WO2023142891A1 - 一种高荧光量子产率的碳量子点制备方法及应用 - Google Patents

一种高荧光量子产率的碳量子点制备方法及应用 Download PDF

Info

Publication number
WO2023142891A1
WO2023142891A1 PCT/CN2022/144136 CN2022144136W WO2023142891A1 WO 2023142891 A1 WO2023142891 A1 WO 2023142891A1 CN 2022144136 W CN2022144136 W CN 2022144136W WO 2023142891 A1 WO2023142891 A1 WO 2023142891A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon quantum
quantum dots
quantum yield
high fluorescence
carbon
Prior art date
Application number
PCT/CN2022/144136
Other languages
English (en)
French (fr)
Inventor
田阳
刘智超
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学 filed Critical 华东师范大学
Publication of WO2023142891A1 publication Critical patent/WO2023142891A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention belongs to the technical field of nanotechnology and biological imaging, and relates to a method for preparing carbon quantum dots with high fluorescence quantum yield and an application thereof.
  • Carbon quantum dots have recently become a fluorophore that has received much attention because of their many outstanding advantages, including excellent photostability, small size, good biocompatibility, tunable photoluminescence properties, excellent Excellent multiphoton excitation properties, electrochemiluminescence, easy functionalization with biomolecules, and chemical inertness.
  • These luminescent carbon quantum dots offer unprecedented opportunities for bioimaging and optical sensing devices. Due to their small size and good biocompatibility, they can also serve as effective carriers for drug delivery while allowing visual monitoring of the kinetics of drug release. Furthermore, their unique catalytic and physicochemical properties hold promise for various biomedical applications. For the fluorescence of carbon quantum dots, their fluorescence emission mainly comes from the quantum confinement effect.
  • the purpose of the present invention is to provide a method for preparing carbon quantum dots with high fluorescence quantum yield and its application in ultra-stable white light emission and biological imaging.
  • the carbon quantum dots have high fluorescence quantum yield and multicolor fluorescence emission. , strong anti-photobleaching ability, low toxicity and other advantages.
  • the invention provides a method for preparing carbon quantum dots with high fluorescence quantum yield, comprising the following steps:
  • step (1) the amounts of o-phenylenediamine, m-phenylenediamine and p-phenylenediamine are respectively 20-30 mg; preferably, 25 mg.
  • the volume of the solvent is 20-30mL; preferably, 20mL.
  • the solvent is one or more of ethanol, methanol, ethylene glycol, etc.; preferably, it is ethanol.
  • the ultrasonic time is 10-15 minutes; preferably, 12 minutes.
  • step (2) the temperature of the heating reaction is 180-220°C; preferably, 200°C.
  • step (2) the reaction time is 8-10 hours; preferably, it is 9 hours.
  • the molecular weight of the dialysis bag is 100-1000Da; preferably, 100-500Da.
  • the solvent is one or more of ethanol, methanol, ethylene glycol, etc.; preferably, it is ethanol.
  • the dialysis time is 12-16 hours; preferably, 14 hours.
  • the concentration ratio of the carbon quantum dots and methoxyacetaldehyde is 10:(15-20); preferably, it is 10:15.
  • step (4) the temperature of the Schiff base coupling reaction is 50-60°C; preferably, 55°C.
  • step (4) the time for the Schiff base coupling reaction is 10-16 h; preferably, 14 h.
  • the concentration ratio of the carbon quantum dots and methoxyacetic acid after the reaction is 10:(10-15); preferably, it is 10:12.
  • step (5) the temperature of the coupling reaction is 30-40°C; preferably, 35°C.
  • step (5) the coupling reaction time is 10-16h, preferably 14h.
  • the molecular weight of the dialysis bag is 100-1000Da; preferably, 100-500Da.
  • the dialysis solvent is one or more of ethanol, methanol, ethylene glycol, etc.; preferably, it is ethanol.
  • the dialysis time is 12-16 hours; preferably, 14 hours.
  • the method for preparing carbon quantum dots with high fluorescence quantum yield according to the present invention comprises the following steps:
  • the functionalized carbon quantum dots were purified by dialysis in ethanol for 14 hours with a dialysis bag with a molecular weight of 100-500 Da to obtain carbon quantum dots with a high fluorescence quantum yield.
  • the present invention also provides the carbon quantum dots with high fluorescence quantum yield prepared by the above method.
  • the method for improving the fluorescence quantum yield of carbon quantum dots in the present invention is to respectively modify methoxyacetaldehyde and methoxyacetic acid on the surface of carbon quantum dots.
  • the present invention also provides the application of the above-mentioned carbon quantum dot with high fluorescence quantum yield in ultra-stable white light emission.
  • the volume ratio of the three carbon quantum dots used for white light emission is 1:4:1.
