WO2023140218A1 - 袋体積載装置および袋体積載装置の制御方法 - Google Patents

袋体積載装置および袋体積載装置の制御方法 Download PDF

Info

Publication number
WO2023140218A1
WO2023140218A1 PCT/JP2023/000981 JP2023000981W WO2023140218A1 WO 2023140218 A1 WO2023140218 A1 WO 2023140218A1 JP 2023000981 W JP2023000981 W JP 2023000981W WO 2023140218 A1 WO2023140218 A1 WO 2023140218A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
bags
stacking
section
loading
Prior art date
Application number
PCT/JP2023/000981
Other languages
English (en)
French (fr)
Inventor
宏生 山本
Original Assignee
株式会社ホリゾン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホリゾン filed Critical 株式会社ホリゾン
Publication of WO2023140218A1 publication Critical patent/WO2023140218A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B27/00Bundling particular articles presenting special problems using string, wire, or narrow tape or band; Baling fibrous material, e.g. peat, not otherwise provided for
    • B65B27/08Bundling paper sheets, envelopes, bags, newspapers, or other thin flat articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/34Apparatus for squaring-up piled articles

Definitions

  • the present invention relates to a bag loading device and a control method for the bag loading device.
  • Patent Document 1 Conventionally, there has been known a device that stacks a plurality of bags supplied from a bag making machine and binds a bundle of the plurality of bags with a binding machine (see Patent Document 1, for example).
  • the device disclosed in Patent Document 1 sucks bags discharged in multiple rows on a bag discharging conveyor with a sucker, conveys them to a bag accumulating conveyor, and binds bundles accumulated from the bag accumulating conveyor to accumulating pockets by a binding machine.
  • the device disclosed in Patent Document 1 changes the direction of a part of the bags when they are carried by soccer so as not to collapse when the bags whose bottoms are thicker than their mouths are stacked. Therefore, the bundle in which a plurality of bags are accumulated can have a uniform height at each position.
  • Patent Document 1 it is necessary to suck the bags one by one by sucking and transport them from the bag discharging conveyor to the bag accumulating conveyor, so it takes a long time to stack a plurality of bags. In addition, since it is necessary to change the direction of a part of the bag when carrying the bag by soccer, it takes time to change the direction of the bag. As described above, in Patent Document 1, a bundle in which a plurality of bags are stacked can be made to have a uniform height at each position, but the time required to stack a plurality of bags to form a bundle is long, resulting in a decrease in productivity.
  • a bag loading device includes: a transporting unit that transports the bags in a plurality of rows along the transporting direction; a first stacking unit that loads the bags transported by the transporting unit in a first row; a second loading unit that loads the bags transported by the transporting unit in a second row;
  • the first stacking unit is controlled to drop the plurality of bags from the first stacking unit to the discharge unit
  • the discharge unit is controlled to move the plurality of bags in the first row dropped to the discharge unit below the plurality of bags in the second row to be stacked on the second stacking unit
  • the second stacking unit is controlled to drop the plurality of bags in the second row from the second stacking unit to above the plurality of bags in the first row.
  • the first row of bags transported by the transport section and loaded on the first stacking section drops from the first stacking section to the discharging section.
  • the plurality of bags in the first row that have fallen into the discharge section move below the plurality of bags in the second row that are stacked on the second stacking section.
  • a plurality of bag bodies in the second row loaded on the second loading part are dropped above the plurality of bag bodies in the first row, and a bundle is formed by stacking the plurality of bag bodies in the first row and the plurality of bag bodies in the second row.
  • the bag loading device when the thickness of one of the bags in the first row in the width direction is thicker than the thickness of the other in the width direction and the thickness of one of the bags in the second row in the width direction is thinner than the thickness of the other in the width direction, the overall thickness of the plurality of bags in the first row is thicker in one width direction than the other, and the thickness of the plurality of bags in the second row is thinner in one width direction than the other.
  • the difference between the thickness of one side in the width direction and the thickness of the other side in the width direction is made uniform.
  • the bag loading device As described above, according to the bag loading device according to one aspect of the present invention, even if the thickness of one of the bags in the first row in the width direction is thicker than the thickness of the other in the width direction, and the thickness of one of the bags in the second row in the width direction is thinner than the thickness of the other in the width direction, the bundle in which a plurality of bags are stacked can have a uniform height at each position. In addition, since it is not necessary to change the orientation of the bags one by one, the time required to stack a plurality of bags to form a bundle can be shortened.
  • a bag loading device includes a third stacking unit that stacks a plurality of rows of the bags transported by the transport unit and is arranged above the first stacking unit and the second stacking unit, and the control unit controls switching between a first loading mode in which the bags transported by the transport unit are loaded onto the first stacking unit and the second stacking unit, and a second loading mode in which the bags transported by the transport unit are loaded onto the third stacking unit.
  • the first stacking unit may be controlled to drop the plurality of bags in the first row from the first stacking unit to the discharge unit
  • the second stacking unit may be controlled to drop the plurality of bags in the second row from the second stacking unit to the discharge unit
  • the third stacking unit may be controlled to drop the plurality of bags stacked on the third stacking unit to the first stacking unit and the second stacking unit.
  • the bag loading device of this configuration in the second loading mode in which the bags conveyed by the conveying section are loaded onto the third loading section, the plurality of bags in the first row drop from the first loading section to the discharging section, and the plurality of bags in the second row drop from the second loading section to the discharging section. Therefore, when performing the operation of dropping the bag from the first stacking unit and the second stacking unit to the discharge unit, the bag transported from the transport unit can be loaded onto the third stacking unit without stopping the transport operation of the bag by the transport unit.
  • the bag body loading device of this configuration in the second loading mode, the plurality of bags loaded on the third loading section are dropped onto the first loading section and the second loading section. Therefore, during the operation of dropping the bags from the first stacking unit and the second stacking unit to the discharging unit, the bags transported from the transport unit to the third stacking unit can be guided to the first stacking unit and the second stacking unit.
  • the bag loading device may include a binding unit that binds a bundle of the plurality of bags in the first row and the plurality of bags in the second row with a binding band, and the control unit may control the discharge unit to discharge the bundle to the binding unit.
  • the bundle whose difference between the thickness of one side in the width direction and the thickness of the other side in the width direction is equalized in the discharge section can be discharged from the discharge section to the binding section and bound with the binding band.
  • the bag loading device includes: a transporting section that transports the bags in a plurality of rows along the transporting direction; a first loading section that loads the bags transported by the transporting section in a first row; a second loading section that loads the bags transported by the transporting section in a second row; a conveying step of controlling the conveying unit to load a plurality of the bags and stack the plurality of the bags of the second row on the second stacking portion; a first dropping step of controlling the first stacking portion to drop the plurality of the bags of the first row from the first stacking portion to the discharging portion; and a second dropping step of controlling the second stacking unit to drop the plurality of bags in the second row from the second stacking unit above the plurality of bags in the first row.
  • the first row of bags transported by the transport unit and stacked on the first stacking unit drops from the first stacking unit to the discharge unit.
  • the plurality of bags in the first row that have fallen into the discharge section move below the plurality of bags in the second row that are stacked on the second stacking section.
  • a plurality of bag bodies in the second row loaded on the second loading part are dropped above the plurality of bag bodies in the first row, and a bundle is formed by stacking the plurality of bag bodies in the first row and the plurality of bag bodies in the second row.
  • the control method of the bag loading device when the thickness of one of the bags in the first row in the width direction is thicker than the thickness of the other in the width direction and the thickness of one of the bags in the second row in the width direction is thinner than the thickness of the other in the width direction, the overall thickness of the plurality of bags in the first row is thicker in one width direction than the other, and the thickness of the plurality of bags in the second row is thinner in one width direction than the other.
  • the difference between the thickness of one side in the width direction and the thickness of the other side in the width direction is made uniform.
  • the control method of the bag stacking device according to one aspect of the present invention, even if the thickness of one of the bags in the width direction of the first row is thicker than the thickness of the other bag in the width direction and the thickness of one of the bags in the second row in the width direction is thinner than the thickness of the other bag in the width direction, the height of the bundle in which a plurality of bags are stacked can be made uniform at each position. In addition, since it is not necessary to change the orientation of the bags one by one, the time required to stack a plurality of bags to form a bundle can be shortened.
  • the bag loading device includes a third stacking unit that loads a plurality of rows of the bags transported by the transport unit and is arranged above the first stacking unit and the second stacking unit, and a switching step of switching from a first loading mode in which the bags transported by the transport unit are loaded onto the first loading unit and the second stacking unit to a second loading mode in which the bags transported by the transport unit are loaded onto the third stacking unit ( S103), and a third dropping step (S107) for controlling the third loading unit to drop the plurality of bags stacked on the third loading unit onto the first loading unit and the second loading unit, and the first dropping step, the second dropping step, and the third dropping step are executed in the second loading mode.
  • the control method of the bag loading device of this configuration in the second loading mode in which the bags transported by the transport unit are loaded onto the third stacking unit, the plurality of bags in the first row drop from the first stacking unit to the discharging unit, and the multiple bags in the second row drop from the second loading unit to the discharging unit. Therefore, when performing the operation of dropping the bag from the first stacking unit and the second stacking unit to the discharge unit, the bag transported from the transport unit can be loaded onto the third stacking unit without stopping the transport operation of the bag by the transport unit.
  • the plurality of bags stacked on the third loading section are dropped onto the first loading section and the second loading section. Therefore, during the operation of dropping the bags from the first stacking unit and the second stacking unit to the discharging unit, the bags transported from the transport unit to the third stacking unit can be guided to the first stacking unit and the second stacking unit.
  • the bag loading device may be configured to include a binding unit that binds a bundle in which the plurality of bags in the first row and the plurality of bags in the second row are stacked with a binding band, and a discharge step of controlling the discharge unit to discharge the bundle to the binding unit.
  • the bundle whose difference between the thickness of one side in the width direction and the thickness of the other side in the width direction is equalized in the discharge section can be discharged from the discharge section to the binding section and bound with the binding band.
  • a bag loading device and a control method for the bag loading device that can make a bundle loaded with a plurality of bags uniform in height at each position and shorten the time required to stack a plurality of bags to form a bundle.
  • FIG. 1 is a perspective view showing a bag loading device according to one embodiment of the present invention
  • FIG. FIG. 2 is a top plan view of the bag loading device shown in FIG. 1
  • FIG. 2 is a perspective view of the bag shown in FIG. 1
  • FIG. 2 is a perspective view of the transport unit shown in FIG. 1
  • 2 is a perspective view of the loading unit shown in FIG. 1, showing a state in which a first loading mode is being executed
  • FIG. FIG. 6 is a right side view of the loading unit shown in FIG. 5
  • FIG. 6 is a left side view of the loading unit shown in FIG. 5
  • 4 is a flow chart showing a control method of the bag loading device according to the embodiment of the present invention
  • 2 is a perspective view of the loading unit shown in FIG.
  • FIG. 10 is a side view of the loading unit shown in FIG. 9
  • FIG. 4 is a perspective view of the loading unit shown in FIG. 1 , showing a state in which bags are dropped from the first loading section to the discharging section
  • FIG. 12 is a side view of the loading unit shown in FIG. 11
  • FIG. 3 is a perspective view of the loading unit shown in FIG. 1 , showing a state in which bags are moved from below the first stacking section to below the second stacking section
  • FIG. 4 is a perspective view of the loading unit shown in FIG. 1 , showing a state in which bags are dropped from the second loading section to the discharging section;
