WO2023142770A1 - 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法 - Google Patents

从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法 Download PDF

Info

Publication number
WO2023142770A1
WO2023142770A1 PCT/CN2022/139846 CN2022139846W WO2023142770A1 WO 2023142770 A1 WO2023142770 A1 WO 2023142770A1 CN 2022139846 W CN2022139846 W CN 2022139846W WO 2023142770 A1 WO2023142770 A1 WO 2023142770A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylbenzene
adsorption
xylene
carboxylic acid
separation
Prior art date
Application number
PCT/CN2022/139846
Other languages
English (en)
French (fr)
Inventor
崔希利
李一健
邢华斌
陈丽媛
Original Assignee
浙江大学杭州国际科创中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学杭州国际科创中心 filed Critical 浙江大学杭州国际科创中心
Publication of WO2023142770A1 publication Critical patent/WO2023142770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]

Definitions

  • the invention relates to the technical field of chemical engineering, in particular to a method for preferentially adsorbing and separating ethylbenzene from a mixture of isomers of C8 aromatic hydrocarbons.
  • Ethylbenzene is an important chemical intermediate, mainly used in the preparation of high-purity styrene, which is the main raw material of synthetic rubber.
  • ethylbenzene is mainly prepared by the alkylation reaction of benzene and ethylene, and a small amount of ethylbenzene comes from the separation and purification of industrial C8 aromatic hydrocarbon mixtures.
  • the mixture of carbon and eight aromatic hydrocarbons is the main raw material for the production of p-xylene (PX), consisting of p-xylene, o-xylene (OX), m-xylene (MX) and ethylbenzene .
  • PX p-xylene
  • OX o-xylene
  • MX m-xylene
  • the composition of the main components of the C8 aromatics mixture is different.
  • the C8 aromatics mixture mainly comes from the catalytic reforming unit of naphtha, and its main components are about 17.6% ethylbenzene and 18.6% p-xylene , 39.4% m-xylene and 24.4% o-xylene.
  • the economics of preparing ethylbenzene from benzene has gradually declined.
  • the global p-xylene market is approaching saturation, and it becomes more reasonable to prioritize C8 aromatics mixtures for ethylbenzene separation.
  • the separated high-purity ethylbenzene will bring considerable economic value; on the other hand, the isomerization of C8 aromatics is a key step in the production of p-xylene, and the preferential separation of ethylbenzene will optimize the conditions for the isomerization of C8 aromatics.
  • the process can lower the temperature of the xylene isomerization reaction by 20-30 DEG C, lower the hydrogen partial pressure, increase the processing capacity of the isomerization reactor by 20%-50%, and reduce the production cost.
  • Patents US4292142A, US4299668A, US5135620A and CN1566045A respectively disclose ethylbenzene selective separation, extraction and rectification processes using phthalic anhydride, polychlorophenol, copper alkylsulfonate and tert-butanol as extractants.
  • the adsorption separation method is more energy-saving and efficient, and the successful application of the adsorption separation method in the p-xylene separation process provides a technical basis for the development of ethylbenzene adsorption separation technology.
  • the key to ethylbenzene adsorption and separation technology is the research and development of adsorbent and the determination of the corresponding adsorption-desorption system.
  • the representative process is UOP's Ebex process.
  • the process uses X-type molecular sieves mixed and exchanged with Sr 2+ and K + as the adsorbent and toluene as the desorbent to separate and purify ethylbenzene through adsorption, elution, and rectification of the eluent.
  • the specific process is disclosed in the patent US4079094A.
  • US3943182A, US4751346A, US4497972A, US4613725A and other patents also disclose a series of X, Y or Beta zeolite molecular sieves with ethylbenzene separation selectivity obtained by K + , Rh + , CS + plasma ion exchange.
  • molecular sieve adsorbents are widely used in adsorption and separation applications, they often have problems such as low separation selectivity, small adsorption capacity, and high energy consumption for desorption, resulting in high energy consumption and solvent consumption for ethylbenzene separation. Therefore, it is necessary to research and develop new highly selective adsorbents and efficient ethylbenzene separation and purification technology as soon as possible. In recent years, studies have found that Metal-organic frameworks (MOFs) with specific pore structures and functional sites can selectively adsorb and separate C8 aromatic mixtures.
  • MOFs Metal-organic frameworks
  • Patent US10358401B2 reports the adsorbent MIL-104b (Zr) that preferentially adsorbs three xylene isomers (PX, MX, and OX), using n-hexane, n-heptane, etc. as eluents, and using a simulated moving bed process to separate carbon Octaaromatic mixture.
  • Patent US8704031B2 also reported a Cr-MIL-101 adsorbent that preferentially adsorbs three xylene isomers. However, the content of ethylbenzene in the actual industrial C8 aromatics mixture is relatively low.
  • the amount of adsorbent used per unit of product is higher than that of the adsorbent that preferentially adsorbs ethylbenzene.
  • Benzene-selective adsorbents have more application potential.
  • MOFs materials there are few ethylbenzene-selective MOFs materials, and they often have problems such as low adsorption selectivity and poor separation ability. It is urgent to develop new separation materials and separation methods.
  • the present invention provides a method for preferentially adsorbing and separating ethylbenzene from a mixture of carbon octaaromatic isomers.
  • the carboxylic acid microporous material is used as an adsorbent, which can realize the selective and efficient adsorption separation of ethylbenzene and other C8 aromatic hydrocarbon isomers.