  • the present invention also provides the application of the above-mentioned carbon quantum dot with high fluorescence quantum yield in the study of cytotoxicity.
  • Said cells are nerve cells.
  • the present invention also provides the application of the above-mentioned carbon quantum dot with high fluorescence quantum yield in super-resolution fluorescence imaging.
  • oCD is used for mitochondrial super-resolution imaging.
  • functionalized pCD is used for endoplasmic reticulum super-resolution imaging.
  • the present invention also provides a method for constructing mitochondria-targeted imaging probes using carbon quantum dots with high fluorescence quantum yields prepared by the method described above.
  • the method includes: in a buffer, the functionalized oCD
  • the coupling reaction with 2-carboxyethyltriphenylphosphine bromide was carried out, and the imaging probe construction was characterized by infrared spectroscopy.
  • the buffer includes phosphate buffer, Tris buffer, HEPES buffer, etc.; preferably, it is phosphate buffer.
  • the temperature of the coupling reaction is 30-50°C; preferably, 40°C.
  • the coupling reaction time is 10-18 hours; preferably, it is 12 hours.
  • the present invention also provides a method for constructing tubulin-targeted imaging probes using carbon quantum dots with high fluorescence quantum yields prepared by the method described above.
  • the method includes: in a buffer, the functionalized The mCD was coupled with paclitaxel, and the imaging probe construction was characterized by infrared spectroscopy.
  • the buffer includes phosphate buffer, Tris buffer, HEPES buffer; preferably, it is phosphate buffer.
  • the temperature of the coupling reaction is 30-50°C; preferably, 40°C.
  • the coupling reaction time is 10-18 hours; preferably, it is 12 hours.
  • the present invention also provides a method for constructing microendoplasmic reticulum-targeted imaging probes using carbon quantum dots with high fluorescence quantum yields prepared by the method described above.
  • the method includes: in a buffer, the functional
  • the conjugated pCD was reacted with 4-(piperidine-1-sulfonyl)-benzoic acid, and the imaging probe construction was characterized by infrared spectroscopy.
  • the buffer includes one or more of phosphate buffer, Tris buffer, HEPES buffer, etc.; preferably, it is phosphate buffer.
  • the temperature of the coupling reaction is 30-50°C; preferably, 40°C.
  • the coupling reaction time is 10-18 hours; preferably, it is 12 hours.
  • the beneficial effect of the present invention is that: the present invention firstly synthesizes three kinds of carbon quantum dots with different emission, and then functionalizes the carbon quantum dots to obtain carbon quantum dots with high fluorescence quantum yield.
  • the synthesis method of the present invention is simple and convenient.
  • the absolute fluorescent quantum yield of the carbon quantum dots is increased up to 62.1%.
  • Fig. 1 is the transmission electron micrograph of (a) oCD prepared in Example 1 of the present invention, (c) mCD and (e) pCD, and the particle diameter corresponding to (b) oCD, (d) mCD and (f) pCD Distribution.
  • Fig. 2 is an infrared spectrum characterization diagram of three kinds of carbon quantum dots prepared in Example 1 of the present invention.
  • Fig. 3 is a 3D fluorescence image of (a) oCD, (b) mCD and (c) pCD prepared in Example 1 of the present invention.
  • Fig. 4 shows the fluorescence quantum yields under different excitations before and after functionalization of (a) oCD, (b) mCD and (c) pCD prepared in Example 1 of the present invention.
  • Fig. 5 is the fluorescence emission spectrum of the functionalized carbon quantum dots prepared in Example 1 of the present invention and the mixed functionalized carbon quantum dots, the excitation light is 365nm.
  • Fig. 6 is a photo of the functionalized carbon quantum dots prepared in Example 1 of the present invention and the mixed functionalized carbon quantum dots after being illuminated at 365 nm for different time.
  • Figure 7 shows the functionalized carbon quantum dots prepared in Example 1 of the present invention used in cytotoxicity analysis experiments.
  • Fig. 8 is a super-resolution imaging image of functionalized carbon quantum dots prepared in Example 1 of the present invention used in (a) mitochondria, (b) tubulin and (c) endoplasmic reticulum respectively.
  • the different carbon quantum dots obtained above were purified by dialysis for 14 hours in ethanol in a dialysis bag with a molecular weight of 100-500Da, and then the purified carbon quantum dots were obtained, which were respectively denoted as oCD, mCD and pCD.
  • Figure 1a is a transmission electron microscope image of three kinds of carbon quantum dots. From the results, it can be seen that uniformly dispersed oCD, mCD and pCD have been successfully synthesized; according to the particle size distribution diagram, it can be seen that the particle sizes of oCD, mCD and pCD three kinds of carbon quantum dots are not obvious. The difference is about 2.1 ⁇ 0.4nm (Fig. 1b).
