WO2023140011A1 - 金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜 - Google Patents

金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜 Download PDF

Info

Publication number
WO2023140011A1
WO2023140011A1 PCT/JP2022/046873 JP2022046873W WO2023140011A1 WO 2023140011 A1 WO2023140011 A1 WO 2023140011A1 JP 2022046873 W JP2022046873 W JP 2022046873W WO 2023140011 A1 WO2023140011 A1 WO 2023140011A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal nanowires
acid
protective layer
corrosion inhibitor
Prior art date
Application number
PCT/JP2022/046873
Other languages
English (en)
French (fr)
Inventor
俊次 黒岡
和人 嶋田
雄一 糟谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023140011A1 publication Critical patent/WO2023140011A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to a method for producing metal nanowires, metal nanowires, a dispersion, and a conductive film.
  • Patent Document 1 describes a method for obtaining metal nanowires by subjecting an aluminum substrate to anodizing treatment, aluminum substrate removal treatment, penetrating treatment, metal filling treatment and anodized film removal treatment in this order ([0025] [Fig. 1]).
  • an object of the present invention is to provide a method for producing metal nanowires, a metal nanowire, a dispersion liquid, and a conductive film that can obtain metal nanowires with low connection resistance.
  • the present inventors have found that metal nanowires with low connection resistance can be obtained by forming a protective layer containing a corrosion inhibitor after removing the anodized film and the valve metal substrate to recover the needle-shaped metal, and completed the present invention. That is, the inventors have found that the above object can be achieved by the following configuration.
  • the present invention it is possible to provide a method for producing metal nanowires, a metal nanowire, a dispersion liquid, and a conductive film that can obtain metal nanowires with low connection resistance.
  • FIG. 1A is a schematic cross-sectional view of a valve metal substrate before the anodizing step in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the structure after the anodization step in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • FIG. 1C is a schematic cross-sectional view of the structure after the metal filling step in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • FIG. 1D is a schematic cross-sectional view of the structure after the template removal step in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • FIG. 1E is a schematic cross-sectional view of the structure (metal nanowires) after the step of forming a protective layer in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • the metal nanowire production method of the present invention (hereinafter also referred to as the "production method of the present invention") comprises an anodizing step of forming an anodized film having pores on the surface of a valve metal substrate, a metal filling step of filling the pores with metal, a template removing step of removing the anodized film and the valve metal substrate to obtain needle-like metal, and a protective layer forming step of forming a protective layer containing a corrosion inhibitor on the needle-like metal.
  • metal nanowires with low connection resistance can be obtained by forming a protective layer containing a corrosion inhibitor after removing the anodized film and the valve metal substrate to recover the needle-like metal (after the template removal step).
  • the reason why metal nanowires with low connection resistance could be obtained is not clear in detail, but is presumed to be roughly as follows. That is, it is considered that the formation of an oxide film on the surface of the needle-shaped metal was prevented by providing the protective layer containing the corrosion inhibitor on the needle-shaped metal, so that the connection resistance could be maintained low.
  • the surface of the valve metal substrate 1 is anodized to form an anodized film 3 having pores (micropores) 2 on the surface of the valve metal substrate 1.
  • the pores 2 are filled with metal 4 in a metal filling step.
  • the anodized film 3 and the valve metal substrate 1 are removed in the template removing step to obtain the needle-shaped metal 5.
  • metal nanowires 10 in which a protective layer 6 containing a corrosion inhibitor is formed on the needle-like metal 5 in the protective layer forming step can be obtained.
  • valve metal substrate used in the manufacturing method of the present invention is not particularly limited as long as it contains a valve metal.
  • valve metals include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
  • aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, in the manufacturing method of the present invention, it is preferable to use a substrate containing aluminum (hereinafter abbreviated as "aluminum substrate”) as the bubble metal substrate.
  • the aluminum substrate is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and a trace amount of foreign elements; a substrate obtained by vapor-depositing high-purity aluminum on low-purity aluminum (e.g., recycled material);
  • the aluminum purity of the surface of the aluminum substrate to be anodized in the anodizing step described later is preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and even more preferably 99.99% by mass or more.
  • the regularity of the arrangement of the through passages is sufficient.
  • the surface of the aluminum substrate to be anodized in the anodizing step to be described later is subjected in advance to heat treatment, degreasing treatment and mirror finish treatment.
  • the heat treatment, degreasing treatment, and mirror finish treatment can be performed in the same manner as those described in paragraphs [0044] to [0054] of JP-A-2008-270158.
  • the anodizing step is a step of anodizing the surface of the valve metal substrate to form a porous anodized film on the surface of the valve metal substrate.
  • anodizing treatment performed in the anodizing step a conventionally known method can be used, but in the mold removing step described later, it is preferable to use a self-ordering method or a constant voltage treatment because needle-shaped metals with less variation in diameter can be obtained.
  • the self-ordering method of the anodizing treatment and the constant voltage treatment the same treatments as those described in paragraphs [0056] to [0108] and [Fig. 3] of JP-A-2008-270158 can be applied.
  • the solution used for the anodizing treatment is preferably an acid solution, more preferably sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartaric acid, malic acid, citric acid, etc.
  • sulfuric acid, phosphoric acid and oxalic acid are more preferable, and oxalic acid is particularly preferable.
  • These acids can be used alone or in combination of two or more.
  • the voltage is preferably 3 to 300 V
  • the electrolysis time is preferably 0.5 to 30 hours
  • the electrolyte concentration is 0.5 to 15% by mass
  • the liquid temperature is -5 to 25 ° C.
  • the current density is 0.05 to 15 A / dm. 2
  • the voltage is 5 to 250 V
  • the electrolysis time is 1 to 25 hours
  • the electrolyte concentration is 1 to 10% by mass
  • the liquid temperature is 0 to 20 ° C.
  • the current density is 0.1 to 10 A / dm. 2
  • a voltage of 10 to 200 V and an electrolysis time of 2 to 20 hours.
  • the treatment time of the anodizing treatment is preferably 0.5 minutes to 16 hours, more preferably 1 minute to 12 hours, and even more preferably 2 minutes to 8 hours.
  • the thickness of the anodized film formed by the anodizing step is not particularly limited, but from the viewpoint of adjusting the length of the metal nanowires, it is preferably 0.3 to 300 ⁇ m, more preferably 0.5 to 120 ⁇ m, and even more preferably 0.5 to 100 ⁇ m.
  • the thickness of the anodized film can be calculated by cutting the anodized film in the thickness direction with a focused ion beam (FIB), taking a surface photograph (magnification of 50,000 times) of the cross section with a field emission scanning electron microscope (FE-SEM), and measuring the average value at 10 points.
  • FIB focused ion beam
  • FE-SEM field emission scanning electron microscope
  • the density of the pores formed by the anodizing step is not particularly limited, but is preferably 2 million/mm 2 or more, more preferably 10 million/mm 2 or more , even more preferably 50 million/mm 2 or more, and particularly preferably 100 million/mm 2 or more.
  • the porous density can be measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
  • the average opening diameter of the pores formed by the anodizing step is not particularly limited, but from the viewpoint of adjusting the diameter of the metal nanowires, it is preferably 5 to 500 nm, more preferably 20 to 400 nm, even more preferably 40 to 200 nm, and particularly preferably 50 to 100 nm.
  • the average aperture diameter of the pores can be calculated as an average value of 50 points measured by taking a surface photograph (magnification: 50,000 times) with an FE-SEM.
  • the metal filling step is a step of filling the inside of the porous with metal after the anodizing step.
  • the metal is preferably a material having an electrical resistivity of 10 3 ⁇ cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), zinc (Zn), cobalt (Co), and the like.
  • Au gold
  • silver Au
  • Cu copper
  • Al aluminum
  • magnesium Mg
  • nickel nickel
  • Zn zinc
  • cobalt Co
  • Cu gold
  • Au, Al, Ni, and Co are preferred
  • Cu, Ni, and Co are more preferred, and Cu is even more preferred, from the viewpoint of electrical conductivity.
  • Examples of the method for filling the interior of the porous with the metal include the same methods as those described in paragraphs [0123] to [0126] and [Fig. 4] of JP-A-2008-270158.
  • the metal filling step preferably includes a plating step because it is difficult for the metal nanowires to be produced to include hollow portions.
  • a method of filling the inside of the porous with the metal it is preferable to use an electrolytic plating treatment method, and for example, an electrolytic plating method or an electroless plating method can be used.
  • an electrolytic plating method or an electroless plating method it is difficult to selectively deposit (grow) a metal in the pores with a high aspect ratio by the conventionally known electroplating method used for coloring. It is considered that this is because the deposited metal is consumed in the pores and the plating does not grow even if electrolysis is performed for a certain period of time or more.
  • the manufacturing method of the present invention it is necessary to provide a pause time during pulse electrolysis or constant potential electrolysis when metal is filled by electroplating.
  • the pause time should be 10 seconds or more, preferably 30 to 60 seconds.
  • the electrolysis voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte to be used in advance and perform constant potential electrolysis within +1 V of the potential.
  • a conventionally known plating solution can be used as the plating solution.
  • an aqueous solution of copper sulfate is generally used, and the concentration of copper sulfate is preferably 1 to 300 g/L, more preferably 100 to 200 g/L.
  • the addition of hydrochloric acid to the electrolytic solution can promote the deposition. In this case, the hydrochloric acid concentration is preferably 10-20 g/L.
  • the manufacturing method of the present invention it is preferable to use a treatment method in which an AC electroplating method and a DC electroplating method are combined in this order as the electroplating treatment method.
  • a voltage is applied with a sinusoidally modulated voltage at a predetermined frequency.
  • the waveform for voltage modulation is not limited to a sine wave, and may be, for example, a rectangular wave, a triangular wave, a sawtooth wave, or a reverse sawtooth wave.
  • the direct-current electroplating method can use the processing method in the electroplating method mentioned above suitably.
  • the metal filling in the metal filling step is performed on the area from the bottom of the pore to the middle of the opening, out of the entire area from the bottom of the pore to the opening, as shown in FIG.
  • the template removing step is a step of removing the anodized film and the bubble metal substrate after the metal filling step to obtain needle-like metal.
  • the method for removing the anodized film and the bubble metal substrate is not particularly limited, and for example, it may be removed by polishing.
  • the template removal step include a dissolution step, that is, at least part of the anodized film and the bubble metal substrate is removed by dissolution.
  • the template removal step preferably includes a two-step removal step of removing the valve metal substrate and then removing the anodized film, and more preferably, both of the two removal steps are steps of removal by dissolution treatment.
  • the removal of the valve metal substrate is preferably carried out by a dissolution treatment using a treatment liquid that easily dissolves the valve metal but does not readily dissolve the anodized film.
  • a treatment liquid preferably has a dissolution rate for the valve metal of 1 ⁇ m/minute or more, more preferably 3 ⁇ m/minute or more, and even more preferably 5 ⁇ m/minute or more.
  • the dissolution rate in the anodized film is preferably 0.1 nm/min or less, more preferably 0.05 nm/min or less, and even more preferably 0.01 nm/min or less.
  • the treatment liquid preferably contains at least one metal compound with a lower ionization tendency than the valve metal and has a pH of 4 or less or 8 or more, more preferably 3 or less or 9 or more, and even more preferably 2 or less or 10 or more.
  • Such a treatment liquid is based on an acid or alkaline aqueous solution, and is preferably compounded with, for example, manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, gold compounds (e.g., chloroplatinic acid), their fluorides, their chlorides, and the like.
  • an acid aqueous solution base is preferred, and a chloride blend is preferred.
  • a treatment solution obtained by blending mercury chloride with an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution obtained by blending an aqueous hydrochloric acid solution with copper chloride (hydrochloric acid/copper chloride) are preferable from the viewpoint of treatment latitude.
  • the composition of such a treatment liquid is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, or the like can be used.
  • the acid or alkali concentration of such a treatment liquid is preferably 0.01 to 10 mol/L, more preferably 0.05 to 5 mol/L.
