WO2023146179A1 - 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법 - Google Patents

루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법 Download PDF

Info

Publication number
WO2023146179A1
WO2023146179A1 PCT/KR2023/000675 KR2023000675W WO2023146179A1 WO 2023146179 A1 WO2023146179 A1 WO 2023146179A1 KR 2023000675 W KR2023000675 W KR 2023000675W WO 2023146179 A1 WO2023146179 A1 WO 2023146179A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
layer
film layer
ruthenium
etching
Prior art date
Application number
PCT/KR2023/000675
Other languages
English (en)
French (fr)
Inventor
한희
안치원
이용희
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023146179A1 publication Critical patent/WO2023146179A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Definitions

  • the present invention relates to the formation of a capping layer through selective growth of ruthenium and a method for manufacturing an EUV pellicle having a multilayer structure therethrough, and more particularly, to a pellicle membrane capable of minimizing light source loss while having thermal characteristics and durability characteristics. It's about manufacturing methods.
  • the pellicle is a protective film to improve the defect rate by protecting the photomask from contaminants during the photo process.
  • the light source changes from exposure equipment such as argon fluoride to EUV, the demand for new materials and processes for the pellicle is also increasing.
  • the pellicle In the EUV exposure process, the pellicle has technical difficulties in that it must have excellent thermal characteristics because it is heated and cooled instantaneously when light passes through it, and it must be able to withstand both pressure differences and mechanical shocks generated during high-speed transportation.
  • an extreme ultraviolet (EUV) transmission layer an extreme ultraviolet (EUV) transmission layer; a first out-of-band (OOB) filter layer disposed on a first surface of the EUV transmission layer; a second out-of-band (OOB) filter layer disposed on a second surface opposite to the first surface of the EUV transmission layer; a third OoB filter layer including zirconium (Zr) between the EUV transmission layer and the first OoB filter layer; And a fourth OoB filter layer including zirconium (Zr) between the EUV transmission layer and the second OoB filter layer, wherein the first and second OoB filter layers include zirconium oxide.
  • EUV pellicle structure is disclosed.
  • An object of the present invention to solve the above problems is to provide a pellicle membrane capable of minimizing light source loss while having thermal characteristics and durability characteristics.
  • an object of the present invention is to form a ruthenium structure stably bonded to the pellicle membrane.
  • the configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of forming a deposition pattern layer having a convex portion formed by depositing oxide particles on an upper surface of the third thin film layer and a concave portion between the convex portions; a fifth step of depositing the metal particles drawn into the concave portion in a predetermined pattern on the upper surface of the third thin film layer to form a metal pattern layer and removing the deposition pattern layer; a sixth step of forming a capping layer on top of the metal pattern layer to reduce reflect
  • the fourth step may include a 4-1 step of forming an oxide particle layer by depositing the oxide particles on the upper surface of the third thin film layer; and a 4-2 step of patterning the oxide particle layer through a photolithography process to form the deposition pattern layer.
  • the fifth step may include a 5-1 step of forming the metal pattern layer by performing deposition using the metal particles on the deposition pattern layer; and a 5-2 step of exposing the metal pattern layer by removing the deposition pattern layer by performing wet etching on the deposition pattern layer.
  • the oxide particles may be silicon dioxide (SiO 2 ).
  • the metal pattern layer may have a net structure formed by connecting the metal particles to each other.
  • the metal particles may be formed of ruthenium (Ru).
  • each of the first thin film layer, the second thin film layer, the third thin film layer, and the fourth thin film layer is a low-stress nitride (LSN) thin film layer and may be deposited using LPCVD.
  • LSN low-stress nitride
  • the core layer in the second step, may be deposited using CVD.
  • the core layer may be formed of SiC or poly-Si.
  • the capping layer may be deposited using ALD (Atomic Layer Deposition) or sputtering.
  • the capping layer may be formed of metal silicide.
  • patterning of the thin film layer assembly may be performed by a photolithography process.
  • the etching of the wafer may be performed by wet etching.
  • the 10th step may include a 10-1 step of etching a portion of the first thin film layer; and a 10-2 step of etching the fifth thin film layer and the sixth thin film layer.
  • wet etching for etching a portion of the first thin film layer may be performed using phosphoric acid (H 3 PO 4 ).
  • the etching of the fifth thin film layer and the sixth thin film layer may be performed by wet etching or dry etching.
  • the configuration of the present invention for achieving the above object is a first step in which a silicon wafer is prepared, a first thin film layer is formed on the upper surface of the wafer and a second thin film layer is formed on the lower surface of the wafer; a second step of forming a core layer transparent to transmit extreme ultraviolet rays on an upper surface of the first thin film layer; a third step in which a third thin film layer is formed on the upper surface of the core layer and a fourth thin film layer is formed on the lower surface of the second thin film layer; a fourth step of forming a graphene layer by transferring graphene to the upper surface of the third thin film layer; a fifth step of depositing metal particles in a predetermined pattern on the upper surface of the graphene layer to form a metal pattern layer; a sixth step of forming a capping layer on top of the metal pattern layer to reduce reflectance of extreme ultraviolet rays incident on the core layer; a seventh step in which a fifth thin film layer is formed on the upper surface of the capping layer
  • the metal pattern layer may have a net structure formed by connecting the metal particles to each other.
  • the metal particles may be formed of ruthenium (Ru).
  • the effect of the present invention according to the configuration as described above is that the pellicle membrane manufactured by the manufacturing method of the present invention is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so that it can have high durability and thermal characteristics. that there is
  • ruthenium ruthenium
  • FIG. 1 is a schematic diagram of a process sequence of a manufacturing method according to an embodiment of the present invention.
  • 2 to 7 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a process sequence of a manufacturing method according to another embodiment of the present invention.
  • 9 to 13 are cross-sectional views of products in each step of a manufacturing method according to another embodiment of the present invention.
  • FIGS. 2 to 7 are cross-sectional views of products of each step of the manufacturing method according to an embodiment of the present invention.
  • Figure 2 (a) is a cross-sectional view of the product after performing the first step
  • Figure 2 (b) is a cross-sectional view of the product after performing the second step
  • 3(a) is a cross-sectional view of the product after performing the third step
  • FIG. 3(b) is a cross-sectional view of the product after performing the 4-1 step.
  • FIG. 4(a) is a cross-sectional view of the product after performing step 4-2, and (b) of FIG. 4 is a cross-sectional view of the product after performing step 5-1.
  • 5(a) is a cross-sectional view of the product after performing the 5-2 step, and
  • FIG. 5(b) is a cross-sectional view of the product after performing the 6th step.
  • FIG. 6 (a) is a cross-sectional view of the product after performing the seventh step
  • FIG. 6 (b) is a cross-sectional view of the product after performing the eighth step
  • FIG. 7 (a) is a cross-sectional view of the product after performing the ninth step
  • FIG. 7 (b) is a cross-sectional view of the product after performing the tenth step.
  • a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer
  • the thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
  • LSN low-stress nitride
  • the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more.
  • a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
  • Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD).
  • LPCVD low pressure chemical vapor deposition
  • the LPCVD process which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
  • the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
  • LSN low-stress nitride
  • each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less.
  • the EUV transmittance of each thin film layer can be increased.
  • etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
  • a core layer 110 transparently formed so that extreme ultraviolet rays can pass through is formed on the upper portion of the first thin film layer 210.
  • the core layer 110 may be deposited using CVD.
  • CVD chemical vapor deposition
  • CVD is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase.
  • the reaction may form a thin film on the substrate surface.
  • the core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon).
  • the core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
  • EUV extreme ultraviolet
  • the extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
  • a third thin film layer 230 which is a low-stress nitride (LSN) thin film layer
  • a fourth thin film layer 240 that is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the second thin film layer 220 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
  • the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230.
  • the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
  • the convex portion formed by depositing oxide particles on the upper surface of the third thin film layer 230 and the concave portion between the convex portions A deposition pattern layer 152 having a portion may be formed.
  • the oxide particles may be silicon dioxide (SiO 2 ).
  • the type of oxide particles is not limited thereto, and other silicon oxide materials or other materials that are easy for patterning as described below may be used, of course.
  • the fourth step includes a 4-1 step of depositing oxide particles on the upper surface of the third thin film layer 230 to form the oxide particle layer 151; and a 4-2 step of patterning the oxide particle layer 151 through a photolithography process to form a pattern layer 152 for deposition.
  • oxide particles are deposited on the upper surface of the third thin film layer 230 using CVD (chemical vapor deposition) to form an oxide particle layer (151) can be formed.
  • CVD chemical vapor deposition
  • PVD Physical Vapor Deposition
  • the pattern designed on the mask for processing the oxide particle layer 151 may be implemented on the oxide particle layer 151 by a photolithography process. Specifically, first, the oxide particle layer 151 Step 4-1a of coating the upper surface with a photoresist may be performed.
  • step 4-1a step 4-1b of disposing the mask for processing the oxide particle layer 151 on which the pattern is formed on the photoresist coated surface may be performed.
  • step 4-1b of disposing the mask for processing the oxide particle layer 151 on which the pattern is formed on the photoresist coated surface may be performed.
  • the mask for processing the oxide particle layer 151 may be performed.
  • Step 4-1c of exposing the exposed photoresist-coated surface to light according to the pattern may be performed.
  • a step 4-1d which is a process of removing a portion where the photoresist is not needed, may be performed.
  • the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light.
  • a positive resist is used as a photoresist
  • the portion that receives light is removed and the portion that does not receive light remains.
  • a negative resist is used as a photoresist, It could be the other way around.
  • step 4-1e of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed.
  • step 4-1f of removing the photoresist remaining on the surface of the thin film layer assembly may be performed.
  • a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
  • patterning is performed on the oxide particle layer 151, and thus convex and concave parts are generated by the patterning, and such convex parts and A pattern layer 152 for deposition may be formed by the concave portion.
  • the metal particles drawn into the concave portion are deposited in a predetermined pattern on the upper surface of the third thin film layer 230 to form a metal
  • the deposition pattern layer 152 may be removed.
  • it may be formed of ruthenium (Ru).
  • the fifth step includes a 5-1 step of forming the metal pattern layer 140 by performing deposition using metal particles on the deposition pattern layer 152; and a 5-2 step of exposing the metal pattern layer 140 by removing the deposition pattern layer 152 by performing wet etching on the deposition pattern layer 152 .
  • the metal pattern layer 140 may be deposited on the deposition pattern layer 152 using ALD (Atomic Layer Deposition).
  • ALD process conditions such as an ALD process cycle for forming the metal pattern layer 140, a process temperature, a substrate surface treatment method, or a precursor type may be changed.
  • the metal pattern layer 140 is deposited on the deposition pattern layer 152 using ALD (Atomic Layer Deposition), but is not limited thereto, and the metal pattern layer 140 Silver may be deposited by a process capable of depositing ruthenium (Ru) like other PVD (sputter, evaporator, etc.).
  • ALD Advanced Deposition
  • Ru ruthenium
  • a material containing ruthenium (Ru) may be used as the precursor, and specifically, one or more materials selected from the group consisting of Ru(EtCp) 2 , Ru-2 and Ru-4 may be used as the precursor. there is. However, it is not limited thereto.
  • the number of cycles can be controlled, and the number of cycles can be varied depending on the type of precursor.
  • the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
  • step 5-2 wet etching may be performed to remove the pattern layer 152 for deposition.
  • an etchant such as hydrogen fluoride (HF), hydrochloric acid (HCl), nitric acid (HNO 3 ) is used for etching this can be used
  • the metal pattern layer 140 can be formed on the upper surface of the third thin film layer 230, and such a metal pattern layer 140 is formed along the concave pattern as described above, and the metal pattern The layer 140 may have a net structure formed by connecting metal particles to each other.
  • the net structure may mean that ruthenium (Ru) particles are linearly connected to form a net shape.
  • ruthenium (Ru) particles are linearly connected to form a net shape.
  • Such a net structure may be a shape in which a plurality of straight lines intersect, or a net shape of a combination of straight lines and curves.
  • the pellicle membrane of the present invention can have excellent transmittance while being provided with ruthenium (Ru) particles.
  • the shape of the metal pattern layer 140 is described as a net structure in the embodiment of the present invention, it is not limited thereto, and the metal pattern layer 140 of various structures is formed according to the pattern shape of the deposition pattern layer 152. can form
  • the thermal emissivity of ruthenium (Ru) increases rapidly, and when the thickness of ruthenium (Ru) is 3 nm, the pellicle of the present invention
  • the temperature of the membrane can be reduced by more than 1,000 °C. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
  • the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed on the metal pattern layer 140 can be formed on top.
  • the capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
  • the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays.
  • the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
  • the capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
  • ALD Atomic Layer Deposition
  • PVD physical vapor deposition
  • the capping layer 120 may be formed of metal silicide.
  • the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide).
  • the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
  • heat treatment may be performed on the capping layer 120 .
  • the capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
  • the heat treatment temperature may be 800° C. or higher.
  • the heat treatment of the capping layer 120 may be performed in equipment where the above deposition process (ALD, sputtering, etc.) of the capping layer 120 has been performed, or may be performed by an external heater. .
  • ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) layer, ruthenium by tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
  • the fifth thin film layer 250 is formed on the upper surface of the capping layer 120, and the sixth thin film layer 260 is formed on the fourth step. It may be formed on the lower surface of the thin film layer 240 .
  • the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene.
  • LSN low-stress nitride
  • Ag silver
  • polymer film such as Parylene
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
  • the thin film layer combination which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed.
  • patterning of the thin film layer assembly may be performed through a photolithography process.
  • a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
  • a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
  • a developing step may be performed, which is a process of removing portions where photosensitizer is not needed.
  • the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light.
  • a positive resist is used as a photoresist
  • the portion that receives light is removed and the portion that does not receive light remains.
  • a negative resist is used as a photoresist, It could be the other way around.
  • an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed.
  • a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed.
  • a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
  • the wafer 130 may be etched along the patterning shape of the thin film layer assembly.
  • the etching of the wafer 130 may be performed by wet etching.
  • wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
  • a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the pattern of the wafer 130 exposed in this way.
  • the etching of a portion of the wafer 130 which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH)
  • the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
  • an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
  • step 10 after performing the ninth step described above, a part of the first thin film layer 210 is etched along the shape of the etched part on the lower surface of the wafer 130, and the etching By removing the fifth thin film layer 250 and the sixth thin film layer 260, a pellicle membrane formed to expose the metal pattern layer 140 may be formed.
  • the 10th step includes a 10-1 step in which etching is performed on a portion of the first thin film layer 210; and a 10-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260.
  • steps 10-1 and 10-2 described above may be performed simultaneously or separately.
  • the etching of a portion of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching.
  • wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
  • step 10-2 wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260.
  • the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the ninth step and can be removed by dry etching or wet etching.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 10-2 step.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 10-2 step.
  • a net structure formed of metal particles (Ru) may be formed inside the capping layer 120.
  • FIGS. 9 to 13 are cross-sectional views of products of each step of the manufacturing method according to another embodiment of the present invention.
  • Figure 9 (a) is a cross-sectional view of the product after performing the first step
  • Figure 9 (b) is a cross-sectional view of the product after performing the second step
  • FIG. 10 (a) is a cross-sectional view of the product after performing the third step
  • FIG. 10 (b) is a cross-sectional view of the product after performing the fourth step.
  • FIG. 11 (a) is a cross-sectional view of the product after performing the fifth step
  • FIG. 11 (b) is a cross-sectional view of the product after performing the sixth step
  • FIG. 12 (a) is a cross-sectional view of the product after performing the seventh step
  • FIG. 12 (b) is a cross-sectional view of the product after performing the eighth step
  • FIG. 13 (a) is a cross-sectional view of the product after performing the ninth step
  • FIG. 13 (b) is a cross-sectional view of the product after performing the tenth step.
  • a silicon wafer 130 is prepared, and a first low-stress nitride (LSN) thin film layer
  • the thin film layer 210 may be formed on the upper surface of the wafer 130 and the second thin film layer 220 which is a low-stress nitride (LSN) thin film layer may be formed on the lower surface of the wafer 130 .
  • LSN low-stress nitride
  • the wafer 130 may be formed of silicon (Si), and may be formed in a disk shape with a diameter of 8 inches (in) or more.
  • a plurality of pellicle membranes according to the manufacturing method of the present invention can be formed using the wafer 130 as described above, and accordingly, by manufacturing a plurality of pellicle membranes with one wafer 130, a large amount of pellicles production can be made possible.
  • Each of the first thin film layer 210 and the second thin film layer 220 may be deposited using low pressure chemical vapor deposition (LPCVD).
  • LPCVD low pressure chemical vapor deposition
  • the LPCVD process which is a chemical vapor deposition method that proceeds at a low pressure, can be performed at a higher temperature than the CVD process.
  • the first thin film layer 210 may act as a stop layer (etch stop layer) to prevent damage to the core layer 110 during wet etching of the wafer 130 in the seventh step described below. That is, since the low-stress nitride (LSN) thin film layer is etch-resistant to KOH, only silicon (core layer 110) is etched with KOH, and the etching may stop when it meets the LSN thin film layer.
  • LSN low-stress nitride
  • each of the first thin film layer 210 and the second thin film layer 220 may be formed as a thin film layer, and the thickness of the first thin film layer 210 may be formed to 20 nm or less, and the thickness of the first thin film layer 210 may be formed to 20 nm or less.
  • the EUV transmittance of each thin film layer can be increased.
  • etching efficiency by phosphoric acid (H 3 PO 4 ) may be increased during wet etching of a portion of the first thin film layer 210 .
  • a core layer 110 transparently formed to transmit extreme ultraviolet rays is formed on the upper surface of the first thin film layer 210. It can be.
  • the core layer 110 may be deposited using CVD.
  • CVD chemical vapor deposition
  • CVD is a chemical vapor deposition method, which supplies a gas containing elements constituting the thin film material to be formed onto a substrate to cause a chemical reaction of either oxidation-reduction reaction, thermal decomposition, photolysis, or substitution on the surface of the substrate or vapor phase.
  • the reaction may form a thin film on the substrate surface.
  • the core layer 110 may be formed of SiC (silicon carbide) or poly-Si (polysilicon).
  • the core layer 110 is a main support layer of the pellicle membrane of the present invention, and may have high transmittance to extreme ultraviolet (EUV), high durability, and phosphoric acid selectivity.
  • EUV extreme ultraviolet
  • the extreme ultraviolet transmittance of the core layer 110 may be formed to be 88% or more, and the thickness of the core layer 110 may be formed to be 50 nm or less in order to have high durability as described above. Accordingly, EUV transmission efficiency of the core layer 110 may be increased.
  • a third thin film layer 230 which is a low-stress nitride (LSN) thin film layer
  • a fourth thin film layer 240 which is a low-stress nitride (LSN) thin film layer, may be formed on the lower surface of the second thin film layer 220.
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be deposited using LPCVD (Low Pressure Chemical Vapor Deposition).
  • the core layer 110 is protected from the environment of extreme ultraviolet rays, and the residual stress in the pellicle membrane of the present invention is applied to the third thin film layer 230.
  • the aforementioned residual stress may be controlled by controlling the ratio of silicon (Si) to nitrogen (N) in the third thin film layer 230 .
  • each of the third thin film layer 230 and the fourth thin film layer 240 may be formed as a thin film layer, the thickness of the third thin film layer 230 may be formed to 20 nm or less, and the thickness of the fourth thin film layer 240 may be formed to 20 nm or less. In this way, by forming the thickness of each of the third thin film layer 230 and the fourth thin film layer 240, the EUV transmittance of each thin film layer can be increased.
  • graphene may be transferred to the upper surface of the third thin film layer 230 to form a graphene layer 160 .
  • a graphene growth step of growing graphene on copper foil may be performed.
  • a PMMA layer forming step of forming a PMMA layer by spin-coating polymethyl methacrylate (PMMA) on the copper foil on which the graphene is grown may be performed.
  • a copper removal step of removing the copper foil through wet etching may be performed.
  • ammonium persulfate APS, Ammonium Persulfate
  • the graphene layer 160 may be formed on the upper surface of the third thin film layer 230 by transferring graphene to the upper surface of the third thin film layer 230 .
  • the metal particles are deposited in a predetermined pattern on the upper surface of the graphene layer 160 to form the metal pattern layer 140.
  • the metal pattern layer 140 may have a net structure formed by connecting metal particles to each other.
  • the metal particles may be formed of ruthenium (Ru).
  • graphene grain boundaries are formed by crystal defects, which are boundaries of graphene grains, and ruthenium is formed in the defect space of graphene grain boundaries by depositing ruthenium (Ru) particles on the graphene layer 160.
  • (Ru) particles are combined, and ruthenium (Ru) particles grow at the grain boundary and are connected to each other to form the above net structure.
  • the metal pattern layer 140 as described above may be deposited on the upper surface of the third thin film layer 230 using ALD (Atomic Layer Deposition).
  • ALD process conditions such as an ALD process cycle for forming the metal pattern layer 140, a process temperature, a substrate surface treatment method, or a precursor type may be changed.
  • a material containing ruthenium (Ru) may be used as the precursor, and specifically, one or more materials selected from the group consisting of Ru(EtCp) 2 , Ru-2 and Ru-4 may be used as the precursor. there is. However, it is not limited thereto.
  • the number of cycles can be controlled as described above, and the number of cycles can be varied depending on the type of precursor.
  • the process temperature of the ALD process for forming the metal pattern layer 140 can be controlled as described above, and the process temperature can be varied according to the type of the precursor or the number of cycles.
  • the net structure may mean that ruthenium (Ru) particles are linearly connected to form a net shape.
  • Ru ruthenium
  • the thermal emissivity of ruthenium (Ru) increases rapidly, and when the thickness of ruthenium (Ru) is 3 nm, the pellicle of the present invention
  • the temperature of the membrane can be reduced by more than 1,000 °C. Accordingly, heat radiation efficiency of the pellicle membrane of the present invention may be increased, and thus durability against heat may be improved.
  • the capping layer 120 reducing the reflectance of the extreme ultraviolet rays incident on the core layer 110 is formed by the metal pattern layer 140 can be formed on top.
  • the capping layer 120 may have optical characteristics of high emissivity and low reflectance for extreme ultraviolet rays, and may have a phosphoric acid selectivity.
  • the capping layer 120 may have an emissivity of 0.1 or more and a reflectance of 0.05 or less with respect to extreme ultraviolet rays.
  • the capping layer 120 may have performance such as an EUV transmittance of 88% or more. Accordingly, the utilization rate of extreme ultraviolet rays irradiated with the pellicle membrane of the present invention is remarkably increased, and the loss rate of extreme ultraviolet rays can be reduced.
  • the capping layer 120 may be deposited using ALD (Atomic Layer Deposition) or sputtering. Of course, other physical vapor deposition (PVD) processes other than sputtering may be used to form the capping layer 120 .
  • ALD Atomic Layer Deposition
  • PVD physical vapor deposition
  • the capping layer 120 may be formed of metal silicide.
  • the capping layer 120 may be formed of MoSiO 2 (silicon molybdenum dioxide).
  • the material forming the capping layer 120 is not limited thereto, and among the materials that satisfy EUV high transmittance, high emissivity, and low reflectance performance and are resistant to hydrogen plasma, all materials having a selectivity to phosphoric acid can be used. can
  • heat treatment may be performed on the capping layer 120 .
  • the capping layer 120 formed as described above may be used without heat treatment, but heat treatment may be performed to improve durability and EUV optical characteristics.
  • the heat treatment temperature may be 800° C. or higher.
  • heat treatment is performed on the capping layer 120.
  • heat treatment of the capping layer 120 may be performed in equipment where the above deposition process (ALD, sputtering, etc.) of the capping layer 120 has been performed, or may be performed by an external heater.
  • ruthenium (Ru) pattern with the metal pattern layer 140 as described above, by combining the metal silicide and the ruthenium (Ru) layer, ruthenium by tin (Tin) and hydrogen diffusion (hydrogen diffusion) in the EUVL environment It is possible to prevent blistering of the (Ru) layer. Accordingly, durability of the pellicle membrane of the present invention can be improved.
  • the fifth thin film layer 250 is formed on the upper surface of the capping layer 120, and the sixth thin film layer 260 is formed on the fourth step. It may be formed on the lower surface of the thin film layer 240 .
  • the capping layer 120 is protected during patterning of the thin film layer assembly in the seventh step described below or wet etching in the eighth step described below can be formed to
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a low-stress nitride (LSN) thin film layer, a silver (Ag) coating layer, or a polymer film such as Parylene.
  • LSN low-stress nitride
  • Ag silver
  • polymer film such as Parylene
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is LPCVD (Low Pressure Chemical Vapor Deposition) can be used.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 may be formed as a thin film layer, the thickness of the fifth thin film layer 250 may be formed to 20 nm or less, and the thickness of the sixth thin film layer 260 may be formed to 20 nm or less. As the thicknesses of the fifth thin film layer 250 and the sixth thin film layer 260 are formed in this way, the etching efficiency of the fifth thin film layer 250 and the sixth thin film layer 260 can be increased during wet etching or dry etching. .
  • the thin film layer combination which is a combination of the second thin film layer 220, the fourth thin film layer 240, and the sixth thin film layer 260 Patterning may be performed.
  • patterning of the thin film layer assembly may be performed through a photolithography process.
  • a pattern designed on the mask may be implemented in the thin film layer assembly, and specifically, first, a photoresist coating step of coating a photoresist on the lower surface of the thin film layer assembly may be performed.
  • a mask placement step of disposing a patterned mask on the photoresist-coated surface may be performed, and then an exposure step of exposing the exposed photoresist-coated surface to light according to the pattern of the mask. can be performed
  • a developing step may be performed, which is a process of removing portions where photosensitizer is not needed.
  • the thin film layer assembly is divided into a portion that receives light and a portion that does not receive light.
  • a positive resist is used as a photoresist
  • the portion that receives light is removed and the portion that does not receive light remains.
  • a negative resist is used as a photoresist, It could be the other way around.
  • an etching step of performing etching for patterning the thin film layer assembly using dry etching or wet etching may be performed.
  • a photoresist removal step of removing the photoresist remaining on the surface of the thin film layer assembly may be performed.
  • a sulfuric acid (H 2 SO 4 ) solution or the like may be used, but is not limited thereto.
  • the wafer 130 may be etched along the patterning shape of the thin film layer assembly.
  • the etching of the wafer 130 may be performed by wet etching.
  • wet etching of the wafer 130 may be performed using potassium hydroxide (KOH).
  • a portion of the wafer 130 is exposed along with the patterning of the thin film layer assembly, and etching may be performed on the pattern of the wafer 130 exposed in this way.
  • the etching of a portion of the wafer 130 which is a shape corresponding to the patterning shape of the thin film layer assembly, is described as wet etching using potassium hydroxide (KOH)
  • the material used for wet etching is hydroxide It is not limited to potassium (KOH), and hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrogen fluoride (HF), and the like may also be used.
  • an etchant is prepared by dissolving 30 wt% of potassium in a solvent that is water at a temperature of 80 ° C. Wet etching may be performed by contacting one part.
  • step 10 after performing the ninth step described above, a portion of the first thin film layer 210 is etched along the shape of the etched portion on the lower surface of the wafer 130, and By removing the fifth thin film layer 250 and the sixth thin film layer 260, a pellicle membrane may be formed.
  • the 10th step includes a 10-1 step in which etching is performed on a portion of the first thin film layer 210; and a 10-2 step of etching the fifth thin film layer 250 and the sixth thin film layer 260.
  • steps 10-1 and 10-2 described above may be performed simultaneously or separately.
  • the etching of a portion of the first thin film layer 210 and the etching removal of the fifth thin film layer 250 and the sixth thin film layer 260 are performed by wet etching.
  • wet etching for etching a portion of the first thin film layer 210 and etching and removing the fifth thin film layer 250 and the sixth thin film layer 260 may be performed using phosphoric acid (H 3 PO 4 ). .
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the concentration of phosphoric acid may be 80 to 90wt%, preferably, the concentration of phosphoric acid may be 85wt%.
  • the first thin film layer 210 is wet-etched using phosphoric acid (H 3 PO 4 ) as described above. Etching may be performed on a portion.
  • step 10-2 wet etching or dry etching may be performed on the fifth thin film layer 250 and the sixth thin film layer 260.
  • the fifth thin film layer 250 and the sixth thin film layer 260 may be formed of a material that is resistant to an etchant (ex. KOH) of wet etching in the ninth step and can be removed by dry etching or wet etching.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a silver (Ag) coating and can be easily removed by nitric acid (HNO 3 ) in the 10-2 step.
  • each of the fifth thin film layer 250 and the sixth thin film layer 260 is formed of a polymer film such as Parylene, and can be easily removed by a DRIE method in the 10-2 step.
  • a net structure formed of metal particles (Ru) may be formed inside the capping layer 120.
  • the pellicle frame may be formed along the edge shape of the pellicle membrane to fixally support the pellicle membrane.
  • the pellicle membrane of the present invention manufactured by the manufacturing method of the present invention as described above is formed as a multilayer film while preserving 88% or more of the initial amount of extreme ultraviolet light, so it can have high durability and thermal characteristics.
  • the precursor is Ru (EtCp) 2
  • the number of cycles is 100 cycles
  • the process temperature is 350 ° C.
  • ALD process It is an AFM image taken for the graphene layer 160 after performing.
  • a indicates ruthenium (Ru) deposited on the grain boundary of graphene
  • b indicates a line for a portion of the graphene layer 160
  • (b) of FIG. 14 is a graph showing the change in thickness of the cross section of the graphene layer 160 with respect to line b indicated in (a) of FIG. 14 .
  • FIG. 15 is a deposition process for the upper surface of the graphene layer 160, after the ALD process is performed with Ru (EtCp) 2 as the precursor, the number of cycles as 200 cycles, and the process temperature as 350 ° C.
  • Ru EtCp
  • FIG. 16 is a deposition process for the upper surface of the graphene layer 160, after performing the ALD process with Ru (EtCp) 2 as the precursor, the number of cycles as 200 cycles, and the process temperature as 300 ° C. This is an AFM image taken of the pinned layer 160.
  • a denotes a ruthenium (Ru) particle positioned at a grain boundary of graphene and b denotes a ruthenium (Ru) particle positioned on a graphene crystal surface.
  • a may represent a ruthenium (Ru) particle located at a grain boundary of graphene.
  • the process of forming a net structure while growing ruthenium (Ru) particles along the grain boundaries of graphene may be incomplete depending on the temperature conditions among the ALD process conditions, and the ALD process conditions are controlled. Thus, it can be confirmed that the shape of the net structure of the metal pattern layer 140 can be controlled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

