WO2023145922A1 - ナチュラルキラー細胞の製造方法 - Google Patents

ナチュラルキラー細胞の製造方法 Download PDF

Info

Publication number
WO2023145922A1
WO2023145922A1 PCT/JP2023/002794 JP2023002794W WO2023145922A1 WO 2023145922 A1 WO2023145922 A1 WO 2023145922A1 JP 2023002794 W JP2023002794 W JP 2023002794W WO 2023145922 A1 WO2023145922 A1 WO 2023145922A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
culture
cells
cell
pluripotent stem
Prior art date
Application number
PCT/JP2023/002794
Other languages
English (en)
French (fr)
Inventor
建始 倉知
雅司 山田
博信 木村
康一 田村
Original Assignee
株式会社ヘリオス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヘリオス filed Critical 株式会社ヘリオス
Publication of WO2023145922A1 publication Critical patent/WO2023145922A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for efficiently producing large amounts of natural killer cells (hereinafter sometimes abbreviated as "NK cells”) useful in the medical field from pluripotent stem cells.
  • NK cells natural killer cells
  • Patent Document 1 describes a method for inducing NK cells from pluripotent stem cell spheres via hematopoietic progenitor cells.
  • the average particle size of the pluripotent stem cell spheres described in Patent Document 1 is small, and medium exchange by perfusion culture is not described at all.
  • the present inventors found that the average particle size of pluripotent stem cell spheres formed in three-dimensional culture is set to 200 ⁇ m or more, and in this state, NK cells are efficiently and rapidly produced by combining the perfusion culture method. I found that it can be induced. In addition, the NK cells produced by this method have high activity, and the activity is maintained even after freezing and thawing. The present inventors have completed the present invention as a result of further studies based on these findings.
  • [Section 1] A method for producing natural killer (NK) cells, comprising: (1) forming pluripotent stem cell spheres having an average particle size of 200 ⁇ m or more in a first medium; (2) a step of inducing the pluripotent stem cell spheres formed in step (1) into a cell population containing hematopoietic progenitor cells by three-dimensional culture using a second medium; A step of inducing a cell population containing the obtained hematopoietic progenitor cells into a cell population containing NK cells by three-dimensional culture using a third medium: and wherein steps (1) to (3) are performed by a perfusion culture method.
  • NK natural killer
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed without using a three-dimensional culture carrier and an extracellular matrix.
  • steps (1) to (3) are performed by a continuous perfusion culture method.
  • steps (1) to (3) are performed by a continuous perfusion culture method.
  • the first medium comprises a ROCK inhibitor.
  • the second medium comprises VEGF, BMP4 and a GSK3 ⁇ inhibitor.
  • the second medium further comprises a ROCK inhibitor or bFGF.
  • the second medium comprises SCF, a TGF ⁇ /Smad inhibitor and VEGF. [Item 11] 11.
  • the second medium further comprises a ROCK inhibitor or bFGF.
  • the second medium comprises SCF and Flt3L.
  • the second medium further comprises at least one selected from a ROCK inhibitor, IL-3 and IL-7.
  • the three-dimensional culture in step (2) is (2-1) a culture step using a medium containing VEGF, BMP4 and GSK3 ⁇ inhibitor as a second medium; (2-2) a culture step using a medium containing SCF, a TGF ⁇ /Smad inhibitor and VEGF as a second medium; (2-3) a culture step using a medium containing SCF and Flt3L as a second medium;
  • the third medium comprises IL-15 and SCF.
  • the third medium comprises IL-7 and Flt3L.
  • Item 17 Item 17.
  • the present invention is characterized by efficiently producing a large amount of NK cells at once by a production method based on three-dimensional perfusion culture.
  • NK cells produced by the method of the present invention exhibit high cytotoxic activity against various cancer cells, and the activity is maintained without deterioration even when frozen, making large-scale clinical application possible. Become.
  • FIG. 1 is a schematic diagram showing a typical example of a perfusion culture apparatus in the present invention
  • FIG. 10 is a diagram showing the expression frequency of various hematopoietic progenitor cell marker surface molecules on day 14 of culture when the iPS cell spheres obtained in step (1) were subjected to suspension culture under various conditions to induce differentiation into hematopoietic progenitor cells.
  • FIG. 2 is a diagram showing daily changes in viable NK cell density when the hematopoietic progenitor cells obtained in step (2) were cultured in suspension under various conditions and induced to differentiate into NK cells. The decrease in cell density in the middle of the figure is due to seeding in a new container.
  • NK cell marker surface molecule CD56
  • GZB granzyme B
  • step (3) shows the results of freezing and thawing the NK cells obtained in step (3) and measuring the cytotoxic activity against A549 cells by LDH assay after static culture (from left, human peripheral blood mononuclear cells Isolated primary NK cells (positive control); manual medium change/250 mL culture; perfusion culture/250 mL culture; manual medium change/30 mL culture).
  • the present invention provides a method for producing NK cells, (1) forming pluripotent stem cell spheres having an average particle size of 200 ⁇ m or more in a first medium; (2) a step of inducing the pluripotent stem cell spheres formed in step (1) into a cell population containing hematopoietic progenitor cells by three-dimensional culture using a second medium; A step of inducing a cell population containing the obtained hematopoietic progenitor cells into a cell population containing NK cells by three-dimensional culture using a third medium: and performing steps (1) to (3) by a continuous perfusion culture method (hereinafter sometimes referred to as "the method of the present invention").
  • the three-dimensional culture method in the present invention is a method of first forming cell spheres (spheroids) and culturing them by floating them in a medium (herein, sometimes referred to as "three-dimensional suspension culture method"). There is).
  • the three-dimensional suspension culture method is one of the cell culture methods. Floating cells, spheres (spheroids), or carriers for three-dimensional culture to which cells are adhered are three-dimensionally expanded using a stirring blade or a shaker. It is characterized by culturing. Therefore, three-dimensional suspension culture can maximize the number of cells per space compared to two-dimensional culture in which cells are cultured only on the bottom of the culture vessel. It is possible to homogenize the environment of the culture solution by mixing three-dimensionally. In addition, in three-dimensional culture, it is possible to culture in an efficient and uniform environment by combining various detectors such as a pH sensor and a dissolved oxygen sensor.
  • this culture method does not require a specially processed plastic carrier for cell culture or an extracellular matrix that is required for many cultured cells, so it is also cost effective. It can be a culture method.
  • one of the features is that it can be cultured in an environment closer to the in vivo environment than two-dimensional culture, in which cells are adhered to a flat surface and cultured. It is a useful means for producing various cell products derived from embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, etc.
  • ES embryonic stem
  • iPS induced pluripotent stem
  • the perfusion culture method is one of the continuous culture methods, in which a constant amount of new medium is supplied to the culture solution in the culture vessel and a constant amount of medium is withdrawn at the same time, thereby continuously obtaining new nutrients for the purpose of medium exchange. It is a possible way to achieve component supply and waste removal.
  • the perfusion culture method By adopting the perfusion culture method, there is no need to replace the medium, so a significant reduction in the workload can be expected.
  • this method since this method is generally performed mechanically, environmental changes such as temperature change, pH change, dissolved oxygen concentration change, and dissolved carbon dioxide concentration change that occur in manual medium exchange do not occur. Therefore, longer-term culture is possible in the same vessel, and as a result, a high cell density can be maintained in the same vessel.
  • the perfusion culture method can maintain constant concentrations of various growth factors produced by cells, which are removed by normal medium exchange, and can be cultured in an environment that mimics the blood circulation system and is close to the in vivo environment. It is also a possible culture method.
  • Separation membranes used in perfusion culture desirably have a certain pore size and characteristics (for example, hydrophobicity) that prevent the target cell population from escaping out of the culture system.
  • the pore size of the separation membrane can be appropriately selected depending on the target cell population. generally requires various investigations, and its optimization is very difficult.
  • the inventors have completed an efficient NK cell induction method according to the present invention by setting appropriate pore sizes in each of the above culture steps through numerous verifications. Specific pore diameters in each step will be described later, but suitable pore diameters in the perfusion culture of the present invention are pore diameters of 15 to 75 ⁇ m for step (1) and pore diameters of 45 to 225 ⁇ m for step (2). and a pore size of 0.2-10 ⁇ m for step (3).
  • Materials for the separation membrane are not particularly limited, but materials that do not affect cells or components in the medium are preferably used. Examples of such materials include metal materials such as SUS304 and SUS316, and natural fibers such as cellulose fibers. , or chemical fibers such as polysulfone fibers and polyethersulfone fibers.
  • the three-dimensional culture method of the present invention is characterized by perfusion culture of cell populations such as cell spheres or cells present in a culture system in each step described below. Conditions for each perfusion culture are as described below for each step.
  • the perfusion culture in the present invention can be "continuously perfusion cultured".
  • continuous perfusion culture means that the medium for the next step is supplied while the medium for the previous step is removed without intervening the washing step that is normally performed when the medium is exchanged by simply replacing the membrane between each step. It means to For example, in step (1), the medium is continuously replaced by removing the medium while supplying the first medium described later, and at the timing of replacing step (1) with step (2), described later.
  • the medium exchange from the first medium to the second medium is continuously performed by withdrawing the first medium while supplying the second medium. Further, in step (2), the medium is continuously replaced by removing the medium while supplying the second medium, and at the timing of replacing step (2) with step (3), the third Medium exchange from the second medium to the third medium is continuously performed by withdrawing the second medium while supplying the medium. Furthermore, in step (3), the medium is continuously exchanged by supplying the third medium and withdrawing the medium at the same time.
  • Step (1) in the method of the present invention is a step of forming pluripotent stem cell spheres with an average particle size of 200 ⁇ m or more in a first medium.
  • Pluripotent stem cells used for sphering pluripotent stem cells in the present invention include ES cells and iPS cells, but are not particularly limited.
  • the method for producing the iPS cells, the derived cells, and the like are not particularly limited.
  • the iPS cell culture method is also not particularly limited, and may be two-dimensional culture or three-dimensional culture. Furthermore, even cryopreserved iPS cells can be used.
  • Sphering is performed under suspension culture conditions.
  • the suspension culture conditions are not particularly limited as long as the environment of the culture solution can be homogenized by three-dimensional mixing using a stirring blade or a shaker.
  • the vessel used for floating culture is not particularly limited, and a vessel having a stirring mechanism such as a rotating stirring blade type or a vertically shaking stirring blade type is used.
  • the seeding density of pluripotent stem cells in the sphering of pluripotent stem cells of the present invention ranges from 1.0 ⁇ 10 4 cells/mL to 1.0 ⁇ 10 6 cells/mL. If the density is higher than this, the shape of the sphere becomes too large, which may affect the subsequent induction efficiency. Above all, it is more preferable to sow in the range of 5.0 ⁇ 10 4 cells/mL to 2.0 ⁇ 10 5 cells/mL.
  • the culture medium used for sphering pluripotent stem cells in step (1) is not particularly limited as long as it is used for maintenance culture of pluripotent stem cells.
  • Examples of such culture media include feeder-free culture media such as StemFit (registered trademark) AK03N (Ajinomoto Healthy Supply Co., Ltd.) and mTeSR TM 1 (STEMCELL Technologies Inc.).
  • the culture medium used in the method of the present invention is preferably a feeder-free culture medium containing a ROCK inhibitor.
