WO2019235700A1 - 태양 전지 및 태양 전지의 제조 방법 - Google Patents

태양 전지 및 태양 전지의 제조 방법 Download PDF

Info

Publication number
WO2019235700A1
WO2019235700A1 PCT/KR2018/013616 KR2018013616W WO2019235700A1 WO 2019235700 A1 WO2019235700 A1 WO 2019235700A1 KR 2018013616 W KR2018013616 W KR 2018013616W WO 2019235700 A1 WO2019235700 A1 WO 2019235700A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
silicon
silicon particles
forming
Prior art date
Application number
PCT/KR2018/013616
Other languages
English (en)
French (fr)
Inventor
안현우
이성규
신용우
Original Assignee
(주)소프트피브이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)소프트피브이 filed Critical (주)소프트피브이
Priority to CN201880095730.0A priority Critical patent/CN112514081A/zh
Publication of WO2019235700A1 publication Critical patent/WO2019235700A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/047PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method for manufacturing the solar cell.
  • the present invention is to solve the above problems, to provide a solar cell and a solar cell manufacturing method that can lower the manufacturing cost and ensure the stability.
  • the method for manufacturing a solar cell in the silicon particle including a first layer on the outside, (a) the dummy substrate including a plurality of holes Positioning a plurality of the silicon particles corresponding to the holes, (b) forming an optically transparent layer to include at least some of the silicon particles on the dummy substrate, (c) removing the dummy substrate, and Exposing a portion of the layer, (d) forming a plurality of first electrodes connected to the exposed first layer of each of the silicon particles, and (e) forming an insulating layer on the first electrode. (f) removing a portion of the first layer of the silicon particles; and (f) forming a second electrode electrically connected to the portion from which the first layer is removed from the silicon particles.
  • the silicon particles may include P-type or N-type silicon
  • the first layer may include a diffusion layer forming a P-N junction on a surface of the light-receiving region of the silicon particle.
  • the method may further include forming a second layer for reflection prevention on the silicon particles positioned on the dummy substrate.
  • the method before step (a), further comprises the step of forming a second layer on the silicon particles surrounding the first layer to prevent reflection, and in step (c), (c) the dummy After removing the substrate, a portion of the second layer formed on each of the silicon particles may be removed to expose a portion of the first layer.
  • the method may further include forming a reflective layer in the region where the dummy substrate is removed.
  • the first electrode may include a first layer contact part electrically connected to a first layer of the silicon particle, a connection terminal part connected to the second electrode, and the first layer contact part and the connection terminal part. And an extension part connected to the core, wherein the second electrode is electrically connected to a region in which the first layer of the silicon particle is removed. It may include a connection terminal portion connected to the first electrode and an extension portion for electrically connecting the core contact portion and the connection terminal portion.
  • step (h) may further comprise forming a protective layer on the second electrode.
  • the protective layer in step (h), may be characterized in that the optical transparent layer.
  • the silicon particles may be captured using a template including a plurality of suction ports, and seated in a plurality of holes on the dummy substrate.
  • the silicon particles in step (a), may be seated in the plurality of holes using a circulation path that continuously provides the plurality of silicon particles along the gravity direction.
  • a method of manufacturing a solar cell in the silicon particle including a first layer on the outside, (a) a plurality of the silicon particles corresponding to the holes on a dummy substrate including a plurality of holes (B) forming an optically transparent layer to include at least some of the silicon particles on the dummy substrate, (c) removing the dummy substrate and exposing a portion of the first layer, ( d) forming a plurality of first electrodes connected with the exposed first layer of each silicon particle, (e) removing a portion of the first layer from the silicon particle, (f) the first Forming an insulating layer on the electrode, and (g) forming a second electrode electrically connected to the region from which the first layer of silicon particles has been removed.
  • a method of manufacturing a solar cell in which a silicon particle including a first layer is provided on the outside, (a) a plurality of the silicon corresponding to the holes on a dummy substrate including a plurality of holes.
  • a solar cell includes a plurality of silicon particles including a first layer on the outside, an optical transparent layer accommodating a portion of the plurality of silicon particles, a lower portion of the optical transparent layer, A plurality of upper electrodes electrically connected to one layer, a plurality of lower electrodes formed under the corresponding upper electrode, respectively, and a plurality of lower electrodes and the upper electrode electrically connected to an exposed portion where the first layer of the silicon particles is not formed. And an insulating layer disposed between the lower electrode and the lower electrode to insulate the upper electrode and the lower electrode.
  • a protective layer may be further included below the lower electrode.
  • the insulating layer may include a plurality of insulating elements corresponding to the upper and lower electrodes, respectively.
  • the first electrode may include a first layer contact part electrically connected to a first layer of the silicon particle, a connection terminal part connected to the second electrode, and the first layer contact part and the connection terminal part. And an extension portion connecting to the core, wherein the second electrode is electrically connected to a region in which the first layer of the silicon particle is removed. It may include a connection terminal portion connected to the first electrode and an extension portion for electrically connecting the core contact portion and the connection terminal portion.
  • the insulating layer includes a plurality of insulating elements corresponding to each of the upper electrode and the lower electrode, wherein the insulating elements are formed larger than the first layer contact of the corresponding first electrode. You can do
  • the insulating layer includes a plurality of insulating elements corresponding to each of the upper and lower electrodes, the insulating elements being formed larger than the core contact of the corresponding second electrode, and the corresponding first
  • the first contact portion of the first electrode and the core contact portion and the extension portion of the second electrode may be electrically insulated.
  • the complicated manufacturing process can be simplified, and the production cost of the solar cell using silicon balls can be improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • FIGS. 2A and 2B are cross-sectional views of silicon particles used in a method of manufacturing a solar cell according to an embodiment of the present invention.
  • 3A to 3K are cross-sectional views illustrating a method of manufacturing silicon particles according to one embodiment of the present invention.
  • 4A to 4E are cross-sectional views illustrating a method of manufacturing silicon particles according to the embodiment of FIG. 2B.
  • FIG. 5 is a perspective view of a solar cell according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a solar cell according to another embodiment of the present invention.
  • FIG. 7A and 7B are bottom views of a solar cell according to another embodiment of the present invention.
  • FIGS. 8A and 8B illustrate a dummy substrate and silicon particles deposited on the dummy substrate according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a solar cell according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a solar cell according to another embodiment of the present invention.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a solar cell according to an embodiment of the present invention.
  • the method of manufacturing a solar cell includes the steps of (a) placing a plurality of the silicon particles corresponding to the holes on a dummy substrate including a plurality of holes, (b) at least a portion of the silicon substrate on the dummy substrate. Forming an optically transparent layer to include the silicon particles, (c) removing the dummy substrate and exposing a portion of the first layer, and (d) connecting with the exposed first layer of each of the silicon particles Forming a plurality of first electrodes, (e) forming an insulating layer on the first electrode, (f) removing a portion of the first layer of silicon particles, (g) Forming a second electrode in electrical connection with the region from which the first layer is removed.
  • the silicon particle 100 used in the present embodiment may be manufactured separately before the manufacturing process of the present solar cell.
  • the silicon particle 100 includes a silicon core 110 and a first layer 120.
  • the silicon particle 100 may further include additional components, except components that are essentially included, such as the silicon core 110 and the first layer 120. If additional components are included, additional processes associated with them may be added. However, the basic process sequence may include the steps presented in sequence.
  • the second layer 130 for antireflection may be formed in various ways. It may be formed in the process of forming the silicon particle 100. In this case, the outer layer of the first layer 120 is formed by a method of coating as a whole.
  • the second layer 130 for anti-reflection may be formed through a separate coating process after the silicon particle 100 is positioned on the dummy substrate.
  • the process of exposing a part of the first layer (c) may be changed.
  • FIG. 2A is a cross-sectional view of silicon particles used in a method of manufacturing a solar cell according to an embodiment of the present invention.
  • the silicon particle 100 basically includes a silicon core 110 and a first layer 120.
  • the silicon particle 100 may be manufactured in the shape of a ball, and may also be manufactured in the shape of a polyhedron.
  • the shape of the polyhedron includes a cubic structure.
  • the silicon particle 100 includes P-type or N-type silicon, and the first layer 120, which is a diffusion layer forming a P-N junction, is formed outside the silicon particle 100.
  • the silicon particle 100 may further include a P-type or N-type dopant.
  • the first layer receives energy by sunlight, and electrons excited are moved accordingly. This creates a current.
  • the silicon particle 100 is formed of P-type silicon, and illustrates a structure in which the first layer 120, which is an N-type diffusion layer, is formed on the surface of the silicon particle 100.
  • the silicon particle 100 may be manufactured by performing a doping process.
  • the silicon core 110 made of P-type silicon at a high temperature.
  • the first layer 120 which is an N-type diffusion layer, may be formed thereby.
  • the silicon core 110 may not only have a structure formed of silicon itself, but also have a structure in which silicon is coated on the insulating ball.
  • the insulating ball may be made of various materials such as glass and ceramics.
  • the silicon particle 100A includes a silicon core 110, a first layer 120, and a second layer 130.
  • the second layer 130 is a coating layer coated with an antireflective material outside the first layer 120. If the second layer 130 is formed first like this, a change in the manufacturing process may occur.
  • the silicon particle 100A is manufactured in a ball shape.
  • the silicon core 110 may be formed to have a texture to reduce the reflectance of the silicon core 110.
  • the texture shape is formed on the surface of the first layer.
  • the configurations of the P-type and N-type semiconductors of the silicon core 110 and the first layer 120 may be reversed. Therefore, the silicon core 110 may be formed of an N type, and the first layer 120 may be formed of a P type semiconductor.
  • 3A is a cross-sectional view of a silicon particle and a dummy substrate disposing the silicon particle according to an embodiment of the present invention.
  • silicon particles 100 are disposed in holes 210 of the dummy substrate 200, respectively.
  • the dummy substrate 100 is used for placement of each silicon particle 100.
  • the dummy substrate 200 is then removed in the process. Therefore, it does not play a functional part in the actual solar cell.
  • the dummy substrate 200 may be formed of a material and a thickness that can be easily removed.
  • the size of the hole 210 of the dummy substrate 200 is determined based on the degree to which the silicon particle 100 is to be exposed. According to the size of the hole 210, the degree of exposure of the silicon particle 100 is determined based on the top surface of the dummy substrate 200.
  • the spacing of the holes 210 determines the spacing of the silicon particles 100. Therefore, various shapes of the dummy substrate 200 may be used according to a desired density and configuration. The arrangement of the holes 210 may be adjusted to variously configure the arrangement of the silicon balls 100.
  • the hole 210 of the dummy substrate 200 may be formed by photolithography.
  • the dummy substrate 200 is composed of a dry film resist (DFR, dry film resist or dry film photoresist).
  • the dry film resist may be formed of a film that typically includes acrylic.
  • the method of providing the silicon particles 100 on the dummy substrate 200 may be applied to various methods.
  • vacuum suction may be used. Vacuum suction to capture the silicon particles 100.
  • the captured silicon particles 100 may be provided on the dummy substrate 200 according to the positions of the holes.
  • a template including a plurality of suction ports may be used. Vacuum is sucked from the opposite side of the template to seat the plurality of silicon particles 100 in the inlet. The template is moved onto the dummy substrate 200 and the vacuum is removed to release the silicon particles 100. The silicon particle 100 may be seated at a position of the hole 210 of the dummy substrate 200.
  • a cyclic cycle can be used.
  • a plurality of silicon particles 200 are continuously provided from the inclined dummy substrate 200.
  • the silicon particles 100 that do not settle in the holes are recovered again from the bottom.
  • the recovered silicon particles 100 are again provided at the top.
  • the silicon particle 100 may be disposed on the dummy substrate 200 by forming the circular structure.
  • 3B is a cross-sectional view of the solar cell in the process of forming the anti-reflection film of the solar cell manufacturing method according to an embodiment of the present invention.
  • the second layer 130 which is an antireflection film, is coated on the silicon particles 100 disposed on the dummy substrate 200.
  • the second layer 130 may be coated in the process of forming the silicon particle 100.
  • the silicon ball 100 used in the present embodiment does not have the second layer 130, and is then applied by forming a coating on the substrate 200.