  • the treatment temperature using such a treatment liquid is preferably -10°C to 80°C, more preferably 0°C to 60°C.
  • the removal of the valve metal substrate is performed by bringing the valve metal substrate after the metal filling step into contact with the above treatment liquid.
  • the contact method is not particularly limited, and examples thereof include dipping and spraying. Among them, the immersion method is preferred.
  • the contact time at this time is preferably 10 seconds to 5 hours, more preferably 1 minute to 3 hours.
  • a solvent that selectively dissolves the anodized film without dissolving the metal filled in the porous layer can be used to remove the anodized film, and both an alkaline aqueous solution and an acid aqueous solution can be used.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide, and it is more preferable to use a potassium hydroxide aqueous solution.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60°C, more preferably 15 to 45°C, further preferably 20 to 35°C.
  • an aqueous acid solution it is preferable to use an aqueous solution of an inorganic acid such as chromic acid, sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, oxalic acid, or a mixture thereof, and more preferably an aqueous solution of chromic acid.
  • the concentration of the acid aqueous solution is preferably 1 to 10% by mass.
  • the temperature of the acid aqueous solution is preferably 15 to 80°C, more preferably 20 to 60°C, further preferably 30 to 50°C.
  • the removal of the anodized film is carried out by bringing it into contact with the above-described alkaline aqueous solution and acid aqueous solution after the metal filling step (preferably after removing the valve metal substrate).
  • the contact method is not particularly limited, and examples thereof include dipping and spraying. Among them, the immersion method is preferred.
  • the immersion time in the alkaline aqueous solution and the acid aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, even more preferably 8 to 90 minutes, and particularly preferably 10 to 90 minutes. Among them, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
  • the method of collecting the needle-like metal in the mold removing step is not particularly limited, but after removing the anodized film and the valve metal substrate, the needle-like metal can be collected by performing a separation operation such as filtration using a filter or the like or centrifugation.
  • the protective layer forming step is a step of forming a protective layer containing a corrosion inhibitor on the needle-like metal after the mold removing step.
  • the corrosion inhibitor is not particularly limited, and known corrosion inhibitors can be applied.
  • Corrosion inhibitors include, for example, compounds containing at least one of nitrogen, oxygen and sulfur atoms. From the viewpoint of durability, the corrosion inhibitor is preferably a heterocyclic compound containing at least one of a nitrogen atom and an oxygen atom, more preferably a compound containing a five-membered ring structure containing one or more nitrogen atoms, and particularly preferably at least one compound selected from the group consisting of a compound containing a triazole structure, a compound containing a benzimidazole structure, and a compound containing a thiadiazole structure.
  • the 5-membered ring structure containing one or more nitrogen atoms may be a monocyclic structure or a partial structure constituting a condensed ring.
  • the corrosion inhibitor is preferably a compound containing at least one of a polar group-containing acid and a polar group-containing base, since it is likely to be adsorbed on the surface of the needle-like metal.
  • polar groups possessed by polar group-containing acids and polar group-containing bases include carboxylic acid groups (carboxy groups), sulfonic acid groups (sulfo groups), phosphonic acid groups, phosphoric acid groups, primary to quaternary ammonium bases, carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, and phosphate groups.
  • the corrosion inhibitor is preferably a compound containing a carboxyl group because it bonds with metal ions to form complex ions and the surface of the needle-like metal is easily protected.
  • corrosion inhibitors include imidazole, benzimidazole, 1,2,4-triazole, benzotriazole (BTA), tolyltriazole (TTA), butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole (DMTDA), 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole (MBT), 2-mercaptobenzimidazole and the like.
  • corrosion inhibitors include aliphatic carboxylic acids such as acetic acid, propionic acid, palmitic acid, stearic acid, lauric acid, arachidic acid, terephthalic acid, and oleic acid; carboxylic acids such as glycolic acid, lactic acid, oxalic acid, malic acid, tartaric acid, and citric acid; Aminopolycarboxylic acids such as diaminetetraacetic acid (GEDA); uric acid; gallic acid;
  • aliphatic carboxylic acids such as acetic acid, propionic acid, palmitic acid, stearic acid, lauric acid, arachidic acid, terephthalic acid, and oleic acid
  • carboxylic acids such as glycolic acid, lactic acid, oxalic acid, malic acid, tartaric acid, and citric acid
  • Aminopolycarboxylic acids such as diaminetetraacetic acid (GEDA); uric acid; gallic acid;
  • the corrosion inhibitor may be used singly or in combination of two or more.
  • the corrosion inhibitor preferably contains a nitrogen atom-containing compound (nitrogen-containing compound), more preferably a nitrogen-containing compound, and more preferably a heterocyclic compound containing at least one of a nitrogen atom and a sulfur atom, for the reason of good stability over time.
  • the method of forming such a protective layer containing a corrosion inhibitor is not particularly limited, and examples include a method of adding the needle-like metal recovered in the mold removing step to an aqueous solution containing the corrosion inhibitor and stirring; a method of adding a corrosion inhibitor to a washing solvent for washing the needle-like metal recovered in the mold removing step;
  • Step of reducing or removing Since the production method of the present invention can obtain metal nanowires with lower connection resistance, it is preferable to further include a step of reducing or removing the surface oxide layer of the needle-shaped metal between the template removing step and the protective layer forming step.
  • the step of reduction or removal include a step of performing immersion treatment using an alkaline aqueous solution and an acid aqueous solution described in the removal treatment of the anodized film described above.
  • the metal nanowire of the present invention has an acicular metal and a protective layer covering at least part of the acicular metal.
  • the protective layer contains a corrosion inhibitor.
  • the needle-shaped metal that the metal nanowire of the present invention has is not particularly limited as long as it is a needle-shaped structure (core material) made of metal.
  • Examples of the metal include those described in the metal filling step in the manufacturing method of the present invention described above.
  • the average length of the needle-shaped metal is not particularly limited, but it is preferably 0.2 to 200 ⁇ m, more preferably 0.2 to 100 ⁇ m, even more preferably 0.3 to 80 ⁇ m.
  • the average diameter of the needle-shaped metal is not particularly limited, but is preferably 5 to 500 nm, more preferably 20 to 400 nm, even more preferably 40 to 200 nm, and particularly preferably 50 to 100 nm, because the metal nanowires can be suitably used for forming a transparent conductive film.
  • the average length and diameter of the needle-shaped metal can be calculated by observing 300 metal nanowires with FE-SEM, measuring the length and diameter of the needle-shaped metal excluding the protective layer, and calculating the average value.
  • the ratio of the length to the diameter of the needle-shaped metal (hereinafter also abbreviated as "aspect ratio") is preferably 10 or more, more preferably 10 to 2000, and even more preferably 12 to 1000, because the entanglement of the metal nanowires is suppressed and the dispersion stability of the dispersion of the present invention described later is improved.
  • the protective layer of the metal nanowires of the present invention is a protective layer that covers at least part of the needle-like metal and contains a corrosion inhibitor.
  • the corrosion inhibitor include those described in the protective layer forming step in the manufacturing method of the present invention.
  • the average thickness of the protective layer is not particularly limited in the present invention, it is preferably 0.1 to 10 nm, more preferably 1 to 5 nm.
  • the dispersion of the present invention is a dispersion containing the metal nanowires of the present invention described above.
  • the content (concentration) of the metal nanowires in the dispersion of the present invention is not particularly limited, but the dispersion stability over time is maintained well, and the uniformity during dilution is also good.
  • Dispersion solvent As the dispersion solvent in the dispersion liquid of the present invention, water is mainly used, and an organic solvent miscible with water can be used in combination at a ratio of 80% by volume or less.
  • an organic solvent for example, an alcohol compound having a boiling point of 50° C. to 250° C., more preferably 55° C. to 200° C. is preferably used.
  • the alcohol-based compound is not particularly limited and can be appropriately selected depending on the intended purpose. Specific examples thereof include polyethylene glycol, polypropylene glycol, alkylene glycol, glycerol, etc.
  • ethylene glycol diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol, which have low viscosity at room temperature, are preferred, but those with a large carbon number such as pentanediol, hexanediol, octanediol, and polyethylene glycol are also usable.
  • the most preferred solvent is diethylene glycol.
  • surfactant It is preferable to use a surfactant in the dispersion of the present invention for the reason that the dispersion stability is better.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, fluorine-based surfactants, and the like, and these may be used singly or in combination of two or more.
  • the nonionic surfactant is not particularly limited, and conventionally known ones can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkylphenyl ethers, polyoxyethylene polystyrylphenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol fatty acid partial esters, propylene glycol monofatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, polyoxyethylenated castor oils.
  • polyoxyethylene glycerin fatty acid partial esters polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N,N-bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid esters, trialkylamine oxides, polyethylene glycol (e.g., polyethylene glycol monostearate), and copolymers of polyethylene glycol and polypropylene glycol.
  • the anionic surfactant is not particularly limited, and conventionally known ones can be used.
  • the cationic surfactant is not particularly limited, and conventionally known ones can be used. Examples include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, polyethylene polyamine derivatives.
  • amphoteric surfactant is not particularly limited, and conventionally known ones can be used. Examples include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imitazolines.
  • polyoxyethylene can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, and polyoxybutylene, and these surfactants can also be used in the present invention.
  • preferred surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include anionic surfactants such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric surfactants such as perfluoroalkyl betaine; cationic surfactants such as perfluoroalkyl trimethylammonium salts; and nonionic types such as urethane containing groups and lipophilic groups.
  • Fluorinated surfactants described in JP-A-62-170950, JP-A-62-226143 and JP-A-60-168144 are also suitable.
  • the HLB value is a value representing the degree of affinity of a surfactant for water and oil (water-insoluble organic compounds).
  • the HLB value ranges from 0 to 20, and the closer to 0, the higher the lipophilicity, and the closer to 20, the higher the hydrophilicity.
  • these surfactants may be used singly or in combination of two or more. Moreover, the content of these surfactants is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, relative to the total mass of the metal nanowires.
  • an inorganic glass component containing at least one element selected from the group consisting of silicon, lithium, boron and phosphorus, because not only does the affinity for water and other solvents that serve as the dispersion solvent be maintained, but also the film quality of the conductive film formed using the dispersion of the present invention is improved.
  • the inorganic glass component include raw material components such as silicate glass, borate glass, phosphate glass, and lithium salt glass, that is, sodium silicate, sodium borate, sodium phosphate, metal lithium oxide salts, and the like. Specifically, for example, No. 3 sodium silicate aqueous solution, sodium borate (NaBO 3 ), Li nitrate, sodium dihydrogen phosphate, and the like.
  • the dispersion of the present invention can be a water-soluble organic molecule having a hydroxyl group, a carboxyl group, a sulfone group, a phosphoric acid group, an amino group, an SH group, or the like at the end.
  • the organic substance having an SH group when a dispersion in which metal nanowires are dispersed in an aqueous solution is mixed with a water-insoluble liquid containing a water-insoluble dispersant, the water-insoluble dispersant having a high affinity SH group can be adsorbed on the surface of the Au nanowires, and the Au nanowires can be efficiently moved to the water-insoluble fraction, facilitating separation and concentration.
  • the organic substance having an SH group is not particularly limited as long as it dissolves in a non-aqueous liquid, but if it is a short-molecular organic substance with a low vaporization temperature, it can be removed by heat treatment such as sintering.
  • Examples of such low-molecular-weight organic substances include 1-octanethiol and 2-furylmethanethiol.
  • a solvent containing an organic substance having an SH group is added to an aqueous gold nanowire dispersion solution, heated, stirred, and then centrifuged to collect the solvent fraction, which concentrates the Au nanowire component. By removing the solvent by evaporation and redispersing it, a dispersion having a desired concentration can be prepared.