본 발명의 일 실시 예는 열적 특성 및 내구성 특성을 구비하부면서도, 광원 손실을 최소화할 수 있는 펠리클 멤브레인의 제조방법을 제공한다. 본 발명의 실시 예에 따른 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법은, 실리콘 웨이퍼가 준비되고, 제1박막층이 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 코어층 상부면에 형성되고, 제4박막층이 제2박막층 하부면에 형성되는 제3단계; 제3박막층 상부면에 산화물 입자가 증착되어 형성된 볼록부와 볼록부 사이의 오목부를 구비하는 증착용패턴층이 형성되는 제4단계; 오목부로 인입된 금속입자가 제3박막층 상부면에 소정의 패턴으로 증착되어 금속패턴층이 형성되고, 증착용패턴층이 제거되는 제5단계; 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 금속패턴층 상부에 형성되는 제6단계; 제5박막층이 캐핑층 상부면에 형성되고, 제6박막층이 제4박막층 하부면에 형성되는 제7단계; 제2박막층과 제4박막층 및 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계; 박막층결합체의 패터닝 형상을 따라 웨이퍼에 대한 식각이 수행되는 제9단계; 및 웨이퍼 하부면의 식각 부위 형상을 따라 제1박막층의 일 부위가 식각되고, 식각에 의해 제5박막층과 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함한다.