  • the 3D fluorescence spectrum of oCD showed excitation-independent fluorescence emission around 310 nm, 360 nm, and 540 nm, while the 3D fluorescence spectrum of mCD showed three distinct emission centers at 340 nm, 440 nm, and 510 nm ( Figure 3b).
  • pCD showed three kinds of emission around 400nm, 460nm and 600nm (Fig. 3c).
  • the functionalization of carbon quantum dots leads to a significant increase in the fluorescence quantum yield.
  • the fluorescence quantum yield of the functionalized carbon quantum dots oCD sample under excitation at 250nm, 365nm and 430nm has changed from the original 17.1%, 6.4% and 14.2% improved to 24.5%, 40.6% and 62.1% (Fig. 4a).
  • the fluorescence quantum yields of the functionalized carbon quantum dot mCD samples under excitation at 250nm, 365nm and 450nm increased from 16.3%, 8.0% and 13.9% to 23.4%, 39.5% and 47.8% (Fig. 4b).
  • the fluorescence quantum yields of the functionalized carbon quantum dot pCD samples under excitation at 250nm, 365nm and 520nm were increased from 8.5%, 5.2% and 10.6% to 17.3%, 13.6% and 41.2% (Fig. 4c).
  • the functionalized carbon quantum dots oCD, mCD and pCD prepared in Example 1 of the present invention have obvious fluorescence emission at ⁇ 540nm, 440nm and ⁇ 600nm respectively.
  • the three functionalized carbon quantum dots were mixed at a volume ratio of 1:4:1, multiple emission peaks appeared.
  • Fig. 7 is the three kinds of carbon quantum dots with high fluorescence quantum yield prepared by different concentrations of probes (0, 5, 10, 20, 30 and 40 mg/mL of the present invention Example 1) and nerve cells at 37 ° C Incubate for 24h respectively, and then carry out cytotoxicity analysis;
  • the concentration of the three kinds of carbon quantum dots with high fluorescence quantum yield prepared in Example 1 of the present invention was 40 mg/mL after incubation with different concentrations of probes for 24 h. It is still higher than 95%, which proves that the three kinds of carbon quantum dots with high fluorescence quantum yield prepared in Example 1 of the present invention have very low cytotoxicity.
  • the present invention further functionalizes the carbon quantum dots with high fluorescence quantum yield for distribution targeting mitochondria, Tubulin and endoplasmic reticulum. Then the targeted modified carbon quantum dots were co-incubated with the cells at 37°C for 0.5h, and then washed three times with phosphate buffer for cell super-resolution imaging.
  • Fig. 8a is a photo of mitochondrial super-resolution fluorescence imaging using oCD with high fluorescence quantum yield prepared in Example 1 of the present invention.