  • a medium such as StemFit (registered trademark) AK03N (Ajinomoto Healthy Supply Co., Ltd.).
  • ROCK inhibitors in the present invention include, for example, Y27632 and thiazobibin.
  • Y27632 is generally used as a ROCK inhibitor, and in the present invention, its concentration is preferably 1 to 20 ⁇ M, and it is preferable to maintain the added state for 2 days after cell seeding.
  • the culture period required for sphere formation is not limited as long as the spheres are formed. It takes a certain period of time because it is formed with cell proliferation. For example, 2 to 10 days after cell seeding is preferable, and 4 to 7 days is more preferable.
  • the sphering can be adjusted by stirring conditions, seeding density conditions, and culture period.
  • the average particle size of spheres in step (1) in the method of the present invention is usually 200 ⁇ m or more, specifically adjusted appropriately in the range of 200 to 600 ⁇ m. It is preferably adjusted to 200-400 ⁇ m, more preferably adjusted to 200-400 ⁇ m. If the average particle size is less than 200 ⁇ m, the number of cells will not be obtained sufficiently due to insufficient number of culture days, which is undesirable because it will affect the step (2).
  • the sphering step (1) is performed by a perfusion culture method.
  • perfusion culture may be performed from the time the pluripotent stem cells are seeded, but is preferably performed after about one day has passed since the first seeding of the pluripotent stem cells, more preferably 2 It will be implemented after a few days have passed. This is because spheroids are formed after 1-2 days of culture, and the average particle size becomes 200 ⁇ m or more under these conditions. Because there is In this step (1), the pore size of the separation membrane in perfusion culture is preferably 15-75 ⁇ m, more preferably 25-45 ⁇ m.
  • step (1) comprises: (1-1) a step of forming pluripotent stem cell spheres having an average particle size of 200 ⁇ m or more in a first medium; It includes a step of maintaining and culturing pluripotent stem cell spheres by a perfusion culture method. That is, the pore size of the separation membrane in the perfusion culture of step (1) (or step (1-2)) is preferably 15-75 ⁇ m, more preferably 25-45 ⁇ m.
  • Medium exchange in perfusion culture is performed at a constant dilution rate.
  • the process of forming spheres of pluripotent stem cells is preferably carried out at a dilution rate of 0.01 to 0.2 hr -1 . can be adjusted by The dilution rate can be adjusted by placing the culture vessel, supply bottle, and discharge bottle on a balance or load cell, or by controlling the number of revolutions of the peristaltic pump.
  • the temperature, pH, and dissolved oxygen concentration it is possible to control the temperature, pH, and dissolved oxygen concentration to any values desired for sphere formation of pluripotent stem cells using a temperature sensor, pH sensor, dissolved oxygen sensor, or the like.
  • the culture temperature is preferably controlled between 35 and 39°C, more preferably between 36 and 38°C.
  • the pH is controlled by aseptically treated compressed air or aseptically treated inflow of carbon dioxide gas, a pH adjuster, or the dilution rate of the perfusion culture medium, and the control value is controlled between 6.8 and 8.0. is preferred, and more preferably controlled between 7.0 and 7.4.
  • the dissolved oxygen concentration is controlled by aseptically treated compressed air, or aseptically treated nitrogen gas, or aseptically treated oxygen gas, and its value is controlled between 0 and 6.86 mg/L, and 2.00 It is preferably maintained at a concentration of mg/L or higher.
  • the gas used to maintain pH and dissolved oxygen can be blown into the air layer above the culture solution, blown into the culture solution, or exchanged through a gas-permeable membrane, and is not limited. .
  • Hematopoietic progenitor cells are induced by subjecting the pluripotent stem cell sphere thus obtained to the next step (2).
  • Step (2) in the method of the present invention is a step of inducing a cell population containing hematopoietic progenitor cells from the spheres formed in step (1) by three-dimensional culture using a second medium.
  • the “cell population containing hematopoietic progenitor cells” induced in this step is a cell population obtained in step (2), which is a concept including hematopoietic progenitor cell populations induced inside and outside the sphere.
  • This cell population includes hematopoietic progenitor cells formed within the sphere, hematopoietic progenitor cells that have escaped from the sphere after being induced, and cells inside and outside the sphere that are in the process of being induced to form hematopoietic progenitor cells.
  • Step (2) is also carried out by the perfusion culture method in the same manner as step (1).
  • the pore size of the separation membrane used in this step is preferably 45-225 ⁇ m, more preferably 45-100 ⁇ m.
  • the perfusion culture in this step is performed from immediately after the start of step (2) until the end of step (2). During this time, "pluripotent stem cell spheres" are directed toward "cell populations containing hematopoietic progenitor cells”.
  • perfusion culture can be performed while retaining a certain cell population containing hematopoietic progenitor cells in the culture vessel.
  • the medium exchange that accompanies the perfusion culture in step (2) is also performed at a constant dilution ratio, as in step (1). Specifically, it is preferable to carry out at a dilution rate of 0.01 to 0.2 hr as in step (1), and refer to cell seeding density, culture supernatant glucose concentration, lactic acid concentration, glutamine concentration, glutamic acid concentration, etc. can be adjusted by This dilution rate is also applied when replacing the medium used in step (1) with the medium used in step (2).
  • the second medium in step (2) is not particularly limited as long as it can induce pluripotent stem cells into hematopoietic progenitor cells.
  • a medium containing vascular endothelial growth factor (VEGF), bone morphogenetic protein 4 (BMP4), and a glycogen synthase 3 ⁇ (GSK3 ⁇ ) inhibitor hereinafter referred to as medium (2-1)
  • VEGF vascular endothelial growth factor
  • BMP4 bone morphogenetic protein 4
  • GSK3 ⁇ glycogen synthase 3 ⁇
  • medium (2-1) a medium containing stem cell factor (SCF) and transforming growth factor ⁇ (TGF ⁇ ) / Smad inhibitor
  • medium (2-2) a medium containing SCF and Flt3 ligand (Flt3L)
  • Flt3L Flt3 ligand
  • Medium (2-1) is a medium containing VEGF, BMP4, and a GSK3 ⁇ inhibitor.
  • GSK3 ⁇ inhibitors include CHIR99021 and SB216763, preferably CHIR99021.
  • the concentration of VEGF is preferably 1-100 ng/mL, more preferably 50-100 ng/mL.
  • the concentration of BMP4 is preferably 1-100 ng/mL, more preferably 50-100 ng/mL.
  • the concentration of the GSK3 ⁇ inhibitor is preferably 1-10 ⁇ M, more preferably 1-5 ⁇ M when using CHIR99021.
  • the medium (2-1) may contain a ROCK inhibitor or bFGF.
  • the ROCK inhibitor includes those described in step (1), preferably Y27632.
  • the concentration of the ROCK inhibitor is preferably 1-20 ⁇ M, more preferably 1-10 ⁇ M when Y27632 is used.
  • the concentration is preferably 1 to 100 ng/mL, more preferably 10 to 50 ng/mL.
  • the basal medium of the medium (2-1) is not particularly limited, but for example, a medium such as DMEM/F-12, HEPES (Thermo Fisher Scientific), or Essential 6 medium (Thermo Fisher Scientific) is preferably used.
  • Medium (2-2) is a medium containing SCF, TGF ⁇ /Smad inhibitor and VEGF.
  • TGF ⁇ /Smad inhibitors include SB431542, LY2157299, LY2109761 and the like, preferably SB431542.
  • the concentration of SCF is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • the concentration of the TGF ⁇ /Smad inhibitor is preferably 1-10 ⁇ M, more preferably 1-5 ⁇ M when SB431542 is used.
  • the concentration of VEGF is preferably 1-100 ng/mL, more preferably 50-100 ng/mL, similarly to the medium (2-1).
  • the medium (2-2) may contain a ROCK inhibitor or bFGF. Concrete examples and concentrations for use are the same as those described for the medium (2-1).
  • the basal medium for medium (2-2) is not particularly limited, but the same basal medium as described for medium (2-1) can be used.
  • Medium (2-3) is a medium containing SCF and Flt3L.
  • the concentration of SCF is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • concentration of Flt3L is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • the medium (2-2) may contain at least one selected from ROCK inhibitors, interleukin (IL)-3 and IL-7.
  • ROCK inhibitors include those described above, preferably Y27632.
  • the concentration when adding the ROCK inhibitor is preferably 1-20 ⁇ M when Y27632 is used.
  • IL-3 the concentration is preferably 1-100 ng/mL.
  • IL-7 the concentration is preferably 1-100 ng/mL.
  • the basal medium of medium (2-2) is not particularly limited, and a medium suitable for hematopoietic progenitor cell induction is used.
  • a medium containing L-glutamine or L-alanyl-L-glutamine is preferably used.
  • the above-mentioned media (2-1), (2-2) and (2-3) can be used individually, but during step (2), medium (2-1) or By exchanging the medium between (2-2) and (2-3), it is possible to induce hematopoietic progenitor cells more efficiently.
  • hematopoietic progenitor cells can be efficiently induced by culturing the first half of step (2) in medium (2-1) or (2-2) and culturing the second half in medium (2-3).
  • the first half and second half of step (2) can be set as appropriate. For example, by setting the first half to 2 to 6 days and the latter half to 3 to 14 days, efficient hematopoiesis can be achieved.
  • Progenitor cells can be induced.
  • This medium (2-1) or (2-2) and medium (2-3) can be exchanged by continuous perfusion, or by replacing the entire amount with new medium and exchanging the medium. It is possible, and more preferably, it is desirable to replace the medium by continuous perfusion.
  • the media (2-1) and (2-2) that can be used in the first half of step (2) can efficiently induce hematopoietic progenitor cells by exchanging the media in this order. . Specifically, it is first cultured in medium (2-1) and then cultured in medium (2-2). In this case, the culture time in each medium can be set as appropriate. For example, the culture time for medium (2-1) is set to 1 to 3 days, and the culture time for medium (2-2) is set to 1 to 3 days. By doing so, hematopoietic progenitor cells can be efficiently induced.
  • This exchange of the medium (2-1) and the medium (2-2) can be carried out by continuous perfusion operation, or the medium can be exchanged by replacing the entire amount with new medium, and more preferably. It is desirable to replace the medium by continuous perfusion.
  • the three-dimensional culture in step (2) includes, for example, (2-1) a culture step using medium (2-1) as a second medium, (2-2) a culture step using medium (2-2) as a second medium; (2-3) a culture step using medium (2-3) as a second medium; It is preferably a three-dimensional culture containing.
  • Each step (2-1) to (2-3) is preferably carried out in this order.
  • step (2) the temperature, pH, and dissolved oxygen concentration are measured using a temperature sensor, pH sensor, dissolved oxygen sensor, etc., which are desirable for the formation of pluripotent stem cell spheres. It is possible to control to any numerical value.
  • an NK cell population can be obtained consistently from step (1) to step (3) without going through any particular purification steps. Therefore, these cell populations obtained in this step (2) may be directly subjected to the next step (3) together with the cell population, or may be subjected to step (3) after selecting only the hematopoietic progenitor cells. good too.
  • the present inventors have confirmed that the desired NK cells can be obtained in step (3) by any method. Therefore, in the method of the present invention, a step of removing cells other than hematopoietic progenitor cells from the "cell population containing hematopoietic progenitor cells" obtained in step (2) may be included.