  • a method for preferentially adsorbing and separating ethylbenzene from a mixture of C8 aromatics isomers using a microporous material synthesized by carboxylic acid ligands and metal ions as an adsorbent, isomerizing C8 aromatics containing ethylbenzene
  • the contact adsorption between the solid mixture and the adsorbent realizes the selective adsorption and separation of ethylbenzene from the isomer mixture of C8 aromatic hydrocarbons;
  • microporous material synthesized by carboxylic acid ligands and metal ions is a porous material formed by metal ions M and carboxylic acid organic ligands through coordination bonds, and the general formula is [M 3 L 6 ] n , where n>1 and is an integer, L represents HCOO- ;
  • the metal ion M is at least one of Mg 2+ , Co 2+ , and Ni 2+ ;
  • the carboxylic acid organic ligand is HCOOH.
  • the metal carboxylic acid microporous material used in the present invention is a porous crystal material prepared from metal ions and organic ligands, and has the characteristics of high specific surface area, high porosity and the like.
  • the pore size of the material can be precisely adjusted, thereby screening some of the isomers of carbon octaaromatic hydrocarbons with larger molecular sizes through the size exclusion effect.
  • the pores of the material are in a one-dimensional zigzag shape.
  • the shape difference between the isomers can be identified inside the pores, so that each isomer is adsorbed at different adsorption sites in the pores, resulting in a huge Due to the difference in force, the material has a very high separation selectivity for C8 aromatic hydrocarbon isomers.
  • the present invention finds that the metal carboxylic acid material [Co 3 (HCOO) 6 ] can sieve ortho-xylene isomers from the C8 aromatic hydrocarbon mixture through the size effect, another metal carboxylic acid microporous material [Ni 3 (HCOO) 6 ] can screen two isomers of o-xylene and m-xylene, and both materials show the highest selectivity to ethylbenzene, and have great potential for the preferential separation of ethylbenzene in C8 aromatics.
  • the metal carboxylic acid material [Co 3 (HCOO) 6 ] can sieve ortho-xylene isomers from the C8 aromatic hydrocarbon mixture through the size effect
  • another metal carboxylic acid microporous material [Ni 3 (HCOO) 6 ] can screen two isomers of o-xylene and m-xylene, and both materials show the highest selectivity to ethylbenzene, and have great potential for the preferential separation of ethylbenzene
  • the invention is a metal carboxylic acid microporous material prepared by organic ligands and metal ions.
  • the aperture of described metal carboxylic acid microporous material is preferably
  • the metal carboxylic acid microporous material has The size of the pore structure, the limited pore diameter can size sieve some xylene isomers with larger molecular sizes, and the one-dimensional zigzag limited curved channel can recognize the shape of different C8 aromatic hydrocarbon isomers, so as to realize Efficient separation of ethylbenzene and other C8 aromatic hydrocarbon isomers.
  • the metal carboxylic acid microporous material can be prepared by existing technologies, such as solid phase grinding method, interfacial slow diffusion method, solvothermal method, co-precipitation method at room temperature, and the like.
  • the C8-aromatic isomer mixture may be gaseous and/or liquid, and preferably includes at least one of p-xylene, m-xylene and o-xylene in its composition.
  • the order of the adsorption strength of the C8 aromatic hydrocarbon isomers is as follows: B Benzene>m-xylene>p-xylene>o-xylene or ethylbenzene>p-xylene>m-xylene ⁇ o-xylene. It has the highest adsorption selectivity for ethylbenzene, so it can realize the preferential adsorption separation of ethylbenzene.
  • the method of the present invention is applicable to the separation of C8 aromatic hydrocarbon isomer mixtures with different contents and compositions, and the mass percent concentration of p-xylene, meta-xylene, o-xylene and ethylbenzene in the mixture can be between 1 and Between 99%, the isomer mixture of C8 aromatic hydrocarbons can be a mixture of ethylbenzene and one or more of the remaining aromatic hydrocarbons mentioned above, and the mixture state can be gaseous or liquid.
  • the metal carboxylic acid microporous material has good stability, and other impurity components can also be contained in the mixture of carbon octaaromatic isomers, such as one of water, methane, nitrogen, carbon dioxide, hydrogen, benzene, C7, and C9 components. Kind or more etc.
  • the shape of the metal carboxylic acid microporous material is not limited, and may be amorphous particles or shaped spherical or cylindrical particles.
  • the contact adsorption mode of the adsorbent and the mixture of isomers of C8 aromatic hydrocarbons can be any one of fixed bed adsorption and simulated moving bed adsorption.
  • the C8 aromatic hydrocarbon isomer mixture can be in liquid form or gaseous form, and the adsorption operation can be temperature swing adsorption or pressure swing adsorption.
  • the contact adsorption method is fixed bed adsorption, which specifically includes the steps of:
  • ethylbenzene can be desorbed from the adsorbent by decompression desorption, temperature rise desorption, desorbent desorption or inert gas purging to obtain Ethylbenzene component.
  • the adsorption temperature is preferably 20-250°C, more preferably 40-160°C;
  • the adsorption pressure is preferably 0.1 to 5 bar, more preferably 0.2 to 2 bar.
  • ethylbenzene After contact adsorption, ethylbenzene can be desorbed and desorbed from the adsorbent by decompression desorption, temperature rising desorption, desorbent desorption or inert gas purging to obtain ethylbenzene components.
