することがなく、かつ、高い処理量で被処理水90を処理することができる。
 また、他方の電極(例えば、高圧電極5)は軸方向において水膜形成部7との間に間隔をあけて配置され、軸方向における水膜形成部7と他方の電極(高圧電極5)との間に設けられ、水膜91と誘電体1との間に形成される空間にガスを供給するガス導入部4を備えるようにすれば、導入するガスの種類によって生成される活性種の種類を制御できる。
 また、一方の電極(接地電極2)には、環状流路7cを形成する領域において、環状流路7cに向かって突出する突起部2pが設けられているようにすれば、被処理水90の流量が増加しても、突起部2pによる整流作用によって水膜91の波立ちを抑え、誘電体1への水滴の飛散をより効率的に抑制できる。
 あるいは、一方の電極(接地電極2)の他方の電極(高圧電極5)と対向する領域には、誘電体1との間隔G6が流下の方向に沿って広がるように軸方向に沿って径が変化する傾斜部2tが設けられているようにすれば、流下方向に沿った水膜91の厚みの増加を補償し、放電領域における放電距離を一定に保つことが可能となる。このため、より広い領域で安定的に放電Dcを形成できるようになり、処理流量の拡大が実現できる。
 また他方の電極(高圧電極)が、軸方向において間隔をあけて配置された複数の電極(第一電極51~第三電極53)で構成していれば、電界によって電極それぞれで水膜91に擾乱が生じた場合においても、つぎの電極に達するまでの外部電界が存在しない領域において再び水膜91の水面が安定化する。この作用により、放電Dcとして(放電Dc1+放電Dc2+放電Dc3)広い領域に誘電体バリア放電を生じさせた場合においても、被処理水90の誘電体1への付着を抑制し、安定した放電Dcを形成することができる。
 ここで、上述した一方の電極(誘電体1と間隔をあけて対向する電極)が、軸中心側に位置する第一電極(例えば、接地電極2)であれば、水膜91は外周面2fo上を覆うことになる。そのため、例えば石英ガラスのような透明な誘電体1を用いれば、水膜91の表面を径方向の外側から誘電体1を通して観察することが可能になり、水膜91の厚み調整を容易に行える。
 その際、軸中心側に位置する第一電極は、径方向の内側に軸方向に抜ける導水路2cが形成されて円管形状をなし、管壁2wの少なくとも一部が外周面2foから導水路2cにかけて多孔性材料で形成されているように構成すれば、オゾン、過酸化水素などの長寿命活性種が水膜91の表面から被処理水90に溶解し、接地電極2を形成する多孔質材料の細孔から導水路2c内を流れる被処理水90に拡散する。これにより、長寿命活性種を有効利用して広範な処理を行うことができ、被処理水90の流量、すなわち処理量を増大させることができる。
 以上のように、本願の水処理方法によれば、2つの電極(接地電極2と高圧電極5)とその間に配置された誘電体1を備え、2つの電極のうちの一方の電極(例えば、接地電極2の外周面2fo)と誘電体1との間に一定の間隔を有して延在する空隙(空隙部6)が形成された水処理装置10を用いた水処理方法であって、2つの電極間に電圧を印加して誘電体バリア放電(放電Dc)を発生させて活性種を生成する工程、空隙の延在方向における一端側から被処理水90を導入する工程、および導入した被処理水90に生成した活性種を作用させる工程、を含み、被処理水90を導入する工程では、一端側を上方に向けて延在方向を鉛直にし、被処理水90を一定の間隔G6よりも薄い厚みを有し、一方の電極(外周面2fo)を覆う水膜91にして、他端側に向かって流下させるように構成した。そのため、被処理水90が外周面2foに沿って水膜状に流れることで、誘電体1への水滴の付着による誘電体バリア放電の不安定化を抑制し、安定した動作で効率的に被処理水90を処理することができる。
 1:誘電体、 1fi:内周面、 2:接地電極、 2c:導水路、 2fo:外周面、 2p:突起部、 2t:傾斜部、 3:ヘッダ部材、 3i:取水部、 4:ガス導入部、5:高圧電極、 6:空隙部、 7:水膜形成部、 7c:環状流路、 10:水処理装置、 80:電源、 90:被処理水、 91:水膜、 Dc:放電、 Di1:(誘電体の)内径、 Di7:(水膜形成部の)内径、 Dx2:(接地電極の)外径、 G7:開口範囲、 G6:間隔。

Claims (10)

