WO2024070339A1 - 導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法 - Google Patents

導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法 Download PDF

Info

Publication number
WO2024070339A1
WO2024070339A1 PCT/JP2023/030238 JP2023030238W WO2024070339A1 WO 2024070339 A1 WO2024070339 A1 WO 2024070339A1 JP 2023030238 W JP2023030238 W JP 2023030238W WO 2024070339 A1 WO2024070339 A1 WO 2024070339A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive
bonding material
acid
mass
Prior art date
Application number
PCT/JP2023/030238
Other languages
English (en)
French (fr)
Inventor
順二 川口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024070339A1 publication Critical patent/WO2024070339A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to a composition for forming a conductive bonding material, a conductive bonding material, a device, and a method for manufacturing a conductive bonding material.
  • Patent Document 1 describes a method of obtaining metal nanowires by subjecting an aluminum base to an anodizing treatment, an aluminum base removal treatment, a perforation treatment, a metal filling treatment, and an anodized film removal treatment, in that order ([0025] [ Figure 1]), and also describes a dispersion liquid containing the specified metal nanowires obtained by this method ([Claim 1]).
  • the inventors have investigated the dispersion liquid containing metal nanowires described in Patent Document 1 and have found that when used to form a conductive bonding material (such as a material used to bond a semiconductor chip to a substrate), the conductivity and bonding strength may be insufficient.
  • a conductive bonding material such as a material used to bond a semiconductor chip to a substrate
  • the present invention aims to provide a composition for forming a conductive bonding material that can form a conductive bonding material with high conductivity and bonding strength, as well as a method for manufacturing a conductive bonding material, a device, and a conductive bonding material.
  • a conductive bonding material having high conductivity and bonding strength can be formed by using a composition for forming a conductive bonding material containing a specific amount of a conductive material such as metal nanowires having a predetermined specific surface area, and thus completed the present invention. That is, it has been found that the above object can be achieved by the following configuration.
  • a conductive material comprising at least one conductive material selected from the group consisting of metal nanowires and metal nanowire aggregates, and a solvent; The specific surface area per unit mass of the conductive material is 100 to 50,000 m 2 /kg; A conductive bonding material-forming composition, comprising a conductive material content of 30 mass % or more.
  • [3] The conductive bonding material forming composition according to [1] or [2], further comprising a resin material.
  • [6] A conductive bonding material according to [5], and a member provided on at least one surface of the conductive bonding material, A device, wherein the member is at least one member selected from the group consisting of a semiconductor element, an electrode, and a wiring.
  • a method for producing a conductive bonding material comprising: A method for producing a conductive bonding material, comprising a step of supplying a conductive bonding material forming composition according to any one of [1] to [4] onto a substrate.
  • the present invention provides a composition for forming a conductive bonding material that can form a conductive bonding material with high conductivity and bonding strength, as well as a method for manufacturing a conductive bonding material, a device, and a conductive bonding material.
  • FIG. 1A is a schematic cross-sectional view of a valve metal substrate prior to an anodization step in a procedure showing an example of a method for producing metal nanowires of the present invention.
  • FIG. 1B is a schematic cross-sectional view of a structure after an anodization step in the procedure showing one example of a method for producing metal nanowires of the present invention.
  • FIG. 1C is a schematic cross-sectional view of a structure after a metal filling step in the procedure showing one example of a method for producing metal nanowires of the present invention.
  • FIG. 1D is a schematic cross-sectional view of the structure after the isolation step in the procedure showing one example of the method for producing metal nanowires of the present invention.
  • FIG. 1E is a schematic cross-sectional view of a structure (metal nanowires) after a crushing step in the procedure showing one example of a method for producing metal nanowires of the present invention.
  • Figure 2 is an image of the metal nanowires prepared in Example 1 taken with a scanning electron microscope (SEM).
  • FIG. 3 is an image of the metal nanowires produced in Comparative Example 1 taken by an SEM.