  • the anti-reflection film may include tin oxide, titanium dioxide, zinc oxide, aluminum oxide, silicon dioxide, silicon nitride, or the like. .
  • 3C is a cross-sectional view of the solar cell in the process of forming the optical transparent layer of the solar cell manufacturing method according to an embodiment of the present invention.
  • 3D is a cross-sectional view of the solar cell with the dummy substrate removed.
  • the optical transparent layer 300 is formed on the dummy substrate 200 to accommodate a portion of the silicon particle 100. Thereafter, the dummy substrate 200 is removed to complete a form in which a part of the silicon particle 100 is exposed under the optical transparent layer 300.
  • the optical transparent layer 300 may use OCM (Optically Clear Material) having high transparency, low strain, and low stress.
  • OCM Optically Clear Material
  • the OCM may be formed of glass.
  • OCM should use a material having high transparency because the solar light must be transmitted to the silicon ball 100 of the solar cell. In addition, shrinkage or deformation should be minimized due to the influence of the material from external heat.
  • An elastic material may be used, and in the future, the solar cell may be manufactured such that the solar cell may have elasticity of a general degree of flexibility and may have deformation and restoring force.
  • the optical transparent layer 300 may be formed by applying a resin, etc. used in the optical transparent layer on the dummy substrate 200 and curing it. After the optical transparent layer 300 is formed, when the dummy substrate 200 is removed, a part of the silicon particle 100 is exposed out of the optical transparent layer 300, and then an electrode or the like is electrically connected to the silicon particle 100. It becomes a state easy to do.
  • the optical transparent layer is produced by applying a liquid layer and solidifying it.
  • the OCM may be a polyethylene terephthalate (PET) or a PC (polycarbonate) including a UV stabilizer.
  • 3E is a cross-sectional view of the solar cell in the process of forming the first electrode.
  • 3F is a bottom view of the solar cell of FIG. 3E with a first electrode formed thereon.
  • a first electrode 400 electrically connected to the first layer 120 is formed around the exposed first layer 120.
  • the first electrode 400 may be formed by a layer covering the exposed first layer 120 and then etching except for a desired shape.
  • the first electrode 400 includes a first layer contact portion 410 electrically connected to the first layer 120 of the silicon particle 100, a connection terminal portion 430 connected to the second electrode, and a first layer contact portion 410. ) And an extension part 420 for electrically connecting the connection terminal part 430.
  • the first layer contact 410 appears to be formed slightly smaller than the shape of the entire silicon particle 100.
  • the size of the first layer contact part 410 may be reduced so that the circuit pattern except for the silicon particle 100 may be formed in a fine structure so that the entire pattern is not visible to the naked eye.
  • the first electrode and the second electrode to be described later may be formed of various materials.
  • it is formed of a material such as copper, silver or aluminum.
  • 3G to 3K are diagrams illustrating a process of removing a first layer and forming a second electrode.
  • 3G is a cross-sectional view of the solar cell in the process of removing a portion of the first layer and the first electrode in the method of manufacturing a solar cell according to an embodiment of the present invention.
  • 3H is a cross-sectional view of a solar cell in a process in which a portion of the first layer and the first electrode are removed and an insulating layer is formed.
  • 3I is a cross-sectional view of a solar cell with a second electrode formed thereon.
  • FIG. 3J is a bottom view from below of the view of FIG. 3I.
  • the silicon core 110 may be removed by removing a portion formed by overlapping the first layer 120 and the first electrode 400 among the silicon particles 100 exposed to the outside of the optical transparent layer 300. Expose
  • the first electrode 400 should be directly connected to the first electrode 400, and the silicon core 110 should be directly connected to the second electrode 600. Since the first electrode is formed outside the first layer 120, the first electrode 400 may not be in electrical contact with the silicon core 110. Since the second electrode 600 should be prevented from coming into contact with the first electrode 400 or the first layer 120, a separate insulating layer is formed.
  • the insulating layer 500 is formed on the layer on which the first electrodes 400 are formed.
  • the insulating layer 500 has an effect of preventing the first electrode 400 and the second electrode 600 from being electrically connected where they are not needed.
  • the insulating layer 500 is formed to cover all of the first electrodes 400 and is formed to expose the silicon core 110 so as to be necessary for the second electrode.
  • a second electrode 600 is formed on the insulating layer 500 formed in FIG. 3H.
  • the second electrode is electrically connected to the exposed silicon core 110 of the silicon particle 100 and is electrically connected to the first electrode connected to the first layer 120 of the adjacent silicon particle 100.
  • a circuit is formed in which each silicon particle 100 is connected in series with each other.
  • the second electrode 600 may include a core contact part 610 electrically connected to the silicon core 110 of the silicon particle, a connection terminal part 630 connected to the first electrode, and a core contact part 610. It includes an extension 620 for electrically connecting the connection terminal portion 630.
  • the connection terminal portion 430 of the first electrode and the connection terminal portion 630 of the second electrode are electrically connected through the through hole 700.
  • the through hole 700 may be integrally formed with the core contact part 610, the extension part 620, and the connection terminal part 630 of the second electrode when the second electrode is formed.
  • 3J is a cross-sectional view of the solar cell after forming the protective layer 800 on the second electrode 600.
  • the protective layer 800 In order to prevent the second electrode 600 from being exposed to the outside, the protective layer 800 must be formed.
  • the protective layer 800 may be formed of a general insulating layer, but may form an OCM layer of the same material as the optical transparent layer 300.
  • the solar cell in this embodiment has a spherical shape of the silicon particle 100, the solar cell can generate electric power not only by the upper part but also by the solar light supplied from the lower part. Therefore, it can be manufactured to ensure the transparency of the protective layer for protecting the lower portion to allow the light to enter.
  • the material of the protective layer may be the same as the material of the OCM. Therefore, polyethylene terephthalate (PET), PC (polycarbonate), or the like including UV stabilizers may be used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • UV stabilizers may be used.
  • a reflective layer may be formed after the step (c) in which the dummy substrate 200 is removed.
  • the reflective layer may be formed as a mirror solar resist (MSR) layer, and depending on the type of solar cell, there may be a case in which light from the lower part of the solar cell is not introduced and the light supplied from the upper part is reflected. In this case, a reflective layer can be formed inside the solar cell.
  • MSR mirror solar resist
  • such a reflective layer may be adopted to be formed separately under the lowermost protective layer 800.
  • the silicon particle 100A includes a silicon core 110, a first layer 120, and a second layer 130.
  • the second layer 130 may be formed in advance when fabricating the silicon particle 100A.
  • 4A to 4E are cross-sectional views related to the fabrication process of the solar cell to which the embodiment according to FIG. 2B is applied.
  • FIGS. 3A-3D are contrasted with the processes of FIGS. 4A-4D.
  • FIG. 3E The process cross section of FIG. 3E and the process cross section of FIG. 4E are substantially the same, and the process steps after FIG. 4E are substantially the same as the process according to FIGS. 3E to 3J.
  • the silicon particle 100A including the second layer 130 is disposed in the hole 210 of the dummy substrate 200.
  • the size or spacing of the holes 210 should be formed accordingly.
  • the optical transparent layer 300 is formed on the dummy substrate 200 on which the silicon particles 100A are disposed. After forming the optical transparent layer 300, the dummy substrate 200 is removed.
  • the manufacturing step of FIG. 4C corresponds to the manufacturing step of FIG. 3D.
  • the second layer 130 is already formed. Referring to FIG. 4C, the second layer 130 is exposed to the silicon particle 100A exposed outside the optical transparent layer 300.
  • the second layer 130 exposed out of the optical transparent layer 300 is removed.
  • the first layer 120 In order to form a first electrode electrically connected to the first layer 120, the first layer 120 must be exposed. A first electrode is formed on the exposed first layer 120.
  • 4E and 3E are steps for forming the first electrode. Referring to FIG. 4E, it is substantially the same as the process of FIG. 3E. After this step, the steps of forming the insulating layer and forming the second electrode proceed substantially the same as each other.
  • FIG. 5 is a schematic perspective view of a solar cell manufactured according to an embodiment of the present invention.
  • the solar cell produced according to the manufacturing method of this embodiment the insulating layer 500 and the protective layer 800 are formed under the optical transparent layer 300 in which the plurality of silicon particles 100 are embedded, and the first electrode (below the silicon particle 100). 400 and the second electrode 600 are formed to form a structure that effectively connects each of the plurality of silicon particles 100 in series.
  • each silicon particle 100 is very close, and the silicon particle 100 is represented large, but the distance between each silicon particle 100 is designed to be very far as compared to the diameter of the actual silicon particle 100.
  • Each layer (300, 500, 800) is optically transparent, so that it can be recognized as a glass panel with a slight color. The slight color may be due to the blue color of the entire surface of the silicon particle 100 because the second layer 130 is formed to prevent reflection.
  • the components of the second layer or the optical transparent layer 300 may be adjusted to produce a transparent layer having a desired color.
  • Optimized setting between power production and transparency by varying the density of silicon particles 100 for individual solar cells Can be achieved.
  • FIG. 6 is a cross-sectional view of a solar cell according to another embodiment of the present invention.
  • 7A and 7B are bottom views of a solar cell according to another embodiment of the present invention.
  • the solar cell according to the present embodiment includes a plurality of silicon particles 100 including a first layer on the outside, an optical transparent layer 300 for accommodating a portion of the plurality of silicon particles 100, and an optical transparent layer.
  • a plurality of upper electrodes 400 formed under the 300 and electrically connected to the first layer 120 of the silicon particles 100, and formed under the corresponding upper electrodes 400, and the silicon particles 100
  • a plurality of lower electrodes 600 electrically connected to the exposed portions where the first layer is not formed, and an insulating layer disposed between the upper electrode and the lower electrode to insulate the upper electrode and the lower electrode.
  • a protective layer 800 may be further included below the lower electrode 600.
  • the insulating layer is not formed as a whole layer, and only the portions that can partially insulate the first electrode 400 and the second electrode 600, the insulating elements that can partially insulate ( 501 and 502). Therefore, fewer parts of the solar cell that can be formed as opaque elements can be formed, thereby improving the overall solar cell transmittance.
  • the first electrode may include a first layer contact portion 410 electrically connected to a first layer of a silicon ball, a connection terminal portion 430 connected to a second electrode, and a first layer contact portion.
  • An extension part 420 electrically connecting the terminal part.
  • the second electrode has a core contact portion 610 in electrical connection with a region where the first layer of silicon ball is removed.
  • a connection terminal portion 630 connected to the first electrode and an extension portion 620 for electrically connecting the core contact portion and the connection terminal portion.
  • the insulating elements 501 and 502 are formed to be larger than the first layer contact 410 of the first electrode.
  • the first layer contact portion 410 of the first electrode and the core contact portion 610 and the extension portion 620 of the second electrode may be insulated.
  • the insulating elements 501 and 502 thus formed are formed to minimize the necessary, thereby improving the transmittance of the solar cell.
  • the insulating elements 503 and 504 are formed to be larger than the core contact portion 610 of the corresponding second electrode, and the insulating elements 503 and 504 are formed of the first contact portion of the corresponding first electrode.
  • the core contact portion 610 and the extension portion 620 of the 410 and the second electrode are electrically insulated from each other.
  • a method of securing a minimum insulation area in a manner different from that of the embodiment of FIG. 7A may improve the overall solar cell transmittance.
  • FIGS. 8A and 8B illustrate a dummy substrate and silicon particles deposited on the dummy substrate according to an embodiment of the present invention.
  • the diameter of the holes on which the silicon particles are to be left in the dummy substrate is formed to be approximately 600 ⁇ m. In this case, the diameter of the silicon particles to be left is about 1.1 mm.
  • the diameter of these holes may have different diameters depending on the size of the silicon particles and the extent to which the silicon particles are exposed.
  • the particles thus settled may be left at even intervals as in FIG. 8B.
  • the politics of such particles can be applied in various arrangements.
  • FIG. 9 is a cross-sectional view of a solar cell according to another embodiment of the present invention.
  • the silicon particles may be manufactured not only in a spherical shape but also in a cubic shape. It is also possible to produce a variety of polyhedron shapes. As long as the first electrode 400 and the second electrode 600 are in contact with the core part, the shape of the silicon particle 100 may be manufactured in various shapes.
  • the solar cell according to the exemplary embodiment of the present invention may further include a lens unit 900 in an area corresponding to the silicon particle 100 on the optical transparent layer 300.
  • the lens unit 900 may serve to condense light onto the silicon particle 100 and may increase the efficiency of power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