  • FIG. 10 is a side view of the loading unit shown in FIG. 9
  • FIG. 4 is a perspective view of the loading unit shown in FIG. 1 , showing a state in which bags are dropped from the first loading section to the discharging section
  • FIG. 12 is a side view of the loading unit shown in FIG. 11
  • FIG. 3 is a perspective view of the
  • FIG. 15 is a side view of the loading unit shown in FIG. 14; 15 is a view of the bundle shown in FIG. 14 as viewed from the transport unit side;
  • FIG. FIG. 2 is a perspective view of the stacking unit shown in FIG. 1 and shows a state in which bundles are discharged from a discharge section to a binding unit;
  • FIG. 3 is a perspective view of the loading unit shown in FIG. 1 , showing a state in which bags are dropped from the third loading section to the first loading section and the second loading section;
  • FIG. 19 is a side view of the loading unit shown in FIG. 18;
  • FIG. 1 is a perspective view showing a bag loading device 100 according to one embodiment of the present invention.
  • FIG. 2 is a top plan view of the bag stacking device 100 shown in FIG.
  • FIG. 3 is a perspective view of the bag 200 shown in FIG. 1.
  • FIG. 1 is a perspective view showing a bag loading device 100 according to one embodiment of the present invention.
  • FIG. 2 is a top plan view of the bag stacking device 100 shown in FIG.
  • FIG. 3 is a perspective view of the bag 200 shown in FIG. 1.
  • FIG. 1 is a perspective view showing a bag loading device 100 according to one embodiment of the present invention.
  • FIG. 2 is a top plan view of the bag stacking device 100 shown in FIG.
  • FIG. 3 is a perspective view of the bag 200 shown in FIG. 1.
  • FIG. 1 is a perspective view showing a bag loading device 100 according to one embodiment of the present invention.
  • FIG. 2 is a top plan view of the bag stacking device 100 shown in FIG.
  • FIG. 3 is
  • the bag loading device 100 of this embodiment is a device that stacks a plurality of bags 200 manufactured by a bag making machine 300 and binds the stacked bags 200 with a binding band.
  • the bag stacking device 100 of this embodiment includes a transport unit (transport section) 10 , a stacking unit 20 , a binding unit (binding section) 30 , and a control unit (control section) 40 .
  • the transport unit 10 is a device that transports the bag body 200 along the transport direction TD1. As shown in FIG. 2, the transport unit 10 receives the bag body 200 manufactured by the bag making machine 300 and supplies it to the stacking unit 20 along the transport direction TD1. As shown in FIG. 2, the transport unit 10 transports the bags 200 in a plurality of rows of a first row Co1 and a second row Co2 along the transport direction TD1.
  • the bag body 200 is formed by stacking a pair of films to form a mouth portion 210 at one end, inserting a bottom material folded in two at the other end to form a bottom portion 220, and joining both side portions to provide seal portions 230 and 240.
  • a bag 200 is called a three-sided stand bag.
  • the thickness T2 of the bottom portion 220 is thicker than the thickness T1 of the mouth portion 210.
  • bag body 200 is transported by transport unit 10 in a state in which the direction in which mouth portion 210 and bottom portion 220 extend is aligned with transport direction TD1, and the direction in which seal portions 230 and 240 extend is aligned with width direction WD.
  • the bag body 200 has a length L2 along the width direction WD longer than a length L1 along the transport direction TD1.
  • the bag 200 is the three-sided stand bag shown in FIG. 3, but the bag loading device 100 of this embodiment can also transport and load bags of other shapes.
  • the bag body may be a three-sided bag in which a pair of films are superimposed to form a mouth portion on one side, and the other three sides are joined to form a sealed portion.
  • another bag may be used in which the bottom portion is thicker than the mouth portion.
  • the bag body may have a uniform thickness at the mouth portion and the bottom portion.
  • the bag loading device 100 of the present embodiment is particularly effective when stacking and loading bags having a bottom portion thicker than the mouth portion, and is also effective when stacking and loading bags having a mouth portion thicker than the bottom portion.
  • the bags 200 can be transported in two rows to the stacking unit 20 by the transport unit 10, and the bags 200 transported in two rows can be stacked as one bundle 400 and bound by the binding unit 30.
  • the transport unit 10 transports the bags 200 in a state in which the bags 200 in the first row Co1 and the bags 200 in the second row Co2 are adjacent to each other along the width direction WD.
  • the bag bodies 200 in the first row Co1 and the bag bodies 200 in the second row Co2 are arranged such that the mouth portions 210 of the bag bodies 200 in the first row Co1 and the mouth portions 210 of the bag bodies 200 in the second row Co2 are positioned close to each other in the width direction WD.
  • the bags 200 in the first row Co1 and the bags 200 in the second row Co2 are arranged such that the bottoms 220 of the bags 200 in the first row Co1 and the bottoms 220 of the bags 200 in the second row Co2 are separated in the width direction WD.
  • the thickness of the bottom portion 220 (one side in the width direction WD) of the bag body 200 in the first row Co1 is thicker than the thickness of the mouth portion 210 (the other side in the width direction WD).
  • the mouth portion 210 (one side in the width direction WD) of the bag body 200 in the second row Co2 is thinner than the bottom portion 220 (the other side in the width direction WD).
  • FIG. 4 is a perspective view of the transport unit 10 shown in FIG. As shown in FIG. 4 , the transport unit 10 includes a first conveyor 11 , a second conveyor 12 and feed rollers 13 .
  • the first conveyor 11 is a device that conveys the bags 200 in the first row Co1 and the second row Co2 supplied from the bag making machine 300 along the conveying direction TD1 to the second conveyor 12 .
  • the first conveyor 11 conveys the bags 200 to the second conveyor 12 by rotating the resin belts 11a arranged at a plurality of locations along the width direction WD along the conveying direction TD1.
  • the second conveyor 12 is a device that conveys the bags 200 of the first row Co1 and the second row Co2 supplied from the first conveyor 11 along the conveying direction TD1 to the feed rollers 13 along the conveying direction TD1.
  • the second conveyor 12 conveys the bag body 200 to the feed roller 13 by rotating the resin belts 12a arranged at a plurality of locations along the width direction WD along the conveying direction TD1.
  • the belt 12a conveys the bags 200 in the first row Co1 and the bags 200 in the second row Co2 so that the distance in the width direction WD between the bags 200 in the first row Co1 and the bags 200 in the second row Co2 widens as it advances along the conveying direction TD1.
  • the distance in the width direction WD between the bag bodies 200 in the first row Co1 and the bag bodies 200 in the second row Co2 supplied from the bag making machine 300 to the conveying unit 10 is CL1.
  • the interval in the width direction WD between the bag bodies 200 in the first row Co1 and the bag bodies 200 in the second row Co2 is increased from CL1 to CL2 and from CL2 to CL3.
  • the feeding roller 13 is a roller that conveys the bags 200 of the first row Co1 and the second row Co2 supplied from the second conveyor 12 along the conveying direction TD1 to the stacking unit 20.
  • the loading unit 20 is a device that stacks a plurality of bags 200 conveyed from the conveying unit 10 and discharges a bundle 400 composed of the plurality of bags 200 to the bundling unit 30 .
  • FIG. 5 is a perspective view of the stacking unit 20 shown in FIG. 1, and shows a state in which a first stacking mode, which will be described later, is being executed.
  • 6 is a right side view of the loading unit 20 shown in FIG. 5.
  • FIG. 7 is a left side view of the stacking unit 20 shown in FIG. 5.
  • FIG. 5 is a perspective view of the stacking unit 20 shown in FIG. 1, and shows a state in which a first stacking mode, which will be described later, is being executed.
  • 6 is a right side view of the loading unit 20 shown in FIG. 5.
  • FIG. 7 is a left side view of the stacking unit 20 shown in FIG. 5.
  • the stacking unit 20 has a first stacking section 21, a second stacking section 22, a third stacking section 23, a discharge section 24, a first guide 25, and a second guide 26.
  • the first stacking unit 21 is a device that temporarily stacks the bags 200 in the first row Co1 transported by the transport unit 10 .
  • the first stacking portion 21 is arranged at a position spaced further from the binding unit 30 than the second stacking portion 22 in the width direction WD.
  • the first stacker 21 has a plurality of bar-shaped forks 21a extending along the transport direction TD1.
  • the first loading section 21 forms a loading surface on which the bags 200 are loaded by arranging a plurality of forks 21a at intervals along the width direction WD.
  • the first loading section 21 has a horizontal movement mechanism 21b that moves the plurality of forks 21a along the transport direction TD1, and a vertical movement mechanism 21c that moves the plurality of forks 21a along the vertical direction VD.
  • the first stacker 21 operates the horizontal movement mechanism 21b and the vertical movement mechanism 21c according to control signals transmitted from the control unit 40 .
  • the second stacking unit 22 is a device that temporarily stacks the bags 200 in the second row Co ⁇ b>2 transported by the transport unit 10 .
  • the second stacking portion 22 is arranged at a position closer to the binding unit 30 than the first stacking portion 21 in the width direction WD.
  • the second loading section 22 has a plurality of bar-shaped forks 22a extending along the transport direction TD1.
  • the second loading section 22 forms a loading surface on which the bags 200 are loaded by arranging a plurality of forks 22a at intervals along the width direction WD.
  • the second loading unit 22 has a horizontal movement mechanism 22b that moves the plurality of forks 22a along the transport direction TD1, and a vertical movement mechanism 22c that moves the plurality of forks 22a along the vertical direction VD.
  • the second stacker 22 operates the horizontal movement mechanism 22b and the vertical movement mechanism 22c according to the control signal transmitted from the control unit 40. As shown in FIG.
  • the third stacking unit 23 is a device that temporarily stacks the bags 200 in the first row Co1 and the bags 200 in the second row Co2 transported by the transport unit 10 .
  • the third stacking portion 23 is arranged above the first stacking portion 21 and the second stacking portion 22 in the vertical direction VD.
  • the third loading section 23 has a plurality of rod-shaped forks 23a extending along the transport direction TD1.
  • the third loading section 23 forms a loading surface on which the bags 200 are loaded by arranging a plurality of forks 23a at intervals along the width direction WD.
  • the third loading section 23 has a horizontal movement mechanism 23b that moves the plurality of forks 23a along the transport direction TD1, and a vertical movement mechanism 23c that moves the plurality of forks 23a along the vertical direction VD.
  • the third stacking section 23 operates the horizontal movement mechanism 23b and the vertical movement mechanism 23c according to the control signal transmitted from the control unit 40. As shown in FIG.
  • the discharge section 24 is a device that is arranged below the first stacking section 21 and the second stacking section 22 and stacks the bags 200 dropped from the first stacking section 21 and the second stacking section 22 .
  • the discharge unit 24 forms one bundle 400 of the bags 200 dropped from the first stacking unit 21 and the second stacking unit 22, and discharges the bundle 400 to the binding unit 30 along the transport direction TD2 orthogonal to the transport direction TD1.
  • the discharge portion 24 has a plurality of tubular members 24a extending along the width direction WD, a discharge pusher 24b, and a slide mechanism 24c.
  • the discharge section 24 forms a loading surface on which the bags 200 are loaded by arranging a plurality of tubular members 24a at intervals along the transport direction TD1.
  • the discharge pusher 24b is a plate-shaped member arranged to extend along the vertical direction VD.
  • the discharge pusher 24b is moved along the width direction WD by being driven by the slide mechanism 24c.
  • the discharge pusher 24 b moves the plurality of bags 200 that have fallen from the first stacking section 21 to below the second stacking section 22 . Further, the discharge pusher 24b discharges the bundle 400 in which the bag 200 moved downward from the second stacking part 22 and the bag 200 dropped from the second stacking part 22 are stacked above the bag 200 to the bundling unit 30. ⁇
  • the first guide 25 is a member that positions the bag body 200 transported to the stacking unit 20 along the transport direction TD1 in the transport direction TD1.
  • the first guide 25 has a plurality of pin guides 25a extending along the vertical direction VD and a pin bracket 25b to which the plurality of pin guides 25a are connected.
  • the plurality of pin guides 25a are arranged at intervals along the width direction WD.
  • the plurality of pin guides 25a are arranged to penetrate in the vertical direction VD between the plurality of forks 21a, between the plurality of forks 22a, and between the plurality of forks 23a.
  • the bag body 200 conveyed from the conveying unit 10 to the first stacking section 21 is positioned in the conveying direction TD1 by contacting the pin guide 25a with the front edge.
  • the bag body 200 conveyed from the conveying unit 10 to the second stacking section 22 is positioned in the conveying direction TD1 by contacting the pin guide 25a with the front edge thereof.
  • the bag body 200 conveyed from the conveying unit 10 to the third stacking section 23 is positioned in the conveying direction TD1 by contacting the pin guide 25a with the front edge thereof.
  • the second guide 26 is a member for positioning in the width direction WD of the bags 200 transported to the stacking unit 20 along the transport direction TD1.
  • the second guide 26 has a central guide plate 26a, a horizontal alignment guide plate 26b, a horizontal alignment guide plate 26c, and a pair of slide shafts 26d.
  • the center guide plate 26a, the horizontal alignment guide plate 26b, and the horizontal alignment guide plate 26c are inserted into a pair of slide shafts 26d.
  • the second guide 26 positions the bags 200 in the first row Co1 in the width direction WD by moving the lateral alignment guide plate 26b toward the center guide plate 26a along the width direction WD by means of the first moving mechanism (not shown).