  • the dispersion of the present invention may further contain conductive particles other than metal nanowires.
  • the conductive particles preferably contain a metal, more preferably at least one metal selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc and cobalt.
  • the conductive particles may contain one or more conductive components other than metals.
  • the shape of the conductive particles is not particularly limited, and may be either solid or hollow.
  • the average length of the minimum enclosing ellipsoid of the conductive particles is preferably 0.01 ⁇ m or more and 50 ⁇ m or less.
  • the average major axis of the minimum enclosing ellipsoid of the conductive particles is preferably 1 to 10 times the average minor axis.
  • minimum enclosing ellipsoid refers to an ellipsoid having the smallest volume among ellipsoids containing conductive particles, and includes ellipsoids (i.e., spheres) having the same major and minor diameters.
  • the average major axis of the minimum enclosing ellipsoid can be obtained by observing a cross section in the thickness direction of a layer formed using a dispersion with a microscope (e.g., an electron microscope), measuring the major axis of 100 arbitrary fine particles, and calculating and averaging them.
  • the average short diameter of the minimum bounding ellipsoid can be obtained by observing a cross section in the thickness direction of a layer formed using a dispersion with a microscope (for example, an electron microscope), measuring the short diameters of 100 arbitrary fine particles, and calculating and averaging them.
  • the median diameter (D50) refers to the median diameter of the diameter when the volume of the conductive particles is approximated to a sphere, and can be determined by a laser diffraction/scattering method or a dynamic light scattering method.
  • the content of the conductive particles when the conductive particles are contained is not particularly limited.
  • the dispersion liquid of the present invention can be suitably used as a conductive ink for forming circuit patterns on wiring boards.
  • the content (concentration) of the metal nanowires in the dispersion of the present invention is preferably 10 to 30% by mass, more preferably 15 to 20% by mass, based on the total mass of the dispersion of the present invention, because a circuit pattern can be printed using an inkjet method.
  • the conductive film of the present invention is a conductive film formed using the dispersion liquid of the present invention described above.
  • the concept of the conductive film includes not only the film formed on the entire surface of the desired substrate surface, but also the above-described circuit pattern and the like. Further, the substrate on which the conductive film is formed and the method of forming the conductive film are not particularly limited.
  • the content of the metal nanowires is preferably 0.005 to 1 g per 1 m 2 , more preferably 0.01 to 0.1 g per 1 m 2 , because of the excellent balance between conductivity and permeability.
  • the conductive film of the present invention can be suitably used, for example, as a transparent conductive film used in touch panels, antistatic displays, electromagnetic wave shields, electrodes for organic or inorganic EL displays, electronic paper, electrodes for flexible displays, antistatic flexible displays, electrodes for solar cells, and various other devices.
  • Example 1 ⁇ Production of aluminum substrate> Si: 0.06% by mass, Fe: 0.30% by mass, Cu: 0.005% by mass, Mn: 0.001% by mass, Mg: 0.001% by mass, Zn: 0.001% by mass, and Ti: 0.03% by mass. It was produced by a DC (Direct Chill) casting method. Next, after scraping off the surface with an average thickness of 10 mm with a chamfer, soaking was held at 550° C. for about 5 hours, and when the temperature dropped to 400° C., a hot rolling mill was used to make a rolled sheet with a thickness of 2.7 mm. Furthermore, after performing heat treatment at 500° C.
  • the aluminum substrate was finished to a thickness of 1.0 mm by cold rolling to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material. After forming an aluminum substrate into a wafer having a diameter of 200 mm (8 inches), the following treatments were performed.
  • JIS Japanese Industrial Standards
  • ⁇ Electropolishing treatment> The aluminum substrate described above was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65° C., and a liquid flow rate of 3.0 m/min.
  • a carbon electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • the electrolytically polished aluminum substrate was anodized by a self-ordering method according to the procedure described in JP-A-2007-204802. After electropolishing, the aluminum substrate was subjected to pre-anodization for 5 hours with an electrolytic solution of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a liquid temperature of 16° C., and a liquid flow rate of 3.0 m/min. After that, the pre-anodized aluminum substrate was subjected to film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol/L chromic anhydride and 0.6 mol/L phosphoric acid (liquid temperature: 50° C.) for 12 hours.
  • re-anodization treatment was performed for 5 hours with an electrolytic solution of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min to obtain an anodized film with a thickness of 40 ⁇ m.
  • a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.) was used as the power source.
  • NeoCool BD36 manufactured by Yamato Scientific Co., Ltd.
  • Pair Stirrer PS-100 manufactured by EYELA Tokyo Rikakikai Co., Ltd.
  • the flow velocity of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • ⁇ Metal filling process> electrolytic plating was performed using the aluminum substrate as a cathode and platinum as a positive electrode. Specifically, a copper plating solution having the composition shown below was used, and constant-current electrolysis was performed to produce a metal-filled microstructure in which copper was filled inside the pores (micropores).
  • constant current electrolysis is performed using a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd., using a power supply (HZ-3000) manufactured by Hokuto Denko Co., Ltd., and performing cyclic voltammetry in the plating solution to confirm the deposition potential. After that, the treatment was performed under the conditions shown below.
  • the surface of the anodized film after the metal was filled into the pores was observed with an FE-SEM, and the presence or absence of sealing by the metal in 1000 pores was observed to calculate the sealing rate (number of sealed pores/1000), which was 96%.
  • the anodized film after the metal was filled into the porous was cut by FIB in the thickness direction, and the surface photograph of the cross section was taken with FE-SEM (magnification: 50000) to confirm the inside of the porous.
  • the surface oxide layer of the needle-like metal was reduced or removed by immersing it in a 10 wt % aqueous solution of sulfuric acid at 35° C. for 15 seconds.
  • the acicular metal was recovered by suction filtration using a membrane (0.4 ⁇ m, PTFE, manufactured by Omnipore).
  • ⁇ Washing/protective layer forming step> Next, the needle-shaped metal collected on the membrane was washed for 5 minutes using the washing solvent shown below. In Example 1, since the anticorrosion inhibitor was added to the washing solvent, the protective layer was formed at the same time as washing. After that, the metal nanowires on the membrane were recovered and dried under reduced pressure for 12 hours. (washing solvent) Aqueous solution containing 1% by mass each of citric acid and benzotriazole
  • Example 2 to 9 Metal nanowires were recovered in the same manner as in Example 1, except that the type of anticorrosion inhibitor was changed to that shown in Table 1 below and a cleaning solvent was used.
  • the washing solvents used in Examples 6 to 9 are as follows.
  • Example 6 Aqueous solution containing 1% by mass of nitrilotriacetic acid
  • Example 7 Aqueous solution containing 1% by mass of citric acid
  • Example 8 Aqueous solution containing 1% by mass of uric acid and 2% by mass of ethanolamine
  • Example 9 Aqueous solution containing 1% by mass of gallic acid
  • Example 10-11 Metal nanowires were recovered in the same manner as in Example 1, except that the type of metal used in the metal filling step was changed to those shown in Table 1 below.
  • Example 12 Metal nanowires were recovered in the same manner as in Example 1, except that the "electrolytic plating treatment" in the metal filling step was changed to the “electroless plating treatment” performed under the following copper plating solution composition and conditions.
  • ⁇ Copper plating solution composition and conditions> ⁇ Copper sulfate 15g/L ⁇ Formalin 3.5g/L ⁇ Ethylenediaminetetraacetic acid/tetrasodium 30g/L ⁇ NaOH 8g/L ⁇ Temperature 60°C ⁇ Time 180min
  • Example 13 Metal nanowires were recovered in the same manner as in Example 1, except that the solution used for dissolving the aluminum substrate was changed to "200 g/L sodium hydroxide aqueous solution at 20°C".
  • Example 14 Metal nanowires were recovered in the same manner as in Example 1, except that the protective layer forming step was performed after washing the needle-like metal. Specifically, the acicular metal collected on the membrane was washed with pure water for 5 minutes, and then the acicular metal was collected. Next, the collected needle-like metal was immersed in "50 cc of an aqueous solution containing 1% by mass of citric acid and benzotriazole (BTA)". After that, the metal nanowires were collected using filter paper and dried under reduced pressure for 12 hours.
  • BTA benzotriazole
  • Example 15 Metal nanowires were recovered in the same manner as in Example 1, except that in the metal filling step, the electrolytic plating time was changed and the filling height from the bottom of the pores was 40 ⁇ m (that is, the interior of the pores was completely filled with metal).
  • Example 16 Metal nanowires were collected in the same manner as in Example 1, except that the thickness of the anodized film formed in the anodizing step was changed to 100 ⁇ m, and the filling height of the metal filled in the metal filling step was changed to 80 ⁇ m.
  • Example 17 Metal nanowires were collected in the same manner as in Example 1, except that the thickness of the anodized film formed in the anodizing step was changed to 10 ⁇ m, and the filling height of the metal filled in the metal filling step was changed to 7 ⁇ m.
  • Example 18 Metal nanowires were recovered in the same manner as in Example 1, except that the electrolytic solution used in the anodizing step was changed to "0.55 mol/L sulfuric acid electrolytic solution".
  • Example 19 Metal nanowires were recovered in the same manner as in Example 1, except that the solution used for removing the anodized film was replaced with "aqueous solution (60°C) of 12% by mass phosphoric acid and 4% by mass chromic acid".
  • Example 20 Metal nanowires were recovered in the same manner as in Example 1, except that a centrifugal separator (HimacCS150FNX) was used to perform centrifugation at 50000 RPM for 20 minutes instead of using a membrane to recover the needle-like metal. After the centrifugal separation, the solid content (needle-shaped metal) was scraped out, recovered, and dried.
  • a centrifugal separator HimacCS150FNX
  • Example 21 Metal nanowires were recovered in the same manner as in Example 1, except that the cleaning solvent shown below was used. Wash solvent: propan-2-one containing 1% by weight of benzotriazole
  • Example 22 Metal nanowires were recovered in the same manner as in Example 1, except that the aluminum substrate was removed by polishing under the following conditions using a cast iron polishing disk. ⁇ Polishing conditions> Abrasive: Alumina slurry #400 Pressurization: 0.2 MPa Time: 20 minutes
  • Example 23 Metal nanowires were recovered in the same manner as in Example 1, except that the reduction or removal step was not performed.
  • a bead mill zirconia beads with a diameter of 0.3 mm was used to mix and disperse for 3 hours to prepare a dispersion.
  • the prepared dispersion was squeegee-coated on a Ti foil (50 mm ⁇ 50 mm) using a metal mask (opening: 10 ⁇ 6.5 mm ⁇ 0.15 mm) and dried at 80° C. for 20 minutes in a nitrogen atmosphere. The application and drying were then repeated 10 times. After that, under vacuum, heat and pressure were applied at 50 MPa and 250° C. for 30 minutes. Then, the Ti foil was peeled off to isolate the sintered body.
  • connection resistance increased when the protective layer containing the corrosion inhibitor was not formed (Comparative Example 1).
  • connection resistance was lowered, and it was found that the time and aging stability could be maintained at the same level as in Comparative Example 1 (Examples 1 to 23).
  • metal nanowires with lower connection resistance can be obtained by including a step of reducing or removing the surface oxidized layer of the acicular metal between the template removal step and the protective layer forming step.
  • Example 1 to 5 and Examples 6 to 9 it was found that when the corrosion inhibitor contained a nitrogen-containing compound, the stability over time was improved. Also, from a comparison between Example 1 and Example 11, it was found that the connection resistance was smaller when the filling metal was Cu than when Ni was used. Also, from a comparison between Example 1 and Example 14, it was found that when the protective layer was formed at the same time as the needle-like metal was washed, the stability over time was improved and the connection resistance was further reduced. Also, from a comparison between Example 1 and Example 18, it was found that the connection resistance was further reduced when the electrolytic solution in the anodizing step was oxalic acid.
  • connection resistance described above was also evaluated for a system in which conductive particles were blended, as shown below.
  • the amount of metal nanowires collected in Example 1 was set to 4 mg / mL, and 1 mg / mL of wet copper powder "1300Y” (particle size distribution (D50): 3.5 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd. was used.
  • the amount of metal nanowires of Example 1 was 4 mg / mL, and 1 mg / mL of flaky copper powder "1200YP" (particle size distribution (D50): 3.1 ⁇ m) manufactured by Mitsui Mining & Smelting Co., Ltd.
  • connection resistance was evaluated in the same manner as in Example 1 except that the amount of metal nanowires of Example 1 was 4 mg / mL, and 1 mg / mL of fine atomized copper powder "MA-CJU" (particle size distribution (D50): 17.7 ⁇ m) manufactured by Mitsui Kinzoku Mining Co., Ltd. was added, the evaluation result was B.
  • MA-CJU particle size distribution (D50): 17.7 ⁇ m) manufactured by Mitsui Kinzoku Mining Co., Ltd.