Description

루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법
본 발명은 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법에 관한 것으로, 더욱 상세하게는, 열적 특성 및 내구성 특성을 구비하부면서도, 광원 손실을 최소화할 수 있는 펠리클 멤브레인의 제조방법에 관한 것이다.
펠리클은 포토공정 중 포토마스크를 오염물질로부터 보호하여 불량률을 개선하기 위한 보호막으로 기존 불화아르곤 등의 노광장비에서 EUV로 광원이 바뀜에 따라 펠리클도 새로운 소재와 공정에 대한 요구가 증가하고 있다.
기존 렌즈 투과방식에서는 빛이 한 번만 펠리클을 투과하면 되었으나, 반사 구조인 EUV 장비에서는 빛이 들어왔다가 다시 반사되어 빠져나가 광원 손실이 커질 수 있어, EUV 펠리클은 빛이 2번 통과된 후에도 초기 광량의 88% 이상을 보존할 수 있어야 하고 높은 내구적 특성도 요구된다.
EUV 노광과정에서 펠리클은 빛이 통과 시 순간적으로 가열, 냉각이 반복되기 때문에 열적 특성이 우수해야 하며, 압력 차이 또는 고속이송 과정에서 발생하는 기계적인 충격도 모두 견딜 수 있어야 하는 기술적 어려움을 가지고 있다.
대한민국 등록특허 제10-1726125호(발명의 명칭: EUV 펠리클 구조체, 및 그 제조방법)에서는, EUV(Extreme Ultraviolet) 투과층; 상기 EUV 투과층의 제1 면 상에 배치된 제1 OoB(out-of-band) 필터층; 상기 EUV 투과층의 제1 면에 대향하는 제2 면 상에 배치된 제2 OoB(out-of-band) 필터층; 상기 EUV 투과층과 상기 제1 OoB 필터층 사이에 지르코늄(Zr)을 포함하는 제3 OoB 필터층; 및 상기 EUV 투과층과 상기 제2 OoB 필터층 사이에 지르코늄(Zr)을 포함하는 제4 OoB 필터층을 포함하되, 상기 제1 및 제2 OoB 필터층은 산화지르코늄을 포함하는 EUV 펠리클 구조체가 개시되어 있다.
<선행기술문헌>
대한민국 등록특허 제10-1726125호
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 열적 특성 및 내구성 특성을 구비하부면서도, 광원 손실을 최소화할 수 있는 펠리클 멤브레인을 제공하는 것이다.
그리고, 본 발명이 목적은, 펠리클 멤브레인에 안정적으로 결합된 루테늄 구조체를 형성시키도록 하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 제3박막층 상부면에 산화물 입자가 증착되어 형성된 볼록부와 상기 볼록부 사이의 오목부를 구비하는 증착용패턴층이 형성되는 제4단계; 상기 오목부로 인입된 금속입자가 상기 제3박막층 상부면에 소정의 패턴으로 증착되어 금속패턴층이 형성되고, 상기 증착용패턴층이 제거되는 제5단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제6단계; 제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제7단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제9단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 제4단계는, 상기 제3박막층 상부면에 상기 산화물 입자를 증착시켜 산화물입자층을 형성시키는 제4-1단계; 및 포토리소그래피(photolithography) 공정으로 상기 산화물입자층에 대한 패터닝을 수행하여 상기 증착용패턴층을 형성시키는 제4-2단계를 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 제5단계는, 상기 증착용패턴층 상에 상기 금속입자를 이용하여 증착을 수행하여 상기 금속패턴층을 형성시키는 제5-1단계; 및 상기 증착용패턴층에 대한 습식식각을 수행하여 상기 증착용패턴층을 제거함으로써 상기 금속패턴층을 노출시키는 제5-2단계를 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 산화물 입자는 이산화규소(SiO2)일 수 있다.
본 발명의 실시 예에 있어서, 상기 금속패턴층은 상기 금속입자가 서로 연결되어 형성되는 그물 구조를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 금속입자는 루테늄(Ru)으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1박막층, 상기 제2박막층, 상기 제3박막층 및 상기 제4박막층 각각은, LSN(Low-Stress nitirde) 박막층으로써 LPCVD를 이용하여 증착될 수 있다.
본 발명의 실시 예에 있어서, 상기 제2단계에서, 상기 코어층은 CVD를 이용하여 증착될 수 있다.
본 발명의 실시 예에 있어서, 상기 코어층은 SiC 또는 poly-Si로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제6단계에서, 상기 캐핑층은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다.
본 발명의 실시 예에 있어서, 상기 캐핑층은 Metal silicide로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제8단계에서, 상기 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.
본 발명의 실시 예에 있어서, 상기 제9단계에서, 상기 웨이퍼에 대한 식각은 습식식각으로 수행될 수 있다.
본 발명의 실시 예에 있어서, 상기 제10단계는, 상기 제1박막층의 일 부위에 대한 식각이 수행되는 제10-1단계; 및 상기 제5박막층과 상기 제6박막층에 대한 식각이 수행되는 제10-2단계를 포함할 수 있다.
본 발명의 실시 예에 있어서, 상기 제10-1단계에서, 상기 제1박막층의 일 부위에 대한 식각을 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.
본 발명의 실시 예에 있어서, 상기 제10-2단계에서, 상기 제5박막층 및 상기 제6박막층에 대한 식각은 습식식각 또는 건식식각으로 수행될 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 제3박막층 상부면에 그래핀이 전사되어 그래핀층이 형성되는 제4단계; 상기 그래핀층 상부면에 금속입자가 소정의 패턴으로 증착되어 금속패턴층이 형성되는 제5단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제6단계; 제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제7단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제9단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함한다.
본 발명의 실시 예에 있어서, 상기 금속패턴층은 상기 금속입자가 서로 연결되어 형성되는 그물 구조를 구비할 수 있다.
본 발명의 실시 예에 있어서, 상기 금속입자는 루테늄(Ru)으로 형성될 수 있다.
상기와 같은 구성에 따른 본 발명의 효과는, 본 발명의 제조방법에 의해 제조된 펠리클 멤브레인이 극자외선 초기 광량의 88% 이상을 보존하부면서도 다층막으로 형성되어 높은 내구적, 열적 특성을 구비할 수 있다는 것이다.
또한, 대면적의 웨이퍼를 이용하여 펠리클을 복수 개 제조할 수 있음으로써, 웨이퍼를 이용한 펠리클 대량 생산에 용이하게 적용될 수 있다는 것이다.
그리고, 펠리클 멤브레인에 소정의 패턴을 구비하는 루테늄(Ru)의 층을 형성시켜 열방사율을 향상시켜, 고온에 대한 펠리클 멤브레인의 내구성을 향상시킬 수 있다는 것이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이다.
도 2 내지 도 7은 본 발명의 일 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.
도 8은 본 발명의 다른 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이다.
도 9 내지 도 13은 본 발명의 다른 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.
도 14 내지 도 16은 본 발명의 다른 실시 예에 따른 제조방법에 의한 그래핀층 표면에 대한 AFM 분석 이미지이다.
본 발명에 따른 가장 바람직한 일 실시예는, 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계; 극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계; 제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계; 상기 제3박막층 상부면에 산화물 입자가 증착되어 형성된 볼록부와 상기 볼록부 사이의 오목부를 구비하는 증착용패턴층이 형성되는 제4단계; 상기 오목부로 인입된 금속입자가 상기 제3박막층 상부면에 소정의 패턴으로 증착되어 금속패턴층이 형성되고, 상기 증착용패턴층이 제거되는 제5단계; 상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제6단계; 제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제7단계; 상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계; 상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제9단계; 및 상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함하는 것을 특징으로 한다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 일 실시 예에 따른 제조방법에 대해서 설명하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이고, 도 2 내지 도 7은 본 발명의 일 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.
도 2의 (a)는 제1단계 수행 후 생성물의 단면도이고, 도 2의 (b)는 제2단계 수행 후 생성물의 단면도이다. 그리고, 도 3의 (a)는 제3단계 수행 후 생성물의 단면도이고, 도 3의 (b)는 제4-1단계 수행 후 생성물의 단면도이다.
또한, 도 4의 (a)는 제4-2단계 수행 후 생성물의 단면도이고, 도 4의 (b)는 제5-1단계 수행 후 생성물의 단면도이다. 그리고, 도 5의 (a)는 제5-2단계 수행 후 생성물의 단면도이고, 도 5의 (b)는 제6단계 수행 후 생성물의 단면도이다.
또한, 도 6의 (a)는 제7단계 수행 후 생성물의 단면도이고, 도 6의 (b)는 제8단계 수행 후 생성물의 단면도이다. 그리고, 도 7의 (a)는 제9단계 수행 후 생성물의 단면도이고, 도 7의 (b)는 제10단계 수행 후 생성물의 단면도이다.
본 발명의 일 실시 예에 따른 제조방법에서는, 도 1의 (a)에서 보는 바와 같이, 먼저, 제1단계에서, 실리콘 웨이퍼(130)가 준비되고, LSN(Low-Stress nitirde) 박막층인 제1박막층(210)이 웨이퍼(130)의 상부면에 형성되고 LSN(Low-Stress nitirde) 박막층인 제2박막층(220)이 웨이퍼(130)의 하부면에 형성될 수 있다.
상기와 같이 웨이퍼(130)는 실리콘(Si)으로 형성될 수 있으며, 웨이퍼(130)는 원판형으로 직경이 8인치(in) 이상으로 형성될 수 있다. 그리고, 본 발명의 제조방법에 의한 펠리클 멤브레인은 상기와 같은 웨이퍼(130)를 이용하여 복수 개 형성시킬 수 있으며, 이에 따라, 하나의 웨이퍼(130)로 복수 개의 펠리클 멤브레인을 제조함으로써, 펠리클의 대량 생산이 가능하도록 할 수 있다.
제1박막층(210)과 제2박막층(220) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다. 저압력에서 진행하는 화학기상 증착방법인 LPCVD 공정은 CVD 공정에 비해 고온에서 수행될 수 있다.
여기서, 제1 박막층(210)은, 하기된 제7단계에서 웨이퍼(130)에 대한 습식식각 중 코어층(110)의 손상을 방지하는 stop layer(식각저지층)로써 작용할 수 있다. 즉, LSN(Low-Stress nitirde) 박막층은 KOH에 대해 식각내성이 있어서 KOH로 실리콘(코어층(110))만 식각이 되고 LSN 박막층을 만나면 식각이 멈추게 될 수 있다.
상기와 같이 제1박막층(210)과 제2박막층(220) 각각은 박막층으로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제1박막층(210)과 제2박막층(220) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다. 그리고, 하기된 바와 같이 제1박막층(210)의 일 부위에 대한 습식식각 시 인산(H3PO4)에 의한 식각 효율이 증대될 수 있다.
도 1의 (b)에서 보는 바와 같이, 상기된 제1단계 수행 후 제2단계에서, 극자외선이 투과 가능하도록 투명하게 형성되는 코어층(core layer)(110)이 제1박막층(210) 상부면에 형성될 수 있다. 여기서, 코어층(110)은 CVD를 이용하여 증착될 수 있다.
CVD(chemical vapor deposition)는 화학기상증착법으로, 형성하고자 하는 박막 재료를 구성하는 원소를 포함하는 가스를 기판 위에 공급하여 기상 또는 기판 표면에서의 산화환원반응, 열분해, 광분해 또는 치환 중 어느 하나의 화학적 반응으로 박막을 기판 표면에 형성할 수 있다.