  • the desorption and desorption temperature is preferably 20 to 250°C, more preferably 50 to 150°C.
  • the maximum purity of the isomers of C8-aromatic hydrocarbons such as p-xylene, m-xylene and o-xylene obtained by separation is greater than 99.5%, and the mass percentage purity of ethylbenzene in the ethylbenzene component obtained by desorption is greater than 99.5%. 99.5%.
  • the invention also provides the application of the microporous material synthesized by the carboxylic acid ligand and metal ions to preferentially adsorb and separate ethylbenzene in a mixture of C and octaaromatic isomers containing ethylbenzene.
  • the mixture of isomers of C8 aromatic hydrocarbons may also include at least one of p-xylene, m-xylene and ortho-xylene.
  • the present invention has main advantages including:
  • the present invention provides for the first time a kind of aperture in The microporous material is a method for adsorbents to separate C8 aromatic hydrocarbon isomers.
  • the metal carboxylic acid microporous material has the advantages of adjustable pore structure and adjustable interaction with adsorbate molecules.
  • the adjustable orifice size can realize size screening for some C8 arene isomers, and its unique one-dimensional zigzag pore structure can realize shape recognition for different C8 arene isomers.
  • metal carboxylic acid The material [Co 3 (HCOO) 6 ] is able to sieve o-xylene isomers from the mixture of C and octaaromatics by size effect
  • another metal carboxylic acid microporous material [Ni 3 (HCOO) 6 ] is able to sieve o-xylene and m-xylene isomers, and both materials show the highest selectivity to ethylbenzene, which can realize the high selectivity separation of ethylbenzene in the mixture of C8 aromatic hydrocarbon isomers.
  • the metal carboxylic acid microporous material of the present invention has the strongest adsorption force to ethylbenzene, and can realize the removal of ethylbenzene and the enrichment of low-concentration ethylbenzene in the mixed gas of C-8 aromatic hydrocarbons by a single-step single-column method, which is excellent. in a simulated moving bed process based on conventional molecular sieves.
  • the present invention can realize the size exclusion of p-xylene and m-xylene, and the adsorption force of p-xylene is also relatively weak, and high-purity (99.9% or more) ortho-xylene and m-xylene can be obtained according to requirements. toluene or p-xylene.
  • the synthesis method of the metal carboxylic acid microporous material of the present invention is simple, the raw material is cheap, the air stability is high, and the adsorption force is weak, and the desorption cycle is easy, and has good industrialization potential.
  • Fig. 1 is the obtained static adsorption isotherm figure of embodiment 1;
  • Fig. 2 is the penetration data graph of embodiment 2 gained
  • Fig. 3 is the graph of penetration data obtained in embodiment 3;
  • Fig. 4 is the obtained static adsorption isotherm figure of embodiment 4.
  • Fig. 5 is the penetration data graph of embodiment 5 gained
  • Fig. 6 is the graph of penetration data obtained in embodiment 6;
  • FIG. 7 is a graph showing breakthrough data obtained in Example 8.
  • Example 2 The [Co 3 (HCOO) 6 ] prepared in Example 1 was loaded into a 5 cm adsorption column, and nitrogen bubbling was used to obtain : 1) mixed gas, and then the mixed gas is passed into the adsorption column at a flow rate of 10-20mL/min.
  • the operating temperature of the adsorption column is 25 degrees Celsius.
  • the breakthrough data curve is shown in Figure 2. Toluene gas, high-purity ethylbenzene gas can be obtained after the adsorption column is desorbed at 50-150 degrees Celsius.
  • Nitrogen bubbling is used to obtain a four-component mixed gas containing p-xylene, m-xylene, o-xylene, and ethylbenzene (mass ratio 1:1:1:1), and then the mixed gas is mixed at 20-40mL/min
  • the flow rate is passed into the adsorption column in Example 2.
  • the operating temperature of the adsorption column is 60 degrees Celsius.
  • the breakthrough data curve is shown in Figure 3. High-purity o-xylene gas can be obtained in the outflow gas, and the adsorption column is desorbed at 50 to 150 degrees Celsius. After that, high-purity ethylbenzene gas can be obtained.
  • Example 4 The [Ni 3 (HCOO) 6 ] prepared in Example 4 was loaded into a 5cm adsorption column, and nitrogen bubbling was used to obtain :1) mixed gas, and then pass the mixed gas into the adsorption column at a flow rate of 10-20mL/min.
  • the operating temperature of the adsorption column is 25 degrees Celsius.
  • the breakthrough data curve is shown in Figure 5. After that, high-purity ethylbenzene gas can be obtained.
  • Nitrogen bubbling is used to obtain a four-component mixed gas containing p-xylene, m-xylene, o-xylene, and ethylbenzene (mass ratio 1:1:1:1), and then the mixed gas is mixed at 20-40mL/min
  • the flow rate is passed into the adsorption column in Example 5.
  • the operating temperature of the adsorption column is 60 degrees Celsius.
  • the breakthrough data curve is shown in Figure 6. After the adsorption column is desorbed at 50-150 degrees Celsius, high-purity ethylbenzene gas can be obtained.
  • Example 7 [Mg 3 (HCOO) 6 ] prepared in Example 7 was loaded into a 5cm adsorption column, and nitrogen bubbling was used to obtain : 1) mixed gas, and then pass the mixed gas into the adsorption column at a flow rate of 10-20mL/min.
  • the operating temperature of the adsorption column is 25 degrees Celsius.
  • the breakthrough data curve is shown in Figure 7. After that, high-purity ethylbenzene gas can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法,以羧酸配体与金属离子合成的微孔材料为吸附剂,将含有乙苯的碳八芳烃同分异构体混合物与吸附剂接触吸附,实现从碳八芳烃同分异构体混合物中选择性吸附分离乙苯;羧酸配体与金属离子合成的微孔材料为由金属离子M和羧酸有机配体通过配位键形成的多孔材料,通式为[M 3L 6] n,其中n>1且为整数,L代表HCOO -;金属离子M为Co 2+、Ni 2+、Mg 2+中的至少一种;羧酸有机配体为HCOOH。