  • the second guide 26 positions the bags 200 in the second row Co2 in the width direction WD by moving the lateral alignment guide plate 26c toward the central guide plate 26a along the width direction WD by means of a second moving mechanism (not shown).
  • the binding unit 30 is a device that binds a bundle 400 in which a plurality of bags 200 in the first row Co1 and a plurality of bags 200 in the second row Co2 are stacked with a binding band 410. As shown in FIG. 1 , the binding unit 30 has a transport conveyor 31 and a binding mechanism 32 .
  • the transport conveyor 31 is a device that transports the bundle 400 discharged from the discharge section 24 of the stacking unit 20 along the transport direction TD2.
  • the transport conveyor 31 transports the bundle 400 along the transport direction TD2 and temporarily stops at the position where the binding mechanism 32 is arranged.
  • the binding mechanism 32 binds the bundle 400 with a binding band 410 (for example, resin tape, paper tape, etc.).
  • the bundle 400 bound by the binding band 410 by the binding mechanism 32 is transported along the transport direction TD2 by the transport conveyor 31 and supplied to the stacking unit 500 .
  • the control unit 40 is a device that controls the bag loading device 100 .
  • the control unit 40 controls each part of the bag stacking device 100 including the transport unit 10 , the stacking unit 20 and the bundling unit 30 .
  • the control unit 40 controls switching between a first stacking mode in which the bags 200 transported by the transport unit 10 are loaded onto the first stacking portion 21 and the second stacking portion 22, and a second stacking mode in which the bags 200 transported by the transport unit 10 are loaded onto the third stacking portion 23.
  • the control unit 40 is composed of, for example, a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, for example, and the CPU reads this program into a RAM or the like, and executes information processing and arithmetic processing, thereby realizing various functions.
  • the program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 8 is a flow chart showing a control method of the bag loading device 100 according to one embodiment of the present invention.
  • step S101 the control unit 40 controls the conveying unit 10, the first stacking section 21, the second stacking section 22, and the third stacking section 23 to execute the first stacking mode.
  • the first stacking mode is a mode in which the bags 200 conveyed by the conveying unit 10 are stacked on the first stacking section 21 and the second stacking section 22 .
  • the control unit 40 adjusts the positions of the first stacking section 21, the second stacking section 22, and the third stacking section 23 in the vertical direction VD so that the bags 200 supplied to the stacking unit 20 by the feeding rollers 13 are stacked on the first stacking section 21 and the second stacking section 22.
  • the control unit 40 transmits control signals to the vertical movement mechanism 21c, the vertical movement mechanism 22c, and the vertical movement mechanism 23c so as to adjust the positions of the first stacker 21, the second stacker 22, and the third stacker 23 in the vertical direction VD.
  • step S102 the control unit 40 determines whether or not a preset set number of bags 200 have been loaded on the first loading section 21 and the second loading section 22. If YES, the process proceeds to step S103, and if NO, the process of step S101 is executed again.
  • step S103 the control unit 40 controls the first stacking section 21, the second stacking section 22, and the third stacking section 23 to execute the second stacking mode.
  • the second stacking mode is a mode in which the bags 200 conveyed by the conveying unit 10 are stacked on the third stacking section 23 .
  • FIG. 9 is a perspective view of the loading unit 20 shown in FIG. 1, showing a state in which the second loading mode is being executed.
  • 10 is a side view of the loading unit 20 shown in FIG. 9.
  • the control unit 40 adjusts the positions of the first stacking section 21, the second stacking section 22, and the third stacking section 23 in the vertical direction VD so that the bags 200 supplied to the stacking unit 20 by the feeding rollers 13 are stacked on the third stacking section 23.
  • the control unit 40 transmits control signals to the vertical movement mechanism 21c, the vertical movement mechanism 22c, and the vertical movement mechanism 23c so as to adjust the positions of the first stacker 21, the second stacker 22, and the third stacker 23 in the vertical direction VD.
  • step S104 the control unit 40 controls the first stacking section 21 to drop the plurality of bags 200 in the first row Co1 from the first stacking section 21 to the discharge section 24.
  • the control unit 40 controls the horizontal movement mechanism 21b to move the plurality of forks 21a away from the first guide 25 along the transport direction TD1.
  • FIG. 11 is a perspective view of the stacking unit 20 shown in FIG. 1, showing a state in which the bags 200 are dropped from the first stacking section 21 to the discharging section 24.
  • FIG. 12 is a side view of the stacking unit 20 shown in FIG. 11.
  • the control unit 40 controls the horizontal movement mechanism 21b so as to return the plurality of forks 21a to the positions shown in FIG.
  • step S105 the control unit 40 controls the discharge section 24 to move the plurality of bags 200 in the first row Co1 that have dropped onto the discharge section 24 below the plurality of bags 200 in the second row Co2 that are stacked on the second stacking section 22.
  • the control unit 40 controls the slide mechanism 24c to move the discharge pusher 24b along the width direction WD, and moves the plurality of bags 200 dropped from the first stacking section 21 to the lower side of the second stacking section 22.
  • FIG. 13 is a perspective view of the stacking unit 20 shown in FIG. 1, showing a state in which the bag 200 is moved from below the first stacking section 21 to below the second stacking section 22.
  • step S106 the control unit 40 controls the second stacking section 22 to drop the plurality of bags 200 in the second row Co2 from the second stacking section 22 above the plurality of rows of bags 200 in the first row Co1.
  • the control unit 40 controls the horizontal movement mechanism 22b to move the plurality of forks 22a away from the first guide 25 along the transport direction TD1.
  • FIG. 14 is a perspective view of the stacking unit 20 shown in FIG. 1, showing a state in which the bags 200 are dropped from the second stacking section 22 to the discharging section 24.
  • FIG. 15 is a side view of the loading unit 20 shown in FIG. 14.
  • the control unit 40 controls the horizontal movement mechanism 22b to return the plurality of forks 22a to the positions shown in FIG.
  • FIG. 16 is a view of the bundle 400 shown in FIG. 14 as seen from the transport unit 10 side.
  • the plurality of bags 200 in the first row Co1 stacked on the lower side of the discharge section 24 have the mouth portion 210 arranged on the left side in the width direction WD and the bottom portion 220 arranged on the right side.
  • thickness T ⁇ b>2 of bottom portion 220 is thicker than thickness T ⁇ b>1 of mouth portion 210 . Therefore, the height of the plurality (six in the example shown in FIG. 16) of the bags 200 stacked in the first row Co1 is H1 on the mouth portion 210 side and H2 on the bottom portion 220 side, which is higher than H1.
  • the plurality of bag bodies 200 in the second row Co2 stacked on the upper side of the discharge section 24 have the mouth portion 210 arranged on the right side in the width direction WD and the bottom portion 220 arranged on the left side. Therefore, the height of the plurality (six in the example shown in FIG. 16) of the bags 200 stacked in the second row Co2 is H1 on the mouth portion 210 side and H2 on the bottom portion 220 side, which is higher than H1.
  • the height on the right side in the width direction WD is the sum of H1 and H2
  • the height on the left side in the width direction WD is also the sum of H1 and H2. Therefore, the height of the bundle 400 is equal on the right side and the left side in the width direction WD, and the bundle 400 has a uniform height at each position.
  • the control unit 40 controls the discharge section 24 so that the bundle 400 in which the plurality of bags 200 of the second row Co2 are stacked above the plurality of bags 200 of the first row Co1 is discharged from the discharge section 24 to the bundling unit 30.
  • the state shown in FIG. 17 is reached.
  • FIG. 17 is a perspective view of the stacking unit 20 shown in FIG. 1, showing a state in which the bundle 400 is discharged from the discharge section 24 to the binding unit 30.
  • step S107 the control unit 40 controls the third loading section 23 to drop the plurality of bags 200 loaded on the third loading section 23 onto the first loading section 21 and the second loading section 22.
  • the control unit 40 controls the horizontal movement mechanism 23b to move the plurality of forks 23a away from the first guide 25 along the transport direction TD1.
  • the bag body 200 does not move along the transport direction TD1. This is because the first guide 25 restricts movement of the bag body 200 along the transport direction TD1.
  • the bags 200 loaded on the plurality of forks 23a drop onto the first loading section 21 and the second loading section 22. As shown in FIG.
  • FIG. 18 is a perspective view of the stacking unit 20 shown in FIG. 1, showing a state in which bags are dropped from the third stacking portion 23 to the first stacking portion 21 and the second stacking portion 22.
  • FIG. 19 is a side view of the loading unit 20 shown in FIG. 18.
  • the control unit 40 causes the vertical movement mechanism 23c to move the plurality of forks 23a to the positions indicated by the dotted lines in FIG.
  • the position indicated by the dotted line in FIG. 19 is a position above the position to which the bag body 200 conveyed by the conveying unit 10 is guided in the vertical direction VD.
  • the control unit 40 also controls the horizontal movement mechanism 23b to return the plurality of forks 23a to the positions shown in FIG.
  • the control unit 40 switches the second loading mode to the first loading mode by controlling the loading unit 20 to drop the bags 200 of the third loading section 23 onto the first loading section 21 and the second loading section 22 in step S107. Then, the control unit 40 transmits a control signal to the vertical movement mechanism 21c and the vertical movement mechanism 22c so that the positions of the first stacker 21 and the second stacker 22 in the vertical direction VD are the positions shown in FIG.
  • step S108 the control unit 40 determines whether or not to end the processing of this flowchart, and if YES, ends the processing of this flowchart, and if NO, returns the processing to step S101.
  • the transport unit 10 transports the bags 200 supplied from the bag making machine 300 along the transport direction TD1 in two rows, the first row Co1 and the second row Co2.
  • the transport unit 10 of the present embodiment can also transport the bags 200 supplied from the bag making machine 300 along the transport direction TD1 in either the first row Co1 or the second row Co2.
  • the stacking unit 20 loads a plurality of bags 200 supplied in one line on the first stacking section 21 or the second stacking section 22 , drops them to the discharge section 24 , and discharges them to the binding unit 30 .
  • the bag loading device 100 of the present embodiment can switch between a mode for processing bags 200 supplied in two rows, the first row Co1 and a second row Co2, and a mode for processing bags 200 supplied in either one of the first row Co1 or the second row Co2.
  • the bags 200 in the first row Co ⁇ b>1 transported by the transport unit 10 and stacked on the first stacking section 21 drop from the first stacking section 21 to the discharge section 24 .
  • the plurality of bags 200 in the first row Co ⁇ b>1 that have dropped onto the discharge section 24 move below the plurality of bags 200 in the second row Co ⁇ b>2 stacked on the second stacking section 22 .
  • the plurality of bags 200 in the second row Co2 stacked on the second stacking unit 22 drop above the plurality of bags 200 in the first row Co1, and the plurality of bags 200 in the first row Co1 and the plurality of bags 200 in the second row Co2 are stacked to form a bundle 400.
  • the thickness T2 in one width direction WD of the bags 200 in the first row Co1 is thicker than the thickness T1 in the other width direction WD, and the thickness T1 in one width direction WD of the bags in the second row Co2 is thinner than the thickness T2 in the other width direction WD. Therefore, the overall thickness of the plurality of bags 200 in the first row Co1 is thicker in one width direction WD than the other, and the overall thickness of the plurality of bags 200 in the second row Co2 is thinner in one width direction WD than the other.
  • the difference between the thickness of one side in the width direction WD and the thickness of the other side in the width direction WD is made uniform.
  • the bundle 400 on which a plurality of bags 200 are stacked can be made uniform in height at each position. Moreover, since it is not necessary to change the orientation of the bags 200 one by one, the time required to stack a plurality of bags 200 to form the bundle 400 can be shortened.
  • the bag loading device 100 of the present embodiment in the second loading mode in which the bags 200 transported by the transport unit 10 are loaded onto the third loading section 23, the plurality of bags 200 in the first row Co1 drop from the first loading section 21 to the discharging section 24, and the multiple bags 200 in the second row Co2 drop from the second loading section 22 to the discharging section 24. Therefore, when the bag body 200 is dropped from the first stacking section 21 and the second stacking section 22 to the discharging section 24, the bag body transported from the transporting unit 10 can be loaded onto the third stacking section 23 without stopping the transporting operation of the bag body 200 by the transporting unit 10.
  • the plurality of bags 200 stacked on the third loading section 23 are dropped onto the first loading section 21 and the second loading section 22 in the second loading mode. Therefore, during the operation of dropping the bag 200 from the first stacking unit 21 and the second stacking unit 22 to the discharge unit 24, the bag transported from the transport unit 10 to the third stacking unit 23 can be guided to the first stacking unit 21 and the second stacking unit 22.
  • the bundle whose difference between the thickness of one side in the width direction WD and the thickness of the other side in the width direction WD is equalized in the discharge section 24 can be discharged from the discharge section 24 to the binding unit 30 and bound by the binding band 410.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Basic Packing Technique (AREA)
  • Pile Receivers (AREA)
  • Stacking Of Articles And Auxiliary Devices (AREA)