Abstract

本発明は、接続抵抗の低い金属ナノワイヤを得ることができる金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜を提供することを課題とする。本発明の金属ナノワイヤの製造方法は、ポーラスを有する陽極酸化膜をバルブ金属基板の表面に形成する陽極酸化工程と、ポーラスに金属を充填する金属充填工程と、陽極酸化膜およびバルブ金属基板を除去し、針状金属を得る鋳型除去工程と、針状金属に腐食防止剤を含有する保護層を形成する保護層形成工程とを有する、金属ナノワイヤの製造方法である。

Description

金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜
 本発明は、金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜に関する。
 近年、金属ナノワイヤや金属ナノピラーを用いた導電性材料について種々の検討が試みられている。
 このような導電性材料として、ポーラスアルミナをナノ材料製作におけるテンプレートとすることは既に知られており、例えば、特許文献1には、アルミニウム基板に対して、陽極酸化処理、アルミニウム基材除去処理、貫通化処理、金属充填処理および陽極酸化膜除去処理をこの順に施して金属ナノワイヤを得る方法が記載されている([0025][図1])。
特開2012-238592号公報
 本発明者らは、特許文献1に記載された金属ナノワイヤについて検討を行った結果、接続抵抗に改善の余地があることを明らかとした。
 そこで、本発明は、接続抵抗の低い金属ナノワイヤを得ることができる金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意研究した結果、陽極酸化膜およびバルブ金属基板を除去して針状金属を回収した後に、腐食防止剤を含有する保護層を形成することにより、接続抵抗の低い金属ナノワイヤを得ることができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] ポーラスを有する陽極酸化膜をバルブ金属基板の表面に形成する陽極酸化工程と、
 ポーラスに金属を充填する金属充填工程と、
 陽極酸化膜およびバルブ金属基板を除去し、針状金属を得る鋳型除去工程と、
 針状金属に腐食防止剤を含有する保護層を形成する保護層形成工程とを有する、
 金属ナノワイヤの製造方法。
 [2] 鋳型除去工程と保護層形成工程との間に、更に、針状金属の表面酸化層を還元または除去する工程を有する、[1]に記載の金属ナノワイヤの製造方法。
 [3] バルブ金属基板がアルミニウムを含む、[1]または[2]に記載の金属ナノワイヤの製造方法。
 [4] 金属充填工程がめっき工程を含む、[1]~[3]のいずれかに記載の金属ナノワイヤの製造方法。
 [5] 鋳型除去工程が、バルブ金属基板を除去し、その後に陽極酸化膜を除去する2段階の除去工程を含む、[1]~[4]のいずれかに記載の金属ナノワイヤの製造方法。
 [6] 鋳型除去工程が、溶解工程を含む、[1]~[5]のいずれかに記載の金属ナノワイヤの製造方法。
 [7] 金属充填工程における金属の充填が、ポーラスの底部から開口部までの全領域のうち、ポーラスの底部から開口部の途中までの領域に対して施される処理である、[1]~[6]のいずれかに記載の金属ナノワイヤの製造方法。
 [8] 腐食防止剤が、窒素原子および硫黄原子の少なくとも1つを含有する複素環式化合物を含む、[1]~[7]のいずれかに記載の金属ナノワイヤの製造方法。
 [9] 腐食防止剤が、極性基含有酸および極性基含有塩基の少なくとも一方を含む、[1]~[8]のいずれかに記載の金属ナノワイヤの製造方法。
 [10] 腐食防止剤が、カルボキシ基を含む、[1]~[9]のいずれかに記載の金属ナノワイヤの製造方法。
 [11] 針状金属と、針状金属の少なくとも一部を被覆する保護層とを有し、
 保護層が、腐食防止剤を含有する、金属ナノワイヤ。
 [12] [11]に記載の金属ナノワイヤを含有する分散液。
 [13] 導電性インク用途に用いられる、[12]に記載の分散液。
 [14] [12]または[13]に記載の分散液を用いて形成される導電膜。
 [15] 透明導電膜用途に用いられる、[14]に記載の導電膜。
 本発明によれば、接続抵抗の低い金属ナノワイヤを得ることができる金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜を提供することができる。
図1Aは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程前のバルブ金属基板の模式的断面図である。 図1Bは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程後の構造体の模式的断面図である。 図1Cは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、金属充填工程後の構造体の模式的断面図である。 図1Dは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、鋳型除去工程後の構造体の模式的断面図である。 図1Eは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、保護層形成工程後の構造体(金属ナノワイヤ)の模式的断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[金属ナノワイヤの製造方法]
 本発明の金属ナノワイヤの製造方法(以下、「本発明の製造方法」とも略す。)は、ポーラスを有する陽極酸化膜をバルブ金属基板の表面に形成する陽極酸化工程と、ポーラスに金属を充填する金属充填工程と、陽極酸化膜およびバルブ金属基板を除去し、針状金属を得る鋳型除去工程と、針状金属に腐食防止剤を含有する保護層を形成する保護層形成工程とを有する。
 本発明においては、上述した通り、陽極酸化膜およびバルブ金属基板を除去して針状金属を回収した後(鋳型除去工程後)に、腐食防止剤を含有する保護層を形成することにより、接続抵抗の低い金属ナノワイヤを得ることができた。
 ここで、接続抵抗の低い金属ナノワイヤを得ることができた理由は、詳細には明らかではないが、およそ以下のとおりと推測される。
 すなわち、針状金属に腐食防止剤を含有する保護層を設けることにより、針状金属の表面に酸化膜が形成されるのを防ぐことができたため、接続抵抗を低く維持することができたと考えられる。
 次に、図1A~図1Eを用いて、本発明の製造方法における各工程の概要を説明した後に、各処理工程について詳述する。
 図1Aおよび図1Bに示すように、陽極酸化工程において、バルブ金属基板1の表面に陽極酸化処理を施し、バルブ金属基板1の表面に、ポーラス(マイクロポア)2を有する陽極酸化膜3を形成する。
 次いで、図1Cに示す通り、金属充填工程において、ポーラス2に金属4を充填する。
 次いで、図1Dに示す通り、鋳型除去工程において、陽極酸化膜3およびバルブ金属基板1を除去し、針状金属5を得る。
 次いで、図1Eに示す通り、保護層形成工程において、針状金属5に腐食防止剤を含有する保護層6が形成された金属ナノワイヤ10を得ることができる。
 〔バルブ金属基板〕
 本発明の製造方法に用いられるバルブ金属基板は、バルブ金属を含有する基板であれば特に限定されない。
 ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
 そのため、本発明の製造方法においては、バブル金属基板としてアルミニウムを含む基板(以下、「アルミニウム基板」と略す。)を用いることが好ましい。
 アルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
 アルミニウム基板のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。アルミニウム純度が上述の範囲であると、貫通路の配列の規則性が十分となる。
 また、アルミニウム基板のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されることが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の段落[0044]~[0054]に記載された各処理と同様の処理を施すことができる。
 〔陽極酸化工程〕
 上記陽極酸化工程は、上記バルブ金属基板の表面に陽極酸化処理を施すことにより、上記バルブ金属基板の表面に、ポーラスを有する陽極酸化膜を形成する工程である。
 上記陽極酸化工程で行う陽極酸化処理は、従来公知の方法を用いることができるが、後述する鋳型除去工程において、直径にバラツキの少ない針状金属を得ることができる理由から、自己規則化法や定電圧処理を用いるのが好ましい。
 ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理は、例えば、酸濃度1~10質量%の溶液中で、バルブ金属基板を陽極として通電する方法を用いることができる。
 陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が更に好ましく、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
 極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.1~20質量%、液温-10~30℃、電流密度0.01~20A/dm、電圧3~300V、電解時間0.5~30時間であるのが好ましく、電解液濃度0.5~15質量%、液温-5~25℃、電流密度0.05~15A/dm、電圧5~250V、電解時間1~25時間であるのがより好ましく、電解液濃度1~10質量%、液温0~20℃、電流密度0.1~10A/dm、電圧10~200V、電解時間2~20時間であるのが更に好ましい。
 陽極酸化処理の処理時間は、0.5分~16時間であるのが好ましく、1分~12時間であるのがより好ましく、2分~8時間であるのが更に好ましい。
 上記陽極酸化工程により形成される陽極酸化膜の厚みは特に限定されないが、金属ナノワイヤの長さを調整する観点から、0.3~300μmであることが好ましく、0.5~120μmであることがより好ましく、0.5~100μmであることが更に好ましい。
 なお、陽極酸化膜の厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出することができる。
 上記陽極酸化工程により形成されるポーラスの密度は特に限定されないが、200万個/mm以上であることが好ましく、1000万個/mm以上であるのことがより好ましく、5000万個/mm以上であるのが更に好ましく、1億個/mm以上であるのが特に好ましい。
 なお、ポーラスの密度は、特開2008-270158号公報の[0168]および[0169]段落に記載された方法で測定し、算出することができる。
 上記陽極酸化工程により形成されるポーラスの平均開口径は特に限定されないが、金属ナノワイヤの直径を調整する観点から、5~500nmであることが好ましく、20~400nmであることがより好ましく、40~200nmであることが更に好ましく、50~100nmであることが特に好ましい。
 なお、ポーラスの平均開口径は、FE-SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出することができる。
 〔金属充填工程〕