코어층(110)은 SiC(탄화규소) 또는 poly-Si(폴리규소, polysilicon)로 형성될 수 있다. 코어층(110)은 본 발명의 펠리클 멤브레인의 주요 지지층으로써, 극자외선(EUV)에 대한 고투과율을 구비하고, 고내구성을 구비하며, 인산(phosphoric acid) 선택비를 구비할 수 있다.
코어층(110)의 극자외선 투과율은 88% 이상으로 형성될 수 있으며, 상기와 같은 고내구성을 구비하기 위하여 코어층(110)의 두께는 50nm이하로 형성될 수 있다. 이에 따라, 코어층(110) EUV 투과 효율이 증대될 수 있다.
도 1의 (c)에서 보는 바와 같이, 상기된 제2단계 수행 후 제3단계에서, LSN(Low-Stress nitirde) 박막층인 제3박막층(230)이 코어층(110) 상부면에 형성되고, LSN(Low-Stress nitirde) 박막층인 제4박막층(240)이 제2박막층(220) 하부면에 형성될 수 있다. 여기서, 제3박막층(230)과 제4박막층(240) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.
상기와 같이 제3박막층(230)과 제4박막층(240)이 형성됨으로써, 극자외선의 환경으로부터 코어층(110)이 보호되며, 본 발명의 펠리클 멤브레인 내 잔류 응력이 제3박막층(230)에 의해 제어될 수 있다. 여기서, 제3박막층(230)에서 규소(Si)와 질소(N)의 비율을 제어하여 상기된 잔류 응력을 제어할 수 있다.
상기와 같이 제3박막층(230)과 제4박막층(240) 각각은 박막층으로 형성될 수 있으며, 제3박막층(230)의 두께는 20nm이하로 형성될 수 있으며, 제4박막층(240)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제3박막층(230)과 제4박막층(240) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다.
도 1의 (d)와 (e)에서 보는 바와 같이, 상기된 제3단계 수행 후 제4단계에서, 제3박막층(230) 상부면에 산화물 입자가 증착되어 형성된 볼록부와 볼록부 사이의 오목부를 구비하는 증착용패턴층(152)이 형성될 수 있다.
여기서, 산화물 입자는 이산화규소(SiO2)일 수 있다. 다만, 산화물 입자의 종류가 이에 한정되는 것은 아니고, 다른 산화규소 물질이나, 하기와 같은 패터닝에 용이한 다른 물질이 이용될 수 있음은 물론이다.
구체적으로, 제4단계는, 제3박막층(230) 상부면에 산화물 입자를 증착시켜 산화물입자층(151)을 형성시키는 제4-1단계; 및 포토리소그래피(photolithography) 공정으로 산화물입자층(151)에 대한 패터닝을 수행하여 증착용패턴층(152)을 형성시키는 제4-2단계를 포함할 수 있다.
도 1의 (d)와 도 3의 (b)에서 보는 바와 같이, 제4-1단계에서는, CVD(chemical vapor deposition)를 이용하여 제3박막층(230) 상부면에 산화물 입자를 증착시켜 산화물입자층(151)을 형성시킬 수 있다. 본 발명의 실시 예에서는 산화물입자층(151)의 형성을 위하여 CVD가 이용된다고 설명하고 있으나, sperttering 등의 PVD(Physical Vapor Deposition)가 이용될 수 있음은 물론이다.
그리고, 제4-2단계에서는, 포토리소그래피 공정에 의하여, 산화물입자층(151) 가공용 마스크 상에 설계된 패턴을 산화물입자층(151)에 구현하게 될 수 있으며, 구체적으로, 먼저, 산화물입자층(151)의 상부면에 감광제를 코팅하는 제4-1a단계가 수행될 수 있다.
그리고, 제4-1a단계 수행 후, 패턴이 형성된 산화물입자층(151) 가공용 마스크를 감광제 코팅면 상에 배치시키는 제4-1b단계가 수행될 수 있고, 다음으로, 산화물입자층(151) 가공용 마스크의 패턴에 따라 노출된 감광제 코팅면을 광에 노출시키는 제4-1c단계가 수행될 수 있다.
그 후, 감광제가 필요없는 부분을 제거하는 과정인 제4-1d단계가 수행될 수 있다. 여기서, 박막층결합체는 광을 받은 부분과 받지 않은 부분으로 구분되는데, 포지티브 레지스트를 감광제로 사용한 경우 광을 받은 부분은 제거되고 광을 받지 않은 부분은 그래도 남게 되며, 네거티브 레지시트를 감광제로 사용한 경우에는 그 반대일 수 있다.
다음으로, 건식식각 또는 습식식각을 이용하여 박막층결합체에 대한 패터닝을 위한 식각을 수행하는 제4-1e단계가 수행될 수 있다. 상기와 같은 제4-1e단계 이 후, 박막층결합체의 표면에 남아 있는 감광제를 제거하는 제4-1f단계가 수행될 수 있다. 감광제의 제거를 위해 황산(H2SO4) 용액 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.
상기와 같은, 제4-1a단계 내지 제4-1f단계가 수행됨으로써, 산화물입자층(151)에 패터닝이 수행되게 되고, 이에 따라, 패터닝에 의한 볼록부와 오목부가 생성되며, 이와 같은 볼록부와 오목부에 의해 증착용패턴층(152)이 형성될 수 있다.
도 1의 (f)와 (g)에서 보는 바와 같이, 상기된 제4단계 수행 후 제5단계에서, 오목부로 인입된 금속입자가 제3박막층(230) 상부면에 소정의 패턴으로 증착되어 금속패턴층(140)이 형성되고, 증착용패턴층(152)이 제거될 수 있다. 여기서, 루테늄(Ru)으로 형성될 수 있다.
구체적으로, 제5단계는, 증착용패턴층(152) 상에 금속입자를 이용하여 증착을 수행하여 금속패턴층(140)을 형성시키는 제5-1단계; 및 증착용패턴층(152)에 대한 습식식각을 수행하여 증착용패턴층(152)을 제거함으로써 금속패턴층(140)을 노출시키는 제5-2단계를 포함할 수 있다.
제5-1단계에서, 금속패턴층(140)은 증착용패턴층(152) 상에 ALD(Atomic Layer Deposition)를 이용하여 증착될 수 있다. 그리고, 금속패턴층(140)의 형성을 위한 ALD 공정의 cycle, 공정 온도, 기판 표면처리 방법 또는 전구체 종류와 같은 ALD 공정 조건을 변화시킬 수 있다.
본 발명의 실시 예에서는, 금속패턴층(140)은 증착용패턴층(152) 상에 ALD(Atomic Layer Deposition)를 이용하여 증착된다고 설명하고 있으나, 이에 한정되는 것은 아니고, 금속패턴층(140)은 기타 PVD(sputter, evaporator 등)와 같이 루테늄(Ru)을 증착할 수 있는 공정으로 증착될 수 있다.
여기서, 전구체로는 루테늄(Ru)을 포함하는 물질이 이용될 수 있으며, 구체적으로, 전구체로써 Ru(EtCp)2, Ru-2 및 Ru-4로 이루어진 군에서 선택되는 하나 이상의 물질이 이용될 수 있다. 다만, 이에 한정되는 것은 아니다.
상기와 같이 cycle 수를 제어할 수 있으며, cycle 수는 전구체의 종류에 따라 가변될 수 있다. 또한, 상기와 같이 금속패턴층(140)의 형성을 위한 ALD 공정의 공정 온도를 제어할 수 있으며, 공정 온도는 상기와 같은 전구체의 종류 또는 cycle 수에 따라 가변될 수 있다.
제5-2단계에서, 증착용패턴층(152)의 제거를 위하여 습식식각이 수행될 수 있고, 이 때 식각을 위해 플루오르화수소(HF), 염산(HCl), 질산(HNO3) 등의 식각액이 이용될 수 있다.
제5단계의 수행으로 금속패턴층(140)이 제3박막층(230) 상부면에 형성될 수 있으며, 이와 같은 금속패턴층(140)은 상기와 같은 오목부의 패턴을 따라 형성된 것으로써, 금속패턴층(140)은 금속입자가 서로 연결되어 형성되는 그물 구조를 구비할 수 있다.
그물구조는 루테늄(Ru) 입자가 선형으로 연결되어 그물의 형상으로 형성된 것을 의미할 수 있다. 이와 같은 그물구조는 복수 개의 직선이 교차되는 형상이거나, 또는 직선과 곡선의 조합으로 된 그물의 형상을 수 있다.
상기와 같이 본 발명의 금속패턴층(140)이 그물구조로 형성됨으로써, 본 발명의 펠리클 멤브레인이 루테늄(Ru) 입자가 구비되면서도 우수한 투과율을 구비할 수 있다.
본 발명의 실시 예에서는 금속패턴층(140)의 형상이 그물구조라고 설명하고 있으나, 이에 한정되는 것은 아니고, 증착용패턴층(152)의 패턴 형상에 따라 다양한 구조의 금속패턴층(140)을 형성할 수 있다.
상기와 같이 그물구조로 형성되는 루테늄(Ru)의 너비가 100nm이하인 경우, 루테늄(Ru)의 열방사율은 급격히 증가하게 되며, 루테늄(Ru)의 두께가 3nm로 적용되는 경우에는, 본 발명의 펠리클 멤브레인의 온도를 1,000℃ 이상 감소시킬 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 열방사 효율이 증대되어 열에 대한 내구성이 향상될 수 있다.
도 1의 (h)에서 보는 바와 같이, 상기된 제5단계 수행 후 제6단계에서, 코어층(110)으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층(120)이 금속패턴층(140) 상부에 형성될 수 있다. 캐핑층(120)은 극자외선에 대해 고방사율 및 저반사율의 광학적 특성을 구비하고, 인산(phosphoric acid) 선택비를 구비할 수 있다.
구체적으로, 캐핑층(120)은 극자외선에 대해 0.1 이상의 방사율을 구비하고 0.05 이하의 반사율을 구비할 수 있다. 그리고, 캐핑층(120)은 EUV투과율 88%이상 등의 성능을 구비할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인으로 조사되는 극자외선의 이용률이 현저히 증가되어 극자외선의 손실률을 감소시킬 수 있다.
캐핑층(120)은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다. 캐핑층(120)을 형성하기 위하여 Sputtering 외 다른 PVD(Physical Vapor Deposition) 공정을 이용할 수 있음은 물론이다.
여기서, 캐핑층(120)은 Metal silicide로 형성될 수 있다. 구체적으로, 캐핑층(120)은 MoSiO2(이산화규소몰리브덴)으로 형성될 수 있다. 다만, 캐핑층(120)을 형성하는 소재가 이에 한정되는 것은 아니고, EUV 고투과율, 고방사율, 저반사율 성능을 만족하고 수소플라즈마에 내성이 있는 소재중에 인산에 선택비를 갖는 소재는 모두 이용될 수 있다.
제6단계에서, 캐핑층(120)에 대해 열처리가 수행될 수 있다. 상기와 같이 형성된 캐핑층(120)은 열처리 없이 이용될 수도 있으나, 내구성 및 EUV 광학 특성을 개선시키기 위해 열처리를 수행할 수 있다.
이 때, 캐핑층(120)에 대해 열처리가 수행되는 경우, 열처리 온도는 800℃ 이상일 수 있다. 상기와 같이 금속패턴층(140) 상부 및 금속패턴층(140)이 형성되지 않은 제3박막층(230) 상부면 일 부위에 캐핑층(120)이 형성된 후에 캐핑층(120)에 대한 열처리가 수행될 수 있으며, 캐핑층(120)에 대한 열처리는 상기와 같은 캐핑층(120)의 증착 공정(ALD, Sputtering 등)이 수행된 장비 내에서 수행될 수도 있고, 외부의 히터에 의해 수행될 수도 있다.
그리고, 상기와 같은 금속패턴층(140)으로 루테늄(Ru) 패턴을 형성시킴으로써, Metal silicide과 루테늄(Ru) 층을 결합시켜, EUVL환경에서 주석(Tin)과 수소 확산(hydrogen diffusion)에 의한 루테늄(Ru) 층의 부풀림(blistering) 현상 발생을 방지할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 내구성을 향상시킬 수 있다.
도 1의 (i)에서 보는 바와 같이, 상기된 제6단계 수행 후 제7단계에서, 제5박막층(250)이 캐핑층(120) 상부면에 형성되고, 제6박막층(260)이 제4박막층(240) 하부면에 형성될 수 있다.
상기와 같이 제5박막층(250)과 제6박막층(260)이 형성됨으로써, 하기된 제7단계에서의 박막층결합체에 대한 패터닝 또는 하기된 제8단계에서의 습식식각 중에 캐핑층(120)을 보호하기 위하여 형성될 수 있다.
여기서, 제5박막층(250)과 제6박막층(260) 각각은 LSN(Low-Stress nitirde) 박막층, 은(Ag) 코팅층 또는 Parylene(패럴린)같은 고분자막 등으로 형성될 수 있다. 그리고, 제5박막층(250)과 제6박막층(260)이 LSN(Low-Stress nitirde) 박막층으로 형성되는 경우, 제5박막층(250)과 제6박막층(260) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.
상기와 같이 제5박막층(250)과 제6박막층(260) 각각은 박막층으로 형성될 수 있으며, 제5박막층(250)의 두께는 20nm이하로 형성될 수 있으며, 제6박막층(260)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제5박막층(250)과 제6박막층(260) 각각의 두께가 형성됨으로써, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각 시 식각 효율이 증대될 수 있다.
도 1의 (j)에서 보는 바와 같이, 상기된 제7단계 수행 후 제8단계에서, 제2박막층(220)과 제4박막층(240) 및 제6박막층(260)의 결합체인 박막층결합체에 대해 패터닝이 수행될 수 있다. 여기서, 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.
포토리소그래피 공정에 의하여, 마스크 상에 설계된 패턴을 박막층결합체에 구현하게 될 수 있으며, 구체적으로, 먼저, 박막층결합체의 하부면에 감광제를 코팅하는 감광제 코팅 단계가 수행될 수 있다.
그리고, 감광제 코팅 단계 수행 후, 패턴이 형성된 마스크를 감광제 코팅면 상에 배치시키는 마스크 배치 단계가 수행될 수 있고, 다음으로, 마스크의 패턴에 따라 노출된 감광제 코팅면을 광에 노출시키는 노광 단계가 수행될 수 있다.