  • Fig. 8b is a microtubulin super-resolution fluorescence imaging diagram of the mCD with high fluorescence quantum yield prepared in Example 1 of the present invention.
  • Fig. 8c is the pCD with high fluorescence quantum yield prepared in Example 1 of the present invention used for super-resolution fluorescence imaging of the endoplasmic reticulum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种高荧光量子产率的碳量子点的制备方法及其应用,属于纳米技术和荧光成像领域。本发明首先合成三种含有氨基、羟基、羰基等官能团的碳量子点,然后对三种碳量子点进行表面修饰,显著提升碳量子点的荧光量子产率。本发明所述的碳量子点绝对荧光量子产率最高提升至62.1%。本发明还公开了所述高荧光量子产率的碳量子点在超稳定白光发射和超分辨荧光成像方面的应用。本发明所述的合成方法简单、方便,制备得到的碳量子点具有高荧光量子产率、毒性低、抗光漂白能力强。

Description

一种高荧光量子产率的碳量子点制备方法及应用 技术领域
本发明属于纳米技术和生物成像技术领域,涉及一种高荧光量子产率的碳量子点制备方法及其应用。
背景技术
碳量子点(CDs)最近成为一种受到广泛关注的荧光团,因为它们具有许多突出的优点,包括优异的光稳定性、尺寸小、生物相容性好、可调的光致发光特性、卓越的多光子激发特性、电化学发光、易于用生物分子功能化和化学惰性。这些发光的碳量子点为生物成像和光学传感器件提供了前所未有的机会。由于它们的尺寸小和生物相容性好,它们还可以作为药物递送的有效载体,同时允许可视化监测药物释放的动力学。此外,它们独特的催化和物理化学性质有望实现各种生物医学应用。对于碳量子点的荧光,它们的荧光发射主要来源于量子限域效应。随着碳原子数的增多,CDs的尺寸越来越大,其发射波长越长。因此,CDs的荧光发射峰会随着其尺寸增加而逐渐发生红移,这种尺寸依赖的发射红移是由于π-电子离域而导致的带隙减小所致。另一方面,研究发现碳量子点掺杂能够明显提高碳量子点的荧光量子产率。然而,这些研究工作主要集中在研究影响碳量子点荧光性能的内在因素,而官能团和表面修饰可以改变碳量子点的表面态,对于研究影响碳量子点荧光性能的外部因素(即表面态)较少报道。目前,限制碳量子点的应用主要在于其较低的荧光量子产率。
发明内容
本发明的目的在于提供一种高荧光量子产率的碳量子点地制备方法及其在超稳定白光发射和生物成像中的应用,所述碳量子点具有荧光量子产率高、多色荧光发射、抗光漂白能力强、毒性低等优点。
本发明提供了一种高荧光量子产率的碳量子点的制备方法,包括以下步骤:
(1)分别将邻苯二胺、间苯二胺和对苯二胺溶解到溶剂中,然后超声溶解。
步骤(1)中,所述的邻苯二胺、间苯二胺和对苯二胺的量分别为20-30mg;优选地,为25mg。
步骤(1)中,所述的溶剂的体积为20-30mL;优选地,为20mL。
步骤(1)中,所述的溶剂为乙醇、甲醇、乙二醇等中的一种或多种;优选地,为乙醇。
步骤(1)中,所述的超声的时间为10-15min;优选地,为12min。
(2)将上述溶液分别转入高压反应釜中,加热反应后得到不同的碳量子点。
步骤(2)中,所述的加热反应的温度为180-220℃;优选地,为200℃。
步骤(2)中,所述的反应的时间为8-10h;优选地,为9h。
(3)将上述得到的不同碳量子点在溶剂中用透析袋进行透析纯化,然后得到纯化后的碳量子点,分别记作oCD,mCD和pCD。
步骤(3)中,所述的透析袋分子量为100-1000Da;优选地,为100-500Da。
步骤(3)中,所述的溶剂为乙醇、甲醇、乙二醇等中的一种或多种;优选地,为乙醇。
步骤(3)中,所述的透析时间为12-16h;优选地,为14h。
(4)分别将纯化后的碳量子点与甲氧基乙醛进行席夫碱偶联反应。
步骤(4)中,所述的碳量子点、甲氧基乙醛的浓度比为10:(15-20);优选地,为10:15。
步骤(4)中,所述的席夫碱偶联反应的温度为50-60℃;优选地,为55℃。
步骤(4)中,所述的席夫碱偶联反应的时间为10-16h;优选地,为14h。
(5)将上述反应后的碳量子点分别与甲氧基乙酸进行酰胺偶联反应,形成功能化的碳量子点。
步骤(5)中,所述反应后的碳量子点、甲氧基乙酸的浓度比为10:(10-15);优选地,为10:12。
步骤(5)中,所述偶联反应的温度为30-40℃;优选地,为35℃。
步骤(5)中,所述的偶联反应时间为10-16h,优选地为14h。
(6)将上述功能化的碳量子点进行透析纯化,得到高荧光量子产率的碳量子点。
步骤(6)中,所述的透析袋分子量为100-1000Da;优选地,为100-500Da。
步骤(6)中,所述的透析的溶剂为乙醇、甲醇、乙二醇等中的一种或多种;优选地,为乙醇。
步骤(6)中,所述的透析的时间为12-16h;优选地,为14h。
在一个具体的实施方式中,本发明所述的高荧光量子产率的碳量子点制备方法,包括以下步骤:
(1)分别将25mg的邻苯二胺、间苯二胺和对苯二胺溶解到20ml乙醇中,然后超声12min进行溶解。
(2)分别将上述溶液转入高压反应釜中,在200℃加热反应9h后得到不同的碳量子点。
(3)将上述得到的不同碳量子点分别在乙醇中用分子量为100-500Da的透析袋中,进行透析14h纯化,然后得到纯化后的碳量子点,分别记作oCD,mCD和pCD。
(4)分别将10mg纯化后的oCD,mCD和pCD与15mg甲氧基乙醛在55℃进行席夫碱偶联反应14h。
(5)将10mg上述反应后的碳量子点分别与12mg甲氧基乙酸、12mg的EDC在35℃进行酰胺偶联反应14h,形成功能化的碳量子点。