 上記金属充填工程は、上記陽極酸化工程の後に、ポーラスの内部に金属を充填する工程である。
 <金属>
 上記金属は、電気抵抗率が10Ω・cm以下の材料であるのが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)、コバルト(Co)等が好適に例示される。
 中でも、電気伝導性の観点から、Cu、Au、Al、Ni、Coが好ましく、Cu、Ni、Coがより好ましく、Cuが更に好ましい。
 <充填方法>
 上記金属をポーラスの内部に充填する方法としては、例えば、特開2008-270158号公報の[0123]~[0126]段落および[図4]に記載された各方法と同様の方法等が挙げられる。
 本発明の製造方法においては、作製される金属ナノワイヤに空洞部分が含まれ難くなる理由から、上記金属充填工程がめっき工程を含むことが好ましい。
 具体的には、上記金属をポーラスの内部に充填する方法として、電解めっき処理方法を用いることが好ましく、例えば、電解めっき法または無電解めっき法を用いることができる。
 ここで、着色などに用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、本発明の製造方法においては、電解めっき法により金属を充填する場合は、パルス電解または定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒あることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
 めっき液は、従来公知のめっき液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであるのが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであるのが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
 なお、無電解めっき法では、アスペクトの高いポーラスからなる孔中に金属を完全に充填には長時間を要するので、本発明の製造方法においては、電解めっき法により金属を充填するのが望ましい。
 本発明の製造方法においては、電解めっき処理方法として、交流電解めっき法と直流電解めっき法とをこの順で組み合わせた処理方法を用いることが好ましい。
 ここで、交流電解めっき法は、例えば、電圧を予め定めた周波数で正弦波状に変調させて印加する。なお、電圧の変調の際の波形は正弦波に限定されるものではなく、例えば、矩形波、三角波、のこぎり波、または逆のこぎり波とすることもできる。
 また、直流電解めっき法は、上述した電解めっき法における処理方法を適宜用いることができる。
 本発明の製造方法においては、金属ナノワイヤを製造する時間を短縮できる理由から、図1Cにも示す通り、上記金属充填工程における金属の充填が、ポーラスの底部から開口部までの全領域のうち、ポーラスの底部から開口部の途中までの領域に対して施される処理であることが好ましい。
 〔鋳型除去工程〕
 上記鋳型除去工程は、上記金属充填工程の後に、上記陽極酸化膜および上記バブル金属基板を除去し、針状金属を得る工程である。
 本発明の製造方法においては、上記陽極酸化膜および上記バブル金属基板を除去する方法は特に限定されず、例えば、研摩により除去する態様であってもよいが、作製される金属ナノワイヤの長さが均一になる理由から、上記鋳型除去工程が溶解工程を含むこと、すなわち、溶解処理によって上記陽極酸化膜および上記バブル金属基板の少なくとも一部を除去することが好ましい。
 本発明の製造方法においては、作製される金属ナノワイヤの形状やサイズが維持される理由から、上記鋳型除去工程が、上記バルブ金属基板を除去し、その後に上記陽極酸化膜を除去する2段階の除去工程を含むことが好ましく、2段階の除去工程がいずれも溶解処理によって除去される工程であることがより好ましい。
 <バルブ金属基板の除去>
 上記バルブ金属基板の除去は、陽極酸化膜を溶解しにくく、バルブ金属を溶解しやすい処理液を用いた溶解処理が好ましい。
 このような処理液は、バルブ金属に対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、バルブ金属よりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。
 このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。
 また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
 また、上記バルブ金属基板の除去は、上記金属充填工程後のバルブ金属基板を上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。
 <陽極酸化膜の除去>
 上記陽極酸化膜の除去は、ポーラスに充填した金属を溶解せず、陽極酸化膜を選択的に溶解する溶媒を用いることができ、アルカリ水溶液および酸水溶液のいずれも用いることができる。
 ここで、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも1つのアルカリの水溶液を用いることが好ましく、水酸化カリウムの水溶液を用いることがより好ましい。また、アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、更に15~45℃が好ましく、更に20~35℃であるのが好ましい。
 一方、酸水溶液を用いる場合は、クロム酸、硫酸、リン酸、硝酸、塩酸、シュウ酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましく、クロム酸の水溶液を用いることがより好ましい。また、酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、15~80℃が好ましく、更に20~60℃が好ましく、更に30~50℃が好ましい。
 また、上記陽極酸化膜の除去は、上記金属充填工程後(好ましくはバルブ金属基板を除去した後)に上述したアルカリ水溶液および酸水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。アルカリ水溶液および酸水溶液への浸せき時間は、5~120分であるのが好ましく、8~120分であるのがより好ましく、8~90分であるのが更に好ましく、10~90分であるのが特に好ましい。なかでも、10~60分であるのが好ましく、15~60分であるのがより好ましい。
 上記鋳型除去工程における針状金属の回収方法は特に限定されないが、上記陽極酸化膜および上記バルブ金属基板を除去した後に、フィルター等を用いた濾過、遠心分離などの分離操作を行うことにより、針状金属を回収することができる。
 〔保護層形成工程〕
 上記保護層形成工程は、上記鋳型除去工程の後に、上記針状金属に腐食防止剤を含有する保護層を形成する工程である。
 上記腐食防止剤は特に限定されず、公知の腐食防止剤を適用できる。
 腐食防止剤としては、例えば、窒素原子、酸素原子および硫黄原子の少なくとも1つを含有する化合物等が挙げられる。
 腐食防止剤は、耐久性の観点から、窒素原子および酸素原子の少なくとも1つを含有する複素環式化合物であることが好ましく、1つ以上の窒素原子を含有する5員環構造を含む化合物であることがより好ましく、トリアゾール構造を含む化合物、ベンゾイミダゾール構造を含む化合物、および、チアジアゾール構造を含む化合物からなる群より選択される少なくとも1種の化合物であることが特に好ましい。1つ以上の窒素原子を含有する5員環構造は、単環の構造であってもよく、縮合環を構成する部分構造であってもよい。
 また、腐食防止剤は、針状金属の表面に吸着しやすくなる理由から、極性基含有酸および極性基含有塩基の少なくとも一方を含む化合物であることが好ましい。
 極性基含有酸および極性基含有塩基が有する極性基としては、例えば、カルボン酸基(カルボキシ基)、スルホン酸基(スルホ基)、ホスホン酸基、リン酸基、第一級~第四級アンモニウム塩基、カルボン酸塩基、スルホン酸塩基、ホスホン酸塩基、リン酸塩基などが挙げられる。
 また、腐食防止剤は、金属イオンと結合して錯イオンを形成し、針状金属の表面が保護されやすくなる理由から、カルボキシ基を含む化合物であることが好ましい。
 上記腐食防止剤の具体例としては、イミダゾール、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール(BTA)、トリルトリアゾール(TTA)、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール(DMTDA)、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾイミダゾール等が挙げられる。
 上記腐食防止剤の他の具体例としては、酢酸、プロピオン酸、パルミチン酸、ステアリン酸、ラウリン酸、アラキジン酸、テレフタル酸、オレイン酸などの脂肪族カルボン酸;グリコール酸、乳酸、シュウ酸、リンゴ酸、酒石酸、クエン酸などのカルボン酸;エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(EDDA)、エチレングリコールジエチルエーテルジアミン四酢酸(GEDA)などのアミノポリカルボン酸;尿酸;没食子酸;などが挙げられる。
 腐食防止剤は、1種単独でも2種類以上適宜組み合わせて用いてもよい。
 また、経時安定性が良好となる理由から、上記腐食防止剤が窒素原子を含有する化合物(窒素含有化合物)を含むことが好ましく、窒素含有化合物であることがより好ましく、窒素原子および硫黄原子の少なくとも1つを含有する複素環式化合物であることが更に好ましい。
 このような腐食防止剤を含有する保護層を形成する方法は特に限定されず、例えば、腐食防止剤を含有する水溶液に、上記鋳型除去工程で回収された針状金属を添加し、撹拌する方法;上記鋳型除去工程で回収された針状金属を洗浄する洗浄溶媒に腐食防止剤を添加する方法;などが挙げられる。
 〔還元または除去する工程〕
 本発明の製造方法は、接続抵抗のより低い金属ナノワイヤを得ることができる理由から、上記鋳型除去工程と上記保護層形成工程との間に、更に、上記針状金属の表面酸化層を還元または除去する工程を有していることが好ましい。
 還元または除去する工程としては、例えば、上述した陽極酸化膜の除去処理に記載したアルカリ水溶液および酸水溶液を用いた浸漬処理を施す工程などが挙げられる。
[金属ナノワイヤ]
 本発明の金属ナノワイヤは、針状金属と、針状金属の少なくとも一部を被覆する保護層とを有する。
 また、本発明の金属ナノワイヤは、上記保護層が腐食防止剤を含有する。
 〔針状金属〕
 本発明の金属ナノワイヤが有する針状金属は、金属からなる針状の構造体(芯材)であれば特に限定されない。
 上記金属としては、上述した本発明の製造方法における金属充填工程において説明したものが挙げられる。
 本発明においては、針状金属の平均長さは特に限定されないが、0.2~200μmであることが好ましく、0.2~100μmであることがより好ましく、0.3~80μmであることが更に好ましい。
 また、針状金属の平均直径は特に限定されないが、金属ナノワイヤが透明導電膜の形成に好適に用いることができる理由から、5~500nmであることが好ましく、20~400nmであることがより好ましく、40~200nmであることが更に好ましく、50~100nmであることが特に好ましい。