  • composition for forming a conductive bonding material of the present invention contains at least one conductive material selected from the group consisting of metal nanowires and metal nanowire aggregates, and a solvent.
  • the specific surface area per unit mass of the conductive material contained in the composition of the present invention is 100 to 50,000 m 2 /kg.
  • the content of the conductive material in the composition of the present invention is 30 mass % or more based on the total mass of the composition of the present invention.
  • a conductive bonding material having high conductivity and bonding strength can be formed by using a composition for forming a conductive bonding material containing 30 mass% or more of a conductive material such as metal nanowires having a specific surface area of 100 to 50,000 m2/kg.
  • a conductive bonding material having high conductivity and bonding strength can be formed is not clear in detail, but is presumed to be as follows. First, the results of Comparative Examples 1 and 3 described below show that when metal nanowires with a specific surface area of less than 100 m 2 /kg are used, the bonding strength is poor even when the content is 30 mass % or more.
  • Comparative Examples 2 and 4 described later show that even when metal nanowires with a specific surface area of 100 to 50,000 m 2 /kg are used, if the content is less than 30 mass %, the electrical conductivity is poor. Therefore, in the present invention, since the content of conductive material such as metal nanowires is 30 mass% or more, the number of junctions between conductive materials such as metal nanowires increases, and the conductive paths increase, which is thought to result in improved conductivity.
  • the specific surface area of conductive materials such as metal nanowires is 100 to 50,000 m2 /kg, the proportion of conductive materials that exist in an adhered state (e.g., in a bundle-like state) is reduced, and the proportion of conductive materials that exist in a randomly oriented state is increased. This is thought to improve the flexibility when used as a bonding material, and therefore the bonding strength.
  • the conductive material contained in the composition of the present invention is at least one selected from the group consisting of metal nanowires and metal nanowire aggregates, and is a conductive material having a specific surface area per unit mass of 100 to 50,000 m 2 /kg.
  • metal nanowire refers to a conductive material that is made of metal, has a needle or thread shape, and has a diameter on the order of nanometers.
  • the metal nanowire may be linear or curved.
  • the material of the metal nanowire is not particularly limited as long as it contains a metal, and may contain a component other than the metal in addition to the metal.
  • the term “metal nanowire aggregate” refers to an aggregate of metal nanowires. As long as the specific surface area per unit mass is 100 to 50,000 m 2 /kg, the conductive material may be either one of metal nanowires or metal nanowire aggregates, or may be in an embodiment including both.
  • the specific surface area per unit mass of the conductive material contained in the composition of the present invention is 100 to 50,000 m 2 /kg, preferably more than 100 m 2 /kg and not more than 50,000 m 2 /kg, more preferably more than 1,000 m 2 /kg and not more than 50,000 m 2 /kg, even more preferably more than 2,000 m 2 /kg and not more than 30,000 m 2 /kg, and particularly preferably more than 3,000 m 2 /kg and not more than 20,000 m 2 /kg.
  • the specific surface area per unit mass of the obtained metal nanowires can be measured by known analytical methods, but in the present invention, a value measured by a krypton gas adsorption method is used.
  • the metal constituting the metal nanowires is not particularly limited, but it is preferable that the metal be a material having an electrical resistivity of 10 3 ⁇ cm or less, and specific examples of such metals include gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), nickel (Ni), cobalt (Co), etc.
  • Au gold
  • Au silver
  • Cu copper
  • Al aluminum
  • Ti titanium
  • Ni nickel
  • Co cobalt
  • Cu is even more preferable.
  • the diameter (arithmetic mean value) of the metal nanowires is preferably 10 to 200 nm, more preferably 10 to 100 nm, and even more preferably 10 to 50 nm.
  • the length (arithmetic mean value) of the metal nanowires is preferably 0.3 to 300 ⁇ m, more preferably 0.5 to 200 ⁇ m, and even more preferably 1 ⁇ m to 100 ⁇ m.