(6)将上述功能化的碳量子点用分子量为100-500Da的透析袋,在乙醇中进行透析纯化14h,得到高荧光量子产率的碳量子点。
本发明还提供了如上所述方法制备得到的高荧光量子产率的碳量子点。
本发明提高碳量子点的荧光量子产率方法为分别修饰甲氧基乙醛、甲氧基乙酸到碳量子点表面。
本发明还提供了如上所述的高荧光量子产率的碳量子点在超稳定白光发射中的应用。
其中,用于白光发射的三种碳量子点的体积比为1:4:1。
本发明还提供了如上所述的高荧光量子产率的碳量子点在细胞毒性研究中的应用。
所述的细胞为神经细胞。
本发明还提供了如上所述的高荧光量子产率的碳量子点在超分辨荧光成像中的应用。
其中,用于线粒体超分辨成像的为功能化的oCD。
其中,用于微管蛋白超分辨成像的为功能化的mCD。
其中,用于内质网超分辨成像的为功能化的pCD。
本发明还提供了如上所述方法制备得到的高荧光量子产率的碳量子点用于构建线粒体靶向的成像探针方法,所述的方法包括:在缓冲液中,所述功能化的oCD与2-羧乙基三苯基溴化磷进行偶联反应,通过红外光谱来表征成像探针构建。
其中,所述缓冲液包括磷酸盐缓冲液、Tris缓冲、HEPES缓冲等;优选地,为磷酸盐缓冲液。
其中,所述偶联反应的温度为30-50℃;优选地,为40℃。
其中,所述偶联反应的时间为10-18h;优选地,为12h。
本发明还提供了如上所述方法制备得到的高荧光量子产率的碳量子点用于构建微管蛋白靶向的成像探针方法,所述的方法包括:在缓冲液中,所述功能化的mCD与紫杉醇进行偶联反应,通过红外光谱来表征成像探针构建。
其中,所述缓冲液包括磷酸盐缓冲液、Tris缓冲、HEPES缓冲;优选地,为磷酸盐缓冲液。
其中,所述偶联反应的温度为30-50℃;优选地,为40℃。
其中,所述偶联反应的时间为10-18h;优选地,为12h。
本发明还提供了如上所述方法制备得到的高荧光量子产率的碳量子点用于构建微内质网 靶向的成像探针方法,所述的方法包括:在缓冲液中,所述功能化的pCD与4-(哌啶-1-磺酰基)-苯甲酸进行偶联反应,通过红外光谱来表征成像探针构建。
其中,所述缓冲液包括磷酸盐缓冲液、Tris缓冲、HEPES缓冲等中的一种或多种;优选地,为磷酸盐缓冲液。
其中,所述偶联反应的温度为30-50℃;优选地,为40℃。
其中,所述偶联反应的时间为10-18h;优选地,为12h。
本发明的有益效果在于:本发明首先合成了三种不同发射的碳量子点,然后对碳量子点进行功能化得到高荧光量子产率的碳量子点。本发明的合成方法简单、方便。所述的碳量子点绝对荧光量子产率最高提升至62.1%。
附图说明
图1是本发明实施例1制备的(a)oCD,(c)mCD和(e)pCD的透射电镜图,以及相对应于(b)oCD,(d)mCD和(f)pCD的粒径分布图。
图2是本发明实施例1制备的三种碳量子点的红外光谱表征图。
图3是本发明实施例1制备的(a)oCD,(b)mCD和(c)pCD的3D荧光图。
图4是本发明实施例1制备的(a)oCD,(b)mCD和(c)pCD的功能化前后在不同激发下的荧光量子产率。
图5是本发明实施例1制备的功能化碳量子点以及混合的功能化碳量子点的荧光发射光谱,激发光为365nm。
图6是本发明实施例1制备的功能化碳量子点以及混合的功能化碳量子点在365nm光照不同时间后的照片。
图7是本发明实施例1制备的功能化碳量子点用于细胞毒性分析实验。
图8是本发明实施例1制备的功能化的碳量子点分别用于(a)线粒体,(b)微管蛋白和(c)内质网的超分辨成像图。
具体实施方式
结合以下具体实施例和附图,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
实施例1高荧光量子产率的碳量子点制备
分别将25mg的邻苯二胺、间苯二胺和对苯二胺溶解到20ml乙醇中,然后超声12min 进行溶解。将上述溶液转入高压反应釜中,在200℃加热反应9h后得到不同的碳量子点。
将上述得到的不同碳量子点分别在乙醇中用分子量为100-500Da的透析袋中,进行透析14h纯化,然后得到纯化后的碳量子点,分别记作oCD,mCD和pCD。
分别将10mg纯化后的oCD,mCD和pCD与15mg甲氧基乙醛在55℃进行席夫碱偶联反应14h。将10mg上述反应后的碳量子点分别与12mg甲氧基乙酸、12mg的EDC在35℃进行酰胺偶联反应14h,形成功能化的碳量子点。然后将上述功能化的碳量子点用分子量为100-500Da的透析袋,在乙醇中进行透析纯化14h,得到高荧光量子产率的碳量子点。
图1a为三种碳量子点的透射电镜图,从结果可以看出成功合成均匀分散的oCD,mCD和pCD;根据粒径分布图可知oCD,mCD和pCD三种碳量子点的粒径无明显差别,约为2.1±0.4nm(图1b)。此外,傅里叶红外光谱数据表明,oCD,mCD和pCD三种碳量子点均含有多种官能团,包括-OH(~3402cm -1),-NH 2/-NH-(~3200cm -1,924cm -1),C=O/C=N(~1636cm -1)和C-O(~1275cm -1)(图2)。如图3a所示,oCD的3D荧光光谱在310nm、360nm和540nm附近显示出与激发无关的荧光发射,而mCD的3D荧光光谱显示了340nm、440nm和510nm三个明显的发射中心(图3b)。同时,pCD在400nm、460nm和600nm附近显示出三种发射(图3c)。另一方面,碳量子点功能化后导致其荧光量子产率发生明显提升,功能化的碳量子点oCD样品在250nm,365nm和430nm激发下的荧光量子产率由原来的17.1%,6.4%和14.2%提升到24.5%,40.6%和62.1%(图4a)。功能化的碳量子点mCD样品在250nm,365nm和450nm激发下的荧光量子产率由原来的16.3%,8.0%和13.9%提升到23.4%,39.5%和47.8%(图4b)。功能化的碳量子点pCD样品在250nm,365nm和520nm激发下的荧光量子产率由原来的8.5%,5.2%和10.6%提升到17.3%,13.6%和41.2%(图4c)。
实施例2高荧光量子产率的碳量子点用于超稳定白光发射应用