그 후, 감광제가 필요없는 부분을 제거하는 과정인 현상 단계가 수행될 수 있다. 여기서, 박막층결합체는 광을 받은 부분과 받지 않은 부분으로 구분되는데, 포지티브 레지스트를 감광제로 사용한 경우 광을 받은 부분은 제거되고 광을 받지 않은 부분은 그래도 남게 되며, 네거티브 레지시트를 감광제로 사용한 경우에는 그 반대일 수 있다.
다음으로, 건식식각 또는 습식식각을 이용하여 박막층결합체에 대한 패터닝을 위한 식각을 수행하는 식각 단계가 수행될 수 있다. 상기와 같은 식각 단계 이 후, 박막층결합체의 표면에 남아 있는 감광제를 제거하는 감광제 제거 단계가 수행될 수 있다. 감광제의 제거를 위해 황산(H2SO4) 용액 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.
도 1의 (k)에서 보는 바와 같이, 상기된 제8단계 수행 후 제9단계에서, 박막층결합체의 패터닝 형상을 따라 웨이퍼(130)에 대한 식각이 수행될 수 있다. 구체적으로, 제9단계에서, 웨이퍼(130)에 대한 식각은 습식식각으로 수행될 수 있다. 여기서, 웨이퍼(130)에 대한 습식식각은 수산화칼륨(KOH)을 이용하여 수행될 수 있다.
상기와 같은 제8단계의 수행에 따라, 박막층결합체의 패터닝을 따라 웨이퍼(130)의 일 부위가 노출되게 되며, 이와 같은 노출된 웨이퍼(130)의 패턴에 대해 식각이 수행될 수 있다.
본 발명의 실시 예에서는, 박막층결합체의 패터닝 형상에 대응되는 형상인 웨이퍼(130)의 일 부위에 대한 식각이 수산화칼륨(KOH)을 이용한 습식식각이라고 설명하고 있으나, 습식식각에 이용되는 물질이 수산화칼륨(KOH)에 한정되는 것은 아니고, 염산(HCl), 질산(HNO3), 플루오르화수소(HF) 등도 이용될 수 있다.
웨이퍼(130)의 일 부위에 대한 식각에 수산화칼륨(KOH)이 이용되는 경우, 온도 80℃의 물인 용매에 칼륨 30wt%를 용해시켜 식각액을 제조하고, 이와 같은 식각액과 상기된 웨이퍼(130)의 일 부위를 접촉시켜 습식식각을 수행할 수 있다.
도 1의 (l)에서 보는 바와 같이, 상기된 제9단계 수행 후 제10단계에서, 웨이퍼(130) 하부면의 식각 부위 형상을 따라 제1박막층(210)의 일 부위가 식각되고, 식각에 의해 제5박막층(250)과 제6박막층(260)이 제거되어, 금속패턴층(140)이 노출되게 형성된 펠리클 멤브레인이 형성될 수 있다.
구체적으로, 제10단계는, 제1박막층(210)의 일 부위에 대한 식각이 수행되는 제10-1단계; 및 제5박막층(250) 및 제6박막층(260)에 대한 식각이 수행되는 제10-2단계를 포함할 수 있다.
여기서, 상기된 제10-1단계와 제10-2단계는, 동시 또는 별도로 수행될 수 있다.
제10-1단계와 제10-2단계가 동시에 수행되는 경우, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거는 습식식각으로 수행될 수 있다. 여기서, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거를 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.
여기서, 인산의 농도는 80~90wt%일 수 있으며, 바람직하게는, 인산의 농도는 85wt%일 수 있다. 이와 같은 인산을 이용한 습식식각이 수행되는 경우, 상기와 같이 캐핑층(120)의 상부면과 코어층(110)의 하부면 각각이 인산에 선택비를 가지기 때문에 stop layer로 사용될 수 있다.
제10-1단계와 제10-2단계가 각각 별도로 수행되는 경우, 먼저, 제10-1단계에서, 상기된 바와 같이 인산(H3PO4)을 이용한 습식식각으로 제1박막층(210)의 일 부위에 대한 식각이 수행될 수 있다.
다음으로, 제10-2단계에서, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각이 수행될 수 있다. 제5박막층(250)과 제6박막층(260)은 제9단계에서의 습식식각의 식각액(ex. KOH)에 내성이 있으면서 건식식각 또는 습식식각으로 제거 가능한 소재로 형성될 수 있다.
구체적으로, 제5박막층(250)과 제6박막층(260) 각각은 은(Ag) 코팅으로 형성되어 제10-2단계에서 질산(HNO3)에 의해 용이하게 제거될 수 있다. 또는, 제5박막층(250)과 제6박막층(260) 각각은 Parylene(패럴린)같은 고분자막으로 형성되고, 제10-2단계에서 DRIE 방법으로 용이하게 제거될 수 있다.
이와 같이, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거가 수행됨으로써, 최종적으로 펠리클 멤브레인이 형성될 수 있다.
상기와 같이 본 발명의 일 실시 예에 따른 제조방법에 의해 본 발명의 펠리클 멤브레인이 형성되는 경우, 캐핑층(120)의 내부에 금속입자(Ru)로 형성된 그물구조가 형성되는 형태일 수 있다.
이하, 본 발명의 다른 실시 예에 따른 제조방법에 대해서 설명하기로 한다.
도 8은 본 발명의 다른 실시 예에 따른 제조방법의 공정 순서에 대한 모식도이고, 도 9 내지 도 13은 본 발명의 다른 실시 예에 따른 제조방법의 각 단계의 생성물에 대한 단면도이다.
도 9의 (a)는 제1단계 수행 후 생성물의 단면도이고, 도 9의 (b)는 제2단계 수행 후 생성물의 단면도이다. 그리고, 도 10의 (a)는 제3단계 수행 후 생성물의 단면도이고, 도 10의 (b)는 제4단계 수행 후 생성물의 단면도이다.
또한, 도 11의 (a)는 제5단계 수행 후 생성물의 단면도이고, 도 11의 (b)는 제6단계 수행 후 생성물의 단면도이다. 그리고, 도 12의 (a)는 제7단계 수행 후 생성물의 단면도이고, 도 12의 (b)는 제8단계 수행 후 생성물의 단면도이다. 또한, 도 13의 (a)는 제9단계 수행 후 생성물의 단면도이고, 도 13의 (b)는 제10단계 수행 후 생성물의 단면도이다.
본 발명의 다른 실시 예에 따른 제조방법에서는, 도 8의 (a)에서 보는 바와 같이, 먼저, 제1단계에서, 실리콘 웨이퍼(130)가 준비되고, LSN(Low-Stress nitirde) 박막층인 제1박막층(210)이 상기 웨이퍼(130)의 상부면에 형성되고 LSN(Low-Stress nitirde) 박막층인 제2박막층(220)이 웨이퍼(130)의 하부면에 형성될 수 있다.
상기와 같이 웨이퍼(130)는 실리콘(Si)으로 형성될 수 있으며, 웨이퍼(130)는 원판형으로 직경이 8인치(in) 이상으로 형성될 수 있다. 그리고, 본 발명의 제조방법에 의한 펠리클 멤브레인은 상기와 같은 웨이퍼(130)를 이용하여 복수 개 형성시킬 수 있으며, 이에 따라, 하나의 웨이퍼(130)로 복수 개의 펠리클 멤브레인을 제조함으로써, 펠리클의 대량 생산이 가능하도록 할 수 있다.
제1박막층(210)과 제2박막층(220) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다. 저압력에서 진행하는 화학기상 증착방법인 LPCVD 공정은 CVD 공정에 비해 고온에서 수행될 수 있다.
여기서, 제1 박막층(210)은, 하기된 제7단계에서 웨이퍼(130)에 대한 습식식각 중 코어층(110)의 손상을 방지하는 stop layer(식각저지층)로써 작용할 수 있다. 즉, LSN(Low-Stress nitirde) 박막층은 KOH에 대해 식각내성이 있어서 KOH로 실리콘(코어층(110))만 식각이 되고 LSN 박막층을 만나면 식각이 멈추게 될 수 있다.
상기와 같이 제1박막층(210)과 제2박막층(220) 각각은 박막층으로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있으며, 제1박막층(210)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제1박막층(210)과 제2박막층(220) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다. 그리고, 하기된 바와 같이 제1박막층(210)의 일 부위에 대한 습식식각 시 인산(H3PO4)에 의한 식각 효율이 증대될 수 있다.
도 8의 (b)에서 보는 바와 같이, 상기된 제1단계 수행 후 제2단계에서, 극자외선이 투과 가능하도록 투명하게 형성되는 코어층(110)이 상기 제1박막층(210) 상부면에 형성될 수 있다. 여기서, 코어층(110)은 CVD를 이용하여 증착될 수 있다.
CVD(chemical vapor deposition)는 화학기상증착법으로, 형성하고자 하는 박막 재료를 구성하는 원소를 포함하는 가스를 기판 위에 공급하여 기상 또는 기판 표면에서의 산화환원반응, 열분해, 광분해 또는 치환 중 어느 하나의 화학적 반응으로 박막을 기판 표면에 형성할 수 있다.
코어층(110)은 SiC(탄화규소) 또는 poly-Si(폴리규소, polysilicon)로 형성될 수 있다. 코어층(110)은 본 발명의 펠리클 멤브레인의 주요 지지층으로써, 극자외선(EUV)에 대한 고투과율을 구비하고, 고내구성을 구비하며, 인산(phosphoric acid) 선택비를 구비할 수 있다.
코어층(110)의 극자외선 투과율은 88% 이상으로 형성될 수 있으며, 상기와 같은 고내구성을 구비하기 위하여 코어층(110)의 두께는 50nm이하로 형성될 수 있다. 이에 따라, 코어층(110) EUV 투과 효율이 증대될 수 있다.
도 8의 (c)에서 보는 바와 같이, 상기된 제2단계 수행 후 제3단계에서, LSN(Low-Stress nitirde) 박막층인 제3박막층(230)이 상기 코어층(110) 상부면에 형성되고, LSN(Low-Stress nitirde) 박막층인 제4박막층(240)이 상기 제2박막층(220) 하부면에 형성될 수 있다. 여기서, 제3박막층(230)과 제4박막층(240) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.
상기와 같이 제3박막층(230)과 제4박막층(240)이 형성됨으로써, 극자외선의 환경으로부터 코어층(110)이 보호되며, 본 발명의 펠리클 멤브레인 내 잔류 응력이 제3박막층(230)에 의해 제어될 수 있다. 여기서, 제3박막층(230)에서 규소(Si)와 질소(N)의 비율을 제어하여 상기된 잔류 응력을 제어할 수 있다.
상기와 같이 제3박막층(230)과 제4박막층(240) 각각은 박막층으로 형성될 수 있으며, 제3박막층(230)의 두께는 20nm이하로 형성될 수 있으며, 제4박막층(240)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제3박막층(230)과 제4박막층(240) 각각의 두께가 형성됨으로써, 각각의 박막층의 EUV 투과율이 증대될 수 있다.
도 8의 (d) 에서 보는 바와 같이, 상기된 제3단계 수행 후 제4단계에서, 제3박막층(230) 상부면에 그래핀이 전사되어 그래핀층(160)이 형성될 수 있다. 구체적으로, 제4단계에서는, 먼저, 구리 호일(Cu foil)에 그래핀을 성장시키는 그래핀 성장 단계가 수행될 수 있다. 그리고, 그래핀 성장 단계 이 후, 그래핀이 성장한 구리 호일에 PMMA(polymethyl methacrylate)를 스핀코팅하여 PMMA층을 형성하는 PMMA층 형성 단계가 수행될 수 있다.
PMMA층 형성 단계 이후에는, 구리 호일을 습식식각을 통해 제거하는 구리 제거 단계가 수행될 수 있다. 여기서, 식각액으로는 과황산암모늄(APS, Ammonium Persulfate)이 이용될 수 있다. 그리고, 구리 제거 단계 수행 후, 제3박막층(230) 상부면에 그래핀을 전사시킴으로써, 제3박막층(230) 상부면에 그래핀층(160)이 형성될 수 있다.
본 발명의 실시 예에서는 상기와 같은 공정으로 제3박막층(230) 상부면에 그래핀을 전사시켜 그래핀층(160)을 형성시킨다고 설명하고 있으나, 종래기술의 다른 공정에 의해 제3박막층(230) 상부면에 그래핀을 코팅하여 그래핀층(160)을 형성시킬 수도 있다.
도 8의 (e)에서 보는 바와 같이, 상기된 제4단계 수행 후 제5단계에서, 그래핀층(160) 상부면에 금속입자가 소정의 패턴으로 증착되어 금속패턴층(140)이 형성될 수 있다. 구체적으로, 제5단계에서, 금속패턴층(140)은 금속입자가 서로 연결되어 형성되는 그물 구조를 구비할 수 있다. 여기서, 금속입자는 루테늄(Ru)으로 형성될 수 있다.
그래핀층(160)에는, 그래핀 결정립의 경계인 결정 결함으로써 그래핀 결정립계(Grain boundary)가 형성되고, 그래핀층(160)에 대한 루테늄(Ru) 입자의 증착에 의해 그래핀 결정립계의 결함 공간에 루테늄(Ru) 입자가 결합되고, 이와 같은 결정립계에서 루테늄(Ru) 입자가 성장하여 서로 연결되면서 상기와 같은 그물구조를 형성할 수 있다.
그래핀층(160)에 대한 금속입자(Ru)의 증착을 위해서, 상기와 같은 금속패턴층(140)은 제3박막층(230) 상부면에 ALD(Atomic Layer Deposition)를 이용하여 증착될 수 있다.
그리고, 금속패턴층(140)의 형성을 위한 ALD 공정의 cycle, 공정 온도, 기판 표면처리 방법 또는 전구체 종류와 같은 ALD 공정 조건을 변화시킬 수 있다.
여기서, 전구체로는 루테늄(Ru)을 포함하는 물질이 이용될 수 있으며, 구체적으로, 전구체로써 Ru(EtCp)2, Ru-2 및 Ru-4로 이루어진 군에서 선택되는 하나 이상의 물질이 이용될 수 있다. 다만, 이에 한정되는 것은 아니다.
상기와 같이 cycle 수를 제어할 수 있으며, cycle 수는 전구체의 종류에 따라 가변될 수 있다. 또한, 상기와 같이 금속패턴층(140)의 형성을 위한 ALD 공정의 공정 온도를 제어할 수 있으며, 공정 온도는 상기와 같은 전구체의 종류 또는 cycle 수에 따라 가변될 수 있다.
그물구조는 루테늄(Ru) 입자가 선형으로 연결되어 그물의 형상으로 형성된 것을 의미할 수 있다. 상기와 같이 본 발명의 금속패턴층(140)이 그물구조로 형성됨으로써, 본 발명의 펠리클 멤브레인이 루테늄(Ru) 입자가 구비되면서도 우수한 투과율을 구비할 수 있다.