Abstract

第1列の袋体を積載する第1積載部(21)と、第2列の袋体を積載する第2積載部(22)と、排出部(24)と、制御部と、を備え、制御部は、第1列の複数の袋体を第1積載部(21)から排出部(24)に落下させるよう第1積載部(21)を制御し、排出部(24)に落下した第1列の複数の袋体を第2積載部(22)に積載される第2列の複数の袋体の下方に移動させるよう排出部(24)を制御し、第2列の複数の袋体を第2積載部(22)から第1列の複数の袋体の上方に落下させるよう第2積載部(22)を制御する袋体積載装置(100)を提供する。

Description

袋体積載装置および袋体積載装置の制御方法
 本発明は、袋体積載装置および袋体積載装置の制御方法に関する。
 従来、製袋機から供給される複数の袋体を積載し、複数の袋体からなる束体を結束機により結束する装置が知られている(例えば、特許文献1参照)。特許文献1に開示される装置は、袋排出用コンベアに複数列で排出される袋体をサッカーにより吸引して袋集積用コンベアに運び、袋集積用コンベアから集積用ポケットに集積された束体を結束機により結束する。特許文献1に開示される装置は、口部より底部の厚みが厚い袋体を積み重ねたときに崩れないようにするため、サッカーにより袋体を運ぶ際に一部の袋体の向きを変更している。そのため、複数の袋体が集積された束体を各位置で均一な高さとすることができる。
実開平5-26808号公報
 しかしながら、特許文献1では、サッカーにより袋体を1つずつ吸引して袋排出用コンベアから袋集積用コンベアに運ぶ動作が必要となるため、複数の袋体を積み重ねるのに要する時間が長くなってしまう。また、サッカーにより袋体を運ぶ際に一部の袋体の向きを変更する必要があるため、袋体の向きを変更するのに要する時間がかかってしまう。このように、特許文献1では、複数の袋体が集積された束体を各位置で均一な高さとすることができるが、複数の袋体を集積して束体を形成するのに要する時間が長くなり、生産性が低下してしまう。
 以上のような問題に対し、複数の袋体が積載された束体を各位置で均一な高さとし、かつ複数の袋体を積載して束体を形成するのに要する時間を短縮することが可能な袋体積載装置および袋体積載装置の制御方法を提供することを目的とする。
 本発明の一態様に係る袋体積載装置は、搬送方向に沿って複数列で前記袋体を搬送する搬送部と、前記搬送部により搬送された第1列の前記袋体を積載する第1積載部と、前記搬送部により搬送された第2列の前記袋体を積載する第2積載部と、前記第1積載部および前記第2積載部の下方に配置される排出部と、前記袋体積載装置を制御する制御部と、を備え、前記制御部は、前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御し、前記排出部に落下した前記第1列の複数の前記袋体を前記第2積載部に積載される前記第2列の複数の前記袋体の下方に移動させるよう前記排出部を制御し、前記第2列の複数の前記袋体を前記第2積載部から前記第1列の複数の前記袋体の上方に落下させるよう前記第2積載部を制御する。
 本発明の一態様に係る袋体積載装置によれば、搬送部により搬送されて第1積載部に積載される第1列の袋体が第1積載部から排出部に落下する。排出部に落下した第1列の複数の袋体は、第2積載部に積載される第2列の複数の袋体の下方へ移動する。第2積載部に積載される第2列の複数の袋体が、第1列の複数の袋体の上方に落下し、第1列の複数の袋体と第2列の複数の袋体とが積み重なった束体が形成される。
 本発明の一態様に係る袋体積載装置によれば、第1列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより厚く、第2列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより薄い場合には、第1列の複数の袋体の全体の厚みは幅方向の一方の方が他方よりも厚くなり、第2列の複数の袋体の全体の厚みは幅方向の一方の方が他方よりも薄くなる。そして、第1列の複数の袋体の全体と第2列の複数の袋体の全体とを重ね合わせた束体は、幅方向の一方の厚みと幅方向の他方の厚みとの差が均一化される。
 このように、本発明の一態様に係る袋体積載装置によれば、第1列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより厚く、第2列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより薄い場合であっても、複数の袋体が積載された束体を各位置で均一な高さとすることができる。また、袋体の向きを1つずつ変更する動作が不要であるため、複数の袋体を積載して束体を形成するのに要する時間を短縮することができる。
 本発明の一態様に係る袋体積載装置においては、前記搬送部により搬送された複数列の前記袋体を積載するとともに前記第1積載部および前記第2積載部の上方に配置される第3積載部と、を備え、前記制御部は、前記搬送部により搬送された前記袋体を前記第1積載部および前記第2積載部へ積載する第1積載モードと、前記搬送部により搬送された前記袋体を前記第3積載部へ積載する第2積載モードとを切り替えるよう制御し、前記第2積載モードにおいて、前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御し、前記第2列の複数の前記袋体を前記第2積載部から前記排出部に落下させるよう前記第2積載部を制御し、前記第3積載部に積載される複数の前記袋体を前記第1積載部および前記第2積載部に落下させるよう前記第3積載部を制御する構成としてもよい。
 本構成の袋体積載装置によれば、搬送部により搬送された袋体を第3積載部へ積載する第2積載モードにおいて、第1列の複数の袋体が第1積載部から排出部に落下し、第2列の複数の袋体が第2積載部から排出部に落下する。そのため、第1積載部および第2積載部から排出部に袋体を落下させる動作を行う際に、搬送部による袋体の搬送動作を停止させずに、搬送部から搬送される袋体を第3積載部へ積載することができる。
 また、本構成の袋体積載装置によれば、第2積載モードにおいて、第3積載部に積載される複数の袋体を第1積載部および第2積載部に落下させる。そのため、第1積載部および第2積載部から排出部に袋体を落下させる動作中に搬送部から第3積載部に搬送された袋体を第1積載部および第2積載部に導くことができる。
 本発明の一態様に係る袋体積載装置においては、前記第1列の複数の前記袋体と前記第2列の複数の前記袋体とが積み重ねられた束体を結束バンドにより結束する結束部を備え、前記制御部は、前記束体を前記結束部へ排出するよう前記排出部を制御する構成としてもよい。
 本構成の袋体積載装置によれば、排出部において幅方向の一方の厚みと幅方向の他方の厚みとの差が均一化された束体を、排出部から結束部に排出し、結束バンドにより結束することができる。
 本発明の一態様に係る袋体積載装置の制御方法において、前記袋体積載装置は、搬送方向に沿って複数列で前記袋体を搬送する搬送部と、前記搬送部により搬送された第1列の前記袋体を積載する第1積載部と、前記搬送部により搬送された第2列の前記袋体を積載する第2積載部と、前記第1積載部および前記第2積載部の下方に配置される排出部と、を備え、前記第1積載部に前記第1列の複数の前記袋体を積載し、前記第2積載部に前記第2列の複数の前記袋体を積載するよう前記搬送部を制御する搬送工程と、前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御する第1落下工程と、前記排出部に落下した前記第1列の複数の前記袋体を前記第2積載部に積載される前記第2列の複数の前記袋体の下方に移動させるよう前記排出部を制御する移動工程と、前記第2列の複数の前記袋体を前記第2積載部から前記第1列の複数の前記袋体の上方に落下させるよう前記第2積載部を制御する第2落下工程と、を備える。
 本発明の一態様に係る袋体積載装置の制御方法によれば、搬送部により搬送されて第1積載部に積載される第1列の袋体が第1積載部から排出部に落下する。排出部に落下した第1列の複数の袋体は、第2積載部に積載される第2列の複数の袋体の下方へ移動する。第2積載部に積載される第2列の複数の袋体が、第1列の複数の袋体の上方に落下し、第1列の複数の袋体と第2列の複数の袋体とが積み重なった束体が形成される。
 本発明の一態様に係る袋体積載装置の制御方法によれば、第1列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより厚く、第2列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより薄い場合には、第1列の複数の袋体の全体の厚みは幅方向の一方の方が他方よりも厚くなり、第2列の複数の袋体の全体の厚みは幅方向の一方の方が他方よりも薄くなる。そして、第1列の複数の袋体の全体と第2列の複数の袋体の全体とを重ね合わせた束体は、幅方向の一方の厚みと幅方向の他方の厚みとの差が均一化される。
 このように、本発明の一態様に係る袋体積載装置の制御方法によれば、第1列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより厚く、第2列の袋体の幅方向の一方の厚みが幅方向の他方の厚みより薄い場合であっても、複数の袋体が積載された束体を各位置で均一な高さとすることができる。また、袋体の向きを1つずつ変更する動作が不要であるため、複数の袋体を積載して束体を形成するのに要する時間を短縮することができる。
 本発明の一態様に係る袋体積載装置の制御方法において、前記袋体積載装置は、前記搬送部により搬送された複数列の前記袋体を積載するとともに前記第1積載部および前記第2積載部の上方に配置される第3積載部を備え、前記搬送部により搬送された前記袋体を前記第1積載部および前記第2積載部へ積載する第1積載モードから前記搬送部により搬送された前記袋体を前記第3積載部へ積載する第2積載モードへ切り替える切替工程(S103)と、前記第3積載部に積載される複数の前記袋体を前記第1積載部および前記第2積載部に落下させるよう前記第3積載部を制御する第3落下工程(S107)と、を備え、前記第2積載モードにおいて、前記第1落下工程と、前記第2落下工程と、前記第3落下工程とが実行される構成としてもよい。