分别取200μL本发明实施例1制备的高荧光量子产率的oCD,800μL本发明实施例1制备的高荧光量子产率的mCD和200μL本发明实施例1制备的高荧光量子产率的pCD进行混合,得到白光发射的碳量子点溶液。
由图5可知,在365nm波长光的激发下,本发明实施例1制备的功能化的碳量子点oCD,mCD和pCD分别在~540nm,440nm和~600nm处有明显的荧光发射。当三种功能化的碳量子点以体积比1:4:1混合后,出现多重发射峰。进一步通过荧光图片可以看出来,混合后的功能化的碳量子点溶液具有明显的白光发射(图6),并且单独的功能化的碳量子点和混合后的功能化的碳量子点在连续照射4h后没有明显的光漂白(<1.0%),并且在每天连续辐照4h 情况下,一个月内都没有明显的光漂白发生,证明了本发明实施例1制备的高荧光量子产率的碳量子点具有超稳定的白光发射特性。
实施例3高荧光量子产率的碳量子点的细胞毒性研究
为了能够将本发明实施例1制备的三种高荧光量子产率的碳量子点应用于细胞成像研究,本发明进行了探针的细胞毒性研究。图7是分别用不同浓度的探针(0,5,10,20,30和40mg/mL的本发明实施例1制备的三种高荧光量子产率的碳量子点)与神经细胞在37℃分别孵育24h,然后进行细胞毒性分析;结果发现,与不同浓度的探针孵育24h后的细胞存活率在本发明实施例1制备的三种高荧光量子产率的碳量子点浓度为40mg/mL时仍然高于95%,证明本发明实施例1制备的三种高荧光量子产率的碳量子点细胞毒性很低。
实施例4高荧光量子产率的碳量子点用于超分辨荧光成像应用
为了证明本发明实施例1制备的高荧光量子产率的碳量子点可用于超分辨荧光成像应用,本发明对高荧光量子产率的碳量子点进一步功能化修饰,用于分布靶向线粒体、微管蛋白和内质网。然后将靶向修饰的碳量子点分别在37℃条件下与细胞共孵育0.5h,然后用磷酸盐缓冲液清洗三次后用于细胞超分辨成像。
图8a是本发明实施例1制备的高荧光量子产率的oCD用于线粒体超分辨荧光成像图。图8b是本发明实施例1制备的高荧光量子产率的mCD用于微管蛋白超分辨荧光成像图。图8c是本发明实施例1制备的高荧光量子产率的pCD用于内质网超分辨荧光成像图。由图8a可知,溶酶体主要为圆形的,并且能够明显看到oCD主要位于溶酶体膜上;由图8b可知,微管蛋白呈放射状分布;由图8c可知,内质网在细胞核周围分布明显,并且以很多褶皱逐渐分散。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (11)

  1. 一种高荧光量子产率的碳量子点的制备方法,其特征在于,所述方法包括以下步骤:
    i)分别将邻苯二胺、间苯二胺和对苯二胺溶解到第一溶剂中,然后超声溶解形成溶液;
    ii)将上述溶液分别转入高压反应釜中,加热反应后得到不同的碳量子点;
    iii)将上述得到的不同碳量子点分别在第二溶剂中用透析袋进行透析纯化,然后得到纯化后的碳量子点,分别记作oCD,mCD和pCD;
    iv)分别将纯化后的oCD,mCD和pCD与甲氧基乙醛进行席夫碱偶联反应;
    v)分别将上述偶联反应后的碳量子点进一步分别与甲氧基乙酸进行酰胺偶联反应,得到功能化的碳量子点;
    vi)分别将上述功能化的碳量子点进行透析纯化,得到高荧光量子产率的碳量子点。
  2. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤i)中,所述邻苯二胺、间苯二胺和对苯二胺的量分别为20-30mg;所述第一溶剂的体积为20-30mL;所述第一溶剂为乙醇、甲醇、乙二醇中的一种或多种;所述超声的时间为10-15min。
  3. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤ii)中,所述加热反应的温度为180-220℃;所述加热反应的时间为8-10h。
  4. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤iii)中,所述透析袋的分子量为100-1000Da;所述第二溶剂为乙醇、甲醇、乙二醇中的一种或多种;所述透析的时间为12-16h。
  5. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤iv)中,所述oCD/mCD/pCD、甲氧基乙醛的浓度比为10:(15-20);所述席夫碱偶联反应的温度为50-60℃;所述席夫碱偶联反应时间为10-16h。
  6. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤v)中,所述的碳量子点、甲氧基乙酸的浓度比为10:(10-15);所述偶联反应的温度为30-40℃;所述偶联反应的时间为10-16h。
  7. 如权利要求1所述的高荧光量子产率的碳量子点的制备方法,其特征在于,步骤vi)中,所述透析袋分子量为100-1000Da;所述透析的溶剂为乙醇、甲醇、乙二醇中的一种或多种;所述透析的时间为12-16h。
  8. 如权利要求1-7之任一项所述方法制备得到的高荧光量子产率的碳量子点。
  9. 如权利要求8所述的高荧光量子产率的碳量子点在超稳定白光发射中的应用。
  10. 如权利要求8所述的高荧光量子产率的碳量子点用于细胞毒性研究。
  11. 如权利要求8所述的高荧光量子产率的碳量子点用于超分辨荧光成像应用。
PCT/CN2022/144136 2022-01-28 2022-12-30 一种高荧光量子产率的碳量子点制备方法及应用 WO2023142891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210108394.7A CN114574196B (zh) 2022-01-28 2022-01-28 一种高荧光量子产率的碳量子点制备方法及应用
CN202210108394.7 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023142891A1 true WO2023142891A1 (zh) 2023-08-03