  1.  軸方向に延びる第一電極、
     前記第一電極を径方向の外側から囲むように前記第一電極と同軸配置された第二電極、
     円筒状をなして前記第一電極と前記第二電極との間に介在して同軸配置され、前記第一電極と前記第二電極のうちの一方の電極との間に環状の空隙を形成し、前記一方の電極と他方の電極との間への電圧印可によって誘電体バリア放電を発生させる誘電体、および
     前記一方の電極との間で周方向に沿って前記環状の空隙よりも狭い間隔で前記環状の空隙に向けて開口する環状流路を軸方向における一端側に形成し、前記一端側を上方に向けて軸方向を鉛直にした際、前記一方の電極を覆う水膜として他端側に向かって被処理水を流下させる水膜形成部、
     を備えたことを特徴とする水処理装置。
  2.  前記一方の電極と前記誘電体との間隔は、1mm以上、5mm以下であることを特徴とする請求項1に記載の水処理装置。
  3.  前記開口の間隔は、0.1mm以上、3mm以下であることを特徴とする請求項2に記載の水処理装置。
  4.  前記他方の電極は軸方向において前記水膜形成部との間に間隔をあけて配置され、
     軸方向における前記水膜形成部と前記他方の電極との間に設けられ、前記水膜と前記誘電体との間に形成される空間にガスを供給するガス導入部を備えたことを特徴とする請求項1から3のいずれか1項に記載の水処理装置。
  5.  前記一方の電極には、前記環状流路を形成する領域において、前記環状流路に向かって突出する突起部が設けられていることを特徴とする請求項1から4のいずれか1項に記載の水処理装置。
  6.  前記一方の電極の前記他方の電極と対向する領域には、前記誘電体との間隔が前記流下の方向に沿って広がるように軸方向に沿って径が変化する傾斜部が設けられていることを特徴とする請求項1から5のいずれか1項に記載の水処理装置。
  7.  前記他方の電極は、軸方向において間隔をあけて配置された複数の電極で構成していることを特徴とする請求項1から6のいずれか1項に記載の水処理装置。
  8.  前記一方の電極は、前記第一電極であることを特徴とする請求項1から7のいずれか1項に記載の水処理装置。
  9.  前記第一電極は、径方向の内側に軸方向に抜ける導水路が形成されて円管形状をなし、管壁の少なくとも一部が外周面から前記導水路にかけて多孔性材料で形成されていることを特徴とする請求項8に記載の水処理装置。
  10.  2つの電極とその間に配置された誘電体を備え、前記2つの電極のうちの一方の電極と前記誘電体との間に一定の間隔を有して延在する空隙が形成された水処理装置を用いた水処理方法であって、
     前記2つの電極間に電圧を印加して誘電体バリア放電を発生させて活性種を生成する工程、
     前記空隙の延在方向における一端側から被処理水を導入する工程、および
     前記導入した被処理水に前記生成した活性種を作用させる工程、を含み、
     前記被処理水を導入する工程では、前記一端側を上方に向けて前記延在方向を鉛直にし、前記被処理水を前記一定の間隔よりも薄い厚みを有し、前記一方の電極を覆う水膜にして、他端側に向かって流下させることを特徴とする水処理方法。
PCT/JP2022/004074 2022-02-02 2022-02-02 水処理装置および水処理方法 WO2023148845A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022541870A JP7203289B1 (ja) 2022-02-02 2022-02-02 水処理装置および水処理方法
PCT/JP2022/004074 WO2023148845A1 (ja) 2022-02-02 2022-02-02 水処理装置および水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004074 WO2023148845A1 (ja) 2022-02-02 2022-02-02 水処理装置および水処理方法

Publications (1)

Publication Number Publication Date
WO2023148845A1 true WO2023148845A1 (ja) 2023-08-10

Family

ID=84887128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004074 WO2023148845A1 (ja) 2022-02-02 2022-02-02 水処理装置および水処理方法

Country Status (2)

Country Link
JP (1) JP7203289B1 (ja)
WO (1) WO2023148845A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063991A (ja) * 2008-09-10 2010-03-25 Sekisui Chem Co Ltd 水処理装置
CN102531097A (zh) * 2012-01-18 2012-07-04 苏州大学 水膜混合放电反应器
JP2013206767A (ja) * 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd プラズマ生成方法及び装置
JP6765582B1 (ja) * 2019-12-25 2020-10-07 三菱電機株式会社 水処理装置及び水処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063991A (ja) * 2008-09-10 2010-03-25 Sekisui Chem Co Ltd 水処理装置
CN102531097A (zh) * 2012-01-18 2012-07-04 苏州大学 水膜混合放电反应器
JP2013206767A (ja) * 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd プラズマ生成方法及び装置
JP6765582B1 (ja) * 2019-12-25 2020-10-07 三菱電機株式会社 水処理装置及び水処理方法

Also Published As

Publication number Publication date
JP7203289B1 (ja) 2023-01-12
JPWO2023148845A1 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
EP3072854B1 (en) Liquid treatment device and liquid treatment method
US9580338B2 (en) Liquid treatment apparatus and liquid treatment method
JP2009078266A (ja) プラズマを用いた流体浄化方法および流体浄化装置
KR102014892B1 (ko) 수처리장치 등에 사용되는 플라즈마 발생장치
US20150114913A1 (en) Liquid treatment apparatus and liquid treatment method
EP3647276B1 (en) Liquid treatment device
JP2006130410A (ja) 液体処理方法およびその装置
WO2023148845A1 (ja) 水処理装置および水処理方法
JP2014210222A (ja) 液体処理装置
JP3662621B2 (ja) 誘導プラズマの発生方法および装置
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
KR101692218B1 (ko) 휘발성 유기 화합물 제거용 유전체 장벽 플라즈마 반응 장치 및 이를 이용한 휘발성 유기 화합물의 제거방법
KR101647480B1 (ko) 고농도 과산화수소 증기 제거용 대기압 플라즈마 장치
JP2002126769A (ja) オゾン水処理装置
US9708201B2 (en) Liquid treatment apparatus
KR100880900B1 (ko) 무성방전식 오존발생기의 전극셀 및 그 제조방법
KR102243816B1 (ko) 워터젯 액상 방전 발생 장치 및 이를 이용한 액체 물질의 코팅 장치 및 액체의 살균 장치
JP2004267863A (ja) ガス処理装置
CN112076596B (zh) 基于介质阻挡放电的有机废气降解方法
KR102167872B1 (ko) 액체 전극 플라즈마 장치, 이를 이용한 금속 코팅 장치 및 액체 살균 장치
JP2006000699A (ja) ガス処理方法およびその装置
KR20010047773A (ko) 플라즈마를 이용한 폐수정화장치
KR102116690B1 (ko) 차단챔버부재를 구비한 플라즈마 수처리장치
JP2000239005A (ja) オゾン発生装置
WO2023214917A1 (en) A method for ionization of a fluid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022541870

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924758

Country of ref document: EP

Kind code of ref document: A1