Description

从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法 技术领域
本发明涉及化学工程技术领域,具体涉及一种从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法。
背景技术
乙苯(ethylbenzene,EB)是一种重要的化工中间体,主要用于高纯苯乙烯的制备,而苯乙烯是合成橡胶的主要原料。工业上乙苯主要通过苯与乙烯的烷基化反应制备,少量乙苯则来自于工业碳八芳烃混合物的分离提纯。碳八芳烃混合物是生产对二甲苯(p-xylene,PX)的主要原料,由对二甲苯、邻二甲苯(o-xylene,OX)、间二甲苯(m-xylene,MX)和乙苯组成。碳八芳烃混合物根据来源的差异,主要成分组成有所不同,工业上碳八芳烃混合物主要来自石脑油的催化重整装置,其主要成分约为17.6%的乙苯、18.6%的对二甲苯、39.4%的间二甲苯和24.4%的邻二甲苯。近年来随着国际精苯价格持续升高,以苯为原料制备乙苯的经济性逐步下降。且随着对二甲苯产能的增加,全球对二甲苯市场趋近饱和,将碳八芳烃混合物优先用于乙苯分离变得更加合理。一方面分离得到的高纯乙苯会带来可观的经济价值;另一方面,碳八芳烃异构化作为对二甲苯生产的关键步骤,乙苯的优先分离将优化碳八芳烃异构化的条件。该过程可使二甲苯异构化反应的温度降低20~30℃,氢分压更低,异构化反应器的处理量增加20%~50%,降低生产成本。
目前从碳八芳烃中分离乙苯的主要方法有萃取精馏法、络合分离法、吸附分离法以及联产乙苯和对二甲苯工艺等技术。其中以萃取精馏法与吸附分离法最为普遍。专利US4292142A、US4299668A、US5135620A以及CN1566045A分别公开了以邻苯二甲酸酐、多氯苯酚、烷基磺酸铜盐和叔丁醇等物质为萃取剂的乙苯选择性分离萃取精馏工艺。相较于萃取精馏法,吸附分离法更加节能高效,且吸附分离法在对二甲苯分离工艺中的成功应用为乙苯吸附分离技术的开发提供了技术基础。乙苯吸附分离技术的关键 是吸附剂的研发以及相应吸附-解吸体系的确定,其代表工艺为UOP的Ebex工艺。该工艺以Sr 2+和K +混合交换的X型分子筛为吸附剂,以甲苯为解吸剂,通过吸附、洗脱、精馏洗脱液等工序分离提纯乙苯。具体工艺公开于专利US4079094A。此外,US3943182A、US4751346A、US4497972A、US4613725A等专利也公开了一系列通过K +、Rh +、CS +等离子交换得到的具有乙苯分离选择性的X、Y型或Beta型沸石分子筛。
分子筛吸附剂虽然被广泛应用于吸附分离应用,但其往往存在分离选择性低、吸附容量小,脱附能耗大等问题,导致乙苯分离能耗与溶剂消耗量过高。因此,必须尽快研究开发新型高选择性吸附剂以及高效的乙苯分离纯化技术。近年来,研究发现具有特定孔结构及功能位点的金属有机框架材料(Metal-organic frameworks,MOFs)可以选择性吸附分离C8芳烃混合物。专利US10358401B2报道了优先吸附三种二甲苯异构体(PX、MX和OX)的吸附剂MIL-104b(Zr),以正己烷、正庚烷等为洗脱剂,采用模拟移动床工艺分离碳八芳烃混合物。专利US8704031B2也报道了一种优先吸附三种二甲苯异构体的吸附剂Cr-MIL-101。但实际工业碳八芳烃混合物中乙苯含量较低,采用优先吸附二甲苯异构体混合物的材料作为吸附剂时,生产单位产品的吸附剂用量高于优先吸附乙苯的吸附剂,因此具有乙苯选择性的吸附剂更具应用潜力。现有MOFs材料中鲜有乙苯选择性MOFs材料,且往往存在吸附选择性较低,分离能力差等问题,亟需发展新的分离材料和分离方法。
发明内容
针对上述技术问题以及本领域存在的不足之处,本发明提供了一种从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法,以羧酸有机配体与金属离子合成的金属羧酸微孔材料为吸附剂,可实现乙苯与其它碳八芳烃同分异构体的选择性高效吸附分离。