  • the "cell population containing hematopoietic progenitor cells” is desirably directly subjected to step (3).
  • NK cells are induced by subjecting the thus-obtained "cell population containing hematopoietic progenitor cells” to step (3).
  • Step (3) in the method of the present invention, the "cell population containing hematopoietic progenitor cells" obtained in step (2) is three-dimensionally cultured using a third medium to convert it into a "cell population containing NK cells.” It is a step of inducing.
  • the “cell population containing NK cells” induced in this step is a cell population containing NK cells obtained in step (3) or cells in the process of being induced to become NK cells.
  • NK cells usually exist as single cells without forming spheres. Therefore, according to step (3), a single NK cell population proliferates to become a large number of single NK cell populations.
  • This cell population includes NK cells that occupy the majority and some cells that are in the process of being induced to become NK cells.
  • Step (3) can also be performed by a perfusion culture method in the same manner as steps (1) and (2).
  • the pore size of the separation membrane used is preferably 0.1-10 ⁇ m, more preferably 0.2-5 ⁇ m.
  • the perfusion culture in this step is continuously performed from immediately after the start of step (3) until the end of step (3).
  • NK cells derived from the hematopoietic progenitor cell spheres are generated, but the NK cells do not remain within the spheres and are individually filtered out. Therefore, by using a separation membrane that does not exceed the cell diameter of NK cells during step (3), perfusion culture can be performed while a certain number of NK cells are retained in the culture vessel.
  • the medium exchange in step (3) is also performed at a constant dilution rate as described in step (1). Specifically, it is preferable to carry out at a dilution rate of 0.01 to 0.2 hr as in step (1), and refer to cell seeding density, culture supernatant glucose concentration, lactic acid concentration, glutamine concentration, glutamic acid concentration, etc. can be adjusted by This dilution rate is also applied when replacing the medium used in step (2) with the medium used in step (3).
  • the third medium in step (3) is not particularly limited as long as it can induce hematopoietic progenitor cells into NK cells.
  • Such media include, for example, media containing IL-15 and SCF.
  • the concentration of IL-15 is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • the concentration of SCF is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • This medium can further contain one or more components selected from IL-7, Flt3L, ROCK inhibitors, GSK3 ⁇ inhibitors, and TGF ⁇ receptor (TGF ⁇ R) inhibitors.
  • ROCK inhibitors include Y27632 and tiazovivin, preferably Y27632.
  • GSK3 ⁇ inhibitors include CHIR99021 and SB216763, preferably CHIR99021.
  • TGF ⁇ R inhibitors include LY2157299, SB431542, LY2109761 and the like, preferably LY2157299.
  • the third medium further comprises IL-7 and Flt3L in addition to IL-15 and SCF.
  • IL-7 the concentration is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • the concentration when Flt3L is added is preferably 1-100 ng/mL, more preferably 20-50 ng/mL.
  • the concentration at which the ROCK inhibitor is added is preferably 1-20 ⁇ M, more preferably 1-10 ⁇ M.
  • the concentration at which the GSK3 ⁇ inhibitor is added is preferably 1-10 nM, more preferably 1-5 ⁇ M.
  • the concentration at which the TGF ⁇ R inhibitor is added is preferably 0.1-100 ⁇ M, more preferably 0.1-5 ⁇ M.
  • the culture period in step (3) is usually 20-60 days, preferably about 25-40 days.
  • step (3) when IL-7, Flt3L, ROCK inhibitor, GSK3 ⁇ inhibitor, or TGF ⁇ R inhibitor is added, the induction efficiency can be improved by adjusting the timing of adding these factors.
  • IL-7 and Flt3L are preferably removed after day 10 of culture in step (3), more preferably after day 20 of culture.
  • ROCK inhibitors, GSK3 ⁇ inhibitors and TGF ⁇ R inhibitors are preferably added for 4 to 7 days before the end of culture.
  • the basal medium of the medium used in step (3) is not particularly limited. (Institute), and Stem Pro-34 SFM (Thermo Fisher Scientific), preferably AIM-V Medium. Furthermore, it may contain human serum, fetal bovine serum (FBS), and serum replacement. Their concentration is preferably 1-20%, more preferably 1-10%.
  • this step (3) it is preferable to further carry out a step of removing spheres.
  • the timing of removal includes, for example, before the start of this step, during the execution of this step, and at the end of this step.
  • Spheres are preferably removed using a cell strainer of 20-100 ⁇ m, more preferably using a cell strainer of 20-40 ⁇ m.
  • step (3) the temperature, pH, and dissolved oxygen concentration are measured using a temperature sensor, pH sensor, dissolved oxygen sensor, etc., in the same manner as described in step (1), to influence the formation of spheres of pluripotent stem cells. It can be controlled to any desired value.
  • a step of expanding and culturing the NK cells obtained as step (4) or a step of maturing the NK cells may be further carried out after step (3).
  • a known method can be appropriately applied to the amplification culture step or the maturation step.
  • the method of the present invention is characterized by performing all of the above steps (1) to (3) or steps (1) to (4) without using a three-dimensional culture carrier and extracellular matrix.
  • a step of cryopreserving the obtained NK cells may be further carried out.
  • the NK cells in the present invention can be frozen and stored by a method known per se after the NK production process is completed.
  • Example 1 Differentiation induction from pluripotent stem cells to NK cells by perfusion culture It was carried out by the three-dimensional perfusion culture method. Stirring blades were used to mix the culture solution, and pH sensors, temperature sensors, and dissolved oxygen sensors were used as sensors, and various control items were continuously monitored and controlled while the culture solution was being mixed. In addition, as shown in FIG. 1, the perfusion culture was managed by controlling the inflow/outflow rate per hour using a dedicated pump and a balance.
  • Step (1) Step of Forming Pluripotent Stem Cell Spheres
  • Pluripotent stem cell spheres are formed using two-dimensionally expanded cultured iPS cells in a three-dimensional culture vessel at a cell density of 1.0 ⁇ 10 5 cells/mL. Cell seeding was performed so that Other details were implemented by the following methods.
  • the medium used in step (1) was StemFit (registered trademark) AK03N (Ajinomoto Healthy Supply Co., Ltd.) with ROCK inhibitor Y27632 added to 10 ⁇ M.
  • the culture vessel was a single-use bottle with a total capacity of 500 mL, and the culture solution was continuously mixed using a stirring blade in the vessel.
  • the pH was continuously monitored with a pH sensor and controlled to 7.07 with sterile medium supply, or sterile air, or sterile carbon dioxide supply.
  • the dissolved oxygen concentration was continuously monitored using a dissolved oxygen sensor and controlled to maintain 1.50 mg/L or more by supplying sterile air or sterile oxygen gas.
  • the culture temperature was continuously monitored with a temperature sensor, and the culture temperature was controlled to 37.0°C by heating the container with a heater from outside the container.
  • the culture medium volume was adjusted to 250 mL, fresh medium was supplied using a pump and balance, and the culture medium was discharged at the same rate. From the 4th day to the 7th day, the dilution rate was controlled at 0.03 hr -1 .
  • a SUS316 separation membrane with a pore size of 45 ⁇ m was used as the separation membrane.
  • a cell suspension containing spheres was collected from the culture medium on day 7 of culture, and the average particle size of the spheres was measured using a microscope.
  • Fig. 2 shows the micrograph of the spheres (4x objective lens) and the average particle size of the spheres.
  • a 250 mL culture could be created by controlling the sphere diameter between 200-400 ⁇ m.
  • the medium exchange that occurs during the process is continuously and automatically controlled, and uniform spheres can be obtained without problems without moving the culture tank to a sterile environment such as a safety cabinet. was formed.
  • Step (2) Step of inducing spheres of pluripotent stem cells into a cell population containing hematopoietic progenitor cells
  • the iPS cell spheres prepared in step (1) are used to place 1.8 iPS cell sphere seeding was carried out at a cell density of ⁇ 10 5 cells/mL.
  • the medium used was DMEM/F-12, HEPES (Thermo Fisher Scientific) containing 2 ⁇ M of CHIR99021, 80 ng/mL of BMP4, 80 ng/mL of VEGF165, and 50 ng/mL of bFGF until the second day.
  • the culture vessel was a single-use bottle with a total capacity of 500 mL, and the culture solution was continuously mixed using a stirring blade in the vessel.
  • the pH was continuously monitored with a pH sensor and controlled to 7.07 with sterile medium supply, sterile air, or sterile carbon dioxide supply.
  • the dissolved oxygen concentration was continuously monitored using a dissolved oxygen sensor and controlled to maintain 1.50 mg/L or more by supplying sterile air or sterile oxygen gas.
  • the culture temperature was continuously monitored with a temperature sensor, and the culture temperature was controlled to 37.0°C by heating the container with a heater from outside the container.
  • the volume of the culture medium was adjusted to 250 mL, fresh medium was supplied using a pump and a balance, and the culture medium was discharged at the same rate.
  • two samples were prepared in which the medium was manually replaced.
  • two specimens with a culture volume of 250 mL and a culture volume of 30 mL were prepared, and medium exchange was performed manually.
  • the culture medium was exchanged by stopping agitation of the culture vessel and allowing the culture vessel to stand still for several minutes.
  • the sample with a culture volume of 30 mL was cultured in a rotating stirring vessel, cultured in a CO 2 incubator, and suspended culture was performed at 5%, 37 ° C environment, and the culture solution was rotated at 55 rpm. were mixed and cultured. Controls of 250 mL cultures were cultured under the same controls as the perfusion culture specimens, except that medium exchange was performed manually.
  • the floating cell suspension was collected from the culture medium after removing the spheres, and the cell surface markers (CD34, CD43, CD45, CD117) known to be expressed in hematopoietic progenitor cells were analyzed by flow cytometry. This was confirmed by metry (Fig. 3).
  • Fig. 3 we compared the production efficiency of hematopoietic progenitor cells by perfusion culture and by manually exchanging the medium.
  • culturing could be carried out without moving the culture vessel to a sterile environment such as a safety cabinet, and there was no significant difference in the expression of the confirmed markers. Therefore, hematopoietic progenitor cells could be induced by perfusion culture in step (2).
  • Step (3) Step of inducing hematopoietic stem cells into natural killer cells
  • the hematopoietic progenitor cells prepared in step (2) are placed in a three-dimensional culture vessel so that the cell density is 1.0 ⁇ 10 5 cells/mL. was carried out by seeding suspension cells containing spheres in . In addition, passage was carried out when the cell density reached 1.0 ⁇ 10 7 cells/mL or higher as a result of the culture. After passage, culture was continued under the same medium and culture conditions until the cell density reached 2.0 ⁇ 10 7 cells/mL or more. Other details were implemented by the following methods.
  • the medium was AIM V Serum Free Medium (Thermo Fisher scientific) with 5% FBS, and IL-15, IL-7, SCF, and Flt3L were added to a final concentration of 50 ng/mL. I used what I created.
  • the culture vessel was a single-use bottle with a total capacity of 500 mL, and the culture solution was continuously mixed using a stirring blade in the vessel.
  • the pH was continuously monitored with a pH sensor and controlled to 7.07 by sterile medium supply, sterile air, or sterile carbon dioxide supply.
  • the dissolved oxygen concentration was continuously monitored using a dissolved oxygen sensor and controlled to maintain 1.50 mg/L or more by supplying sterile air or sterile oxygen gas.