 本構成の袋体積載装置の制御方法によれば、搬送部により搬送された袋体を第3積載部へ積載する第2積載モードにおいて、第1列の複数の袋体が第1積載部から排出部に落下し、第2列の複数の袋体が第2積載部から排出部に落下する。そのため、第1積載部および第2積載部から排出部に袋体を落下させる動作を行う際に、搬送部による袋体の搬送動作を停止させずに、搬送部から搬送される袋体を第3積載部へ積載することができる。
 また、本構成の袋体積載装置の制御方法によれば、第2積載モードにおいて、第3積載部に積載される複数の袋体を第1積載部および第2積載部に落下させる。そのため、第1積載部および第2積載部から排出部に袋体を落下させる動作中に搬送部から第3積載部に搬送された袋体を第1積載部および第2積載部に導くことができる。
 本発明の一態様に係る袋体積載装置の制御方法において、前記袋体積載装置は、前記第1列の複数の前記袋体と前記第2列の複数の前記袋体とが積み重ねられた束体を結束バンドにより結束する結束部を備え、前記束体を前記結束部へ排出するよう前記排出部を制御する排出工程を備える構成としてもよい。
 本構成の袋体積載装置の制御方法によれば、排出部において幅方向の一方の厚みと幅方向の他方の厚みとの差が均一化された束体を、排出部から結束部に排出し、結束バンドにより結束することができる。
 本発明によれば、複数の袋体が積載された束体を各位置で均一な高さとし、かつ複数の袋体を積載して束体を形成するのに要する時間を短縮することが可能な袋体積載装置および袋体積載装置の制御方法を提供することができる。
本発明の一実施形態に係る袋体積載装置を示す斜視図である。 図1に示す袋体積載装置を上方からみた平面図である。 図1に示す袋体の斜視図である。 図1に示す搬送ユニットの斜視図である。 図1に示す積載ユニットの斜視図であり、第1積載モードを実行している状態を示す。 図5に示す積載ユニットの右側面図である。 図5に示す積載ユニットの左側面図である。 本発明の一実施形態に係る袋体積載装置の制御方法を示すフローチャートである。 図1に示す積載ユニットの斜視図であり、第2積載モードを実行している状態を示す。 図9に示す積載ユニットの側面図である。 図1に示す積載ユニットの斜視図であり、第1積載部から排出部に袋体を落下させた状態を示す。 図11に示す積載ユニットの側面図である。 図1に示す積載ユニットの斜視図であり、第1積載部の下方から第2積載部の下方に袋体を移動させた状態を示す。 図1に示す積載ユニットの斜視図であり、第2積載部から排出部に袋体を落下させた状態を示す。 図14に示す積載ユニットの側面図である。 図14に示す束体を搬送ユニット側からみた図である。 図1に示す積載ユニットの斜視図であり、排出部から結束ユニットに束体を排出した状態を示す。 図1に示す積載ユニットの斜視図であり、第3積載部から第1積載部および第2積載部に袋体を落下させた状態を示す。 図18に示す積載ユニットの側面図である。
 本発明の一実施形態に係る袋体積載装置100について、図面を参照して説明する。図1は、本発明の一実施形態に係る袋体積載装置100を示す斜視図である。図2は、図1に示す袋体積載装置100を上方からみた平面図である。図3は、図1に示す袋体200の斜視図である。
 本実施形態の袋体積載装置100は、製袋機300により製造された複数の袋体200を積み重ねるように積載し、積み重ねた袋体200を結束バンドにより結束する装置である。図1に示すように、本実施形態の袋体積載装置100は、搬送ユニット(搬送部)10と、積載ユニット20と、結束ユニット(結束部)30と、制御ユニット(制御部)40と、を備える。
 搬送ユニット10は、搬送方向TD1に沿って袋体200を搬送する装置である。図2に示すように、搬送ユニット10は、製袋機300により製造された袋体200を受け取り、搬送方向TD1に沿って積載ユニット20に供給する。図2に示すように、搬送ユニット10は、搬送方向TD1に沿って第1列Co1と第2列Co2の複数列で袋体200を搬送する。
 図3に示すように、袋体200は、一対のフィルムを重ね合わせて一方の端部に口部210を形成し、他方の端部に2つ折りの底材を挿入して底部220を形成し、両側の側部を接合してシール部230,240を設けたものである。このような袋体200は、三方スタンド袋と呼ばれる。
 袋体200の底部220には底材が挿入されているため、口部210の厚みT1よりも底部220の厚みT2の方が厚い。図3に示すように、袋体200は、口部210および底部220が延びる方向が搬送方向TD1と一致し、シール部230,240が延びる方向が幅方向WDと一致する状態で、搬送ユニット10により搬送される。袋体200は、搬送方向TD1に沿った長さL1よりも、幅方向WDに沿った長さL2の方が長い。
 本実施形態において、袋体200は、図3に示す三方スタンド袋であるものとするが、本実施形態の袋体積載装置100は、他の形状の袋体を搬送し、積載することも可能である。例えば、袋体は、一対のフィルムを重ね合わせて一方に口部を形成し、他の三方を接合してシール部とした三方袋であってもよい。また、口部よりも底部の厚みの方が厚い他の袋体であってもよい。また、口部と底部の厚みが均一の袋体であってもよい。本実施形態の袋体積載装置100は、口部よりも底部の厚みが厚い袋体を積み重ねて積載する際に特に有効であるが、底部よりも口部の厚みが厚い袋体を積み重ねて積載する際にも有効である。
 また、口部と底部の厚みが均一の袋体を積み重ねて積載する際にも有効である。後述するように、袋体200を搬送ユニット10により積載ユニット20に2列で搬送しつつ、2列で搬送した袋体200を1つの束体400として集積し、結束ユニット30で結束することができる。
 図2に示すように、搬送ユニット10は、搬送方向TD1の同一位置においては、幅方向WDに沿って第1列Co1の袋体200と、第2列Co2の袋体200とが隣接する状態で袋体200を搬送する。第1列Co1の袋体200および第2列Co2の袋体200は、第1列Co1の袋体200の口部210と第2列Co2の袋体200の口部210とが幅方向WDで近接した位置となるように配置される。また、第1列Co1の袋体200および第2列Co2の袋体200は、第1列Co1の袋体200の底部220と第2列Co2の袋体200の底部220とが幅方向WDで離れた位置となるように配置される。
 第1列Co1の袋体200の底部220(幅方向WDの一方)の厚みは、口部210(幅方向WDの他方)の厚みより厚い。第2列Co2の袋体200の口部210(幅方向WDの一方)の厚みは、底部220(幅方向WDの他方)の厚みより薄い。このように、搬送ユニット10は、幅方向WDにおいて隣接する一対の袋体200の口部210と底部220の向きが異なる状態で、複数の袋体200を搬送する。
 図4は、図1に示す搬送ユニット10の斜視図である。図4に示すように、搬送ユニット10は、第1コンベヤ11と、第2コンベヤ12と、送り込みローラ13と、を備える。
 第1コンベヤ11は、製袋機300から搬送方向TD1に沿って供給される第1列Co1および第2列Co2の袋体200を、第2コンベヤ12へ搬送する装置である。第1コンベヤ11は、幅方向WDに沿って複数箇所に配置される樹脂製のベルト11aを搬送方向TD1に沿って回転させることにより、袋体200を第2コンベヤ12へ搬送する。
 第2コンベヤ12は、第1コンベヤ11から搬送方向TD1に沿って供給される第1列Co1および第2列Co2の袋体200を、搬送方向TD1に沿って送り込みローラ13へ搬送する装置である。第2コンベヤ12は、幅方向WDに沿って複数箇所に配置される樹脂製のベルト12aを搬送方向TD1に沿って回転させることにより、袋体200を送り込みローラ13へ搬送する。
 ベルト12aは、搬送方向TD1に沿って進むにつれて、第1列Co1の袋体200と第2列Co2の袋体200との幅方向WDの間隔が広がるように、第1列Co1の袋体200および第2列Co2の袋体200を搬送する。図2に示すように、製袋機300から搬送ユニット10に供給される第1列Co1の袋体200と第2列Co2の袋体200との幅方向WDの間隔はCL1である。第1列Co1の袋体200と第2列Co2の袋体200との幅方向WDの間隔は、CL1からCL2に拡大され、CL2からCL3に拡大される。
 送り込みローラ13は、第2コンベヤ12から搬送方向TD1に沿って供給される第1列Co1および第2列Co2の袋体200を、積載ユニット20へ搬送するローラである。
 積載ユニット20は、搬送ユニット10から搬送される複数の袋体200を積み重ねるように積載し、複数の袋体200からなる束体400を結束ユニット30へ排出する装置である。図5は、図1に示す積載ユニット20の斜視図であり、後述する第1積載モードを実行している状態を示す。図6は、図5に示す積載ユニット20の右側面図である。図7は、図5に示す積載ユニット20の左側面図である。
 図5に示すように、積載ユニット20は、第1積載部21と、第2積載部22と、第3積載部23と、排出部24と、第1ガイド25と、第2ガイド26と、を有する。
 第1積載部21は、搬送ユニット10により搬送された第1列Co1の袋体200を一時的に積載する装置である。第1積載部21は、幅方向WDにおいて第2積載部22よりも結束ユニット30から離間した位置に配置される。図5に示すように、第1積載部21は、搬送方向TD1に沿って延びるとともに棒状に形成される複数のフォーク21aを有する。第1積載部21は、複数のフォーク21aを幅方向WDに沿って間隔を空けて配置することにより、袋体200を積載する積載面を形成する。
 図6に示すように、第1積載部21は、複数のフォーク21aを搬送方向TD1に沿って移動させる水平移動機構21bと、複数のフォーク21aを鉛直方向VDに沿って移動させる鉛直移動機構21cと、を有する。第1積載部21は、制御ユニット40から伝達される制御信号に応じて、水平移動機構21bおよび鉛直移動機構21cを動作させる。