태양 전지의 제조 방법은 외부에 제1층을 포함하는 실리콘 파티클에 있어서, 복수개의 홀을 포함하는 더미 기판 상에 홀에 대응하여 복수개의 실리콘 파티클을 위치시키는 단계, 더미 기판 상에 적어도 일부의 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계, 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계, 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계, 제1 전극 상에 절연층을 형성하는 단계, 실리콘 파티클의 제1층의 일부가 제거 되는 단계, 실리콘 파티클에서 제1층이 제거된 부분과 전기적으로 연결되는 제2 전극을 형성하는 단계를 포함한다.

Description

태양 전지 및 태양 전지의 제조 방법
본 발명은 태양 전지 및 태양 전지의 제조 방법에 관한 것이다.
기존의 패널형 태양 전지에서 실리콘 볼을 활용한 태양 전지가 개발되고 있다. 하지만 아직까지 광학적인 구조 및 배선 구조에 있어서 최적화를 이루어 내지는 못하고 있다. 더군다나, 복잡한 구조를 제작함에 있어, 다양한 제조 방법이 개발되고 있으나, 다른 태양 전지 패널의 전력 생산성과 원가 경쟁력을 가질수 있는 방법에 대한 연구는 더욱 필요하다
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 제조 단가를 낮추고 안정성을 확보할 수 있는 태양 전지 및 태양 전지의  제조 방법을 제공하고자 한다.
상기와 같은 과제를 해결하고자, 본 발명의 일 실시형태에 따른 태양전지의 제조 방법은, 외부에 제1층을 포함하는 실리콘 파티클에 있어서, (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계, (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계, (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계, (d)각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계, (e) 상기 제1 전극 상에 절연층을 형성하는 단계, (f) 상기 실리콘 파티클의 제1층의 일부가 제거 되는 단계, (f) 상기 실리콘 파티클에서 제1층이 제거된 부분과 전기적으로 연결되는 제2 전극을 형성하는 단계 를 포함한다.
일 실시예에 있어서, 상기 실리콘 파티클은 P형 또는 N형 실리콘을 포함하며, 상기 제1층은 상기 실리콘 파티클의 수광 영역 표면에는 P-N 접합을 이루는 확산층을 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, (a) 단계 이후에, 상기 더미 기판 상에 위치된 실리콘 파티클 위로 반사방지를 위한 제2층을 형성하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, (a) 단계 이전에, 상기 실리콘 파티클에 상기 제1층을 둘러싸고 반사방지를 위한 제2층을 형성하는 단계를 더 포함하고, (c) 단계에서, (c) 상기 더미 기판을 제거한 후, 각각의 상기 실리콘 파티클에 형성된 상기 제2층의 일부를 제거하여, 제1층의 일부를 노출시키는 것을 특징으로 할 수 있다.
일 실시예에 있어서, (c)단계 이후에, 상기 더미 기판이 제거된 영역에 반사층을 형성하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 제1 전극은, 상기 실리콘 파티클의 제1층과 전기적으로 연결되는 제1층 접촉부, 상기 제2 전극과 연결되는 연결 단자부 및 상기 제1층 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하고,상기 제2 전극은, 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결과는 코어 접촉부. 상기 제1 전극과 연결되는 연결단자부 및 상기 코어 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, (g) 단계 이후에, (h) 상기 제2 전극 상에 보호층을 형성하는 단계를 더 포함할 수 있다.
일 실시예에 있어서, (h) 단계에서, 상기 보호층은 광학적 투명층인 것을 특징으로 할 수 있다.
일 실시예에 있어서, (a) 단계에서, 복수개의 흡입구를 포함하는 템플릿을 이용하여 실리콘 파티클을 포획하고, 상기 더미 기판 상의 복수개의 홀에 안착하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, (a) 단계에서, 복수개의 실리콘 파티클을 중력방향을 따라 지속적으로 제공하는 순환 경로를 이용하여 복수개의 홀에 안착하는 것을 특징으로 할 수 있다.
본 발명의 다른 실시예에 따른 태양 전지의 제조 방법은 외부에 제1층을 포함하는 실리콘 파티클에 있어서, (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계, (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계, (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계, (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계, (e) 상기 실리콘 파티클에서 상기 제1층의 일부를 제거시키는 단계, (f) 상기 제1 전극 상에 절연층을 형성하는 단계, (g) 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결되는 제2 전극을 형성하는 단계를 포함한다.
*본 발명의 다른 실시예에 따른 태양 전지의 제조 방법은 외부에 제1층을 포함하는 실리콘 파티클에 있어서, (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계, (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계, (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계, (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계, (e) 상기 실리콘 파티클의 제1층의 일부가 제거되는 단계, (f) 상기 제1 전극 상에 부분적으로 절연층을 형성하는 단계, (g) 상기 실리콘 파티클에서 제1층이 제거된 부분과 전기적으로 연결되는 제2 전극을 형성하는 단계를 포함한다.
본 발명의 다른 실시예에 따른 태양 전지는 외부에 제1층을 포함하는 복수개의 실리콘 파티클, 상기 복수개의 실리콘 파티클의 일부를 수용하는 광학적 투명층, 상기 광학적 투명층 하부에 형성되고, 상기 실리콘 파티클의 제1층 과 각각 전기적으로 연결되는 복수개의 상부 전극, 상기 대응되는 상부 전극 하부에 형성되고, 상기 실리콘 파티클 중 제1층이 형성되지 않은 노출부와 각각 전기적으로 연결되는 복수개의 하부 전극 및 상기 상부 전극과 하부 전극 사이에 위치하고 상기 상부 전극과 하부 전극을 절연시키는 절연층을 포함한다.
일 실시예에 있어서, 상기 하부 전극의 아래에는 보호층이 더 포함되는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 제1 전극은, 상기 실리콘 파티클의 제1층과 전기적으로 연결되는 제1층 접촉부, 상기 제2 전극과 연결되는 연결 단자부 및 상기 제1층 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하고, 상기 제2 전극은, 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결과는 코어 접촉부. 상기 제1 전극과 연결되는 연결단자부 및 상기 코어 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하고, 상기 절연 요소들은 대응되는 상기 제1 전극의 제1층 접촉부 보다 크게 형성되는 것을 특징으로 할 수 있다.
일 실시예에 있어서, 상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하고, 상기 절연 요소들은 대응되는 제2 전극의 코어 접촉부보다 크게 형성되고, 상기 대응되는 제1전극의 제1 첩촉부와 상기 제2 전극의 코어 접촉부 및 연장부를 전기적으로 절연하는 것을 특징으로 할 수 있다.
상기와 같은 본 발명에 따르면, 복잡한 제조 공정을 단순화 할 수 있어, 실리콘 볼을 이용한 태양 전지의 생산 원가를 향상시킬 수 있다.