  • the culture temperature was continuously monitored with a temperature sensor, and the culture temperature was controlled to 37.0°C by heating the container with a heater from outside the container.
  • the culture volume was adjusted to 250 mL, fresh medium was supplied using a pump and a balance, and the culture medium was discharged at the same speed .
  • a control was performed on the dilution ratio.
  • a polysulfone fiber product with a pore size of 7 ⁇ m was used as the separation membrane.
  • medium exchange was performed manually for two specimens with a culture volume of 250 mL and a culture volume of 30 mL. According to manual medium change, medium change was performed once every 1-2 days. Specifically, after stopping the agitation of the culture vessel, 50 to 90% of the culture solution was collected according to the cell density, centrifuged at 20 ° C., 300 g, 5 minutes, and the supernatant was removed. The remaining pellet was added in an amount equal to the amount of the medium excluding the new medium, mixed well, and then returned to the culture vessel.
  • suspension culture was performed in a 5% CO 2 incubator at a rotation speed of 55 rpm in a 37° C. environment using a rotary stirring vessel.
  • Samples with a culture volume of 250 mL were cultured under the same control as the perfusion culture samples, except that the medium was replaced manually.
  • the NK cell culture medium produced by the method of the present invention After collecting the NK cell culture medium produced by the method of the present invention, it was centrifuged under the conditions of 20°C, 300 g, and 5 minutes, and after removing the supernatant, the cells were resuspended in STEM-CELLBANKER (registered trademark) GMP grade. Cloudy, transferred to ⁇ 80° C. freezer and frozen. Frozen cells were removed from the freezer and thawed in a 37°C water bath.
  • STEM-CELLBANKER registered trademark
  • Flt3L was resuspended in a medium added to a final concentration of 50 ng/mL, centrifuged at 20°C, 300 g for 5 minutes, removed the supernatant, and resuspended in the same medium, They were seeded in a T75 flask and statically cultured in a CO 2 incubator controlled at 5% and 37°C.
  • Cells were harvested after 3 days and tested for CD56, a cell surface marker known to be expressed on NK cells, granzyme B, which is known to be involved in NK cell cytotoxic activity, and perforin. was confirmed by flow cytometry (Fig. 5). As a result, the expression of CD56, granzyme B, and perforin could be confirmed as in the comparative control, indicating that the method of the present invention can also produce natural killer cells with the same properties as the existing methods.
  • Test Example 1 Evaluation of activity of obtained NK cells
  • NK cells primary NK
  • NK cells prepared from iPS cells showed higher cytotoxic activity compared to primary NK
  • NK cells prepared using perfusion culture which is the method of the present invention, are cells that do not differ from existing culture methods. showed impaired activity.
  • a sterile environment such as a safety cabinet.
  • spheroid formation and cell differentiation in each step can be performed without problems, and NK cells can be cultured at a higher density. , it can be said that it is a useful method for mass production of NK cells that can be used for cancer immunotherapy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、短期間に、簡便かつ安価で且つ安全な高品質のナチュラルキラー(NK)細胞を、多能性幹細胞から大量に製造可能な新規なNK細胞製造法を提供する。具体的には、NK細胞の製造方法であって、 (1)第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程; (2)工程(1)で形成した多能性幹細胞スフェアを、第二の培地を用いた三次元培養により造血前駆細胞を含む細胞集団に誘導する工程;および (3)工程(2)で得られた造血前駆細胞を含む細胞集団を、第三の培地を用いた三次元培養によりNK細胞を含む細胞集団に誘導する工程: を含み、工程(1)ないし(3)を灌流培養法で行うことを特徴とする、方法を提供する。

Description

ナチュラルキラー細胞の製造方法
 本発明は、医療分野において有用なナチュラルキラー細胞(以下、「NK細胞」と略記する場合がある)を多能性幹細胞から効率的かつ大量に製造する方法に関する。
 多能性幹細胞からNK細胞を誘導する方法について数多くの報告がなされている。これまでの報告例では、NK細胞への分化誘導工程ならびにその後の拡大培養工程にかなりの時間を必要とし、かつ培養ディッシュ等を用いた平面培養(二次元培養)が主流である(例えば、非特許文献1および2参照)。特許文献1には、多能性幹細胞スフェアから造血前駆細胞を介しNK細胞を誘導する方法が記載されている。しかしながら特許文献1に記載された多能性幹細胞スフェアの平均粒形は小さく、また灌流培養による培地交換についてはなんら記載されていない。
WO2020/086889
Biochemical and Biophysical Research Communications Volume 515, Issue 1, 12 July 2019, Pages 1-8 Methods Mol Biol. 2019; 2048: 107-119.
 これまでの報告例に則ってNK細胞を誘導する場合、分化誘導工程や拡大培養工程にかなりの時間を要し、さらに培養培地の交換作業の機械化が困難であるため人為的作業により最終的な製品の品質に影響を及ぼすリスクがある。また培地交換による工数の増加による製造コストの増加も想定される。特に二次元培養の場合、培養規模のスケールアップには理論上限界がある。このような背景から、従来技術に比べて効率よくかつスケールアップ可能なNK細胞の誘導技術が求められている。
 本発明者らは、種々検討した結果、三次元培養において形成させる多能性幹細胞のスフェアの平均粒径を200μm以上とし、この状態で灌流培養法を組み合わせることで効率的かつ迅速にNK細胞を誘導できることを見出した。また本方法で製造したNK細胞は高い活性を有し、凍結し解凍したのちもその活性が維持されることから、細胞医薬品の有効成分としても有用となり得ることが分かった。
 本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成させるに至った。
 すなわち本発明は以下の通りである。
[項1]
 ナチュラルキラー(NK)細胞の製造方法であって、
(1)第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程;
(2)工程(1)で形成した多能性幹細胞スフェアを、第二の培地を用いた三次元培養により造血前駆細胞を含む細胞集団に誘導する工程;および
(3)工程(2)で得られた造血前駆細胞を含む細胞集団を、第三の培地を用いた三次元培養によりNK細胞を含む細胞集団に誘導する工程:
を含み、工程(1)ないし(3)を灌流培養法で行うことを特徴とする、方法。
[項2]
 工程(1)ないし(3)を三次元培養用担体および細胞外基質を用いることなく実施することを特徴とする、項1に記載の方法。
[項3]
 工程(1)における灌流培養が細孔径15~75μmの分離膜を使用して行われる、項2に記載の方法。
[項4]
 工程(2)における灌流培養が細孔径45~225μmの分離膜を使用して行われる、項2に記載の方法。
[項5]
 工程(3)における灌流培養が細孔径0.2~10μmの分離膜を使用して行われる、項2に記載の方法。
[項6]
 工程(1)ないし(3)を連続的な灌流培養法で行うことを特徴とする、項1~5のいずれか一項に記載の方法。
[項7]
 第一の培地がROCK阻害剤を含む、項1~6のいずれか一項に記載の方法。
[項8]
 第二の培地がVEGF、BMP4およびGSK3β阻害剤を含む、項1~7のいずれか一項に記載の方法。
[項9]
 第二の培地がさらにROCK阻害剤またはbFGFを含む、項8に記載の方法。
[項10]
 第二の培地がSCF、TGFβ/Smad阻害剤およびVEGFを含む、項1~7のいずれか一項に記載の方法。
[項11]
 第二の培地がさらにROCK阻害剤またはbFGFを含む、項10に記載の方法。
[項12]
 第二の培地がSCFおよびFlt3Lを含む、項1~7のいずれか一項に記載の方法。
[項13]
 第二の培地がさらにROCK阻害剤、IL-3およびIL-7から選択される少なくとも一つを含む、項12に記載の方法。
[項14]
 工程(2)における三次元培養が、
(2-1)第二の培地としてVEGF、BMP4およびGSK3β阻害剤を含む培地を用いた培養工程と、
(2-2)第二の培地としてSCF、TGFβ/Smad阻害剤およびVEGFを含む培地を用いた培養工程と、
(2-3)第二の培地としてSCFおよびFlt3Lを含む培地を用いた培養工程と、
を含む、項1~7のいずれか一項に記載の方法。
[項15]
 第三の培地がIL-15およびSCFを含む、項1~14のいずれか一項に記載の方法。
[項16]
 第三の培地がさらにIL-7およびFlt3Lを含む、項15に記載の方法。
[項17]