Family

ID=81772764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144136 WO2023142891A1 (zh) 2022-01-28 2022-12-30 一种高荧光量子产率的碳量子点制备方法及应用

Country Status (2)

Country Link
CN (1) CN114574196B (zh)
WO (1) WO2023142891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574196B (zh) * 2022-01-28 2023-08-01 华东师范大学 一种高荧光量子产率的碳量子点制备方法及应用
CN116285974A (zh) * 2023-03-17 2023-06-23 中国科学院上海微系统与信息技术研究所 一种高量子产率和光稳定性的碳基量子点的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361334A1 (en) * 2014-06-16 2015-12-17 Postech Academy-Industry Foundation Process for preparing carbon quantum dots using emulsion
CN106566534A (zh) * 2016-11-04 2017-04-19 中国矿业大学 一种具有高产率和量子产率的红光碳点及其制备方法
CN108641716A (zh) * 2018-05-14 2018-10-12 华北电力大学 一种荧光可调的对苯二胺碳点的制备方法
CN108998012A (zh) * 2018-08-16 2018-12-14 西北大学 一种蓝色荧光量子点及其制备方法和铜离子检测应用
CN109097038A (zh) * 2018-09-29 2018-12-28 太原理工大学 一种固态黄色荧光碳量子点及其制备方法
CN110093158A (zh) * 2019-05-31 2019-08-06 西北大学 一种氮掺杂的荧光碳量子点及其制备方法和应用
CN110554012A (zh) * 2019-08-28 2019-12-10 中国科学院苏州生物医学工程技术研究所 用于谷胱甘肽检测的碳点荧光探针及其制备方法
CN114395392A (zh) * 2022-01-20 2022-04-26 四川大学 一种内质网靶向型荧光碳量子点及其制备方法和应用
CN114574196A (zh) * 2022-01-28 2022-06-03 华东师范大学 一种高荧光量子产率的碳量子点制备方法及应用
CN114717565A (zh) * 2022-05-23 2022-07-08 大连民族大学 一种新型酸洗液制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361334A1 (en) * 2014-06-16 2015-12-17 Postech Academy-Industry Foundation Process for preparing carbon quantum dots using emulsion
CN106566534A (zh) * 2016-11-04 2017-04-19 中国矿业大学 一种具有高产率和量子产率的红光碳点及其制备方法
CN108641716A (zh) * 2018-05-14 2018-10-12 华北电力大学 一种荧光可调的对苯二胺碳点的制备方法
CN108998012A (zh) * 2018-08-16 2018-12-14 西北大学 一种蓝色荧光量子点及其制备方法和铜离子检测应用
CN109097038A (zh) * 2018-09-29 2018-12-28 太原理工大学 一种固态黄色荧光碳量子点及其制备方法
CN110093158A (zh) * 2019-05-31 2019-08-06 西北大学 一种氮掺杂的荧光碳量子点及其制备方法和应用
CN110554012A (zh) * 2019-08-28 2019-12-10 中国科学院苏州生物医学工程技术研究所 用于谷胱甘肽检测的碳点荧光探针及其制备方法
CN114395392A (zh) * 2022-01-20 2022-04-26 四川大学 一种内质网靶向型荧光碳量子点及其制备方法和应用
CN114574196A (zh) * 2022-01-28 2022-06-03 华东师范大学 一种高荧光量子产率的碳量子点制备方法及应用
CN114717565A (zh) * 2022-05-23 2022-07-08 大连民族大学 一种新型酸洗液制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIA CHAO, CAO MENGMENG, XIA JINFENG, JIANG DANYU, ZHOU GUOHONG, YU CAIYAN, LI HUILI: "Preparation of tunable full‐color emission carbon dots and their optical applications in ions detection and bio‐imaging", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA., US, vol. 103, no. 8, 1 August 2020 (2020-08-01), US , pages 4507 - 4516, XP093081615, ISSN: 0002-7820, DOI: 10.1111/jace.17112 *