一种从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法,以羧酸配体与金属离子合成的微孔材料为吸附剂,将含有乙苯的碳八芳烃同分异构体混合物与吸附剂接触吸附,实现从碳八芳烃同分异构体混合物中选择性吸附分离乙苯;
所述羧酸配体与金属离子合成的微孔材料为由金属离子M和羧酸有 机配体通过配位键形成的多孔材料,通式为[M 3L 6] n,其中n>1且为整数,L代表HCOO -
所述金属离子M为Mg 2+、Co 2+、Ni 2+中的至少一种;
所述羧酸有机配体为HCOOH。
本发明所用的金属羧酸微孔材料为由金属离子和有机配体制备得到的多孔晶体材料,具有高比表面积、高孔容率等特点。通过对材料金属离子种类的调控,可精确调节材料孔径,从而通过尺寸排阻效应筛分部分分子尺寸较大的碳八芳烃异构体。该材料孔道呈一维之字形,对于进入孔道的碳八芳烃异构体,孔道内部可识别各异构体间形状差异,使各异构体吸附于孔道内不同吸附位点,产生极大的作用力差异,从而使该材料对碳八芳烃异构体产生极高的分离选择性。例如本发明发现金属羧酸材料[Co 3(HCOO) 6]能够从碳八芳烃混合物中通过尺寸效应筛分邻二甲苯异构体,另一金属羧酸微孔材料[Ni 3(HCOO) 6]能够筛分邻二甲苯和间二甲苯两种异构体,且两种材料均对乙苯表现出最高的选择性,对碳八芳烃中乙苯的优先分离具有巨大潜力。
本发明为一类有机配体与金属离子制备得到的金属羧酸微孔材料。
所述金属羧酸微孔材料的孔径优选为
Figure PCTCN2022139846-appb-000001
所述金属羧酸微孔材料具有
Figure PCTCN2022139846-appb-000002
尺寸的孔道结构,有限的孔口直径可尺寸筛分部分分子尺寸较大的二甲苯异构体,一维之字形的有限弯曲孔道又可对不同碳八芳烃异构体进行形状识别,从而实现乙苯与其它碳八芳烃同分异构体的高效分离。
所述金属羧酸微孔材料可采用现有技术制备得到,如固相研磨法、界面慢扩散法、溶剂热法、室温共沉淀法等。
所述碳八芳烃同分异构体混合物可为气态和/或液态,其组成中优选还包括对二甲苯、间二甲苯、邻二甲苯中的至少一种。
当所述金属羧酸微孔材料中有机配体为HCOOH,金属离子M为Mg 2+、Co 2+或Ni 2+,对碳八芳烃同分异构体的吸附强弱顺序依次为:乙苯>间二甲苯>对二甲苯>邻二甲苯或者乙苯>对二甲苯>间二甲苯≈邻二甲苯。对于乙苯具有最高的吸附选择性,因此能实现乙苯的优先吸附分离。
本发明所述方法适用于不同含量和组成的碳八芳烃同分异构体混合物的分离,对二甲苯、间二甲苯、邻二甲苯和乙苯在混合物中的质量百分浓度可在1~99%之间,碳八芳烃同分异构体混合物可以是乙苯与其余上述 芳烃中一种或多种的混合物,混合物状态可以为气态或液态。所述金属羧酸微孔材料稳定性好,碳八芳烃同分异构体混合物中还可含其它杂质组分,如水、甲烷、氮气、二氧化碳、氢气、苯、C7、C9组分中的一种或多种等。
本发明方法中,所述金属羧酸微孔材料形状不限,可为无定型颗粒或经过成型后的球形、圆柱形颗粒。
本发明方法中,所述吸附剂与碳八芳烃同分异构体混合物的接触吸附方式可为固定床吸附、模拟移动床吸附中的任意一种。碳八芳烃同分异构体混合物可以液体形态或气体形态,其中吸附操作时可以是变温吸附或变压吸附。
在一优选例中,所述接触吸附方式为固定床吸附,具体包括步骤:
(1)将碳八芳烃同分异构体混合物通入固定床吸附柱中,乙苯吸附在吸附剂上,其余碳八芳烃组分先穿透;
(2)其余碳八芳烃组分穿透、吸附完成后,可通过减压脱附、升温脱附、解吸剂脱附或惰性气体吹扫的方式,将乙苯从吸附剂中解吸出来,获得乙苯组分。
本发明方法中:
吸附温度优选为20~250℃,进一步优选为40~160℃;
吸附压力优选为0.1~5bar,进一步优选为0.2~2bar。
接触吸附后,可通过减压脱附、升温脱附、解吸剂脱附或惰性气体吹扫的方式,将乙苯从吸附剂中解吸脱附出来,获得乙苯组分。
解吸脱附温度优选为20~250℃,进一步优选为50~150℃。
本发明方法,分离得到的对二甲苯、间二甲苯、邻二甲苯等碳八芳烃同分异构体最高纯度大于99.5%,脱附获得的乙苯组分中乙苯的质量百分纯度大于99.5%。