상기와 같이 그물구조로 형성되는 루테늄(Ru)의 너비가 100nm이하인 경우, 루테늄(Ru)의 열방사율은 급격히 증가하게 되며, 루테늄(Ru)의 두께가 3nm로 적용되는 경우에는, 본 발명의 펠리클 멤브레인의 온도를 1,000℃ 이상 감소시킬 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 열방사 효율이 증대되어 열에 대한 내구성이 향상될 수 있다.
도 8의 (f)에서 보는 바와 같이, 상기된 제5단계 수행 후 제6단계에서, 코어층(110)으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층(120)이 금속패턴층(140) 상부에 형성될 수 있다. 캐핑층(120)은 극자외선에 대해 고방사율 및 저반사율의 광학적 특성을 구비하고, 인산(phosphoric acid) 선택비를 구비할 수 있다.
구체적으로, 캐핑층(120)은 극자외선에 대해 0.1 이상의 방사율을 구비하고 0.05 이하의 반사율을 구비할 수 있다. 그리고, 캐핑층(120)은 EUV투과율 88%이상 등의 성능을 구비할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인으로 조사되는 극자외선의 이용률이 현저히 증가되어 극자외선의 손실률을 감소시킬 수 있다.
캐핑층(120)은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착될 수 있다. 캐핑층(120)을 형성하기 위하여 Sputtering 외 다른 PVD(Physical Vapor Deposition) 공정을 이용할 수 있음은 물론이다.
여기서, 캐핑층(120)은 Metal silicide로 형성될 수 있다. 구체적으로, 캐핑층(120)은 MoSiO2(이산화규소몰리브덴)으로 형성될 수 있다. 다만, 캐핑층(120)을 형성하는 소재가 이에 한정되는 것은 아니고, EUV 고투과율, 고방사율, 저반사율 성능을 만족하고 수소플라즈마에 내성이 있는 소재중에 인산에 선택비를 갖는 소재는 모두 이용될 수 있다.
제6단계에서, 캐핑층(120)에 대해 열처리가 수행될 수 있다. 상기와 같이 형성된 캐핑층(120)은 열처리 없이 이용될 수도 있으나, 내구성 및 EUV 광학 특성을 개선시키기 위해 열처리를 수행할 수 있다.
이 때, 캐핑층(120)에 대해 열처리가 수행되는 경우, 열처리 온도는 800℃ 이상일 수 있다. 상기와 같이 금속패턴층(140) 상부 및 금속패턴층(140)이 형성되지 않은 그래핀층(160) 상부면 일 부위에 캐핑층(120)이 형성된 후에 캐핑층(120)에 대한 열처리가 수행될 수 있으며, 캐핑층(120)에 대한 열처리는 상기와 같은 캐핑층(120)의 증착 공정(ALD, Sputtering 등)이 수행된 장비 내에서 수행될 수도 있고, 외부의 히터에 의해 수행될 수도 있다.
그리고, 상기와 같은 금속패턴층(140)으로 루테늄(Ru) 패턴을 형성시킴으로써, Metal silicide과 루테늄(Ru) 층을 결합시켜, EUVL환경에서 주석(Tin)과 수소 확산(hydrogen diffusion)에 의한 루테늄(Ru) 층의 부풀림(blistering) 현상 발생을 방지할 수 있다. 이에 따라, 본 발명의 펠리클 멤브레인의 내구성을 향상시킬 수 있다.
도 8의 (g)에서 보는 바와 같이, 상기된 제6단계 수행 후 제7단계에서, 제5박막층(250)이 캐핑층(120) 상부면에 형성되고, 제6박막층(260)이 제4박막층(240) 하부면에 형성될 수 있다.
상기와 같이 제5박막층(250)과 제6박막층(260)이 형성됨으로써, 하기된 제7단계에서의 박막층결합체에 대한 패터닝 또는 하기된 제8단계에서의 습식식각 중에 캐핑층(120)을 보호하기 위하여 형성될 수 있다.
여기서, 제5박막층(250)과 제6박막층(260) 각각은 LSN(Low-Stress nitirde) 박막층, 은(Ag) 코팅층 또는 Parylene(패럴린)같은 고분자막 등으로 형성될 수 있다. 그리고, 제5박막층(250)과 제6박막층(260)이 LSN(Low-Stress nitirde) 박막층으로 형성되는 경우, 제5박막층(250)과 제6박막층(260) 각각은 LPCVD(Low Pressure Chemical Vapor Deposition)를 이용하여 증착될 수 있다.
상기와 같이 제5박막층(250)과 제6박막층(260) 각각은 박막층으로 형성될 수 있으며, 제5박막층(250)의 두께는 20nm이하로 형성될 수 있으며, 제6박막층(260)의 두께는 20nm이하로 형성될 수 있다. 이와 같이 제5박막층(250)과 제6박막층(260) 각각의 두께가 형성됨으로써, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각 시 식각 효율이 증대될 수 있다.
도 8의 (h)에서 보는 바와 같이, 상기된 제7단계 수행 후 제8단계에서, 제2박막층(220)과 제4박막층(240) 및 제6박막층(260)의 결합체인 박막층결합체에 대해 패터닝이 수행될 수 있다. 여기서, 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행될 수 있다.
포토리소그래피 공정에 의하여, 마스크 상에 설계된 패턴을 박막층결합체에 구현하게 될 수 있으며, 구체적으로, 먼저, 박막층결합체의 하부면에 감광제를 코팅하는 감광제 코팅 단계가 수행될 수 있다.
그리고, 감광제 코팅 단계 수행 후, 패턴이 형성된 마스크를 감광제 코팅면 상에 배치시키는 마스크 배치 단계가 수행될 수 있고, 다음으로, 마스크의 패턴에 따라 노출된 감광제 코팅면을 광에 노출시키는 노광 단계가 수행될 수 있다.
그 후, 감광제가 필요없는 부분을 제거하는 과정인 현상 단계가 수행될 수 있다. 여기서, 박막층결합체는 광을 받은 부분과 받지 않은 부분으로 구분되는데, 포지티브 레지스트를 감광제로 사용한 경우 광을 받은 부분은 제거되고 광을 받지 않은 부분은 그래도 남게 되며, 네거티브 레지시트를 감광제로 사용한 경우에는 그 반대일 수 있다.
다음으로, 건식식각 또는 습식식각을 이용하여 박막층결합체에 대한 패터닝을 위한 식각을 수행하는 식각 단계가 수행될 수 있다. 상기와 같은 식각 단계 이 후, 박막층결합체의 표면에 남아 있는 감광제를 제거하는 감광제 제거 단계가 수행될 수 있다. 감광제의 제거를 위해 황산(H2SO4) 용액 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.
도 8의 (i)에서 보는 바와 같이, 상기된 제8단계 수행 후 제9단계에서, 박막층결합체의 패터닝 형상을 따라 웨이퍼(130)에 대한 식각이 수행될 수 있다. 구체적으로, 제9단계에서, 웨이퍼(130)에 대한 식각은 습식식각으로 수행될 수 있다. 여기서, 웨이퍼(130)에 대한 습식식각은 수산화칼륨(KOH)을 이용하여 수행될 수 있다.
상기와 같은 제8단계의 수행에 따라, 박막층결합체의 패터닝을 따라 웨이퍼(130)의 일 부위가 노출되게 되며, 이와 같은 노출된 웨이퍼(130)의 패턴에 대해 식각이 수행될 수 있다.
본 발명의 실시 예에서는, 박막층결합체의 패터닝 형상에 대응되는 형상인 웨이퍼(130)의 일 부위에 대한 식각이 수산화칼륨(KOH)을 이용한 습식식각이라고 설명하고 있으나, 습식식각에 이용되는 물질이 수산화칼륨(KOH)에 한정되는 것은 아니고, 염산(HCl), 질산(HNO3), 플루오르화수소(HF) 등도 이용될 수 있다.
웨이퍼(130)의 일 부위에 대한 식각에 수산화칼륨(KOH)이 이용되는 경우, 온도 80℃의 물인 용매에 칼륨 30wt%를 용해시켜 식각액을 제조하고, 이와 같은 식각액과 상기된 웨이퍼(130)의 일 부위를 접촉시켜 습식식각을 수행할 수 있다.
도 8의 (j)에서 보는 바와 같이, 상기된 제9단계 수행 후 제10단계에서, 웨이퍼(130) 하부면의 식각 부위 형상을 따라 제1박막층(210)의 일 부위가 식각되고, 식각에 의해 제5박막층(250)과 제6박막층(260)이 제거되어 펠리클 멤브레인이 형성될 수 있다.
구체적으로, 제10단계는, 제1박막층(210)의 일 부위에 대한 식각이 수행되는 제10-1단계; 및 제5박막층(250) 및 제6박막층(260)에 대한 식각이 수행되는 제10-2단계를 포함할 수 있다.
여기서, 상기된 제10-1단계와 제10-2단계는, 동시 또는 별도로 수행될 수 있다.
제10-1단계와 제10-2단계가 동시에 수행되는 경우, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거는 습식식각으로 수행될 수 있다. 여기서, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거를 위한 습식식각은 인산(H3PO4)을 이용하여 수행될 수 있다.
여기서, 인산의 농도는 80~90wt%일 수 있으며, 바람직하게는, 인산의 농도는 85wt%일 수 있다. 이와 같은 인산을 이용한 습식식각이 수행되는 경우, 상기와 같이 캐핑층(120)의 상부면과 코어층(110)의 하부면 각각이 인산에 선택비를 가지기 때문에 stop layer로 사용될 수 있다.
제10-1단계와 제10-2단계가 각각 별도로 수행되는 경우, 먼저, 제10-1단계에서, 상기된 바와 같이 인산(H3PO4)을 이용한 습식식각으로 제1박막층(210)의 일 부위에 대한 식각이 수행될 수 있다.
다음으로, 제10-2단계에서, 제5박막층(250)과 제6박막층(260)에 대한 습식식각 또는 건식식각이 수행될 수 있다. 제5박막층(250)과 제6박막층(260)은 제9단계에서의 습식식각의 식각액(ex. KOH)에 내성이 있으면서 건식식각 또는 습식식각으로 제거 가능한 소재로 형성될 수 있다.
구체적으로, 제5박막층(250)과 제6박막층(260) 각각은 은(Ag) 코팅으로 형성되어 제10-2단계에서 질산(HNO3)에 의해 용이하게 제거될 수 있다. 또는, 제5박막층(250)과 제6박막층(260) 각각은 Parylene(패럴린)같은 고분자막으로 형성되고, 제10-2단계에서 DRIE 방법으로 용이하게 제거될 수 있다.
이와 같이, 제1박막층(210)의 일 부위에 대한 식각과 제5박막층(250) 및 제6박막층(260)의 식각 제거가 수행됨으로써, 최종적으로 펠리클 멤브레인이 형성될 수 있다.
상기와 같이 본 발명의 일 실시 예에 따른 제조방법에 의해 본 발명의 펠리클 멤브레인이 형성되는 경우, 캐핑층(120)의 내부에 금속입자(Ru)로 형성된 그물구조가 형성되는 형태일 수 있다.
상기와 같은 본 발명의 일 실시 예 또는 다른 실시 예에 따른 제조방법에 따른 공정에 의해 형성된 펠리클 멤브레인; 및 펠리클 멤브레인과 결합하고 펠리클 멤브레인을 지지하는 펠리클 프레임을 포함하는 펠리클을 제조할 수 있다. 펠리클 프레임은 펠리클 멤브레인의 가장자리 형상을 따라 형성되어 펠리클 멤브레인을 고정 지지할 수 있다.
상기와 같은 본 발명의 제조방법에 의해 제조된 본 발명의 펠리클 멤브레인은 극자외선 초기 광량의 88% 이상을 보존하면서도 다층막으로 형성되어 높은 내구적, 열적 특성을 구비할 수 있다.
또한, 대면적의 웨이퍼(130)를 이용하여 펠리클을 복수 개 제조할 수 있음으로써, 웨이퍼(130)를 이용한 펠리클 대량 생산에 용이하게 적용될 수 있다.
도 14 내지 도 16은 본 발명의 다른 실시 예에 따른 제조방법에 의한 그래핀층(160) 표면에 대한 AFM 분석 이미지이다.
구체적으로, 도 14의 (a)는, 그래핀층(160) 상부면에 대한 증착 공정으로써, 전구체를 Ru(EtCp)2로 하고, cycle 수를 100cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 그래핀층(160)에 대해 촬상한 AFM이미지이다.
도 14의 (a)에서, a는 그래핀의 결정립계에 증착된 루테늄(Ru)을 지시하고 있으며, b는 그래핀층(160) 일 부위에 대한 라인을 지시하고 있다. 그리고, 도 14의 (b)는, 도 14의 (a)에 표시된 b라인에 대한 그래핀층(160) 단면의 두께 변화를 나타내는 그래프이다.
또한, 도 15는, 그래핀층(160) 상부면에 대한 증착 공정으로써, 전구체를 Ru(EtCp)2로 하고, cycle 수를 200cycle로 하며, 공정 온도를 350℃로 하여 ALD 공정을 수행한 후 그래핀층(160)에 대해 촬상한 AFM이미지이다.
그리고, 도 16은, 그래핀층(160) 상부면에 대한 증착 공정으로써, 전구체를 Ru(EtCp)2로 하고, cycle 수를 200cycle로 하며, 공정 온도를 300℃로 하여 ALD 공정을 수행한 후 그래핀층(160)에 대해 촬상한 AFM이미지이다.
도 14에서 보는 바와 같이, 그래핀의 결정립계(Grain Boundary)에서는 결함 공간을 제공하여 그물구조의 패턴을 제공할 수 있으며, 이와 같은 그물구조의 패턴에 의한 공간에 금속입자(Ru)가 증착되어 그물구조의 금속패턴층(140)이 형성됨을 확인할 수 있다.
도 15에서, a는 그래핀의 결정립계에 위치한 루테늄(Ru) 입자를 나타내고 b는 그래핀 결정 표면에 위치한 루테늄(Ru) 입자를 나타낼 수 있다. 그리고, 도 16에서 a는 그래핀의 결정립계에 위치한 루테늄(Ru) 입자를 나타낼 수 있다.
도 15와 도 16에서 보는 바와 같이 ALD의 공정 조건 중 온도 조건에 따라 그래핀의 결정립계를 따라 루테늄(Ru) 입자가 성장하면서 그물구조를 형성하는 공정이 불완전할 수 있으며, ALD의 공정 조건을 제어하여 금속패턴층(140)의 그물구조에 대한 형상을 제어할 수 있음을 확인할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
110 : 코어층
120 : 캐핑층
130 : 웨이퍼
140 : 금속패턴층
151 : 산화물입자층
152 : 증착용패턴층
160 : 그래핀층
210 : 제1박막층
220 : 제2박막층
230 : 제3박막층
240 : 제4박막층
250 : 제5박막층
260 : 제6박막층