 NK細胞の分別工程を必要としない、項1~16のいずれか一項に記載の方法。
 本発明は、三次元灌流培養による製造方法により、効率的に大量のNK細胞を一度に製造することを特徴とする。本発明の方法により製造されたNK細胞は、各種がん細胞に対して高い細胞障害活性を示し、その活性は凍結しても低下することなく維持されるため、大規模な臨床適用が可能になる。
本発明における灌流培養装置の典型例を示す概略図である。 ヒトiPS細胞を種々の条件で浮遊培養した場合の、7日目におけるスフェアの顕微鏡写真(左から、手動で培地交換・250 mL培養;灌流培養・250 mL培養;手動で培地交換・30 mL培養)および各条件で得られたスフェアの平均粒径を示す図である。 工程(1)で得られたiPS細胞スフェアを種々の条件で浮遊培養して造血前駆細胞へと分化誘導した場合の、培養14日目における各種造血前駆細胞マーカー表面分子の発現頻度を示す図である(左から、手動で培地交換・250 mL培養;灌流培養・250 mL培養;手動で培地交換・30 mL培養)。 工程(2)で得られた造血前駆細胞を種々の条件で浮遊培養してNK細胞へと分化誘導した場合の、NK生細胞密度の経日変化を示す図である。なお、図の途中で細胞密度が低下しているのは新しい容器に播種しなおしたためである。 工程(2)で得られた造血前駆細胞を種々の条件で浮遊培養して得られたNK細胞集団を凍結融解後、NK細胞マーカー表面分子(CD56)および細胞障害活性に関与するグランザイムB(GZB)・パーフォリンの発現を測定した結果を示す図である(左から、手動で培地交換・250 mL培養;灌流培養・250 mL培養;手動で培地交換・30 mL培養)。 工程(3)で得られたNK細胞を凍結融解し、さらに静置培養後に、A549細胞に対する細胞障害活性をLDHアッセイにより測定した結果を示す図である(左から、ヒト末梢血単核球から分離した初代NK細胞(ポジティブコントロール);手動で培地交換・250 mL培養;灌流培養・250 mL培養;手動で培地交換・30 mL培養)。
 本発明は、NK細胞の製造方法であって、
(1)第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程;
(2)工程(1)で形成した多能性幹細胞スフェアを、第二の培地を用いた三次元培養により造血前駆細胞を含む細胞集団に誘導する工程;および
(3)工程(2)で得られた造血前駆細胞を含む細胞集団を、第三の培地を用いた三次元培養によりNK細胞を含む細胞集団に誘導する工程:
を含み、工程(1)ないし(3)を連続的な灌流培養法で行うことを特徴とする、方法である(以下、「本発明の方法」という場合がある)。
(三次元培養法)
 本発明における三次元培養法は、はじめに細胞のスフェア(スフェロイド)を形成させ、これを培地中で浮遊させることで培養する方法(本明細書中、「三次元浮遊培養法」と記載する場合がある)のことをいう。
 三次元浮遊培養法は細胞培養法のひとつであり、浮遊細胞、スフェア(スフェロイド)、若しくは細胞を接着させた三次元培養用の担体を攪拌翼若しくは振盪器を用いて三次元的に展開させながら培養することを特徴とする。そのため三次元浮遊培養は、培養容器底面のみでしか細胞を培養しない二次元培養と比較して、空間当たりの細胞数を最大化することが可能となり、更には、攪拌翼若しくは振盪器を用いて三次元的に混合することで培養液の環境を均一化することが可能である。また三次元培養では、pHセンサーや溶存酸素センサーなどの各種検出器と組み合わせることで、効率的且つ均一な環境下での培養が可能である。
 このように培養空間を最大限に利用できる点や、均一な環境下で培養可能な点は、商用生産を想定した培養のスケールアップにも有用となる。また浮遊細胞やスフェロイドを培養する場合、細胞培養用の特殊加工を施したプラスチック担体や、多くの培養細胞で必要となる細胞外基質を必要としない培養法であるため、コスト面においても有利な培養方法となり得る。さらには細胞を平面に接着させ培養する二次元培養よりも生体内に近い環境で培養が可能であることも特徴の一つであり、各種細胞の分化誘導が必要な多能性幹細胞(例、胚性幹(ES)細胞、人工多能性幹(iPS)細胞など)由来の各種細胞製品の製造には有用な手段である。
(灌流培養法)
 本発明の三次元培養法は、灌流培養法と組み合わせることでより効果的にNK細胞を誘導することが可能である。
 灌流培養法は連続培養法の一つであり、培養容器内の培養液に一定量の新しい培地を供給しながら同時に一定量の培地を抜き取ることで、連続的に培地交換の目的である新しい栄養成分の供給と老廃物の除去を達成することが可能な方法である。
 灌流培養法を採用することで培地交換作業が不要になるため、大幅な作業負荷の低減が期待できる。そしてこの方法は一般に機械的に行うことから、手動の培地交換で発生する温度変化、pH変化、溶存酸素濃度変化、および溶存二酸化炭素濃度変化などの環境変化が発生しない。そのため同一容器内でより長期的な培養が可能となり、その結果、同一容器内で維持できる細胞密度も高く維持できる。また灌流培養法は、通常の培地交換では除去されてしまう、細胞が出す各種成長因子等を一定濃度で維持することも可能であり、血液循環系を模した生体内に近い環境で培養することが可能な培養法でもある。
 灌流培養の際に使用する分離膜は、目的の細胞集団を培養系外に逃さないような一定の細孔径、および特性(例えば、疎水性度等)を有するものであることが望ましい。分離膜の細孔径は、目的の細胞集団によって適切なサイズを適宜選択することができるが、NK細胞への誘導工程において、スフェア内外で様々な分化細胞が誘導されるため、その細孔径の選択には一般的に種々の検討を要し、その好適化は非常に困難である。
 発明者らは、数々の検証により上記の各培養工程における適切な細孔径を設定することで本発明による効率的なNK細胞誘導法を完成させた。各工程における具体的な細孔径は後述されるが、本発明の灌流培養における適切な細孔径としては、工程(1)について細孔径15~75μmであり、工程(2)について細孔径45~225μmであり、工程(3)について細孔径0.2~10μmである。
 分離膜の素材としては特に限定されないが、細胞や培地中の成分に影響を与えない素材が好ましく用いられ、そのような素材としては、例えばSUS304、SUS316などの金属素材、セルロース繊維などの天然繊維、あるいはポリスルフォン繊維、ポリエーテルスルホン繊維などの化学繊維が挙げられる。
 本発明の三次元培養法は、後述する各工程において培養系内に存在する細胞スフェアまたは細胞といった細胞集団を灌流培養することを特徴とする。各灌流培養における条件は、各工程に関し後述する説明の通りである。また本発明における灌流培養は、「連続的に灌流培養する」ことができる。
 ここで、「連続的に灌流培養する」とは、各工程間において膜交換を行うだけで培地交換時に通常行われる洗浄工程を挟むことなく、前工程の培地を抜き取りながら次工程の培地を供給することをいう。
 例えば工程(1)においては、後述する第一の培地を供給しながら同様に培地を抜き取ることで連続的に培地交換を実施し、工程(1)から工程(2)に置き換わるタイミングでは、後述する第二の培地を供給しながら同時に第一の培地を抜き取ることで連続的に第一の培地から第二の培地への培地交換を実施する。また工程(2)においては、第二の培地を供給しながら同時に培地を抜き取ることで連続的に培地交換を実施し、工程(2)から工程(3)に置き換わるタイミングでは、後述する第三の培地を供給しながら同時に第二の培地を抜き取ることで連続的に第二の培地から第三の培地への培地交換を実施する。さらに工程(3)中においては、第三の培地を供給しながら同時に培地を抜き取ることで連続的に培地交換を実施する。
(多能性幹細胞のスフェアを形成する工程:工程(1)について)
 本発明の方法における工程(1)は、第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程である。
 本発明における多能性幹細胞のスフェア化に用いられる多能性幹細胞としては、ES細胞やiPS細胞が挙げられるが、特に制限されない。例えばiPS細胞を用いる場合、iPS細胞の製造方法や由来細胞などは特に限定されない。またiPS細胞の培養方法も特に限定されず、二次元培養であっても三次元培養であってもよい。さらに凍結保存したiPS細胞であっても使用可能である。
 スフェア化は浮遊培養条件で行われる。浮遊培養条件としては、攪拌翼若しくは振盪器を用いて三次元的に混合することで培養液の環境を均一化することができれば特に限定されない。また浮遊培養に用いられる容器としては特に限定されず、攪拌翼回転式、攪拌翼上下振とう式などの攪拌機構を持った容器が用いられる。本発明の多能性幹細胞のスフェア化における多能性幹細胞の播種密度は1.0×104 cells/mLから1.0×106cells/mLの範囲である。これ以上の密度であるとスフェアの形状が大きくなりすぎて後の誘導効率に影響を来す場合がある。なかでも、5.0×104 cells/mLから2.0×105cells/mLの範囲で播種されることがより好ましい。
 本工程(1)における多能性幹細胞のスフェア化に用いられる培養液としては、多能性幹細胞の維持培養に用いられる培養液であれば特に限定されない。このような培養液の例としては、例えばStemFit(登録商標)AK03N (味の素ヘルシーサプライ株式会社)、mTeSRTM1(STEMCELL Technologies Inc.)などのフィーダーフリー培養可能な培地が用いられる。なかでも、本発明の方法において用いられる培養液として好ましくは、フィーダーフリー培養可能な培地にROCK阻害剤を含む培地である。特に多能性幹細胞としてiPS細胞を用いる場合、StemFit(登録商標)AK03N (味の素ヘルシーサプライ株式会社)などの培地を使用することが好ましい。
 本発明におけるROCK阻害剤としては、例えばY27632やチアゾビビンなどが挙げられる。iPS細胞培養においては、一般的にROCK阻害剤としてY27632を用いるが、本発明において、その濃度としては1~20 μMが好ましく、細胞播種後2日間は添加した状態で維持することが好ましい。
 スフェア化に要する培養期間としては、スフェアが形成される限りにおいて限定されないが、本発明におけるスフェアはディンプルなどに多能性幹細胞を挿入、会合させて強制的にスフェア形成させる類のものではなく、細胞の増殖に伴って形成されるものであるため、一定の期間を要する。例えば細胞播種から2日から10日間が好ましく、4日から7日間がより好ましい。
 上記スフェア化は、攪拌条件、播種密度条件、培養期間により調節することができる。本発明の方法における工程(1)のスフェア平均粒子径は、通常200μm以上、具体的には200~600μmの範囲で適宜調整されるが、よりNK細胞の製造効率を向上させるべく200~500μmに調整されることが好ましく、さらに200~400μmに調整されることがより好ましい。
 平均粒子径が200μm未満であると、培養日数が足りず、十分に細胞数が取得されず工程(2)にも影響があるため望ましくない。また平均粒子径が大きすぎると、スフェア中心部に十分な栄養源の供給、および酸素の供給が滞るため、ネクローシス等の細胞死を誘発するため望ましくない(例えば、Cells Tissues Organs 196.1 (2012): 34-47.参照)。
 当該スフェア化工程(1)は、灌流培養法で実施される。工程(1)中、灌流培養は多能性幹細胞の播種時から実施してもよいが、最初の多能性幹細胞の播種から1日程度経過してから実施することが好ましく、より好ましくは2日経過後から実施する。なぜならば、培養1~2日後にスフェロイドが形成され、この条件で平均粒子径が200μm以上となるからであり、スフェロイドが形成される前に灌流培養を実施すると、スフェロイドが満足に形成されない恐れがあるためである。
 また本工程(1)において、灌流培養における分離膜の細孔径は15~75μmであることが好ましく、細孔径25~45μmであることがより好ましい。望ましいスフェロイドサイズを超えない細孔径の分離膜を用いることで、培養容器内に一定のスフェロイドをとどめたまま灌流培養が可能となるためである。よって好ましくは、工程(1)は、
(1-1)第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程、および
(1-2)工程(1-1)で得られた平均粒径200μm以上の多能性幹細胞スフェアを、灌流培養法で維持培養する工程
を含むものである。すなわち、工程(1)(または工程(1-2))の灌流培養における分離膜の細孔径は15~75μmであることが好ましく、細孔径25~45μmであることがより好ましい。
 灌流培養における培地交換は、一定の希釈率で実施される。多能性幹細胞のスフェア形成工程は、0.01から0.2 hr-1の希釈率で実施することが好ましく、細胞の播種密度、培養上清のグルコース濃度、乳酸濃度、グルタミン濃度、グルタミン酸濃度などを参考にして調整することが可能である。希釈率の調整は培養容器、供給ボトル、排出ボトルを天秤若しくはロードセル上にのせて、若しくはペリスタリックポンプの回転数で管理することが可能である。
 本工程(1)においては、温度センサー、pHセンサー、溶存酸素センサーなどを用いて温度、pH、溶存酸素濃度を多能性幹細胞のスフェア形成に望ましい任意の数値に制御することが可能である。