本发明还提供了所述羧酸配体与金属离子合成的微孔材料在含有乙苯的碳八芳烃同分异构体混合物中优先吸附分离乙苯的应用。所述碳八芳烃同分异构体混合物中还可包括对二甲苯、间二甲苯、邻二甲苯中的至少一种。
本发明与现有技术相比,主要优点包括:
(1)本发明首次提供了一种孔径在
Figure PCTCN2022139846-appb-000003
的微孔材料为吸附剂分离 碳八芳烃同分异构体的方法,所述金属羧酸微孔材料相比传统吸附剂具有孔结构可调、与吸附质分子作用力可调等优点,其可调的孔口尺寸可以对部分碳八芳烃异构体实现尺寸筛分,其独特的一维之字形孔道结构则可对不同碳八芳烃异构体实现形状识别,例如本发明发现金属羧酸材料[Co 3(HCOO) 6]能够从碳八芳烃混合物中通过尺寸效应筛分邻二甲苯异构体,另一金属羧酸微孔材料[Ni 3(HCOO) 6]能够筛分邻二甲苯和间二甲苯两种异构体,且两种材料均对乙苯表现出最高的选择性,可以实现碳八芳烃异构体混合物中乙苯的高选择性分离。
(2)本发明所述金属羧酸微孔材料对乙苯的吸附作用力最强,可一步单柱法实现碳八芳烃混合气中乙苯的脱除以及低浓度乙苯的富集,优于基于常规分子筛的模拟移动床工艺。
(3)本发明可实现对邻二甲苯与间二甲苯的尺寸排阻,对对二甲苯的吸附作用力也相对较弱,可根据需求获得高纯度(99.9%以上)的邻二甲苯、间二甲苯或对二甲苯。
(4)本发明所述金属羧酸微孔材料合成方法简单,原材料廉价,空气稳定性高,且吸附作用力较弱,易于脱附循环,具有良好的工业化潜力。
附图说明
图1为实施例1所得静态吸附等温线图;
图2为实施例2所得穿透数据曲线图;
图3为实施例3所得穿透数据曲线图;
图4为实施例4所得静态吸附等温线图;
图5为实施例5所得穿透数据曲线图;
图6为实施例6所得穿透数据曲线图;
图7为实施例8所得穿透数据曲线图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1
称取5g Co(NO 3) 2溶于50ml N,N-二甲基甲酰胺中,再量取5ml甲酸加入溶液。将上述混合液搅拌加热至100℃反应12~24小时,得到的产物[Co 3(HCOO) 6]过滤后用甲醇洗涤,然后在25~100℃温度下真空活化2~12小时,得到活化后的[Co 3(HCOO) 6]材料。
[Co 3(HCOO) 6]材料在298K下对二甲苯异构体以及乙苯的吸附等温线如图1所示。
实施例2
将实施例1制备的[Co 3(HCOO) 6]装入5cm吸附柱,采用氮气鼓泡方式获得含对二甲苯、间二甲苯、邻二甲苯、乙苯(质量比为1:1:1:1)的混合气,然后将混合气以10~20mL/min流速通入吸附柱,吸附柱操作温度为25摄氏度,穿透数据曲线如图2所示,流出气体中可获得高纯度邻二甲苯气体,吸附柱经50~150摄氏度脱附后可获得高纯度乙苯气体。
实施例3
采用氮气鼓泡方式获得含对二甲苯、间二甲苯、邻二甲苯、乙苯(质量比为1:1:1:1)的四组分混合气,然后将混合气以20~40mL/min流速通入实施例2中的吸附柱,吸附柱操作温度为60摄氏度,穿透数据曲线如图3所示,流出气体中可获得高纯度邻二甲苯气体,吸附柱经50~150摄氏度脱附后可获得高纯度乙苯气体。
实施例4
称取5g Ni(NO 3) 2溶于50ml N,N-二甲基甲酰胺中,再量取5ml甲酸加入溶液。将上述混合液搅拌加热至100℃反应12~24小时,得到的产物[Ni 3(HCOO) 6]过滤后用甲醇洗涤,然后在25~100℃温度下真空活化2~12小时,得到活化后的[Ni 3(HCOO) 6]材料。
[Ni 3(HCOO) 6]材料在298K下对二甲苯异构体以及乙苯的吸附等温线如图4所示。
实施例5
将实施例4制备的[Ni 3(HCOO) 6]装入5cm吸附柱,采用氮气鼓泡方式获得含对二甲苯、间二甲苯、邻二甲苯、乙苯(质量比为1:1:1:1)的混合气,然后将混合气以10~20mL/min流速通入吸附柱,吸附柱操作温度为25摄氏度,穿透数据曲线如图5所示,吸附柱经50~150摄氏度脱附后可获得高纯度乙苯气体。