또한, 기존의 제조 방식에 비해 제작되는 태양전지의 구조적인 안정성을 향상시킬 수 있다.
아울러, 기존의 제조 방식에 비해 투명도가 매우 향상된 태양전지를 제작할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 태양 전지의 제조 방법을 나타내는 순서도이다.
도 2a 및 도 2b는 는 본 발명의 일 실시예에 따른 태양 전지의 제조 방법에 사용되는 실리콘 파티클의 단면도이다.
도 3a 내지 도 3k는 본 발명의 일 실시예에 따른 실리콘 파티클의 제조 방법을 나타내는 단면도이다.
도 4a 내지 도 4e는 도 2b의 실시예에 따른 실리콘 파티클의 제조 방법을 나타내는 단면도이다.
도 5은 본 발명의 일 실시예에 따른 태양 전지의 사시도이다.
도 6은 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다.
도 7a 및 7b는 본 발명의 다른 실시예에 따른 태양전지의 저면도들이다.
도 8a 및 도 8b는 은 본 발명의 일 실시예에 따른 더미 기판과 이러한 더미 기판 상에 실리콘 파티클이 안착된 도면이다.
도 9는 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다.
도 10은 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 본 발명의 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.
태양 전지의 제조 방법
도 1은 본 발명의 일 실시예에 따른 태양 전지의 제조 방법을 나타내는 순서도이다.
본 실시예에 따른 태양 전지의 제조 방법은 (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계, (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계, (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계, (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계, (e) 상기 제1 전극 상에 절연층을 형성하는 단계, (f) 상기 실리콘 파티클의 제1층의 일부를 제거하는 단계, (g) 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결되는 제2 전극을 형성하는 단계로 구성된다.
본 실시예에 사용되는 실리콘 파티클(100)은 본 태양 전지의 제조 공정 이전에 별도 제작될 수 있다. 실리콘 파티클(100)은 실리콘 코어(110) 및 제1층(120)을 포함한다. 실리콘 파티클(100)은 실리콘 코어(110) 및 제1층(120)과 같은 필수적으로 포함되는 구성요소를 제외하고, 추가적인 구성요소를 더 포함할 수 있다. 부가적인 구성요소를 포함하는 경우에는 이와 관련되는 추가적인 공정이 추가될 수 있다. 하지만, 기본적인 공정의 순서는 제시된 단계를 순차적으로 포함할 수 있다.
반사 방지를 위한 제2층(130)은 다양한 방법으로 형성될 수 있다. 실리콘 파티클(100)을 형성하는 과정에서 형성될 수 있다. 이 경우, 제1층(120)의 바깥 부분에 전체적으로 코팅하는 방법으로 형성된다.
또한, 반사 방지를 위한 제2층(130)은, 실리콘 파티클(100)이 더미 기판 상에 위치된 이후, 별도의 코팅 공정을 통하여 형성될 수 있다.
이러한 제2층(130)의 형성 방법에 따라, (c) 제1층의 일부를 노출하는 공정이 변화될 수 있다.
이외에도, 핵심적인 프로세스들을 포함하는 한 다양한 공정들이 추가되어 변형될 수 있을 것이다.
이하, 도면을 참조하여 구체적인 공정을 설명한다.
실리콘 파티클
도 2a는 본 발명의 일 실시예에 따른 태양 전지의 제조 방법에 사용되는 실리콘 파티클의 단면도이다.
도 2a를 참조하면, 본 발명의 일 실시예에 따른 실리콘 파티클(100)은 기본적으로 실리콘 코어(110), 제1층(120) 을 포함한다. 실리콘 파티클(100)은 볼형상으로 제작될 수 있고, 또한 다면체의 형상으로 제작될 수 있다. 다면체의 형상은 큐빅 구조를 포함한다.
실리콘 파티클(100)은 P형 또는 N형 실리콘을 포함하며, 실리콘 파티클(100)의 외부에는 P-N 접합을 이루는 확산층인 제1층(120)이 형성된다. 실리콘 파티클(100)은 P형 또는 N형 도판트(dopant)를 추가로 포함할 수 있다.
여기에서, 제1층이 태양광에 의하여 에너지를 수용하고, 이에 따라 여기 되는 전자가 이동한다. 이로 인해 전류가 생성된다.
도면의 경우 실리콘 파티클(100)이 P형 실리콘으로 형성되고, 실리콘 파티클(100)의 표면에 N형의 확산층인 제1층(120)이 형성된 구조를 예시하고 있다.
실리콘 파티클(100)은 도핑 공정을 수행하여 제작될 수 있다.
P형 실리콘 재질의 실리콘 코어(110)에 5족 원소를 포함하는 POCl3, H3PO4 등을 고온에서 확산시킨다. N형 확산층인 제1층(120)이 이로 인해 형성될 수 있다. 또한 실리콘 코어(110)은 그 자체가 실리콘으로 형성된 구조를 가질 수 있을 뿐 아니라 절연성 볼에 실리콘이 코팅된 구조를 갖는 것도 가능하다. 절연성 볼은 유리, 세라믹 등 다양한 재질로 구성될 수 있다.
도 2b는 본 발명의 다른 실시예에 따른 실리콘 파티클의 단면도이다. 도 2b를 참조하면, 실리콘 파티클(100A)는 실리콘 코어(110), 제1층(120) 및 제2층(130)을 포함한다. 제2층(130)은 제1층(120) 바깥으로 반사 방지 물질이 코팅된 코팅층 이다. 제2층(130)이 이렇게 먼저 형성되는 경우 제조상의 프로세스에 변화가 올 수 있다. 여기서 실리콘 파티클(100A)은 볼 형상으로 제작되었다.
실리콘 코어(110)의 반사율을 저감시킬 수 있도록 텍스쳐(texture) 형상을 가지도록 형성될 수 있다. 텍스쳐 형상은 제1층의 표면에 형성된다.
추가적으로 이러한 실리콘 코어(110)과 제1층(120)의 P 형과 N형 반도체의 구성은 반대로 형성될 수 있다. 따라서 실리콘 코어(110)은 N형으로, 제1층(120)은 P형 반도체로 형성될 수 있다.
실리콘 파티클의 배치(a 단계)
도 3a는 본 발명의 일 실시예에 따른 실리콘 파티클 및 이를 배치하는 더미 기판의 단면도이다.
도 3a를 참조하면, 실리콘 파티클(100)이 더미 기판(200)의 홀(210)에 각각 배치된다. 본 단계에서 더미 기판(100)은 각각의 실리콘 파티클(100)의 배치를 위해 이용된다. 이후 더미 기판(200)은 공정에서 제거된다. 따라서 실제 태양 전지에서 기능적인 부분을 담당하지는 않는다.
더미 기판(200)은 제거가 용이하게 이루어 질 수 있는 물질과 두께로 형성될 수 있다. 더미 기판(200)의 홀(210)의 크기는 실리콘 파티클(100)이 노출되어야 하는 정도를 기준으로 결정된다. 홀(210)의 크기에 따라 더미 기판(200)의 상부면을 기준으로 실리콘 파티클(100)이 노출되는 정도가 결정 된다.
또한, 홀(210)의 간격은 실리콘 파티클(100)의 배치 간격을 결정한다. 따라서, 원하는 밀도와 구성에 따라 다양한 형상의 더미 기판(200)이 사용될 수 있다. 홀(210)의 배치를 조절하여 실리콘 볼(100)의 배치를 다양하게 구성할 수 있다.
더미 기판(200)의 홀(210)은 포토리소그래피에 의해 형성될 수 있다. 더미 기판(200)은 드라이 필름 레지스트(DFR, Dry Film Resist 또는 Dry Film photoResist)로 구성된다. 드라이 필름 레지스트는 대표적으로 아크릴을 포함하는 필름으로 형성될 수 있다.
본 단계에서, 더미 기판(200) 상에 실리콘 파티클(100)을 제공하는 방법은 다양한 방법을 적용할 수 있다. 일 예로, 진공 흡입을 이용할 수 있다. 진공 흡입하여 실리콘 파티클(100)을 포획한다. 포획된 실리콘 파티클(100)을 더미 기판(200) 상에 홀의 위치에 맞게 제공할 수 있다.
이때에는 복수개의 흡입구를 포함하는 템플릿을 이용할 수 있다. 템플릿의 반대면에서 진공을 흡입하여 복수개의 실리콘 파티클(100)을 흡입구에 안착한다. 템플릿을 더미 기판(200) 상으로 이동하고, 진공을 제거하여 실리콘 파티클(100)을 방출한다. 더미 기판(200)의 홀(210)의 위치에 실리콘 파티클(100)이 안착할 될 수 있다.