 なお、針状金属の平均長さおよび平均直径は、FE-SEMにより300個の金属ナノワイヤを観察し、保護層を除いた針状金属の長さおよび直径を測定し、その平均値として算出することができる。
 本発明においては、針状金属の直径に対する長さの比(長さ/直径)(以下、「アスペクト比」とも略す。)は、金属ナノワイヤ同士の絡み合いが抑制され、後述する本発明の分散液の分散安定性が良好となる理由から、10以上であることが好ましく、10~2000であることがより好ましく、12~1000であるのが更に好ましい。
 〔保護層〕
 本発明の金属ナノワイヤが有する保護層は、上記針状金属の少なくとも一部を被覆する保護層であって、腐食防止剤を含有する。
 上記腐食防止剤としては、上述した本発明の製造方法における保護層形成工程において説明したものが挙げられる。
 本発明においては、保護層の平均厚みは特に限定されないが、0.1~10nmであることが好ましく、1~5nmであることがより好ましい。
[分散液]
 本発明の分散液は、上述した本発明の金属ナノワイヤを含有する分散液である。
 ここで、本発明の分散液における金属ナノワイヤの含有量(濃度)は特に限定されないが、経時での分散安定性が良好に維持され、希釈時の均一性も良好となる理由から、本発明の分散液の総質量に対して、0.1~30質量%であるのが好ましく、0.1~25質量%であるのがより好ましい。
 〔分散溶媒〕
 本発明の分散液における分散溶媒としては、主として水が用いられ、水と混和する有機溶媒を80容量%以下の割合で併用することができる。
 上記有機溶媒としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール系化合物が好適に用いられる。このようなアルコール系化合物を併用することにより、導電膜の形成時の塗布工程での塗り付け良化、乾燥負荷の低減をすることができる。
 上記アルコール系化合物は、特に限定はなく、目的に応じて適宜選択することができ、その具体例としては、ポリエチレングリコール、ポリプロピレングリコール、アルキレングリコール、グリセロール等が挙げられる、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 具体的には、室温において粘度の低いエチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール等の炭素数の小さなものが好ましいが、ペンタンジオール、ヘキサンジオール、オクタンジオール、ポリエチレングリコール等の炭素数の大きなものも使用可能である。
 これらのうち、最も好ましい溶媒はジエチレングリコールである。
 〔界面活性剤〕
 本発明の分散液は、分散安定性がより良好となる理由から、界面活性剤を用いるのが好ましい。
 上記界面活性剤としては、例えば、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられ、こられを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記ノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール(例えば、モノステアリン酸ポリエチレングリコール等)、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。
 上記アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。
 上記カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。
 上記両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。
 本発明においては、好ましい界面活性剤として、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。
 このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基および親水性基を含有するオリゴマー、パーフルオロアルキル基および親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基および親油性基を含有するオリゴマー、パーフルオロアルキル基および親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号および同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。
 また、本発明においては、これらの界面活性剤のうち、分散安定性が更に良好となる理由から、HLB値が10以上のものを用いるのが望ましい。
 ここで、HLB値(エイチエルビー値:Hydrophile-Lipophile Balance)とは、界面活性剤の水と油(水に不溶性の有機化合物)への親和性の程度を表す値である。HLB値は0から20までの値を取り、0に近いほど親油性が高く20に近いほど親水性が高くなる。
 本発明においては、これらの界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 また、これらの界面活性剤の含有量は、上記金属ナノワイヤの全質量に対して、0.001~10質量%であるのが好ましく、0.01~5質量%であるのがより好ましい。
 〔無機ガラス成分〕
 本発明の分散液は、分散溶媒となる水や他の溶媒への親和性が保たれるばかりでなく、本発明の分散液を用いて形成される導電膜の膜質の向上に繋がる理由から、ケイ素、リチウム、ホウ素およびリンからなる群から選択される少なくとも1種の元素を含む無機ガラス成分を用いるのが好ましい。
 上記無機ガラス成分としては、例えば、ケイ酸ガラス、ホウ酸ガラス、リン酸ガラス、リチウム塩ガラス等の原材料成分、すなわち、ケイ酸ソーダ、ホウ酸ソーダ、リン酸ソーダ、金属酸化リチウム塩等を用いることができる。具体的には、例えば、3号ケイ酸Na水溶液、ホウ酸Na(NaBO)、硝酸Li、リン酸2水素ナトリウム等である。
 〔水溶性分散剤〕
 本発明の分散液は、AuナノワイヤまたはAuで被覆された金属ナノワイヤを分散させる場合には、水酸基やカルボキシル基、スルホン基、リン酸基、アミノ基、SH基等を末端に有する水溶性の有機分子、例えば、コハク酸、ポリビニルアルコール(PVA)、ポリビニールピロール(PVP)等の水溶性分散剤を用いることができる。
 例えば、SH基を有する有機物を用いると、金属ナノワイヤが水溶液中に分散した分散液と、非水溶性分散剤を含む非水溶性液とを混合したとき、親和性の高いSH基を有する非水溶性分散剤を、Auナノワイヤ表面に吸着させることができ、Auナノワイヤを非水溶性画分に効率的に移動させることができ、分離濃縮が容易になる。
 ここで、SH基を有する有機物は、非水溶性液に溶けるものであれば、特に制限されるものではないが、気化温度の低い、短分子の有機物であれば、焼結等の加熱処理で飛ばすことができる。
 このような低分子の有機物としては、例えば、1-オクタンチオール、2-フリルメタンチオール等が挙げられる。
 また、例えば、金ナノワイヤ分散水溶液に対し、SH基を有する有機物を含む溶媒を加え、加温、撹拌後、遠心処理を行い、溶媒画分を回収するとAuナノワイヤ成分が濃縮されており、溶媒を蒸発させて除去し、再分散させることで所望の濃度の分散液の調製が可能になる。
 〔導電性粒子〕
 本発明の分散液は、金属ナノワイヤ以外の導電性粒子をさらに含有していてもよい。
 ここで、導電性粒子は、金属を含むことが好ましく、金、銀、銅、アルミニウム、ニッケル、亜鉛およびコバルトからなる群から選択される少なくとも1種の金属を含むことがより好ましい。
 また、導電性粒子は、金属以外の導電成分を1種または2種以上含んでもよい。
 本発明においては、導電性粒子の形状は特に限定されず、中実および中空のいずれであってもよい。
 また、導電性粒子の最小包囲楕円体における平均長径は、0.01μm以上50μm以下であることが好ましい。
 また、導電性粒子の最小包囲楕円体における平均長径は、平均短径に対して1~10倍であることが好ましい。
 ここで、最小包囲楕円体とは、導電性粒子を内部に包含する楕円体の中で体積が最少となるものをいい、長径と短径とが一致する楕円体(すなわち球体)も含むものである。
 また、最小包囲楕円体における平均長径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の長径を測定して、それらを算出平均して求めることができる。同様に、最小包囲楕円体における平均短径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の短径を測定して、それらを算出平均して求めることができる。
 更に、後述するメジアン径(D50)は、導電性粒子の体積を球に近似した場合の直径のメジアン径のことをいい、レーザー回折・散乱法または動的光散乱法により求めることができる。
 本発明においては、導電性粒子を含有する場合の導電性粒子の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して5~70質量部であることが好ましく、10~45質量部であることがより好ましい。
 本発明の分散液は、配線基板の回路パターンを形成する導電性インクとして好適に用いることができる。
 導電性インクとして用いる場合、本発明の分散液における上記金属ナノワイヤの含有量(濃度)は、インクジェット方式を利用して回路パターンを印刷できる理由から、本発明の分散液の総質量に対して、10~30質量%であるのが好ましく、15~20質量%であるのがより好ましい。
[導電膜]
 本発明の導電膜は、上述した本発明の分散液を用いて形成される導電膜である。
 ここで、導電膜とは、本発明においては所望の基板表面の全面に形成される膜だけでなく、上述した回路パターン等も含む概念である。
 また、導電膜を形成する基板や導電膜の形成方法は特に限定されず、例えば、特開2010-84173号公報に記載された基板や形成方法を採用することができる。
 本発明の導電膜は、上記金属ナノワイヤの含有量が、導電性と透過性のバランスに優れる理由から、1mあたり0.005~1gであるのが好ましく、1mあたり0.01~0.1gであるのがより好ましい。
 本発明の導電膜は、例えば、タッチパネル、ディスプレイ用帯電防止、電磁波シールド、有機又は無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、フレキシブルディスプレイ用帯電防止、太陽電池用電極、その他の各種デバイス等に利用される透明導電膜として好適に用いることができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[実施例1]
 <アルミニウム基板の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 さらに、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(日本工業規格) 1050材のアルミニウム基板を得た。
 アルミニウム基板を、直径200mm(8インチ)のウエハ状に形成した後、以下に示す各処理を施した。
 <電解研磨処理>
 上述のアルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/分の条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
 <陽極酸化工程>