Claims (19)

  1. 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계;
    극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계;
    제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계;
    상기 제3박막층 상부면에 산화물 입자가 증착되어 형성된 볼록부와 상기 볼록부 사이의 오목부를 구비하는 증착용패턴층이 형성되는 제4단계;
    상기 오목부로 인입된 금속입자가 상기 제3박막층 상부면에 소정의 패턴으로 증착되어 금속패턴층이 형성되고, 상기 증착용패턴층이 제거되는 제5단계;
    상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제6단계;
    제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제7단계;
    상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계;
    상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제9단계; 및
    상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  2. 청구항 1에 있어서,
    상기 제4단계는,
    상기 제3박막층 상부면에 상기 산화물 입자를 증착시켜 산화물입자층을 형성시키는 제4-1단계; 및
    포토리소그래피(photolithography) 공정으로 상기 산화물입자층에 대한 패터닝을 수행하여 상기 증착용패턴층을 형성시키는 제4-2단계를 포함하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  3. 청구항 1에 있어서,
    상기 제5단계는,
    상기 증착용패턴층 상에 상기 금속입자를 이용하여 증착을 수행하여 상기 금속패턴층을 형성시키는 제5-1단계; 및
    상기 증착용패턴층에 대한 습식식각을 수행하여 상기 증착용패턴층을 제거함으로써 상기 금속패턴층을 노출시키는 제5-2단계를 포함하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  4. 청구항 1에 있어서,
    상기 산화물 입자는 이산화규소(SiO2)인 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  5. 청구항 1에 있어서,
    상기 금속패턴층은 상기 금속입자가 서로 연결되어 형성되는 그물 구조를 구비하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  6. 청구항 5에 있어서,
    상기 금속입자는 루테늄(Ru)으로 형성되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  7. 청구항 1에 있어서,
    상기 제1박막층, 상기 제2박막층, 상기 제3박막층 및 상기 제4박막층 각각은, LSN(Low-Stress nitirde) 박막층으로써 LPCVD를 이용하여 증착되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  8. 청구항 1에 있어서,
    상기 제2단계에서, 상기 코어층은 CVD를 이용하여 증착되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  9. 청구항 8에 있어서,
    상기 코어층은 SiC 또는 poly-Si로 형성되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  10. 청구항 1에 있어서,
    상기 제6단계에서, 상기 캐핑층은 ALD(Atomic Layer Deposition) 또는 Sputtering을 이용하여 증착되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  11. 청구항 10에 있어서,
    상기 캐핑층은 Metal silicide로 형성되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  12. 청구항 1에 있어서,
    상기 제8단계에서, 상기 박막층결합체에 대한 패터닝은 포토리소그래피(photolithography) 공정으로 수행되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  13. 청구항 1에 있어서,
    상기 제9단계에서, 상기 웨이퍼에 대한 식각은 습식식각으로 수행되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  14. 청구항 1에 있어서,
    상기 제10단계는,
    상기 제1박막층의 일 부위에 대한 식각이 수행되는 제10-1단계; 및
    상기 제5박막층과 상기 제6박막층에 대한 식각이 수행되는 제10-2단계를 포함하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  15. 청구항 14에 있어서,
    상기 제10-1단계에서, 상기 제1박막층의 일 부위에 대한 식각을 위한 습식식각은 인산(H3PO4)을 이용하여 수행되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  16. 청구항 15에 있어서,
    상기 제10-2단계에서, 상기 제5박막층 및 상기 제6박막층에 대한 식각은 습식식각 또는 건식식각으로 수행되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  17. 실리콘 웨이퍼가 준비되고, 제1박막층이 상기 웨이퍼의 상부면에 형성되고 제2박막층이 웨이퍼의 하부면에 형성되는 제1단계;
    극자외선이 투과 가능하도록 투명하게 형성되는 코어층이 상기 제1박막층 상부면에 형성되는 제2단계;
    제3박막층이 상기 코어층 상부면에 형성되고, 제4박막층이 상기 제2박막층 하부면에 형성되는 제3단계;
    상기 제3박막층 상부면에 그래핀이 전사되어 그래핀층이 형성되는 제4단계;
    상기 그래핀층 상부면에 금속입자가 소정의 패턴으로 증착되어 금속패턴층이 형성되는 제5단계;
    상기 코어층으로 입사되는 극자외선의 반사율을 감소시키는 캐핑층이 상기 금속패턴층 상부에 형성되는 제6단계;
    제5박막층이 상기 캐핑층 상부면에 형성되고, 제6박막층이 상기 제4박막층 하부면에 형성되는 제7단계;
    상기 제2박막층과 상기 제4박막층 및 상기 제6박막층의 결합체인 박막층결합체에 대해 패터닝이 수행되는 제8단계;
    상기 박막층결합체의 패터닝 형상을 따라 상기 웨이퍼에 대한 식각이 수행되는 제9단계; 및
    상기 웨이퍼 하부면의 식각 부위 형상을 따라 상기 제1박막층의 일 부위가 식각되고, 식각에 의해 상기 제5박막층과 상기 제6박막층이 제거되어 펠리클 멤브레인이 형성되는 제10단계를 포함하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  18. 청구항 17에 있어서,
    상기 금속패턴층은 상기 금속입자가 서로 연결되어 형성되는 그물 구조를 구비하는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
  19. 청구항 18에 있어서,
    상기 금속입자는 루테늄(Ru)으로 형성되는 것을 특징으로 하는 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 EUV 펠리클 제조방법.
PCT/KR2023/000675 2022-01-25 2023-01-13 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법 WO2023146179A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0010710 2022-01-25
KR1020220010710A KR20230114485A (ko) 2022-01-25 2022-01-25 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법