 第2積載部22は、搬送ユニット10により搬送された第2列Co2の袋体200を一時的に積載する装置である。第2積載部22は、幅方向WDにおいて第1積載部21よりも結束ユニット30に近接した位置に配置される。図5に示すように、第2積載部22は、搬送方向TD1に沿って延びるとともに棒状に形成される複数のフォーク22aを有する。第2積載部22は、複数のフォーク22aを幅方向WDに沿って間隔を空けて配置することにより、袋体200を積載する積載面を形成する。
 図7に示すように、第2積載部22は、複数のフォーク22aを搬送方向TD1に沿って移動させる水平移動機構22bと、複数のフォーク22aを鉛直方向VDに沿って移動させる鉛直移動機構22cと、を有する。第2積載部22は、制御ユニット40から伝達される制御信号に応じて、水平移動機構22bおよび鉛直移動機構22cを動作させる。
 第3積載部23は、搬送ユニット10により搬送された第1列Co1の袋体200と第2列Co2の袋体200を一時的に積載する装置である。第3積載部23は、鉛直方向VDにおいて、第1積載部21および第2積載部22の上方に配置される。図5および図6に示すように、第3積載部23は、搬送方向TD1に沿って延びるとともに棒状に形成される複数のフォーク23aを有する。第3積載部23は、複数のフォーク23aを幅方向WDに沿って間隔を空けて配置することにより、袋体200を積載する積載面を形成する。
 図6および図7に示すように、第3積載部23は、複数のフォーク23aを搬送方向TD1に沿って移動させる水平移動機構23bと、複数のフォーク23aを鉛直方向VDに沿って移動させる鉛直移動機構23cと、を有する。第3積載部23は、制御ユニット40から伝達される制御信号に応じて、水平移動機構23bおよび鉛直移動機構23cを動作させる。
 排出部24は、第1積載部21および第2積載部22の下方に配置され、第1積載部21および第2積載部22から落下する袋体200を積載する装置である。排出部24は、第1積載部21および第2積載部22から落下した袋体200を1つの束体400とし、搬送方向TD1に直交する搬送方向TD2に沿って、結束ユニット30へ排出する。
 排出部24は、幅方向WDに沿って延びる複数の筒状部材24aと、排出プッシャ24bと、スライド機構24cと、を有する。排出部24は、複数の筒状部材24aを搬送方向TD1に沿って間隔を空けて配置することにより、袋体200を積載する積載面を形成する。
 排出プッシャ24bは、鉛直方向VDに沿って延びるように配置される板状部材である。排出プッシャ24bは、スライド機構24cにより駆動されることにより、幅方向WDに沿って移動する。排出プッシャ24bは、第1積載部21から落下した複数の袋体200を第2積載部22の下方へ移動させる。また、排出プッシャ24bは、第2積載部22の下方へ移動した袋体200と、その袋体200の上方に第2積載部22から落下した袋体200とを積み重ねた束体400を、結束ユニット30へ排出する。
 第1ガイド25は、搬送方向TD1に沿って積載ユニット20に搬送される袋体200の搬送方向TD1の位置決めをする部材である。第1ガイド25は、鉛直方向VDに沿って延びる複数のピンガイド25aと、複数のピンガイド25aが連結されるピンブラケット25bと、を有する。複数のピンガイド25aは、幅方向WDに沿って間隔を空けて配置される。複数のピンガイド25aは、複数のフォーク21aの間、複数のフォーク22aの間、複数のフォーク23aの間を鉛直方向VDに貫通するように配置される。
 搬送ユニット10から第1積載部21へ搬送された袋体200は、ピンガイド25aに前縁が接触することにより搬送方向TD1の位置決めがされる。搬送ユニット10から第2積載部22へ搬送された袋体200は、ピンガイド25aに前縁が接触することにより搬送方向TD1の位置決めがされる。搬送ユニット10から第3積載部23へ搬送された袋体200は、ピンガイド25aに前縁が接触することにより搬送方向TD1の位置決めがされる。
 第2ガイド26は、搬送方向TD1に沿って積載ユニット20に搬送される袋体200の幅方向WDの位置決めをする部材である。第2ガイド26は、中央ガイド板26aと、横揃えガイド板26bと、横揃えガイド板26cと、一対のスライド軸26dと、を有する。中央ガイド板26aと、横揃えガイド板26bと、横揃えガイド板26cとは、一対のスライド軸26dに挿入されている。
 第2ガイド26は、横揃えガイド板26bを第1移動機構(図示略)により幅方向WDに沿って中央ガイド板26aへ向けて移動させることにより、第1列Co1の袋体200の幅方向WDの位置決めを行う。また、第2ガイド26は、横揃えガイド板26cを第2移動機構(図示略)により幅方向WDに沿って中央ガイド板26aへ向けて移動させることにより、第2列Co2の袋体200の幅方向WDの位置決めを行う。
 結束ユニット30は、第1列Co1の複数の袋体200と第2列Co2の複数の袋体200とが積み重ねられた束体400を結束バンド410により結束する装置である。図1に示すように、結束ユニット30は、搬送コンベヤ31と、結束機構32と、を有する。
 図1および図2に示すように、搬送コンベヤ31は、積載ユニット20の排出部24から排出される束体400を搬送方向TD2に沿って搬送する装置である。搬送コンベヤ31は、束体400を搬送方向TD2に沿って搬送し、結束機構32が配置される位置で一旦停止させる。結束機構32は、束体400を結束バンド410(例えば、樹脂テープ,紙テープ等)で結束する。結束機構32により結束バンド410で結束された束体400は、搬送コンベヤ31によって搬送方向TD2に沿って搬送され、集積ユニット500に供給される。
 制御ユニット40は、袋体積載装置100を制御する装置である。制御ユニット40は、搬送ユニット10と、積載ユニット20と、結束ユニット30とを含む袋体積載装置100の各部を制御する。制御ユニット40は、搬送ユニット10により搬送された袋体200を第1積載部21および第2積載部22へ積載する第1積載モードと、搬送ユニット10により搬送された袋体200を第3積載部23へ積載する第2積載モードとを切り替えるよう制御する。
 制御ユニット40は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 次に、図8を参照して、本実施形態の制御ユニット40が実行する袋体積載装置100の制御方法を説明する。図8は、本発明の一実施形態に係る袋体積載装置100の制御方法を示すフローチャートである。
 ステップS101(搬送工程)で、制御ユニット40は、第1積載モードを実行するよう搬送ユニット10,第1積載部21,第2積載部22,第3積載部23を制御する。第1積載モードは、搬送ユニット10により搬送された袋体200を第1積載部21および第2積載部22へ積載するモードである。
 図6および図7に示すように制御ユニット40は、送り込みローラ13により積載ユニット20に供給される袋体200が第1積載部21および第2積載部22へ積載されるように、第1積載部21と第2積載部22と第3積載部23の鉛直方向VDの位置を調整する。制御ユニット40は、第1積載部21と第2積載部22と第3積載部23の鉛直方向VDの位置を調整するように、鉛直移動機構21cと鉛直移動機構22cと鉛直移動機構23cに制御信号を伝達する。
 ステップS102で、制御ユニット40は、第1積載部21および第2積載部22に、予め設定された設定数の袋体200が積載されたかどうかを判定し、YESであればステップS103に処理を進め、NOであればステップS101の処理を再び実行する。
 ステップS103で、制御ユニット40は、第2積載モードを実行するよう第1積載部21,第2積載部22,第3積載部23を制御する。第2積載モードは、搬送ユニット10により搬送された袋体200を第3積載部23へ積載するモードである。
 図9は、図1に示す積載ユニット20の斜視図であり、第2積載モードを実行している状態を示す。図10は、図9に示す積載ユニット20の側面図である。図9および図10に示すように制御ユニット40は、送り込みローラ13により積載ユニット20に供給される袋体200が第3積載部23へ積載されるように、第1積載部21と第2積載部22と第3積載部23の鉛直方向VDの位置を調整する。制御ユニット40は、第1積載部21と第2積載部22と第3積載部23の鉛直方向VDの位置を調整するように、鉛直移動機構21cと鉛直移動機構22cと鉛直移動機構23cに制御信号を伝達する。
 ステップS104(第1落下工程)で、制御ユニット40は、第1列Co1の複数の袋体200を第1積載部21から排出部24へ落下させるよう第1積載部21を制御する。制御ユニット40は、複数のフォーク21aを搬送方向TD1に沿って第1ガイド25から遠ざかるように移動させるように、水平移動機構21bを制御する。
 複数のフォーク21aが搬送方向TD1に沿って第1ガイド25から遠ざかるように移動しても、袋体200は搬送方向TD1に沿って移動しない。これは、第1ガイド25により袋体200が搬送方向TD1に沿って移動することが規制されるからである。複数のフォーク21aに積載されていた袋体200は、複数のフォーク21aが第1ガイド25から引き抜かれると、排出部24へ落下する。
 複数のフォーク21aに積載されていた袋体200が排出部24へ落下すると、図11および図12に示す状態となる。図11は、図1に示す積載ユニット20の斜視図であり、第1積載部21から排出部24に袋体200を落下させた状態を示す。図12は、図11に示す積載ユニット20の側面図である。制御ユニット40は、複数のフォーク21aに積載されていた袋体200を排出部24へ落下させた後に、複数のフォーク21aを図10に示す位置に戻すよう水平移動機構21bを制御する。
 ステップS105(移動工程)で、制御ユニット40は、排出部24に落下した第1列Co1の複数の袋体200を第2積載部22に積載される第2列Co2の複数の袋体200の下方に移動させるよう排出部24を制御する。制御ユニット40は、排出プッシャ24bを幅方向WDに沿って移動させるようスライド機構24cを制御し、第1積載部21から落下した複数の袋体200を第2積載部22の下方へ移動させる。
 第1積載部21から落下した複数の袋体200が第2積載部22の下方へ移動すると、図13に示す状態となる。図13は、図1に示す積載ユニット20の斜視図であり、第1積載部21の下方から第2積載部22の下方に袋体200を移動させた状態を示す。