또 다른 방법으로는, 순환 사이클을 이용할 수 있다. 경사진 더미 기판(200) 상부로부터 복수개의 실리콘 파티클(200)을 지속적으로 제공한다. 홀에 안착하지 못한 실리콘 파티클(100)들을 하부에서 다시 회수한다. 회수된 실리콘 파티클(100)을 상부에서 다시 제공한다. 이러한 순환 구조를 형성하여 더미 기판(200) 상에 실리콘 파티클(100)을 배치할 수 있다.
반사 방지막의 형성 (b 단계 이전)
도 3b는 본 발명의 일 실시예에 따른 태양 전지의 제조 방법 중 반사방지막이 형성되는 과정에서 태양전지의 단면도이다.
도 3b를 참조하면, 더미 기판(200) 상에 배치된 실리콘 파티클(100)에 반사 방지막인 제2층(130)을 코팅한다. 상기에서 언급한 바와 같이 제2층(130)은 실리콘 파티클(100)을 형성하는 과정에서 코팅될 수 있다.
본 실시예에서 사용되는 실리콘 볼(100)은 제2층(130)을 가지지 않다가, 이후에 기판(200) 상에서 코팅하여 형성하는 것으로 적용된다.
반사방지막은 틴옥사이드(tin oxide), 타이타늄 다이옥사이드(titanium dioxide), 징크 옥사이드(zinc oxide), 알루미늄 옥사이드(aluminum nitride), 실리콘 다이옥사이드(silicon dioxide), 실리콘 나이트라이드(silicon nitride) 등이 사용될 수 있다.
다른 방법에 대해서는 후술될 다른 실시예에서 설명한다.
광학적 투명층의 형성 및 더미 기판의 제거 (b, c 단계)
도 3c는 본 발명의 일 실시예에 따른 태양 전지의 제조 방법 중 광학적 투명층이 형성되는 과정에서 태양전지의 단면도이다. 도 3d는 더미 기판이 제거된 상태의 태양 전지의 단면도이다.
도 3c 및 3d를 참조하면, 더미 기판(200) 상에 실리콘 파티클(100)의 일부를 수용하도록 광학적 투명층(300)을 형성한다. 이후 더미 기판(200)을 제거하여 광학적 투명층(300)의 아래로 실리콘 파티클(100)의 일부가 노출되는 형태를 완성한다.
광학적 투명층(300)은 고투명성, 저변형 및 저응력을 가지는 OCM(Optically Clear Material)을 사용할 수 있다. 상기 OCM은 유리로 형성될 수 있다. OCM은 태양 전지의 실리콘 볼(100)에 태양광이 투과되어 전달되어야 하므로 높은 투명성을 가지는 재료를 사용해야 한다. 또한 외부 열에 의한 재료의 영향으로 수축되거나 변형이 최소화 되어야 한다. 탄성을 가지는 재료가 사용될 수 있으며, 향후 태양 전지가 전체적으로 유연한 정도의 탄성을 가져 변형성 및 복원력을 가질 수 있도록 제작될 수 있다.
광학적 투명층(300)은 더미 기판(200) 상에 광학적 투명층에 사용되는 수지등을 도포하고 이를 경화함으로써 형성시킬 수 있다. 광학적 투명층(300)이 형성된 이후, 더미 기판(200)이 제거되면, 광학적 투명층(300) 밖으로 실리콘 파티클(100)의 일부가 노출되고, 이후 실리콘 파티클(100)과전기적으로 연결되는 전극 등을 형성하기 용이한 상태가 된다.
광학적 투명층(OCM)의 제조는 액상층을 도포하고, 이것을 고형화 해서 형성한다. OCM은 UV안정제를 포함한 PET(polyethylene terephthalate), PC(polycarbonate) 등이 사용될 수 있다.
제1 전극의 형성(e 단계)
도 3e는 제1 전극이 형성된 과정에서 태양 전지의 단면도이다. 도 3f는 제1 전극이 형성된 도 3e의 태양 전지를 아래에서 본 저면도이다.
도 3e를 참조하면, 노출된 제1층(120) 주위로 제1층(120)과 전기적으로 연결되는 제1전극(400)이 형성된다. 일반적으로 제1 전극(400)의 형성은 노출된 제1층(120)을 덮을 수 있는 층으로 형성한 후 원하는 형상을 제외하고 식각하는 방법으로 형성될 수 있다.
도 3f은 도 3e의 제1 전극이 형성된 태양 전지를 아래에서 본 저면도이다. 제1 전극(400)은 실리콘 파티클(100)의 제1층(120)과 전기적으로 연결되는 제1층 접촉부(410), 제2 전극과 연결되는 연결 단자부(430) 및 제1층 접촉부(410)와 상기 연결단자부(430)를 전기적으로 연결하는 연장부(420)를 포함한다.
도면에서는 제1층 접촉부(410)가 전체 실리콘 파티클(100)의 형상보다 약간 작게 형성되는 것처럼 보인다. 실제 제작 시에는 제1층 접촉부(410)의 크기를 작게 하여 전체적으로 실리콘 파티클(100)을 제외한 회로 패턴이 육안으로 보이지 않을 만큼 미세한 구조로 형성되도록 할 수 있다.
제1전극 및 후술될 제2 전극은 다양한 재질로 형성될 수 있다. 예를 들어, 동, 은 또는 알루미늄 등의 재질로 형성된다.
제1층의 제거 및 제2 전극의 형성(f, g 단계)
도 3g 내지 3k는 제1층을 제거하고, 제2 전극을 형성하기 까지의 과정을 나타내는 도면들이다.
도 3g는 본 발명의 일 실시예에 따른 태양 전지의 제조 방법 중 제1 층 및 제1 전극의 일부가 제거된 과정에서 태양전지의 단면도이다. 도 3h는 제1 층 및 제1 전극의 일부가 제거되고, 절연층이 형성된 과정에서 태양 전지의 단면도이다. 도 3i는 제2 전극이 형성된 태양 전지의 단면도이다. 도 3j는 도 3i의 도면을 아래에서 바라보는 저면도이다.
도 3g를 먼저 참조하면, 광학적 투명층(300)의 외부로 노출된 실리콘 파티클(100) 중 제1층(120)과 제1 전극(400)이 중첩되어 형성된 곳을 제거하여 실리콘 코어(110)을 노출한다.
실질적으로 제1층(120)과 직접적으로 연결되어야 하는 것은 제1 전극(400)이고, 실리콘 코어(110)과 직접적으로 연결되어야 하는 것 은 제2 전극(600)이다. 제1 전극의 형성은 제1층(120) 외부에서 형성되는 것이므로, 제1 전극(400)은 실리콘 코어(110)과는 전기적으로 접촉할 가능성은 없다. 제2 전극(600)이 제1 전극(400) 또는 제1층(120)과 접촉할 수 있는 것을 방지하여야 하므로 별도의 절연층을 형성한다.
도 3h를 참조하면, 제1 전극(400)들이 형성되어 있는 층위로 절연층(500)을 형성한다. 절연층(500)은 제1 전극(400)과 제2 전극(600)이 필요하지 않는 곳에서 전기적으로 연결되는 것을 방지하는 효과가 있다. 기본적으로 절연층(500)은 제1 전극(400) 모두를 커버하여 형성되고, 제2 전극을 위해 필요하도록, 실리콘 코어(110)을 노출하도록 형성한다.
도 3i를 참조하면, 도 3h에서 형성된 절연층(500) 상으로 제2 전극(600)을 형성한다. 제2 전극은 실리콘 파티클(100)의 노출된 실리콘 코어(110)과 전기적으로 연결되며, 인접한 실리콘 파티클(100)의 제1층(120)과 연결된 제1 전극과 전기적으로 연결된다. 따라서 각각의 실리콘 파티클(100)이 서로 직렬적으로 연결되는 회로가 구성된다.
도 3j를 참조하면, 제1 전극(400)과 제2 전극(600)이 연결되는 구조를 확인할 수 있다. 제1 전극과 마찬가지로, 제2 전극(600)은 실리콘 파티클의 실리콘 코어(110)과 전기적으로 연결되는 코어 접촉부(610), 제1 전극과 연결되는 연결단자부(630) 및 코어 접촉부(610)와 연결단자부(630)를 전기적으로 연결하는 연장부(620)를 포함한다. 제1 전극의 연결단자부(430)와 제2 전극의 연결단자부(630)는 관통홀(700)을 통하여 전기적으로 연결된다.
단, 관통홀(700)은 제2 전극의 형성시 제2 전극의 코어 접촉부(610), 연장부(620) 및 연결단자부(630)와 함께 일체로 형성될 수 있다.
보호층의 형성 (추가 단계)
도 3j는 제2 전극(600) 상에 보호층(800)을 형성한 후의 태양 전지에 대한 단면도이다. 제2 전극(600)이 외부에 노출되지 않도록 하기 위해 보호층(800)을 형성하여야 한다. 보호층(800)은 일반적인 절연층으로 형성할 수 있지만, 광학적 투명층(300)와 같은 재질의 OCM 층을 형성할 수 있다.
본 실시예에서의 태양 전지는 실리콘 파티클(100)의 형상이 구형이기 때문에, 상부 뿐만아니라 하부에서 공급되는 태양광에 의해서도 전력을 생산할 수 있다. 따라서 하부를 보호하는 보호층에 대해서도 투명성을 확보하여 광을 유입할 수 있도록 제작될 수 있다.
언급한 바와 같이 보호층의 재질은 OCM의 재질과 동일하게 사용될 수 있다. 따라서, UV안정제를 포함한 PET(polyethylene terephthalate), PC(polycarbonate) 등이 사용될 수 있다.
반사층의 형성
도면에서는 도시되지 않았지만, 본 발명의 다른 실시예에서는 더미 기판(200)이 제거되는 (c)단계 이후, 반사층을 형성할 수 있다. 여기에서 반사층은 MSR(Mirror Solar Resist) 층으로 형성할 수 있는데, 태양전지의 종류에 따라 하부에서의 광이 유입되지 않고, 상부에서 공급되는 광을 반사하여야 하는 경우가 있을 수 있다. 이 경우에는 태양전지 내부에 반사층을 형성할 수 있다.