Publications (1)

Publication Number Publication Date
WO2023146179A1 true WO2023146179A1 (ko) 2023-08-03

Family

ID=87471834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000675 WO2023146179A1 (ko) 2022-01-25 2023-01-13 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법

Country Status (2)

Country Link
KR (1) KR20230114485A (ko)
WO (1) WO2023146179A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121293A (ko) * 2014-04-17 2015-10-29 한양대학교 산학협력단 Euv 리소그래피용 펠리클 및 그 제조방법
KR20180103775A (ko) * 2017-03-10 2018-09-19 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
JP2018194838A (ja) * 2017-05-15 2018-12-06 アイメック・ヴェーゼットウェーImec Vzw ペリクルを形成する方法
KR20190053766A (ko) * 2018-08-24 2019-05-20 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR20200126216A (ko) * 2019-04-29 2020-11-06 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 이의 제조방법
KR20210072774A (ko) * 2018-10-15 2021-06-17 에이에스엠엘 네델란즈 비.브이. 멤브레인 어셈블리를 제조하는 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726125B1 (ko) 2016-02-04 2017-04-13 한양대학교 산학협력단 Euv 펠리클 구조체, 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121293A (ko) * 2014-04-17 2015-10-29 한양대학교 산학협력단 Euv 리소그래피용 펠리클 및 그 제조방법
KR20180103775A (ko) * 2017-03-10 2018-09-19 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
JP2018194838A (ja) * 2017-05-15 2018-12-06 アイメック・ヴェーゼットウェーImec Vzw ペリクルを形成する方法
KR20190053766A (ko) * 2018-08-24 2019-05-20 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR20210072774A (ko) * 2018-10-15 2021-06-17 에이에스엠엘 네델란즈 비.브이. 멤브레인 어셈블리를 제조하는 방법
KR20200126216A (ko) * 2019-04-29 2020-11-06 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 이의 제조방법

Also Published As

Publication number Publication date
KR20230114485A (ko) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2018212604A1 (ko) 유기물 희생층 기판을 이용한 초극자외선용 펠리클의 제조방법
WO2011162542A2 (en) Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof
WO2013100409A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2015122721A1 (ko) 마스터 몰드의 제조방법, 이로 제조된 마스터 몰드, 투명포토마스크의 제조방법, 이로 제조된 투명포토마스크 및 상기 투명포토마스크를 이용한 전도성 메쉬패턴의 제조방법
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2013100365A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2014065500A1 (ko) 하드마스크 조성물 및 이를 사용한 패턴형성방법
WO2011081316A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
WO2019083247A1 (ko) 회절 도광판 및 회절 도광판의 제조 방법
WO2016171514A1 (ko) 펠리클 및 그 제조 방법
WO2017034057A1 (ko) 기판처리장치와 기판처리방법
WO2011081321A2 (ko) 레지스트 하층막용 조성물 및 이를 이용한 반도체 집적회로 디바이스의 제조방법
WO2023146179A1 (ko) 루테늄 선택적 성장을 통한 캐핑층 형성 및 이를 통한 다층막 구조의 euv 펠리클 제조방법
WO2017119764A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2023146233A1 (ko) 금속 나노섬이 포함된 캐핑층을 함유하는 다층막 멤브레인 구조 기반의 euv 펠리클 제조방법
WO2020213836A1 (ko) Sic 엣지 링
WO2019235700A1 (ko) 태양 전지 및 태양 전지의 제조 방법
WO2014092391A1 (ko) 강화유리 대체용 하드코팅필름
WO2022245014A1 (ko) 증발감량이 적은 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2023195636A1 (ko) 고평탄화 성능을 지닌 스핀 온 카본 하드마스크 조성물 및 이를 이용한 패턴화 방법
WO2016043476A1 (ko) 후면노광 기술을 이용한 미세패턴 보호 및 메탈레이어 증착방법
WO2023191535A1 (ko) 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
WO2019093761A1 (ko) 하드마스크용 조성물
WO2020189912A1 (ko) 극자외선 리소그래피용 마스크, 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747221

Country of ref document: EP

Kind code of ref document: A1