 培養温度としては35~39℃の間で制御することが好ましいが、36~38℃で制御することがより好ましい。pHは無菌的に処理した圧縮空気、若しくは無菌的に処理した炭酸ガスの流入、若しくはpH調整剤、若しくは灌流培養培地の希釈率で制御され、その制御値は6.8~8.0の間で制御されることが好ましく、7.0~7.4の間で制御されることがより好ましい。溶存酸素濃度は、無菌的に処理した圧縮空気、若しくは無菌的に処理した窒素ガス、若しくは無菌的に処理した酸素ガスで制御され、その値は0~6.86 mg/Lの間で制御され、2.00 mg/L以上の濃度で維持されることが好ましい。なお、pH、溶存酸素を維持するために使用するガスは、培養液上面の気層への吹込み、培養液中への吹込み、およびガス透過膜を介した交換が可能であり制限はない。
 このようにして得られた多能性幹細胞スフェアを、次の工程(2)に付すことで造血前駆細胞を誘導する。
(多能性幹細胞のスフェアを、造血幹細胞を含む細胞集団に誘導する工程:工程(2)について)
 本発明の方法における工程(2)は、工程(1)で形成したスフェアを、第二の培地を用いた三次元培養により造血前駆細胞を含む細胞集団に誘導する工程である。
 ここで本工程により誘導される「造血前駆細胞を含む細胞集団」とは、工程(2)によって得られる細胞集団であって、スフェア内外に誘導される造血前駆細胞集団を含む概念である。
 この細胞集団には、スフェア内に形成される造血前駆細胞、誘導されたのちスフェアから逸脱した造血前駆細胞、ならびに造血前駆細胞への誘導過程にあるスフェア内外の細胞が含まれる。
 工程(2)も、工程(1)と同様に灌流培養法で実施される。本工程で用いられる分離膜の細孔径は45~225μmであることが好ましく、細孔径45~100μmであることがより好ましい。本工程の灌流培養は工程(2)開始直後から工程(2)終了時まで実施される。この間、「多能性幹細胞スフェア」が「造血前駆細胞を含む細胞集団」に向かって誘導される。
 工程(2)の間、上記した細孔径を有する分離膜を用いることで、培養容器内に一定の造血前駆細胞を含む細胞集団を留めたまま灌流培養が可能となる。
 本工程(2)における灌流培養に伴って行われる培地交換も、工程(1)で記載したものと同様に、一定の希釈率で実施される。具体的には工程(1)と同様に0.01から0.2 hr-1の希釈率で実施することが好ましく、細胞の播種密度、培養上清のグルコース濃度、乳酸濃度、グルタミン濃度、グルタミン酸濃度などを参考にして調整することが可能である。この希釈率は、工程(1)で使用した培地を工程(2)で使用した培地に交換する際にも適用される。
 本工程(2)における第二の培地としては、多能性幹細胞を造血前駆細胞に誘導することができる培地であれば特に限定されない。
 そのような培地としては、例えば血管内皮増殖因子(VEGF)、骨形成タンパク質4(BMP4)、およびグリコーゲン合成酵素3β(GSK3β)阻害剤を含む培地(以下、培地(2-1)と記載する)や、幹細胞因子(SCF)およびトランスフォーミング増殖因子β(TGFβ)/Smad阻害剤を含む培地(以下、培地(2-2)と記載する)や、SCFおよびFlt3リガンド(Flt3L)を含む培地(以下、培地(2-3)と記載する)が挙げられる。これら各培地成分は、必要に応じて適宜組合せや量を変え適切な誘導培地を設計することも可能である。以下、このような培地の一例として、(2-1)~(2-3)の各培地を説明する。
 培地(2-1)は、VEGF、BMP4、およびGSK3β阻害剤を含む培地である。
 ここでGSK3β阻害剤としては、CHIR99021やSB216763などが挙げられ、好ましくはCHIR99021である。
 VEGFの濃度は、好ましくは1~100 ng/mL、より好ましくは50~100 ng/mLである。BMP4の濃度は、好ましくは1~100 ng/mL、より好ましくは50~100 ng/mLである。GSK3β阻害剤の濃度は、CHIR99021を使用した場合、好ましくは1~10 μM、より好ましくは1~5 μMである。
 さらに培地(2-1)は、ROCK阻害剤またはbFGFを含んでいても良い。ROCK阻害剤を加える場合、ROCK阻害剤としては工程(1)に記載したものが挙げられ、好ましくはY27632である。ROCK阻害剤の濃度は、Y27632を用いた場合、好ましくは1~20 μM、より好ましくは1~10 μMである。またbFGFを加える場合の濃度は、好ましくは1~100 ng/mL、より好ましくは10~50 ng/mLである。
 培地(2-1)の基礎培地としては特に限定されないが、例えばDMEM/F-12、HEPES(Thermo Fisher Scientific)、Essential 6 medium(Thermo Fisher Scientific)といった培地が好ましく用いられる。
 培地(2-2)は、SCF、TGFβ/Smad阻害剤およびVEGFを含む培地である。
 ここで、TGFβ/Smad阻害剤としては、SB431542、LY2157299、並びにLY2109761などが挙げられ、好ましくはSB431542である。SCFの濃度は、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。TGFβ/Smad阻害剤の濃度は、SB431542を使用した場合、好ましくは1~10 μM、より好ましくは1~5 μMである。VEGFの濃度は、培地(2-1)と同様に、好ましくは1~100 ng/mL、より好ましくは50~100 ng/mLである。
 さらに培地(2-2)には、ROCK阻害剤またはbFGFを含んでいても良い。それぞれの具体例や使用する際の濃度は、培地(2-1)に記載したものと同様である。
 培地(2-2)の基礎培地としては特に限定されないが、培地(2-1)に記載した基礎培地と同様のものが使用できる。
 培地(2-3)は、SCFおよびFlt3Lを含む培地である。SCFの濃度としては、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。Flt3Lの濃度としては、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。
 さらに培地(2-2)は、ROCK阻害剤、インターロイキン(IL)-3およびIL-7から選択される少なくとも一つを含んでいても良い。ROCK阻害剤としては、前記したものが挙げられ、好ましくはY27632である。ROCK阻害剤を加える場合の濃度は、Y27632を用いた場合、好ましくは1~20 μMである。IL-3を加える場合の濃度は、好ましくは1~100 ng/mLである。IL-7を加える場合の濃度は、好ましくは1~100 ng/mLである。
 培地(2-2)の基礎培地としては特に限定されず、造血前駆細胞誘導に適した培地が用いられるが、例えばStem Pro-34 SFM(Thermo Fisher Scientific)に終濃度1~10 mMとなるようにL-グルタミンまたはL-アラニル-L-グルタミンを加えた培地が好ましく使用される。
 なお、上記培地(2-1)、(2-2)および(2-3)は、それぞれを単独で用いることもできるが、工程(2)中、適切なタイミングで培地(2-1)または(2-2)と(2-3)とを培地交換することにより、より効率的に造血前駆細胞を誘導することが可能である。例えば工程(2)の前半部分を培地(2-1)または(2-2)で培養し、後半部分を培地(2-3)で培養することで効率よく造血前駆細胞を誘導することができる。
 この場合、工程(2)中の前半部分、後半部分の時間は適宜設定することができるが、例えば前半部分を2~6日間、後半部分を3~14日間と設定することで、効率よく造血前駆細胞を誘導することができる。この培地(2-1)または(2-2)と培地(2-3)との交換は、連続的に灌流操作することによって実施することも、全量を新しい培地に入れ替えて培地交換することも可能であり、より好ましくは連続的に灌流操作をすることで培地交換を実施するのが望ましい。
 さらに工程(2)の前半部分で使用され得る培地(2-1)と(2-2)は、この順で培地交換をすることによって、効率的に造血前駆細胞を誘導することが可能である。具体的には先ず培地(2-1)で培養し、次いで培地(2-2)で培養する。
 この場合、各培地での培養時間は適宜設定することができるが、例えば培地(2-1)の培養時間を1~3日間、培地(2-2)の培養時間を1~3日間と設定することで、効率よく造血前駆細胞を誘導することができる。この培地(2-1)と培地(2-2)との交換は、連続的に灌流操作することによって実施することも、全量を新しい培地に入れ替えて培地交換することも可能であり、より好ましくは連続的に灌流操作をすることで培地交換を実施するのが望ましい。
 よって、工程(2)における三次元培養は、例えば
(2-1)第二の培地として培地(2-1)を用いた培養工程と、
(2-2)第二の培地として培地(2-2)を用いた培養工程と、
(2-3)第二の培地として培地(2-3)を用いた培養工程と、
を含む、三次元培養であることが好ましい。各工程(2-1)~(2-3)はこの順で実施されることが好ましい。
 本工程(2)においても、工程(1)で記載したものと同様に、温度センサー、pHセンサー、溶存酸素センサーなどを用いて温度、pH、溶存酸素濃度を多能性幹細胞のスフェア形成に望ましい任意の数値に制御することが可能である。
 本発明の方法においては、工程(1)から工程(3)に至るまで、一貫して特段の精製工程を経ずにNK細胞集団を得ることができる。そのため、本工程(2)により得られるこれらの細胞集団は、次の工程(3)に細胞集団ごとそのまま付してもよいし、造血前駆細胞のみを選別した後に工程(3)に付してもよい。
 本発明者らはいずれの方法であっても工程(3)において目的のNK細胞が得られることを確認している。従って、本発明の方法において、工程(2)において得られた「造血前駆細胞を含む細胞集団」から造血前駆細胞以外の細胞を除く工程を入れてもよいが、工程(2)において得られた「造血前駆細胞を含む細胞集団」はそのまま工程(3)に付すことが望ましい。
 このようにして得られた「造血前駆細胞を含む細胞集団」を工程(3)に付すことで、NK細胞を誘導する。
(造血前駆細胞をNK細胞に誘導する工程:工程(3)について)
 本発明の方法における工程(3)は、工程(2)で得られた「造血前駆細胞を含む細胞集団」を、第三の培地を用いた三次元培養により「NK細胞を含む細胞集団」に誘導する工程である。
 ここで本工程により誘導される「NK細胞を含む細胞集団」とは、工程(3)によって得られるNK細胞や、NK細胞への誘導過程にある細胞を含む細胞集団である。
 NK細胞は、通常スフェアを形成することなく単一の細胞として存在する。よって工程(3)によれば、単一のNK細胞集団が増殖し、多数の単一NK細胞の細胞集団となっている。この細胞集団には、大多数を占めるNK細胞と、一部のNK細胞への誘導過程にある細胞とが含まれる。
 工程(3)も、工程(1)および工程(2)と同様に灌流培養法で実施することができる。用いられる分離膜の細孔径は0.1~10μmであることが好ましく、細孔径0.2~5μmであることがより好ましい。本工程の灌流培養は工程(3)開始直後から工程(3)終了時まで連続して実施される。この間、造血前駆細胞スフェアから誘導されたNK細胞が生成されるが、NK細胞はスフェア内に留まらず個々に濾出してくる。そのため工程(3)の間はNK細胞の細胞径を超えない分離膜を用いることで、培養容器内に一定のNK細胞をとどめたまま灌流培養が可能となる。
 また本工程(3)における培地交換も、工程(1)で記載したとおり一定の希釈率で実施される。具体的には工程(1)と同様に0.01から0.2 hr-1の希釈率で実施することが好ましく、細胞の播種密度、培養上清のグルコース濃度、乳酸濃度、グルタミン濃度、グルタミン酸濃度などを参考にして調整することが可能である。この希釈率は、工程(2)で使用した培地を工程(3)で使用した培地に交換する際にも適用される。
 本工程(3)における第三の培地としては、造血前駆細胞をNK細胞に誘導することができる培地であれば特に限定されない。そのような培地としては、例えばIL-15およびSCFを含む培地が挙げられる。IL-15の濃度は、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。SCFの濃度は、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。この培地には、さらにIL-7、Flt3L、ROCK阻害剤、GSK3β阻害剤、およびTGFβ受容体(TGFβR)阻害剤から選ばれる1以上の成分を加えることも可能である。ここでROCK阻害剤としては、Y27632やチアゾビビンが挙げられ、好ましくはY27632である。またGSK3β阻害剤としては、CHIR99021やSB216763などが挙げられ、好ましくはCHIR99021である。TGFβR阻害剤としては、LY2157299、SB431542、並びにLY2109761などが挙げられ、好ましくはLY2157299である。好ましい一実施態様においては、第三の培地は、IL-15およびSCFに加えてIL-7およびFlt3Lをさらに含む。
 IL-7を加える場合の濃度は、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。Flt3Lを加える場合の濃度は、好ましくは1~100 ng/mL、より好ましくは20~50 ng/mLである。ROCK阻害剤を加える場合の濃度は、好ましくは1~20 μM、より好ましくは1~10 μMである。GSK3β阻害剤を加える場合の濃度は、好ましくは1~10 nM、より好ましくは1~5 μMである。TGFβR阻害剤を加える場合の濃度は、好ましくは0.1~100 μM、より好ましくは0.1~5 μMである。