필요에 따라서는 이러한 반사층은 최하단의 보호층(800) 아래에 별도로 형성시키는 방법을 채택할 수도 있다.
제2층이 형성된 실리콘 볼 사용 실시예 공정
도 2b는 본 발명의 다른 실시예에 따른 실리콘 파티클의 단면도이다. 도 2b를 참조하면, 실리콘 파티클(100A)은 실리콘 코어(110), 제1층(120) 및 제2층(130)을 포함한다. 제2층(130)은 실리콘 파티클(100A)를 제작할 때에 미리 형성될 수 있다.
도 4a 내지 도 4e는 도 2b에 따른 실시예를 적용한 태양 전지의 제작 프로세스에 관련된 단면도들이다.
도 3a 내지 도 3k에 따른 실시예의 제작 프로세스와 비교하면, 도 3a 내지 도 3d까지의 공정과 도 4a 내지 도 4d까지의 공정이 대비된다.
도 3e의 공정상 단면도와 도 4e의 공정상 단면도는 실질적으로 동일하며, 도 4e이후의 공정 단계는 도 3e 내지 도 3j에 따른 공정과 실질적으로 동일하다.
이하 중복되는 설명은 생략하고, 공정상의 차이점을 중심으로 서술한다.
도 4a및 4c를 참조하면, 제2층(130)을 포함하는 실리콘 파티클(100A)이 더미 기판(200)의 홀(210)에 배치된다. 이 때에는 제2층(130)의 두께만큼 실리콘 파티클(100A)의 크기가 커지므로, 홀(210)의 크기나 간격은 이에 맞추어 형성하여야 한다. 실리콘 파티클(100A)이 배치된 더미 기판(200) 상으로 광학적 투명층(300) 을 형성한다. 광학적 투명층(300)을 형성한 후 더미 기판(200)을 제거한다.
도 4c의 제조 단계는 도 3d의 제조 단계와 대응된다. 본 실시예에서는 제2층(130)이 이미 형성되어 있다. 도 4c를 참조하면, 광학적 투명층(300)밖으로 노출되는 실리콘 파티클(100A)은 제2층(130)이 노출된다.
도 4d를 참조하면, 광학적 투명층(300) 밖으로 노출된 제2층(130)을 제거한다. 제1층(120)과 전기적으로 연결되는 제1전극을 형성하기 위하여는 제1층(120)을 노출하여야 한다. 노출된 제1층(120) 위로 제1전극을 형성한다.
도 4e 및 도 3e는 제1 전극을 형성하는 공정이다. 도 4e를 참조하면, 실질적으로 도 3e의 공정과 동일하다. 이 공정 이후 절연층 형성, 제2 전극을 형성하는 공정은 서로 실질적으로 동일하게 진행된다.
형성된 태양 전지
도 5는 본 발명의 일 실시예에 따라 제작된 태양 전지를 나타내는 계략적인 사시도이다.
도 5를 참조하면, 본 실시예의 제조 방법에 따라 제작된 태양 전지를 확인할 수 있다. 본 실시예의 태양 전지는 복수개의 실리콘 파티클(100)이 내재되어 있는 광학적 투명층(300) 아래에 절연층(500) 및 보호층(800)이 형성되고, 실리콘 파티클(100) 하부에는 제1전극(400) 및 제2 전극(600)이 형성되어 각각의 복수개의 실리콘 파티클(100)들을 효과적으로 직렬 연결하는 구조를 형성한다.
도면에서는 각 실리콘 파티클(100)간의 거리가 매우 가깝고, 실리콘 파티클(100)이 크게 표현되어 있으나, 실제 실리콘 파티클(100)의 직경에 비해 각 실리콘 파티클(100) 간의 거리는 매우 멀도록 설계되며, 실질적으로 각 층(300, 500, 800)은 광학적으로 투명하여, 약간의 색상을 띄는 유리 패널로 인지될 수 있을 정도로 제작된다. 여기서 약간의 색상을 띄는 것은 실리콘 파티클(100)의 제2층(130)이 반사를 방지할 수 있도록 형성되었기 때문에, 전체적으로 푸른 빛을 띄게 되는 것에 기인할 수 있다.
필요에 따라서는 제2층이나 광학적 투명층(300)의 성분을 조절하여 원하는 색상의 투명층을 제작할 수 있으며, 개별적인 태양 전지별로 실리콘 파티클(100)의 밀도를 다르게 하여 전력의 생산량과 투명도 간의 최적화 된 설정을 이루어 낼 수 있다.  
투명도 향상을 위한 태양전지 구조
도 6은 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다. 도 7a 및 7b는 본 발명의 다른 실시예에 따른 태양전지의 저면도들이다.
도 6을 참조하면, 본 실시예에 따른 태양 전지는 외부에 제1층을 포함하는 복수개의 실리콘 파티클(100), 복수개의 실리콘 파티클(100)의 일부를 수용하는 광학적 투명층(300), 광학적 투명층(300) 하부에 형성되고, 실리콘 파티클(100)의 제1층(120) 과 전기적으로 연결되는 복수개의 상부 전극(400), 대응되는 상부 전극(400) 하부에 형성되고, 실리콘 파티클(100) 중 제1층이 형성되지 않은 노출부와 각각 전기적으로 연결되는 복수개의 하부 전극(600) 및 상부 전극과 하부 전극 사이에 위치하고 상기 상부 전극과 하부 전극을 절연시키는 절연층을 포함한다. 또한, 하부 전극(600)의 아래에는 보호층(800)이 더 포함될 수 있다.
본 실시예는 상기 절연층이 전체의 한 층으로 형성되지 않고, 제1 전극(400)과 제2 전극(600)을 부분적으로 절연할 수 있는 부분만, 부분적으로 절연할 수 있는 절연 요소들(501, 502)로 구성된다. 따라서, 태양 전지에서 불투명 요소로 형성될 수 있는 부분들이 적게 형성됨으로써, 전체적인 태양전지의 투과율을 향상시킬 수 있다.
도 7a을 먼저 참조하면, 제1 전극은, 실리콘 볼의 제1층과 전기적으로 연결되는 제1층 접촉부(410), 제2 전극과 연결되는 연결 단자부(430) 및 제1층 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부(420)를 포함한다.
제2 전극은, 실리콘 볼의 제1층이 제거된 영역과 전기적으로 연결과는 코어 접촉부(610). 제1 전극과 연결되는 연결단자부(630) 및 코어 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부(620)를 포함한다.
이 중 절연 요소(501, 502)는 제1 전극의 제1층 접촉부(410) 보다 크게 형성된다. 제1 전극의 제1층 접촉부(410)와 제2 전극의 코어 접촉부(610) 및 연장부(620)가 절연될 수 있다. 이렇게 형성된 절연 요소(501, 502)들은 필요한 최소화 하여 형성되어, 태양 전지의 투과도를 향상 시킨다.
도 7b를 참조하면, 절연 요소들(503, 504)은 대응되는 제2 전극의 코어 접촉부(610)보다 크게 형성되며, 절연 요소(503, 504)는 대응되는 제1전극의 제1 첩촉부(410)와 제2 전극의 코어 접촉부(610) 및 연장부(620)를 전기적으로 절연한다.
도 7a의 실시예와는 다른 방법으로 최소한의 절연 면적을 확보하여, 전체적인 태양 전지의 투과율을 향상시킬 수 있게 된다.
실시예 따른 제품의 크기와 형태
도 8a 및 도 8b는 은 본 발명의 일 실시예에 따른 더미 기판과 이러한 더미 기판 상에 실리콘 파티클이 안착된 도면이다.
도 8a를 참조하면, 더미 기판에 실리콘 파티클이 정치될 홀의 지름은 대략 600um으로 형성되었다. 이 경우 정치되는 실리콘 파티클의 지름은 1.1mm 정도가 된다.
물론, 이러한 홀의 지름은 실리콘 파티클의 크기에 따라, 그리고 실리콘 파티클이 노출되는 정도에 따라 다른 직경을 가질 수 있다.
도 8b를 참조하면, 이렇게 정치된 파티클은 도 8b와 같이 균일한 간격으로 정치된다. 이러한 파티클의 정치는 다양한 배열 방법으로 응용될 수 있다.
큐빅 형상의 실리콘 파티클
도 9는 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다.
도 9에서 도시된 바와 같이 실리콘 파티클은 구형으로 제작될 수 있을 뿐만 아니라, 큐빅 형태로도 제작이 가능하다. 또한 다양한 다면체 형상으로 제작이 가능하다. 제1 전극(400)과 코어부를 접촉하는 제2 전극(600)으로 구성되는 한,실리콘 파티클(100)의 형상은 다양한 형상으로 제작될 수 있다.
상부에 렌즈를 포함하는 실시예
도 10은 본 발명의 다른 실시예에 따른 태양 전지의 단면도이다. 도 10을 참조하면, 본 발명의 일 실시예에 따른 태양 전지는 광학적 투명층(300)의 상부에 실리콘 파티클(100)과 대응되는 영역에 렌즈부(900)를 더 포함할 수 있다.
이러한 렌즈부(900)는 실리콘 파티클(100)에 광을 집광하는 역할을 하여 전력 생산의 효율을 높이는 데 작용할 수 있다.
이상에서 본 발명에 따른 실시 예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (25)