 ステップS106(第2落下工程)で、制御ユニット40は、第2列Co2の複数の袋体200を第2積載部22から第1列Co1の複数列の袋体200の上方に落下させるよう第2積載部22を制御する。制御ユニット40は、複数のフォーク22aを搬送方向TD1に沿って第1ガイド25から遠ざかるように移動させるように、水平移動機構22bを制御する。
 複数のフォーク22aが搬送方向TD1に沿って第1ガイド25から遠ざかるように移動しても、袋体200は搬送方向TD1に沿って移動しない。これは、第1ガイド25により袋体200が搬送方向TD1に沿って移動することが規制されるからである。複数のフォーク22aに積載されていた袋体200は、複数のフォーク22aが第1ガイド25から引き抜かれると、排出部24へ落下する。
 複数のフォーク22aに積載されていた袋体200が排出部24へ落下すると図14および図15に示す状態となる。図14は、図1に示す積載ユニット20の斜視図であり、第2積載部22から排出部24に袋体200を落下させた状態を示す。図15は、図14に示す積載ユニット20の側面図である。制御ユニット40は、複数のフォーク22aに積載されていた袋体200を排出部24へ落下させた後に、複数のフォーク22aを図7に示す位置に戻すよう水平移動機構22bを制御する。
 図16は、図14に示す束体400を搬送ユニット10側からみた図である。図16に示すように、排出部24の下方側に積載される第1列Co1の複数の袋体200は、幅方向WDの左方側に口部210が配置され右方側に底部220が配置される。袋体200は、口部210の厚みT1よりも底部220の厚みT2の方が厚い。そのため、第1列Co1の複数(図16に示す例では6枚)の袋体200を積み重ねた高さは、口部210側がH1であるのに対し、底部220側がH1よりも高いH2となる。
 一方、排出部24の上方側に積載される第2列Co2の複数の袋体200は、幅方向WDの右方側に口部210が配置され左方側に底部220が配置される。そのため、第2列Co2の複数(図16に示す例では6枚)の袋体200を積み重ねた高さは、口部210側がH1であるのに対し、底部220側がH1よりも高いH2となる。
 そして、第1列Co1の複数の袋体200の上方に第2列Co2の複数の袋体200を積み重ねると、幅方向WDの右方側の高さはH1とH2の合計となり、幅方向WDの左方側の高さもH1とH2の合計となる。したがって、束体400の高さは、幅方向WDの右方側と左方側で等しくなり、束体400の各位置で均一な高さとなる。
 制御ユニット40は、第1列Co1の複数の袋体200の上方に第2列Co2の複数の袋体200を積み重ねた束体400を、排出部24から結束ユニット30に排出するよう排出部24を制御する。束体400が結束ユニット30に排出されると、図17に示す状態となる。図17は、図1に示す積載ユニット20の斜視図であり、排出部24から結束ユニット30に束体400を排出した状態を示す。
 ステップS107(第3落下工程)で、制御ユニット40は、第3積載部23に積載される複数の袋体200を第1積載部21および第2積載部22に落下させるよう第3積載部23を制御する。制御ユニット40は、複数のフォーク23aを搬送方向TD1に沿って第1ガイド25から遠ざかるように移動させるように、水平移動機構23bを制御する。
 複数のフォーク23aが搬送方向TD1に沿って第1ガイド25から遠ざかるように移動しても、袋体200は搬送方向TD1に沿って移動しない。これは、第1ガイド25により袋体200が搬送方向TD1に沿って移動することが規制されるからである。複数のフォーク23aに積載されていた袋体200は、複数のフォーク23aが第1ガイド25から引き抜かれると、第1積載部21および第2積載部22へ落下する。
 複数のフォーク23aに積載されていた袋体200が第1積載部21および第2積載部22へ落下すると図18および図19に示す状態となる。図18は、図1に示す積載ユニット20の斜視図であり、第3積載部23から第1積載部21および第2積載部22に袋体を落下させた状態を示す。図19は、図18に示す積載ユニット20の側面図である。
 制御ユニット40は、複数のフォーク23aに積載されていた袋体200を第1積載部21および第2積載部22へ落下させた後に、鉛直移動機構23cにより、複数のフォーク23aを図19に点線で示す位置に移動させる。図19に点線で示す位置は、鉛直方向VDにおいて、搬送ユニット10により搬送される袋体200が導かれる位置よりも上方の位置である。また、制御ユニット40は、複数のフォーク23aを図6に示す位置に戻すよう水平移動機構23bを制御する。
 図19に示すように、複数のフォーク23aが第1ガイド25から引き抜かれると、搬送ユニット10から積載ユニット20に搬送される袋体200が、第1積載部21および第2積載部22に積載される状態となる。制御ユニット40は、ステップS107で第3積載部23の袋体200を第1積載部21および第2積載部22に落下させるよう積載ユニット20を制御することにより、第2積載モードを第1積載モードに切り替える。そして、制御ユニット40は、第1積載部21および第2積載部22の鉛直方向VDの位置が図6に示す位置となるように、鉛直移動機構21cおよび鉛直移動機構22cに制御信号を伝達する。
 ステップS108で、制御ユニット40は、本フローチャートの処理を終了するかどうかを判定し、YESであれば本フローチャートの処理を終了し、NOであればステップS101へ処理を戻す。
 以上の説明においては、搬送ユニット10が、製袋機300から搬送方向TD1に沿って第1列Co1と第2列Co2の2列で供給される袋体200を搬送する例を説明した。ただし、本実施形態の搬送ユニット10は、製袋機300から搬送方向TD1に沿って第1列Co1または第2列Co2のいずれか1列で供給される袋体200を搬送することもできる。この場合、積載ユニット20は、1列で供給される複数の袋体200を第1積載部21または第2積載部22に積載し、排出部24へ落下させ、結束ユニット30に排出する。本実施形態の袋体積載装置100は、第1列Co1と第2列Co2の2列で供給される袋体200を処理するモードと、第1列Co1または第2列Co2のいずれか1列で供給される袋体200を処理するモードとを切り替えることができる。
 以上説明した本実施形態の袋体積載装置100が奏する作用および効果について説明する。
 本実施形態の袋体積載装置100によれば、搬送ユニット10により搬送されて第1積載部21に積載される第1列Co1の袋体200が第1積載部21から排出部24に落下する。排出部24に落下した第1列Co1の複数の袋体200は、第2積載部22に積載される第2列Co2の複数の袋体200の下方へ移動する。第2積載部22に積載される第2列Co2の複数の袋体200が、第1列Co1の複数の袋体200の上方に落下し、第1列Co1の複数の袋体200と第2列Co2の複数の袋体200とが積み重なった束体400が形成される。
 本実施形態の袋体積載装置100によれば、第1列Co1の袋体200の幅方向WDの一方の厚みT2が幅方向WDの他方の厚みT1より厚く、第2列Co2の袋体の幅方向WDの一方の厚みT1が幅方向WDの他方の厚みT2より薄い。そのため、第1列Co1の複数の袋体200の全体の厚みは幅方向WDの一方の方が他方よりも厚くなり、第2列Co2の複数の袋体200の全体の厚みは幅方向WDの一方の方が他方よりも薄くなる。そして、第1列Co1の複数の袋体200の全体と第2列Co2の複数の袋体200の全体とを重ね合わせた束体400は、幅方向WDの一方の厚みと幅方向WDの他方の厚みとの差が均一化される。
 このように、本実施形態の袋体積載装置100によれば、複数の袋体200が積載された束体400を各位置で均一な高さとすることができる。また、袋体200の向きを1つずつ変更する動作が不要であるため、複数の袋体200を積載して束体400を形成するのに要する時間を短縮することができる。
 本実施形態の袋体積載装置100によれば、搬送ユニット10により搬送された袋体200を第3積載部23へ積載する第2積載モードにおいて、第1列Co1の複数の袋体200が第1積載部21から排出部24に落下し、第2列Co2の複数の袋体200が第2積載部22から排出部24に落下する。そのため、第1積載部21および第2積載部22から排出部24に袋体200を落下させる動作を行う際に、搬送ユニット10による袋体200の搬送動作を停止させずに、搬送ユニット10から搬送される袋体を第3積載部23へ積載することができる。
 また、本実施形態の袋体積載装置100によれば、第2積載モードにおいて、第3積載部23に積載される複数の袋体200を第1積載部21および第2積載部22に落下させる。そのため、第1積載部21および第2積載部22から排出部24に袋体200を落下させる動作中に搬送ユニット10から第3積載部23に搬送された袋体を第1積載部21および第2積載部22に導くことができる。
 また、本実施形態の袋体積載装置100によれば、排出部24において幅方向WDの一方の厚みと幅方向WDの他方の厚みとの差が均一化された束体を、排出部24から結束ユニット30に排出し、結束バンド410により結束することができる。
10   搬送ユニット(搬送部)
20   積載ユニット
21   第1積載部
21a  フォーク
21b  水平移動機構
21c  鉛直移動機構
22   第2積載部
22a  フォーク
22b  水平移動機構
22c  鉛直移動機構
23   第3積載部
23a  フォーク
23b  水平移動機構
23c  鉛直移動機構
24   排出部
24a  筒状部材
24b  排出プッシャ
24c  スライド機構
25   第1ガイド
26   第2ガイド
30   結束ユニット(結束部)
31   搬送コンベヤ
32   結束機構
40   制御ユニット(制御部)
100  袋体積載装置
200  袋体
210  口部
220  底部
230,240 シール部
300  製袋機
400  束体
410  結束バンド
500  集積ユニット
Co1  第1列
Co2  第2列
T1,T2 厚み
TD1,TD2 搬送方向
VD   鉛直方向
WD   幅方向
 