 次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間の再陽極酸化処理を施し、膜厚40μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。さらに、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 <金属充填工程>
 次いで、アルミニウム基板を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、ポーラス(マイクロポア)の内部に銅が充填された金属充填微細構造体を作製した。
 ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
 (銅めっき液組成および条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・温度 25℃
 ・電流密度 10A/dm
 ポーラスに金属を充填した後の陽極酸化膜の表面をFE-SEMで観察し、1000個のポーラスにおける金属による封孔の有無を観察して封孔率(封孔ポーラスの個数/1000個)を算出したところ、96%であった。
 また、ポーラスに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、ポーラスの内部を確認したところ、封孔されたポーラスにおいては、ポーラスの底部からの充填高さが35μmであることが分かった。
 <鋳型除去工程>
 次いで、10℃の0.5wt%Cu-12%HCl水溶液に1時間浸漬させることによりアルミニウム基板を溶解して除去した。
 その後、35℃の水酸化カリウムの水溶液(濃度:2.5M)に60分浸漬させることにより、陽極酸化膜を溶解して除去し、針状金属を得た。
 <還元または除去する工程>
 次いで、35℃の硫酸10wt%水溶液に15秒間浸漬させることにより、針状金属の表面酸化層を還元または除去した。
 <回収>
 次いで、メンブレン(0.4μm、PTFE、Omnipore社製)を用いた吸引ろ過により、針状金属を回収した。
 <洗浄/保護層形成工程>
 次いで、メンブレン上に回収された針状金属に対して、以下に示す洗浄溶媒を用いて5分間洗浄した。なお、実施例1においては、洗浄溶媒に防食防止剤を添加しているため、洗浄と同時に、保護層の形成を行っている。
 その後、メンブレン上の金属ナノワイヤを回収し、12時間、減圧乾燥させた。
 (洗浄溶媒)
 クエン酸およびベンゾトリアゾールをそれぞれ1質量%含有する水溶液
[実施例2~9]
 防食防止剤の種類を下記表1に示すものに変更した洗浄溶媒を用いた以外は、実施例1と同様の方法で金属ナノワイヤを回収した。なお、実施例6~9で用いた洗浄溶媒は、以下の通りである。
 実施例6:ニトリロ三酢酸を1質量%含有する水溶液
 実施例7:クエン酸を1質量%含有する水溶液
 実施例8:尿酸を1質量%含有し、エタノールアミンを2質量%含有する水溶液
 実施例9:没食子酸を1質量%含有する水溶液
[実施例10~11]
 金属充填工程で用いる金属の種類を下記表1に示すものに変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例12]
 金属充填工程の「電解めっき処理」を、以下に示す銅めっき液組成および条件で行う「無電解めっき処理」に変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
 <銅めっき液組成および条件>
 ・硫酸銅 15g/L
 ・ホルマリン 3.5g/L
 ・エチレンジアミン四酢酸・四ナトリウム 30g/L
 ・NaOH 8g/L
 ・温度 60℃
 ・時間 180min
[実施例13]
 アルミニウム基板の溶解に用いた溶液を「20℃の200g/L水酸化ナトリウム水溶液」に変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例14]
 保護層形成工程を、針状金属の洗浄後に行った以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
 具体的には、メンブレン上に回収された針状金属に対して、純水を用いて5分間洗浄した後に、針状金属を回収した。
 次いで、回収した針状金属を「クエン酸およびベンゾトリアゾール(BTA)をそれぞれ1質量%含有する水溶液50cc」に浸漬させた。
 その後、ろ紙を用いて金属ナノワイヤを回収し、12時間、減圧乾燥させた。
[実施例15]
 金属充填工程において、電解めっき処理の時間を変更し、ポーラスの底部からの充填高さを40μmとした(すなわち、ポーラスの内部を完全に金属で充填させた)以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例16]
 陽極酸化工程で形成される陽極酸化膜の厚みを100μmに変更し、金属充填工程で充填される金属の充填高さを80μmに変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例17]
 陽極酸化工程で形成される陽極酸化膜の厚みを10μmに変更し、金属充填工程で充填される金属の充填高さを7μmに変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例18]
 陽極酸化工程で用いる電解液を「0.55mol/L硫酸の電解液」に変更した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例19]
 陽極酸化膜の除去に用いる溶液を「12質量%リン酸および4質量%クロム酸の水溶液(60℃)」に代えた以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[実施例20]
 針状金属の回収方法について、メンブレンによる回収に代えて、遠心分離機(HimacCS150FNX)を用いて、50000RPM、20分間遠心分離した以外は、実施例1と同様の方法で金属ナノワイヤを回収した。なお、遠心分離後は、固形分(針状金属)を掻き出して回収し、乾燥させた。
[実施例21]
 以下に示す洗浄溶媒を用いた以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
 洗浄溶媒:ベンゾトリアゾールを1質量%含有するプロパン-2-オン
[実施例22]
 アルミニウム基板の除去について、鋳物製研磨盤を用いた下記条件の研摩で行った以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
 <研磨条件>
 研磨剤:アルミナスラリー#400
 加圧:0.2MPa
 時間:20分
[実施例23]
 還元または除去する工程を施さなかった以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
[比較例1]
 洗浄/保護層形成工程を以下に示す「置換めっき処理」に変更し、保護層を形成せずにニッケルを置換めっきした以外は、実施例1と同様の方法で金属ナノワイヤを回収した。
 <置換めっき処理>
 次いで、メンブレン上に回収された針状金属を、奥野製薬のICPアクセラの5倍希釈溶液(25℃)に30秒浸漬させた後、トップケミアロイ66-LFの5倍希釈溶液(60℃)に10秒浸漬させることにより、ニッケルを置換めっきさせた。
[評価]
 回収した金属ナノワイヤについて、以下に示す評価を行った。結果を下記表1に示す。
 〔時間〕
 金属充填工程の開始から金属ナノワイヤを回収するまでに要した時間を計測し、以下の基準で評価した。
 <評価基準>
 A:100分以内
 B:100分超200分以内
 C:200分超
 〔経時安定性〕
 回収した金属ナノワイヤを真空デシケータで保管し、2週間および1月経過時点の金属ナノワイヤを、X線光電子分光法(XPS)で測定(AlKα線、100μmφのビーム、ファイ-Quantum5000)し、以下の基準で評価した。
 <評価基準>
 A:1月経時品で酸化されていない銅が検出された。
 B:2週間経時品で酸化されていない銅が検出されたが、1月経時品では酸化されていない銅が検出されなかった。
 C:2週間経時品で酸化されていない銅が検出されなかった。
 〔接続抵抗〕
 回収した金属ナノワイヤを5mg/mL含むイソブタノール混合液を調製した後、ビーズミル(ジルコニアビーズ0.3mm径)を用いて、3時間混合・分散して分散液を調製した。
 調製した分散液を、メタルマスク(開口部:10×6.5mm×0.15mm)を用いて、Ti箔(50mm×50mm)にスキージ塗布し、窒素雰囲気、80℃で20分乾燥させた。
 次いで、塗布および乾燥を10回繰り返した。
 その後、真空下で、50MPa、250℃および30分間の加熱加圧を行った。
 次いで、Ti箔を剥離して焼結体を単離した。
 次いで、ダイヤインスツルメンツ製ロレスタGPを用い、測定端子(ピン)間を1mmとし、測定端子の押し付け圧(ばね圧)を200gとし、接続抵抗を測定した。
 <評価基準>
 A:銅の抵抗に対して150%以下
 B:銅の抵抗に対して150%超200%以下
 C:銅の抵抗に対して200%超
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、腐食防止剤を含有する保護層を形成しない場合には、接続抵抗が高くなることが分かった(比較例1)。
 これに対し、針状金属に腐食防止剤を含有する保護層を形成した場合には、接続抵抗が低くなり、時間および経時安定性についても比較例1と同等程度の維持できることが分かった(実施例1~23)。
 特に、実施例1と実施例23との対比から、鋳型除去工程と保護層形成工程との間に、針状金属の表面酸化層を還元または除去する工程を有すると、接続抵抗のより低い金属ナノワイヤが得られることが分かった。
 また、実施例1~5と実施例6~9との対比から、腐食防止剤が含窒素化合物を含むと、経時安定性が良好となることが分かった。
 また、実施例1と実施例11との対比から、充填金属がCuであると、Niよりも接続抵抗がより小さくなることが分かった。
 また、実施例1と実施例14との対比から、針状金属の洗浄と同時に保護層を形成すると、経時安定性が良好となり、接続抵抗もより小さくなることが分かった。
 また、実施例1と実施例18との対比から、陽極酸化工程の電解液がシュウ酸であると、接続抵抗もより小さくなることが分かった。
 また、実施例1で回収した金属ナノワイヤについては、以下に示す通り、導電性粒子を配合した系についても、上述した接続抵抗の評価を行った。
 具体的には、実施例1で回収した金属ナノワイヤ量を4mg/mLとし、さらに三井金属鉱業株式会社製の湿式銅粉「1300Y」(粒度分布(D50):3.5μm)を1mg/mL加えた分散液を用いた以外は、実施例1と同様の方法で接続抵抗を評価したところ、評価結果はAであった。
 また、実施例1の金属ナノワイヤ量を4mg/mLとし、さらに三井金属鉱業株式会社製のフレーク状銅粉「1200YP」(粒度分布(D50):3.1μm)を1mg/mL加えた分散液を用いた以外は、実施例1と同様の方法で接続抵抗を評価したところ、評価結果はAであった。
 また、実施例1の金属ナノワイヤ量を4mg/mLとし、さらに三井金属鉱業株式会社製の微粒アトマイズ銅粉「MA-CJU」(粒度分布(D50):17.7μm)を1mg/mL加えた分散液を用いた以外は、実施例1と同様の方法で接続抵抗を評価したところ、評価結果はBであった。
 1 バルブ金属基板
 2 ポーラス(マイクロポア)
 3 陽極酸化膜
 4 金属
 5 針状金属
 6 保護層
 10 金属ナノワイヤ