  1. 외부에 제1층을 포함하는 실리콘 파티클에 있어서,
    (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계;
    (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계;
    (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계;
    (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계;
    (e) 상기 제1 전극 상에 절연층을 형성하는 단계;
    (f) 상기 실리콘 파티클의 제1층의 일부가 제거 되는 단계;
    (g) 상기 실리콘 파티클에서 제1층이 제거된 부분과 전기적으로 연결되는 제2 전극을 형성하는 단계;
    를 포함하는 태양 전지의 제조 방법.
  2. 제1항에 있어서,
    상기 실리콘 파티클은 P형 또는 N형 실리콘을 포함하며,
    상기 제1층은 상기 실리콘 볼의 수광 영역 표면에는 P-N 접합을 이루는 확산층을 포함하는 것을 특징으로 하는 태양전지의 제조 방법.
  3. 제1항에 있어서,
    (a) 단계 이후에, 상기 더미 기판 상에 위치된 실리콘 파티클 위로 반사방지를 위한 제2층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양전지의 제조 방법.
  4. 제1항에 있어서,
    (a) 단계 이전에, 상기 실리콘 파티클에 상기 제1층을 둘러싸고 반사방지를 위한 제2층을 형성하는 단계를 더 포함하고,
    (c) 단계에서, (c) 상기 더미 기판을 제거한 후, 각각의 상기 실리콘 파티클에 형성된 상기 제2층의 일부를 제거하여, 제1층의 일부를 노출시키는 것을 특징으로 하는 태양 전지의 제조 방법.
  5. 제1항에 있어서,
    (c)단계 이후에, 상기 더미 기판이 제거된 영역에 반사층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 태양전지의 제조 방법.
  6. 제1항에 있어서,
    상기 제1 전극은, 상기 실리콘 파티클의 제1층과 전기적으로 연결되는 제1층 접촉부, 상기 제2 전극과 연결되는 연결 단자부 및 상기 제1층 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하고,
    상기 제2 전극은, 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결과는 코어 접촉부. 상기 제1 전극과 연결되는 연결단자부 및 상기 코어 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하는 것을 특징으로 하는 태양전지의 제조 방법.
  7. 제1항에 있어서,
    (g) 단계 이후에,
    (h) 상기 제2 전극 상에 보호층을 형성하는 단계;
    를 더 포함하는 것을 특징으로 하는 태양 전지의 제조 방법.
  8. 제7항에 있어서,
    (h) 단계에서,
    상기 보호층은 광학적 투명층인 것을 특징으로 하는 태양전지의 제조 방법.
  9. 제1항에 있어서,
    (a) 단계에서,
    복수개의 흡입구를 포함하는 템플릿을 이용하여 실리콘 파티클을 포획하고, 상기 더미 기판 상의 복수개의 홀에 안착하는 것을 특징으로 하는 태양전지의 제조 방법.
  10. 제1항에 있어서,
    (a) 단계에서,
    복수개의 실리콘 파티클을 중력방향을 따라 지속적으로 제공하는 순환 경로를 이용하여 복수개의 홀에 안착하는 것을 특징으로 하는 태양전지의 제조 방법.
  11. 제1항에 있어서,
    상기 실리콘 파티클은 구(球)형상으로 제작된 것을 특징으로 하는 태양전지의 제조 방법.
  12. 제1항에 있어서,
    상기 실리콘 파티클은 다면체 형상으로 제작된 것을 특징으로 하는 태양전지의 제조 방법.
  13. 제1항에 있어서,
    상기 광학적 투명층 상에 위치하고 상기 실리콘 파티클에 광을 집광하는 렌즈부를 더 포함하는 것을 특징으로 하는 태양전지의 제조 방법.
  14. 외부에 제1층을 포함하는 실리콘 파티클에 있어서,
    (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계;
    (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계;
    (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계;
    (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계;
    (e) 상기 실리콘 파티클에서 상기 제1층의 일부를 제거시키는 단계;
    (f) 상기 제1 전극 상에 절연층을 형성하는 단계;
    (g) 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결되는 제2 전극을 형성하는 단계;
    를 포함하는 태양 전지의 제조 방법.
  15. 외부에 제1층을 포함하는 실리콘 파티클에 있어서,
    (a) 복수개의 홀을 포함하는 더미 기판 상에 상기 홀에 대응하여 복수개의 상기 실리콘 파티클을 위치시키는 단계;
    (b) 상기 더미 기판 상에 적어도 일부의 상기 실리콘 파티클들을 포함하도록 광학적 투명층을 형성하는 단계;
    (c) 상기 더미 기판을 제거하고, 제1층의 일부를 노출시키는 단계;
    (d) 각각의 상기 실리콘 파티클의 노출된 제1층과 연결되는 복수개의 제1 전극을 형성하는 단계;
    (e) 상기 실리콘 파티클의 제1층의 일부가 제거되는 단계;
    (f) 상기 제1 전극 상에 부분적으로 절연층을 형성하는 단계;
    (g) 상기 실리콘 파티클에서 제1층이 제거된 부분과 전기적으로 연결되는 제2 전극을 형성하는 단계;
    를 포함하는 태양 전지의 제조 방법.
  16. 외부에 제1층을 포함하는 복수개의 실리콘 파티클;
    상기 복수개의 실리콘 파티클의 일부를 수용하는 광학적 투명층;
    상기 광학적 투명층 하부에 형성되고, 상기 실리콘 파티클의 제1층 과 각각 전기적으로 연결되는 복수개의 상부 전극;
    상기 대응되는 상부 전극 하부에 형성되고, 상기 실리콘 파티클 중 제1층이 형성되지 않은 노출부와 각각 전기적으로 연결되는 복수개의 하부 전극; 및
    상기 상부 전극과 하부 전극 사이에 위치하고 상기 상부 전극과 하부 전극을 절연시키는 절연층을 포함하는 것을 특징으로 하는 태양 전지.
  17. 제16항에 있어서,
    상기 하부 전극의 아래에는 보호층이 더 포함되는 것을 특징으로 하는 태양 전지.
  18. 제16항에 있어서,
    상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하는 것을 특징으로 하는 태양 전지.
  19. 제16항에 있어서,
    상기 제1 전극은, 상기 실리콘 파티클의 제1층과 전기적으로 연결되는 제1층 접촉부, 상기 제2 전극과 연결되는 연결 단자부 및 상기 제1층 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하고,
    상기 제2 전극은, 상기 실리콘 파티클의 제1층이 제거된 영역과 전기적으로 연결과는 코어 접촉부. 상기 제1 전극과 연결되는 연결단자부 및 상기 코어 접촉부와 상기 연결단자부를 전기적으로 연결하는 연장부를 포함하는 것을 특징으로 하는 태양전지.
  20. 제19항에 있어서,
    상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하고,
    상기 절연 요소들은 대응되는 상기 제1 전극의 제1층 접촉부 보다 크게 형성되는 것을 특징으로 하는 태양 전지.
  21. 제19항에 있어서,
    상기 절연층은 각각의 상기 상부 전극과 하부 전극과 대응되는 복수개의 절연 요소들을 포함하고,
    상기 절연 요소들은 대응되는 제2 전극의 코어 접촉부보다 크게 형성되고, 상기 대응되는 제1전극의 제1 첩촉부와 상기 제2 전극의 코어 접촉부 및 연장부를 전기적으로 절연하는 것을 특징으로 하는 태양 전지.
  22. 제16항에 있어서,
    상기 실리콘 파티클은 구(球)형상으로 제작된 것을 특징으로 하는 태양전지.
  23. 제16항에 있어서,
    상기 실리콘 파티클은 다면체 형상으로 제작된 것을 특징으로 하는 태양전지.
  24. 제16항에 있어서,
    상기 실리콘 파티클은 다면체 형상으로 제작된 것을 특징으로 하는 태양전지.
  25. 제16항에 있어서,
    상기 광학적 투명층 상에 위치하고 상기 실리콘 파티클에 광을 집광하는 렌즈부를 더 포함하는 것을 특징으로 하는 태양전지.
PCT/KR2018/013616 2018-06-05 2018-11-09 태양 전지 및 태양 전지의 제조 방법 WO2019235700A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880095730.0A CN112514081A (zh) 2018-06-05 2018-11-09 太阳能电池及太阳能电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180064896A KR101919482B1 (ko) 2018-06-05 2018-06-05 태양 전지 및 태양 전지의 제조 방법
KR10-2018-0064896 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019235700A1 true WO2019235700A1 (ko) 2019-12-12