实施例6
采用氮气鼓泡方式获得含对二甲苯、间二甲苯、邻二甲苯、乙苯(质量比为1:1:1:1)的四组分混合气,然后将混合气以20~40mL/min流速通入实施例5中的吸附柱,吸附柱操作温度为60摄氏度,穿透数据曲线如图6所示,吸附柱经50~150摄氏度脱附后可获得高纯度乙苯气体。
实施例7
称取5g Mg(NO 3) 2溶于50ml N,N-二甲基甲酰胺中,再量取5ml甲酸加入溶液。将上述混合液搅拌加热至100℃反应12~24小时,得到的产物[Mg 3(HCOO) 6]过滤后用甲醇洗涤,然后在25~100℃温度下真空活化2~12小时,得到活化后的[Mg 3(HCOO) 6]材料。
实施例8
将实施例7制备的[Mg 3(HCOO) 6]装入5cm吸附柱,采用氮气鼓泡方式获得含对二甲苯、间二甲苯、邻二甲苯、乙苯(质量比为1:1:1:1)的混合气,然后将混合气以10~20mL/min流速通入吸附柱,吸附柱操作温度为25摄氏度,穿透数据曲线如图7所示,吸附柱经50~150摄氏度脱附后可获得高纯度乙苯气体。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法,其特征在于,以羧酸配体与金属离子合成的微孔材料为吸附剂,将含有乙苯的碳八芳烃同分异构体混合物与吸附剂接触吸附,实现从碳八芳烃同分异构体混合物中选择性吸附分离乙苯;
    所述羧酸配体与金属离子合成的微孔材料为由金属离子M和羧酸有机配体通过配位键形成的多孔材料,通式为[M 3L 6] n,其中n>1且为整数,L代表HCOO -
    所述金属离子M为Co 2+、Ni 2+、Mg 2+中的至少一种;
    所述羧酸有机配体为HCOOH。
  2. 根据权利要求1所述的方法,其特征在于,所述微孔材料的孔径为
    Figure PCTCN2022139846-appb-100001
  3. 根据权利要求1所述的方法,其特征在于,所述碳八芳烃同分异构体混合物为气态和/或液态,其组成中还包括对二甲苯、间二甲苯、邻二甲苯中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述接触吸附的方式为固定床吸附、模拟移动床吸附中的任意一种。
  5. 根据权利要求1或4所述的方法,其特征在于,吸附温度为20~250℃,吸附压力为0.1~5bar。
  6. 根据权利要求1所述的方法,其特征在于,接触吸附后,通过减压脱附、升温脱附、解吸剂脱附或惰性气体吹扫的方式,将乙苯从吸附剂中解吸脱附出来,获得乙苯组分。
  7. 根据权利要求6所述的方法,其特征在于,解吸脱附温度为20~250℃。
  8. 根据权利要求6或7所述的方法,其特征在于,脱附获得的乙苯组分中乙苯的质量百分纯度大于99.5%。
  9. 一种羧酸配体与金属离子合成的微孔材料在含有乙苯的碳八芳烃同分异构体混合物中优先吸附分离乙苯的应用,其特征在于,所述羧酸配体与金属离子合成的微孔材料为由金属离子M和羧酸有机配体通过配位键形成的多孔材料,通式为[M 3L 6] n,其中n>1且为整数,L代表HCOO -
    所述金属离子M为Co 2+、Ni 2+、Mg 2+中的至少一种;
    所述羧酸有机配体为HCOOH。
  10. 根据权利要求9所述的应用,其特征在于,所述碳八芳烃同分异构体混合物中还包括对二甲苯、间二甲苯、邻二甲苯中的至少一种。
PCT/CN2022/139846 2022-01-26 2022-12-19 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法 WO2023142770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210091808.X 2022-01-26
CN202210091808.XA CN114409498A (zh) 2022-01-26 2022-01-26 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法