Claims (15)

  1.  ポーラスを有する陽極酸化膜をバルブ金属基板の表面に形成する陽極酸化工程と、
     前記ポーラスに金属を充填する金属充填工程と、
     前記陽極酸化膜および前記バルブ金属基板を除去し、針状金属を得る鋳型除去工程と、
     前記針状金属に腐食防止剤を含有する保護層を形成する保護層形成工程とを有する、
     金属ナノワイヤの製造方法。
  2.  前記鋳型除去工程と前記保護層形成工程との間に、更に、前記針状金属の表面酸化層を還元または除去する工程を有する、請求項1に記載の金属ナノワイヤの製造方法。
  3.  前記バルブ金属基板がアルミニウムを含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  4.  前記金属充填工程がめっき工程を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  5.  前記鋳型除去工程が、前記バルブ金属基板を除去し、その後に前記陽極酸化膜を除去する2段階の除去工程を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  6.  前記鋳型除去工程が、溶解工程を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  7.  前記金属充填工程における金属の充填が、前記ポーラスの底部から開口部までの全領域のうち、前記ポーラスの底部から開口部の途中までの領域に対して施される処理である、請求項1または2に記載の金属ナノワイヤの製造方法。
  8.  前記腐食防止剤が、窒素原子および硫黄原子の少なくとも1つを含有する複素環式化合物を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  9.  前記腐食防止剤が、極性基含有酸および極性基含有塩基の少なくとも一方を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  10.  前記腐食防止剤が、カルボキシ基を含む、請求項1または2に記載の金属ナノワイヤの製造方法。
  11.  針状金属と、前記針状金属の少なくとも一部を被覆する保護層とを有し、
     前記保護層が、腐食防止剤を含有する、金属ナノワイヤ。
  12.  請求項11に記載の金属ナノワイヤを含有する分散液。
  13.  導電性インク用途に用いられる、請求項12に記載の分散液。
  14.  請求項12または13に記載の分散液を用いて形成される導電膜。
  15.  透明導電膜用途に用いられる、請求項14に記載の導電膜。
PCT/JP2022/046873 2022-01-21 2022-12-20 金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜 WO2023140011A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-007742 2022-01-21
JP2022007742 2022-01-21
JP2022-103451 2022-06-28
JP2022103451 2022-06-28

Publications (1)

Publication Number Publication Date
WO2023140011A1 true WO2023140011A1 (ja) 2023-07-27

Family

ID=87348169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046873 WO2023140011A1 (ja) 2022-01-21 2022-12-20 金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜

Country Status (2)

Country Link
TW (1) TW202334446A (ja)
WO (1) WO2023140011A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
JP2012238592A (ja) * 2011-04-28 2012-12-06 Fujifilm Corp 金属ナノワイヤを含有する分散液および導電膜
JP2016507400A (ja) * 2012-12-13 2016-03-10 ケアストリーム ヘルス インク 透明導電膜のための防食剤
JP2016053212A (ja) * 2014-07-31 2016-04-14 アイメック・ヴェーゼットウェーImec Vzw ナノワイヤクラスタの製造方法
WO2018155273A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 金属充填微細構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
JP2012238592A (ja) * 2011-04-28 2012-12-06 Fujifilm Corp 金属ナノワイヤを含有する分散液および導電膜
JP2016507400A (ja) * 2012-12-13 2016-03-10 ケアストリーム ヘルス インク 透明導電膜のための防食剤
JP2016053212A (ja) * 2014-07-31 2016-04-14 アイメック・ヴェーゼットウェーImec Vzw ナノワイヤクラスタの製造方法
WO2018155273A1 (ja) * 2017-02-27 2018-08-30 富士フイルム株式会社 金属充填微細構造体の製造方法

Also Published As

Publication number Publication date
TW202334446A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP5851329B2 (ja) 金属ナノワイヤを含有する分散液および導電膜
Mattarozzi et al. Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali
Zhao et al. Microstructure and corrosion behavior of Ti nanoparticles reinforced Ni–Ti composite coatings by electrodeposition
Shankar et al. Self-supported fabrication and electrochemical water splitting study of transition-metal sulphide nanostructured electrodes
JP6526392B2 (ja) 金属フォームを合成する方法
JP5876971B2 (ja) 銅粉
Ved et al. Composition and corrosion behavior of iron-cobalt-tungsten
Adabi et al. Electrodeposition mechanism of Ni–Al composite coating
Wang et al. Effects of 2, 2-dithiodipyridine as a leveler for through-holes filling by copper electroplating
Zhuo et al. Effect of electrolyte composition on the morphological structures of dendritic copper powders prepared by a spontaneous galvanic displacement reaction
WO2022138219A1 (ja) 金属充填微細構造体および金属充填微細構造体の製造方法
WO2023140011A1 (ja) 金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜
KR20140020829A (ko) 고 알칼리성 도금 욕을 이용하는 금속의 무전해 증착 방법
Serrà et al. Effective new method for synthesizing Pt and CoPt 3 mesoporous nanorods. New catalysts for ethanol electro-oxidation in alkaline medium
TW201828523A (zh) 電極用鋁構件及電極用鋁構件的製造方法
JP2016035098A (ja) 銀被覆フレーク状銅粉およびその製造方法、並びに当該銀被覆フレーク状銅粉を用いた導電性ペースト
Abdelfatah et al. Electrochemical characterization of electrodeposited Ni–Cu foams and their application as electrodes for supercapacitors
WO2024070341A1 (ja) 金属ナノワイヤの製造方法
JP7369871B2 (ja) 異方導電性部材の製造方法
KR101439782B1 (ko) 금속판 및 염수를 이용한 산화 그라핀 필름의 친환경적 환원방법
WO2022014293A1 (ja) 異方導電性部材の製造方法
WO2024070339A1 (ja) 導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法
RU2551327C1 (ru) Модифицированное гальваническое серебряное покрытие и способ его изготовления
Avramović et al. The particle size distribution (PSD) as criteria for comparison of silver powders obtained by different methods of synthesis and by conditions of electrolysis
Su et al. Study on micro-arc oxidation coating of magnetic metal powder composite magnesium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922161

Country of ref document: EP

Kind code of ref document: A1