Family

ID=64561911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013616 WO2019235700A1 (ko) 2018-06-05 2018-11-09 태양 전지 및 태양 전지의 제조 방법

Country Status (4)

Country Link
US (1) US20190371949A1 (ko)
KR (1) KR101919482B1 (ko)
CN (1) CN112514081A (ko)
WO (1) WO2019235700A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197811B1 (ko) * 2019-12-11 2021-01-04 (주)소프트피브이 실리콘 파티클을 포함하는 태양 전지 유닛의 형성 방법, 이를 이용하여 제작되는 태양 전지 유닛 및 이를 포함하는 회로 키트
JP2024533257A (ja) * 2021-09-10 2024-09-12 リープ フォトヴォルテイクス インコーポレイテッド シリコン粒子を使用する光起電力装置に向けた方法およびシステム
KR102588823B1 (ko) * 2023-01-06 2023-10-16 (주)소프트피브이 고효율 태양광 발전 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096206A1 (en) * 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
KR20120033376A (ko) * 2010-09-30 2012-04-09 한국에너지기술연구원 실리콘 구립체 기반 태양전지 제조방법 및 이에 의하여 제조된 태양전지
KR20120034826A (ko) * 2003-10-02 2012-04-12 슈텐 글라스 그룹 태양 전지용 구형상 또는 입상의 반도체 소자 및 그 제조 방법, 상기 반도체 소자를 포함하는 태양 전지를 제조하는 방법 및 태양 전지
JP2012234878A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 太陽電池モジュールおよび太陽電池
KR101325572B1 (ko) * 2012-05-09 2013-11-05 이성규 Pcb를 이용한 태양전지

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627183A (ja) * 1992-07-13 1994-02-04 Toshiba Corp 静止誘導機器の部分放電検出装置
KR100984701B1 (ko) * 2008-08-01 2010-10-01 엘지전자 주식회사 태양 전지의 제조 방법
WO2011159578A2 (en) * 2010-06-14 2011-12-22 Versatilis Llc Methods of fabricating optoelectronic devices using semiconductor-particle monolayers and devices made thereby
KR101508597B1 (ko) * 2011-12-19 2015-04-07 엔티에이치 디그리 테크놀로지스 월드와이드 인코포레이티드 광전지 패널을 제조하기 위한 전체 대기압 프린팅 방법에서 그레이디드 인덱스 렌즈의 제조
JP2015050413A (ja) 2013-09-04 2015-03-16 アン,ヒョン・ウー Pcbを利用した太陽電池
JP6027183B2 (ja) 2015-05-13 2016-11-16 アン,ヒョン・ウー Pcbを利用した太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096206A1 (en) * 2000-11-24 2002-07-25 Clean Venture 21 Corporation Photovoltaic apparatus and mass-producing apparatus for mass-producing spherical semiconductor particles
KR20120034826A (ko) * 2003-10-02 2012-04-12 슈텐 글라스 그룹 태양 전지용 구형상 또는 입상의 반도체 소자 및 그 제조 방법, 상기 반도체 소자를 포함하는 태양 전지를 제조하는 방법 및 태양 전지
KR20120033376A (ko) * 2010-09-30 2012-04-09 한국에너지기술연구원 실리콘 구립체 기반 태양전지 제조방법 및 이에 의하여 제조된 태양전지
JP2012234878A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 太陽電池モジュールおよび太陽電池
KR101325572B1 (ko) * 2012-05-09 2013-11-05 이성규 Pcb를 이용한 태양전지

Also Published As

Publication number Publication date
CN112514081A (zh) 2021-03-16
KR101919482B1 (ko) 2018-11-19
US20190371949A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2011046388A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2010114294A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2019235700A1 (ko) 태양 전지 및 태양 전지의 제조 방법
WO2010114313A2 (ko) 태양전지 및 이의 제조방법
WO2010101387A2 (en) Solar cell and method for manufacturing the same, and solar cell module
WO2012023669A1 (en) Solar cell module
WO2011040786A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011136488A2 (en) Solar cell
WO2011162542A2 (en) Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof
WO2020222445A1 (ko) 디스플레이용 기판
WO2021010556A1 (ko) 태양광 모듈이 장착 가능한 루버 조립체
WO2020076040A1 (ko) 리셉터클 커넥터
WO2011027951A1 (en) Solar cell
WO2021015306A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019045277A1 (ko) 픽셀용 발광소자 및 엘이디 디스플레이 장치
WO2019198907A1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2020145568A1 (ko) 태양전지 제조 방법
WO2013176519A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2019112091A1 (ko) 에지 수집전극을 구비하는 태양전지 및 이를 포함하는 태양전지 모듈
WO2019050158A1 (ko) 화합물 태양전지 모듈 및 그 제조 방법
WO2021025460A1 (ko) 엘이디 스핀척
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법
WO2019078598A1 (ko) 태양전지용 스텐실 마스크
WO2012044006A2 (en) Thin film type solar cell and method for manufacturing the same
WO2018101542A1 (ko) 다결정 형광막 및 그 제조 방법 및 그를 이용한 차량 램프 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921998

Country of ref document: EP

Kind code of ref document: A1