Claims (6)

  1.  袋体を積載する袋体積載装置であって、
     搬送方向に沿って複数列で前記袋体を搬送する搬送部と、
     前記搬送部により搬送された第1列の前記袋体を積載する第1積載部と、
     前記搬送部により搬送された第2列の前記袋体を積載する第2積載部と、
     前記第1積載部および前記第2積載部の下方に配置される排出部と、
     前記袋体積載装置を制御する制御部と、を備え、
     前記制御部は、
     前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御し、
     前記排出部に落下した前記第1列の複数の前記袋体を前記第2積載部に積載される前記第2列の複数の前記袋体の下方に移動させるよう前記排出部を制御し、
     前記第2列の複数の前記袋体を前記第2積載部から前記第1列の複数の前記袋体の上方に落下させるよう前記第2積載部を制御する袋体積載装置。
  2.  前記搬送部により搬送された複数列の前記袋体を積載するとともに前記第1積載部および前記第2積載部の上方に配置される第3積載部と、を備え、
     前記制御部は、
     前記搬送部により搬送された前記袋体を前記第1積載部および前記第2積載部へ積載する第1積載モードと、前記搬送部により搬送された前記袋体を前記第3積載部へ積載する第2積載モードとを切り替えるよう制御し、
     前記第2積載モードにおいて、前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御し、前記第2列の複数の前記袋体を前記第2積載部から前記排出部に落下させるよう前記第2積載部を制御し、前記第3積載部に積載される複数の前記袋体を前記第1積載部および前記第2積載部に落下させるよう前記第3積載部を制御する請求項1に記載の袋体積載装置。
  3.  前記第1列の複数の前記袋体と前記第2列の複数の前記袋体とが積み重ねられた束体を結束バンドにより結束する結束部を備え、
     前記制御部は、前記束体を前記結束部へ排出するよう前記排出部を制御する請求項1または請求項2に記載の袋体積載装置。
  4.  袋体を積載する袋体積載装置の制御方法であって、
     前記袋体積載装置は、
     搬送方向に沿って複数列で前記袋体を搬送する搬送部と、
     前記搬送部により搬送された第1列の前記袋体を積載する第1積載部と、
     前記搬送部により搬送された第2列の前記袋体を積載する第2積載部と、
     前記第1積載部および前記第2積載部の下方に配置される排出部と、を備え、
     前記第1積載部に前記第1列の複数の前記袋体を積載し、前記第2積載部に前記第2列の複数の前記袋体を積載するよう前記搬送部を制御する搬送工程と、
     前記第1列の複数の前記袋体を前記第1積載部から前記排出部に落下させるよう前記第1積載部を制御する第1落下工程と、
     前記排出部に落下した前記第1列の複数の前記袋体を前記第2積載部に積載される前記第2列の複数の前記袋体の下方に移動させるよう前記排出部を制御する移動工程と、
     前記第2列の複数の前記袋体を前記第2積載部から前記第1列の複数の前記袋体の上方に落下させるよう前記第2積載部を制御する第2落下工程と、を備える袋体積載装置の制御方法。
  5.  前記袋体積載装置は、
     前記搬送部により搬送された複数列の前記袋体を積載するとともに前記第1積載部および前記第2積載部の上方に配置される第3積載部を備え、
     前記搬送部により搬送された前記袋体を前記第1積載部および前記第2積載部へ積載する第1積載モードから前記搬送部により搬送された前記袋体を前記第3積載部へ積載する第2積載モードへ切り替える切替工程と、
     前記第3積載部に積載される複数の前記袋体を前記第1積載部および前記第2積載部に落下させるよう前記第3積載部を制御する第3落下工程と、を備え、
     前記第2積載モードにおいて、前記第1落下工程と、前記第2落下工程と、前記第3落下工程とが実行される請求項4に記載の袋体積載装置の制御方法。
  6.  前記袋体積載装置は、前記第1列の複数の前記袋体と前記第2列の複数の前記袋体とが積み重ねられた束体を結束バンドにより結束する結束部を備え、
     前記束体を前記結束部へ排出するよう前記排出部を制御する排出工程を備える請求項4または請求項5に記載の袋体積載装置の制御方法。
     
PCT/JP2023/000981 2022-01-24 2023-01-16 袋体積載装置および袋体積載装置の制御方法 WO2023140218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008657 2022-01-24
JP2022008657A JP2023107453A (ja) 2022-01-24 2022-01-24 袋体積載装置および袋体積載装置の制御方法

Publications (1)

Publication Number Publication Date
WO2023140218A1 true WO2023140218A1 (ja) 2023-07-27

Family

ID=87348759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000981 WO2023140218A1 (ja) 2022-01-24 2023-01-16 袋体積載装置および袋体積載装置の制御方法

Country Status (2)

Country Link
JP (1) JP2023107453A (ja)
WO (1) WO2023140218A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812267B1 (ja) * 1970-04-18 1973-04-19
JPH0526808U (ja) * 1991-09-13 1993-04-06 株式会社コムテツク 製袋機の袋排出装置
JP2001247250A (ja) * 2000-03-07 2001-09-11 Konica Corp インクジェットプリンタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812267B1 (ja) * 1970-04-18 1973-04-19
JPH0526808U (ja) * 1991-09-13 1993-04-06 株式会社コムテツク 製袋機の袋排出装置
JP2001247250A (ja) * 2000-03-07 2001-09-11 Konica Corp インクジェットプリンタ

Also Published As

Publication number Publication date
JP2023107453A (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
US5897291A (en) Apparatus and method for forming arrays of articles for packaging
JP5728741B2 (ja) カートナー
US5183380A (en) Apparatus including an endless pocket conveyor for automatically transferring stacks of packaging blanks to a blank magazine of a packaging machine
WO2023140218A1 (ja) 袋体積載装置および袋体積載装置の制御方法
KR101958550B1 (ko) 김 이송시스템 및 그 이송방법
JP7129686B2 (ja) 包装物集積装置
JP5822480B2 (ja) 箱詰め装置
US7500819B2 (en) Stack-forming arrangement
JP5885413B2 (ja) 箱詰め装置
JPS63315440A (ja) シート材コンベア
RU2468972C2 (ru) Установка для укладки документов в коробки
TW425366B (en) Carton loading mechanism
JP7154541B2 (ja) 大束作成装置
JP2936061B2 (ja) 折り畳まれたダンボールケースの積み重ね方法およびその装置
JP3464035B2 (ja) 折り畳み箱搬送装置
JPS58170579A (ja) 紙葉類の処理装置
JP3968105B2 (ja) 角底紙袋の堆積装置
US9039591B2 (en) Bag manufacturing system with a storage device for storing tube pieces
JP6333572B2 (ja) 集積方法及び装置
JP2007050908A (ja) 商品の自動段積包装装置
JP5446771B2 (ja) 用紙後処理装置
JP3649779B2 (ja) 果菜物搬送帯
JP2004168491A (ja) 物品搬送装置及びそれを備えた箱詰め装置
JPH10250847A (ja) 平物品のパレット積み方法
JP2004359323A (ja) 物品集積搬送カートン充填システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743212

Country of ref document: EP

Kind code of ref document: A1