 工程(3)における培養期間は、通常20~60日であり、好ましくは25~40日程度である。
 また工程(3)において、IL-7、Flt3L、ROCK阻害剤、GSK3β阻害剤、あるいはTGFβR阻害剤を加える場合、これらの因子を添加するタイミングを調節することで、誘導効率を向上させることが可能である。たとえば、IL-7およびFlt3Lについては、工程(3)における培養10日目以降に除去することが好ましく、より好ましくは20日目以降で除くことが好ましい。またROCK阻害剤、GSK3β阻害剤およびTGFβR阻害剤については、培養終了前4~7日間添加することが好ましい。
 工程(3)において用いられる培地の基礎培地としては特に限定されないが、例えばAIM-V Medium(Thermo Fisher Scientific)、Stemline(登録商標)II(Sigma-Aldrich)、ALyS505N-0(株式会社細胞科学研究所)、およびStem Pro-34 SFM(Thermo Fisher Scientific)といった培地が用いられるが、好ましくは、AIM-V Mediumを用いる。さらに、ヒト血清、胎児ウシ血清(FBS)、血清代替品を含んでいても良い。これらの濃度は1~20%が好ましく、1~10%がより好ましい。
 本工程(3)において、さらにスフェアの除去工程を実施することが好ましい。除去のタイミングとしては、例えば本工程開始前、本工程実施中、本工程終了時が挙げられるが、特に限定されずいずれのタイミングでも実施可能である。
 スフェアの除去は、20~100μmのセルストレイナーを用いて除去することが好ましく、20~40μmのセルストレイナーを用いて除去することがより好ましい。
 また本工程(3)においても、工程(1)で記載したものと同様に、温度センサー、pHセンサー、溶存酸素センサーなどを用いて温度、pH、溶存酸素濃度を多能性幹細胞のスフェア形成に望ましい任意の数値に制御することが可能である。
 また本発明の方法では、工程(3)ののちに工程(4)として得られたNK細胞の増幅培養工程、あるいはNK細胞の成熟工程をさらに実施してもよい。増幅培養工程、あるいは成熟工程は、公知の方法を適宜適用することができる。
 本発明の方法は、上記した工程(1)~(3)あるいは工程(1)~(4)全てを三次元培養用担体および細胞外基質を用いることなく実施することを特徴とする。
 本発明の方法では、さらに得られたNK細胞を凍結保存する工程をさらに実施してもよい。本発明におけるNK細胞は、NK製造工程終了後、自体公知の方法により凍結し、保存することができる。
 以下に実施例および試験例を示し、本発明をより具体的に説明するが、それらは単なる例示であって、本発明はそれらに限定されない。
実施例1:灌流培養による多能性幹細胞からNK細胞への分化誘導
 本実施例では、多能性幹細胞としてヒトiPS細胞株06E(TC-1133HKK_06E_MCB)を用い、iPS細胞スフェア形成からNK細胞の分化まで三次元灌流培養法により実施した。培養液の混合は攪拌翼を用い、センサーとしてpHセンサー、温度センサー、溶存酸素センサーを採用し、各種管理項目を連続的に、培養液を混合しながらモニタリング、および制御を実施した。また、灌流培養は図1で示す通り、専用のポンプ、および天秤を用いて時間当たりの流入出速度を制御して管理を行った。
工程(1):多能性幹細胞スフェアを形成する工程
 多能性幹細胞のスフェア形成は、二次元で拡大培養したiPS細胞を用いて三次元培養容器に1.0×105 cells/mLの細胞密度となるように細胞播種を実施した。その他詳細は、以下の方法で実施した。
 工程(1)における培地はStemFit(登録商標)AK03N (味の素ヘルシーサプライ株式会社)にROCK阻害剤Y27632を10 μMとなるように添加して使用した。 
 培養容器は、全容量500 mLのシングルユースボトルを用いて実施し、培養液は容器内の攪拌翼を用い連続的に混合した。pHをpHセンサーで連続的にモニタリングし、無菌的な培地供給、若しくは無菌的な空気、若しくは無菌的な炭酸ガスの供給で7.07となるように制御した。
 溶存酸素濃度は溶存酸素センサーを用いで連続的にモニタリングし、無菌的な空気、若しくは無菌的な酸素ガスの供給で1.50 mg/L以上を維持するように制御した。培養温度は温度センサーで連続的にモニタリングし、容器外部からヒーターで容器を加熱することで培養温度を37.0℃になるように制御した。培養液量は250 mLとなるように調整し、ポンプと天秤を用いて新しい培地を供給、培養液の排出を同一速度で実施し、培養2日目から4日目は0.02 hr-1、培養4日目から7日目は0.03 hr-1の希釈率で制御した。分離膜は細孔径45μmのSUS316製の分離膜を用いて実施した。
 なお、比較対象として手動で培地交換を実施した検体を2種類用意した。比較対象は培養液量250 mL、培養液量30 mLの2検体を用意し、培地交換は手動で実施した。
 この場合の培地交換は、培養容器の攪拌を停止し、10分間静置した後に上清を2日目は50%、4,5,6日目は80%交換することで実施した。培養液量30 mLの検体については回転式攪拌容器で培養し、CO2インキュベーター内、CO2濃度5%、37℃環境下で浮遊培養を実施した。55 rpmの回転速度で培養液を混合して培養した。培養液量250 mLの検体については、培地交換を手動で実施した以外は灌流培養検体と同様の制御条件で培養した。
 培養7日目に培養液からスフェアを含む細胞懸濁液を採取し、顕微鏡を用いてスフェアの平均粒子径を測定した。スフェアの顕微鏡写真(対物レンズ4倍)とスフェアの平均粒子径を図2に示す。250 mL培養の方が、スフェア径を200-400μmの間で制御して作成できた。また、灌流培養で実施した場合、行程中に発生する培地交換を連続的に自動制御で実施し、安全キャビネット等の無菌環境下への培養槽の移動を実施することなく、問題なく均一なスフェアが形成された。
工程(2):多能性幹細胞のスフェアを、造血前駆細胞を含む細胞集団に誘導する工程
 造血前駆細胞の作成は、工程(1)で作成したiPS細胞スフェアを用いて三次元培養容器に1.8×105 cells/mLの細胞密度となるようにiPS細胞スフェア播種を実施した。その他詳細は、以下の方法で実施した。
 使用した培地としては、2日目までは、DMEM/F-12, HEPES(Thermo Fisher Scientific)にCHIR99021を2μM、BMP4を80 ng/mL、VEGF165を80 ng/mL、bFGFを50 ng/mLとなるように添加したものを使用し、2日目から4日目までは、Essential 6(Thermo Fisher Scientific)にSCFを50 ng/mL、VEGF165を80 ng/mL、SB431542を2μM、bFGFを50 ng/mLとなるように添加したものを使用した。さらに4日目から14日目までは、通常の造血前駆細胞分化誘導基礎培地にSCFを50 ng/mL、Flt3Lを50 ng/mLとなるように添加したものを使用した。
 培養容器は、全容量500 mLのシングルユースボトルを用いて実施し、培養液は容器内の攪拌翼を用い連続的に混合した。pHはpHセンサーで連続的にモニタリングし、無菌的な培地供給、若しくは無菌的な空気、若しくは無菌的な炭酸ガスの供給で7.07となるように制御した。溶存酸素濃度は溶存酸素センサーを用いで連続的にモニタリングし、無菌的な空気、若しくは無菌的な酸素ガスの供給で1.50 mg/L以上を維持するように制御した。培養温度は温度センサーで連続的にモニタリングし、容器外部からヒーターで容器を加熱することで培養温度を37.0℃になるように制御した。培養液量は250 mLとなるように調整し、ポンプと天秤を用いて新しい培地を供給、培養液の排出を同一速度で実施し、培養1日目から2日目は0.07 hr-1、培養2日目から4日目は0.06 hr-1、培養5日目から7日目は0.13 hr-1、培養7日目から12日目は0.07 hr-1、培養12日目から14日目は0.02 hr-1の希釈率で制御を実施した。分離膜としては、細孔径75μmのSUS316製の分離膜を用いた。
 なお、比較対象として手動で培地交換を実施した検体を2種類用意した。比較対象は培養液量250 mL、培養液量30 mLの2検体を用意し、培地交換は手動で実施した。培地交換の方法は、培養容器の攪拌を停止し、数分間静置した後に上清を1, 2, 3, 4, 7, 9, 12日目に全量交換で実施した。なお、培養液量30 mLの検体は回転式攪拌容器で培養し、CO2インキュベーター内で培養を実施し、5%、37℃環境下で浮遊培養を実施し、55 rpmの回転速度で培養液を混合して培養した。250 mL培養の比較対象は、培地交換を手動で実施する以外は灌流培養検体と同様の制御で培養した。
 培養14日目に培養液からスフェアを除いた浮遊細胞懸濁液を採取し、造血前駆細胞に発現していることが知られている細胞表面マーカー(CD34,CD43,CD45,CD117)をフローサイトメトリーで確認した(図3)。
 結果、灌流培養で製造した場合と手動で培地交換を行った場合とで、造血前駆細胞の製造効率を比較した結果、本工程において、行程中に発生する培地交換を連続的に自動制御で実施し、安全キャビネット等の無菌環境下への培養槽の移動を実施することなく培養を実施することができた上、確認したマーカーの発現に大きな差はない結果となった。よって工程(2)において灌流培養により造血前駆細胞を誘導することができた。
工程(3):造血幹細胞をナチュラルキラー細胞に誘導する工程
 NK細胞の作製は、工程(2)で作成した造血前駆細胞を三次元培養容器に1.0×105 cells/mLの細胞密度となるようにスフェアを含む浮遊細胞を播種して実施した。また、培養の結果、細胞密度が1.0×107 cells/mL以上となった段階で継代を実施した。継代後も同一の培地、培養条件で培養を継続し、細胞密度が2.0×107 cells/mL以上となるまで培養を継続した。その他詳細は、以下の方法で実施した。
 培地はAIM V Serum Free Medium (Thermo Fisher scientific)にFBSを5%濃度で加えた培地に、IL-15,IL-7,SCF,およびFlt3Lを終濃度50 ng/mLとなるように添加して作成したものを使用した。
 培養容器は、全容量500 mLのシングルユースボトルを用いて実施し、培養液は容器内の攪拌翼を用い連続的に混合した。pHは、pHセンサーで連続的にモニタリングし、無菌的な培地供給、無菌的な空気、若しくは無菌的な炭酸ガスの供給によって7.07となるように制御した。
 溶存酸素濃度は溶存酸素センサーを用いで連続的にモニタリングし、無菌的な空気、若しくは無菌的な酸素ガスの供給で1.50 mg/L以上を維持するように制御した。培養温度は温度センサーで連続的にモニタリングし、容器外部からヒーターで容器を加熱することで培養温度を37.0℃になるように制御した。培養液量は250 mLとなるように調整し、ポンプと天秤を用いて新しい培地を供給、培養液の排出を同一速度で実施し、細胞密度に合わせて0.01 hr-1から0.09 hr-1の希釈率で制御を実施した。
 分離膜には細孔径7μmのポリスルフォン繊維製の製品を用いた。比較対象として培養液量250 mL、培養液量30 mLの2検体について手動で培地交換を実施した。手動による培地交換によれば、1~2日に1回培地交換を実施した。具体的には、培養容器の攪拌を停止した後、培養液を細胞密度に合わせて50~90%回収、20℃、300 g、5分の条件で遠心分離を実施し、上清を除き、残ったペレットに新しい培地を除いた培地量と等量加え、よく混合した後に培養容器に戻した。
 なお、培養液量30 mLの検体については、回転式攪拌容器を用い、5% CO2インキュベーター内、37℃環境下において、55 rpmの回転速度で浮遊培養を実施した。培養液量250 mLの検体については、培地交換を手動で実施する以外は灌流培養検体と同様の制御で培養した。
 培養中の培養液を100μL採取し、その浮遊細胞の密度を、NC-200(ChemoMetec)を用いて測定した(図4)。本発明の方法を採用することによって、継代後の細胞密度において、比較対象よりも高い細胞密度で培養できる結果となった。この培養工程の期間中の培地交換は連続的に自動で実施されるため、作業負荷を下げたうえで、より高密度での細胞培養が可能であることが示された。
 本発明の方法で製造したNK細胞培養液を回収後、20℃、300 g、5分の条件で遠心分離し、上清を除いた後に細胞をSTEM-CELLBANKER(登録商標) GMP gradeで再懸濁し、-80℃のフリーザーに移し、凍結した。凍結した細胞をフリーザーから取り出し、37℃のウォーターバスで融解後、AIM V Serum Free Medium (Thermo Fisher scientific)にFBSを5%濃度で加えた培地に、IL-15,IL-7,SCF,およびFlt3Lを終濃度50 ng/mLとなるように添加した培地に再懸濁し、20℃、300 g、5分の条件で遠心分離し、上清を除いた後に再度同様の培地で再懸濁し、T75フラスコに播種し、5%、37℃制御のCO2インキュベーターで静置培養を実施した。3日後の細胞を回収し、NK細胞で発現していることが知られている細胞表面マーカーとしてCD56を、また、NK細胞の細胞障害活性に関与することが知られているグランザイムB、およびパーフォリンの発現をフローサイトメトリーで確認した(図5)。結果、比較対象と変わらず、CD56、グランザイムB、パーフォリンの発現を確認でき、本発明の方法でも既存の方法と変わらない性質をもったナチュラルキラー細胞が製造できることが示された。