YATING MENG, JIAO YUAN; ZHANG YUAN; GAO YIFANG; LU WENJING: "Synthesis of Red Emission Fluorescent Carbon Dots and Its Application for Detection of Persulfate", CHINESE JOURNAL OF APPLIED CHEMISTRY, vol. 37, no. 6, 10 June 2020 (2020-06-10), pages 719 - 725, XP093081616 *

Also Published As

Publication number Publication date
CN114574196B (zh) 2023-08-01
CN114574196A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023142891A1 (zh) 一种高荧光量子产率的碳量子点制备方法及应用
Tao et al. A new type of polymer carbon dots with high quantum yield: From synthesis to investigation on fluorescence mechanism
Das et al. Graphene based emergent nanolights: A short review on the synthesis, properties and application
Wang et al. Facile microwave‐assisted solid‐phase synthesis of highly fluorescent nitrogen–sulfur‐codoped carbon quantum dots for cellular imaging applications
US9079837B2 (en) Water-soluble fluorescent fullerene derivative, and preparation method thereof
KR100961280B1 (ko) 형광특성이 향상된 풀러렌-실리카 나노입자, 이의 제조방법및 이의 용도
Zhang et al. Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-free method
Chen et al. Architecting ultra-bright silanized carbon dots by alleviating the spin-orbit coupling effect: a specific fluorescent nanoprobe to label dead cells
CN108659154B (zh) pH响应型AIE荧光纳米聚合物量子点的合成方法及应用
CN110877904A (zh) 一种高量子产率的碳量子点的制备方法
CN107541208B (zh) 一种核壳型石墨烯量子点@介孔二氧化硅纳米材料的制备方法
Achadu et al. Fluorescence behaviour of supramolecular hybrids containing graphene quantum dots and pyrene-derivatized phthalocyanines and porphyrins
Li et al. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications
Sun et al. Silicon Nanocrystals: It's Simply a Matter of Size
WO2010014018A1 (en) Method of making luminescent nanoparticles from carbohydrates
Qu et al. Magnolia denudata leaf-derived near-infrared carbon dots as fluorescent nanoprobes for palladium (Ⅱ) detection and cell imaging
CN114349961B (zh) 一种CuTCPP@PDA颗粒及其制备方法和应用
CN108084451B (zh) 水溶性富勒烯纳米材料及其制备方法与应用
Tolou-Shikhzadeh-Yazdi et al. High-efficient synthesis of carbon quantum dots from orange pericarp as fluorescence turn-on probes for Ca2+ and Zn2+ ion detection and their application in trypsin activity characterization
CN110669514B (zh) 一种超亮荧光碳点的制备及其应用
CN113563249B (zh) 一种基于方酸菁的比率型荧光探针及其制备方法与应用
Sajjad et al. Synthesis and in vitro PDT evaluation of red emission polymer dots (R-CPDs) and pyropheophorbide-α conjugates
Singh et al. Water soluble fluorescent graphene nanodots
CN115724898B (zh) 具有聚集诱导发光的近红外荧光纳米探针及其制备方法
Lu et al. Multifunctional fluorescent self-healing elastomers consisting of polydimethylsiloxane and carbon dots linked via a Schiff base reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923676

Country of ref document: EP

Kind code of ref document: A1