Publications (1)

Publication Number Publication Date
WO2023142770A1 true WO2023142770A1 (zh) 2023-08-03

Family

ID=81276633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139846 WO2023142770A1 (zh) 2022-01-26 2022-12-19 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法

Country Status (2)

Country Link
CN (1) CN114409498A (zh)
WO (1) WO2023142770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117362660A (zh) * 2023-08-31 2024-01-09 中山大学 一种金属有机框架材料Zr-MOF及其制备方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409498A (zh) * 2022-01-26 2022-04-29 浙江大学杭州国际科创中心 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1354716A (en) * 1971-10-01 1974-06-05 Universal Oil Prod Co Process for the production and recovery of ortho-xylene para- xylene and ethylbenzene
US6281406B1 (en) * 2000-03-31 2001-08-28 Chevron Corporation Adsorption process for paraxylene purifacation using Cs SSZ-25 adsorbent with benzene desorbent
CN1441759A (zh) * 2000-07-10 2003-09-10 Bp北美公司 从混合c8芳烃中变压吸附分离对二甲苯和乙苯的方法
CN103012045A (zh) * 2011-09-28 2013-04-03 中国石油化工股份有限公司 从碳八芳烃中吸附分离间二甲苯的方法
CN103373890A (zh) * 2012-04-26 2013-10-30 中国石油化工股份有限公司 从c8芳烃中吸附分离对二甲苯和乙苯的方法
CN104418698A (zh) * 2013-08-29 2015-03-18 中国石油化工股份有限公司 一种从c8芳烃组分中吸附分离生产对二甲苯和乙苯的方法
CN111138238A (zh) * 2020-01-03 2020-05-12 朱志荣 一种用于混合碳八芳烃生产间二甲苯的工艺方法
CN111410596A (zh) * 2020-04-02 2020-07-14 浙江大学 一种碳八芳烃同分异构体混合物的分离方法
CN114409498A (zh) * 2022-01-26 2022-04-29 浙江大学杭州国际科创中心 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1354716A (en) * 1971-10-01 1974-06-05 Universal Oil Prod Co Process for the production and recovery of ortho-xylene para- xylene and ethylbenzene
US6281406B1 (en) * 2000-03-31 2001-08-28 Chevron Corporation Adsorption process for paraxylene purifacation using Cs SSZ-25 adsorbent with benzene desorbent
CN1441759A (zh) * 2000-07-10 2003-09-10 Bp北美公司 从混合c8芳烃中变压吸附分离对二甲苯和乙苯的方法
CN103012045A (zh) * 2011-09-28 2013-04-03 中国石油化工股份有限公司 从碳八芳烃中吸附分离间二甲苯的方法
CN103373890A (zh) * 2012-04-26 2013-10-30 中国石油化工股份有限公司 从c8芳烃中吸附分离对二甲苯和乙苯的方法
CN104418698A (zh) * 2013-08-29 2015-03-18 中国石油化工股份有限公司 一种从c8芳烃组分中吸附分离生产对二甲苯和乙苯的方法
CN111138238A (zh) * 2020-01-03 2020-05-12 朱志荣 一种用于混合碳八芳烃生产间二甲苯的工艺方法
CN111410596A (zh) * 2020-04-02 2020-07-14 浙江大学 一种碳八芳烃同分异构体混合物的分离方法
CN114409498A (zh) * 2022-01-26 2022-04-29 浙江大学杭州国际科创中心 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117362660A (zh) * 2023-08-31 2024-01-09 中山大学 一种金属有机框架材料Zr-MOF及其制备方法与应用
CN117362660B (zh) * 2023-08-31 2024-04-26 中山大学 一种金属有机框架材料Zr-MOF及其制备方法与应用

Also Published As

Publication number Publication date
CN114409498A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2021197211A1 (zh) 一种碳八芳烃同分异构体混合物的分离方法
WO2023142770A1 (zh) 从碳八芳烃同分异构体混合物中优先吸附分离乙苯的方法
CA2633676C (en) The use of mofs in pressure swing adsorption
WO2020156426A1 (zh) 一种基于超微孔金属有机框架材料的乙烯乙烷吸附分离方法
US6315816B1 (en) Adsorbents, method for the preparation and method for the separation of unsaturated hydrocarbons for gas mixtures
AU2006340774A1 (en) The use of MOFs in pressure swing adsorption
CN111575047B (zh) 一种异构化油的分离方法
US20060090646A1 (en) Adsorbent material for selective adsorption of carbon monoxide and unsaturated hydrocarbons
US6468329B2 (en) Adsorbents and methods for the separation of ethylene and propylene and/or unsaturated hydrocarbons from mixed gases
WO2020156423A1 (zh) 一种乙烯乙烷的分离方法
CN113004114A (zh) 一种含碳五双烯烃的混合物的分离方法
CN114452938B (zh) 一种烷烃优先吸附微孔材料及其制备方法和应用
CN115947645A (zh) 一种液相吸附分离二元取代苯异构体混合物的方法
CN113527030B (zh) 一种吸附分离环戊烷和新己烷的方法
CN111440045B (zh) 一种碳五烯烃混合物的分离方法
CN114907183B (zh) 一种氯丙烯和氯丙烷混合气体的吸附分离方法
KR102583047B1 (ko) 메탄 선택성 흡착제 및 이를 이용한 메탄의 선택적 분리방법
CN114085386B (zh) 一种低成本Cu(BDC)的规模化合成方法及其在乙烷乙烯分离中的应用
Han et al. Propylene recovery from propylene/propane/nitrogen mixture by PSA process
CN114534441B (zh) 一种从复杂裂解气中一步深度脱除炔烃和丙二烯的方法
CN116730792A (zh) 从c2-c4烯烃/烷烃六组分混合物中分离乙烯的方法
CN116408051A (zh) 磺酸阴离子杂化多孔材料及制备方法、乙烯乙烷分离方法
CN116655929A (zh) 一种有机金属骨架材料及其制备方法、分离纯化制备乙烯的方法
CN117696012A (zh) 一种金属有机框架材料及其制备方法与应用
Han et al. Propylene recovery from simulated polypropylene process off-gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923556

Country of ref document: EP

Kind code of ref document: A1