試験例1:得られたNK細胞の活性評価
 実施例1により得られ、凍結、融解、静置培養ののち得られた細胞をヒト肺胞基底上皮腺癌細胞であるA549細胞と共培養した(ET比 3:1)。共培養4時間後の培養液中の乳酸脱水素酵素(LDH)活性を測定し、作成したNK細胞が有するA549細胞に対する細胞障害活性を計測した。比較対象としてヒト末梢血単核球から選択・培養を行ったNK細胞(primary NK)も同様に処理した(図6)。
 結果、iPS細胞から作成したNK細胞は、primary NKと比較して高い細胞障害活性を示し、且つ本発明の方法である灌流培養を用いて作成したNK細胞は、既存の培養方法と変わらない細胞障害活性を示した。
 本発明の多能性幹細胞由来NK細胞の製造方法は、各工程中に発生する培地交換を連続的に自動制御で実施し、安全キャビネット等の無菌環境下への培養槽の移動を実施することなく大量製造ができ、既存方法と比較して各工程のスフェロイド形成、細胞分化も問題なく実施でき、且つNK細胞の高密度培養においては、より高い密度での培養が可能であることが示され、がん免疫療法に使用できるNK細胞の大量製造に有用な方法であると言える。   
 本出願は日本国で出願された特願2022-013646(出願日:2022年1月31日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (17)

  1.  ナチュラルキラー(NK)細胞の製造方法であって、
    (1)第一の培地中で、平均粒径200μm以上の多能性幹細胞スフェアを形成する工程;
    (2)工程(1)で形成した多能性幹細胞スフェアを、第二の培地を用いた三次元培養により造血前駆細胞を含む細胞集団に誘導する工程;および
    (3)工程(2)で得られた造血前駆細胞を含む細胞集団を、第三の培地を用いた三次元培養によりNK細胞を含む細胞集団に誘導する工程:
    を含み、工程(1)ないし(3)を灌流培養法で行うことを特徴とする、方法。
  2.  工程(1)ないし(3)を三次元培養用担体および細胞外基質を用いることなく実施することを特徴とする、請求項1に記載の方法。
  3.  工程(1)における灌流培養が細孔径15~75μmの分離膜を使用して行われる、請求項2に記載の方法。
  4.  工程(2)における灌流培養が細孔径45~225μmの分離膜を使用して行われる、請求項2に記載の方法。
  5.  工程(3)における灌流培養が細孔径0.2~10μmの分離膜を使用して行われる、請求項2に記載の方法。
  6.  工程(1)ないし(3)を連続的な灌流培養法で行うことを特徴とする、請求項1~5のいずれか一項に記載の方法。
  7.  第一の培地がROCK阻害剤を含む、請求項1に記載の方法。
  8.  第二の培地がVEGF、BMP4およびGSK3β阻害剤を含む、請求項1に記載の方法。
  9.  第二の培地がさらにROCK阻害剤またはbFGFを含む、請求項8に記載の方法。
  10.  第二の培地がSCF、TGFβ/Smad阻害剤およびVEGFを含む、請求項1に記載の方法。
  11.  第二の培地がさらにROCK阻害剤またはbFGFを含む、請求項10に記載の方法。
  12.  第二の培地がSCFおよびFlt3Lを含む、請求項1に記載の方法。
  13.  第二の培地がさらにROCK阻害剤、IL-3およびIL-7から選択される少なくとも一つを含む、請求項12に記載の方法。
  14.  工程(2)における三次元培養が、
    (2-1)第二の培地としてVEGF、BMP4およびGSK3β阻害剤を含む培地を用いた培養工程と、
    (2-2)第二の培地としてSCF、TGFβ/Smad阻害剤およびVEGFを含む培地を用いた培養工程と、
    (2-3)第二の培地としてSCFおよびFlt3Lを含む培地を用いた培養工程と、
    を含む、請求項1に記載の方法。
  15.  第三の培地がIL-15およびSCFを含む、請求項1に記載の方法。
  16.  第三の培地がさらにIL-7およびFlt3Lを含む、請求項15に記載の方法。
  17.  NK細胞の分別工程を必要としない、請求項1に記載の方法。 
PCT/JP2023/002794 2022-01-31 2023-01-30 ナチュラルキラー細胞の製造方法 WO2023145922A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013646 2022-01-31
JP2022-013646 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145922A1 true WO2023145922A1 (ja) 2023-08-03

Family

ID=87471721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002794 WO2023145922A1 (ja) 2022-01-31 2023-01-30 ナチュラルキラー細胞の製造方法

Country Status (2)

Country Link
TW (1) TW202346574A (ja)
WO (1) WO2023145922A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法
WO2018135633A1 (ja) * 2017-01-20 2018-07-26 富士フイルム株式会社 細胞培養装置及び細胞培養方法
JP2019509047A (ja) * 2016-03-21 2019-04-04 ゼネラル・エレクトリック・カンパニイ 撹拌タンクバイオリアクタを用いた多能性幹細胞の増殖および継代
JP2019162093A (ja) * 2018-03-20 2019-09-26 株式会社Ihi 血球系細胞の製造方法
WO2020086889A1 (en) * 2018-10-24 2020-04-30 Hebecell Corporation Methods and systems for manufacturing hematopoietic lineage cells
JP2020174557A (ja) * 2019-04-17 2020-10-29 株式会社日立製作所 細胞培養精製装置及び細胞培養精製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509047A (ja) * 2016-03-21 2019-04-04 ゼネラル・エレクトリック・カンパニイ 撹拌タンクバイオリアクタを用いた多能性幹細胞の増殖および継代
WO2017191775A1 (ja) * 2016-05-06 2017-11-09 富士フイルム株式会社 多能性幹細胞の継代方法
WO2018135633A1 (ja) * 2017-01-20 2018-07-26 富士フイルム株式会社 細胞培養装置及び細胞培養方法
JP2019162093A (ja) * 2018-03-20 2019-09-26 株式会社Ihi 血球系細胞の製造方法
WO2020086889A1 (en) * 2018-10-24 2020-04-30 Hebecell Corporation Methods and systems for manufacturing hematopoietic lineage cells
JP2020174557A (ja) * 2019-04-17 2020-10-29 株式会社日立製作所 細胞培養精製装置及び細胞培養精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUBARA HIROYUKI; NIWA AKIRA; NAKAHATA TATSUTOSHI; SAITO MEGUMU K.: "Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, ELSEVIER, AMSTERDAM NL, vol. 515, no. 1, 2 April 2019 (2019-04-02), Amsterdam NL , pages 1 - 8, XP085705650, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2019.03.085 *

Also Published As

Publication number Publication date
TW202346574A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US7122371B1 (en) Modular cell culture bioreactor
AU2006327073B2 (en) In vitro expansion of postpartum derived cells in roller bottles
AU2011251055B2 (en) Cell - culture - bag
JP5670053B2 (ja) マイクロキャリアを使用した、産褥由来の細胞の生体外での拡大
CN106414722B (zh) 红系细胞的体外扩增
US20080009064A1 (en) Temperature-Responsive Microcarrier
JP6704848B2 (ja) 広範囲に自己再生するヒト赤芽球(esre)
Andrade-Zaldívar et al. Expansion of human hematopoietic stem cells for transplantation: trends and perspectives
WO2018187686A1 (en) Method of manufacturing and purifying exosomes from non-terminally differentiated cells
KR20200034727A (ko) 세포외 소포를 생산하는 유체 시스템 및 관련 방법
Scibona et al. Expansion processes for cell-based therapies
Fujimoto et al. Microencapsulated feeder cells as a source of soluble factors for expansion of CD34+ hematopoietic stem cells
PT106225B (pt) Processo de expansão ex vivo de células estaminais em biorreactor
Baudequin et al. Objectives, benefits and challenges of bioreactor systems for the clinical-scale expansion of T lymphocyte cells
Ge et al. Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications
JP2021509812A (ja) 巨核球を産生するための組成物および方法
WO2023145922A1 (ja) ナチュラルキラー細胞の製造方法
WO2022260149A1 (ja) 低温管理された細胞凝集塊及び細胞凝集塊の維持方法
Wang et al. Scalable production of human erythrocytes from induced pluripotent stem cells
Andreeva et al. Isolation and expansion of mesenchymal stem cells from murine adipose tissue
US20240093155A1 (en) Method of changing culture medium of a culture using spinfilters
US20230193201A1 (en) Methods for producing immune cell cultures
Costa et al. Bioreactors for the Cultivation of Hematopoietic Stem and Progenitor Cells
Longster An ultra scale-down tool for the predictive design of a filtration procedure for preparation of human cell therapies
Zaldivar Andrade et al. Expansion of human hematopoietic stem cells for transplantation: trends and perspectives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747132

Country of ref document: EP

Kind code of ref document: A1