  • the diameter and length of the metal nanowire can be determined, for example, by observing an SEM image at a magnification of 100 to 500 times using a field emission scanning electron microscope (FE-SEM).
  • the diameter and length of the metal nanowire are determined by observing 10 metal nanowires randomly selected from an SEM image taken at a magnification of 100 to 500 times, measuring their diameters and lengths, and performing this in 10 fields of view, and averaging the measured values of the diameters and lengths of a total of 100 metal nanowires.
  • the ratio of the length to the diameter (length/diameter) of the metal nanowire (hereinafter also abbreviated as "aspect ratio”) is preferably 10 or more, and more preferably 100 to 1000.
  • the content of the conductive material in the composition of the present invention is 30% by mass or more relative to the total mass of the composition of the present invention, but 30 to 90% by mass is preferable because dispersion stability over time is well maintained and uniformity during application is good, and 50 to 90% by mass is even more preferable because electrical conductivity and bonding strength are higher and heat dissipation is good.
  • the method for producing the conductive material contained in the composition of the present invention is preferably a method having an anodization step of forming an anodized film having pores on the surface of a valve metal substrate, a metal filling step of filling the pores with metal, an isolation step of isolating the filled metal from the anodized film and the valve metal substrate, and a crushing step of crushing the isolated metal (hereinafter also abbreviated as “isolated metal”) to obtain metal nanowires, because this makes it easy to adjust the specific surface area per unit mass to 100 to 50,000 m2/kg.
  • the surface of a valve metal substrate 1 is anodized to form an anodized film 3 having pores (micropores) 2 on the surface of the valve metal substrate 1.
  • the pores 2 are filled with a metal 4.
  • the isolation step the filled metal 4 is isolated from the anodized film 3 and the valve metal substrate 1.
  • the embodiment shown in Fig. 1D shows the state in which the isolated metal 5 obtained in the isolation step is collected (a part of the isolated metal is adhered).
  • metal nanowires 10 in which the isolated metal 5 is crushed can be obtained.
  • the valve metal substrate used in the manufacturing method of the present invention is not particularly limited as long as it is a substrate containing a valve metal.
  • the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, etc.
  • aluminum is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, in the manufacturing method of the present invention, it is preferable to use a base material containing aluminum (hereinafter, abbreviated as "aluminum base material”) as the valve metal base material.
  • the aluminum substrate is not particularly limited, and specific examples include pure aluminum plates; alloy plates containing aluminum as the main component and trace amounts of other elements; substrates in which high-purity aluminum is vapor-deposited onto low-purity aluminum (e.g., recycled materials); substrates in which the surfaces of silicon wafers, quartz, glass, etc. are coated with high-purity aluminum by methods such as vapor deposition and sputtering; and resin substrates laminated with aluminum.
  • the surface of the valve metal substrate that is anodized in the anodizing process described below preferably has a valve metal purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and even more preferably 99.99% by mass or more.
  • the valve metal purity is within the above range, the arrangement of the through passages is sufficiently regular.
  • the surface of the valve metal base material that is to be anodized in the anodizing step described below is preferably previously subjected to a heat treatment, a degreasing treatment and a mirror finish treatment.
  • the heat treatment, degreasing treatment and mirror finish treatment can be the same as those described in paragraphs [0044] to [0054] of JP-A-2008-270158.
  • the anodizing step is a step of forming a porous anodized film on the surface of the valve metal base by subjecting the surface of the valve metal base to an anodizing treatment.
  • the anodizing treatment carried out in the anodizing step can be a conventionally known method, but it is preferable to use a self-ordering method or a constant voltage treatment because this makes it possible to isolate the filled metal with less variation in diameter in the isolation step described below.
  • the self-ordering method of the anodizing treatment and the constant voltage treatment can be the same as the treatments described in paragraphs [0056] to [0108] and in FIG. 3 of JP-A-2008-270158.
  • the anodizing treatment can be carried out, for example, by passing a current through a valve metal substrate as an anode in a solution having an acid concentration of 1 to 10% by mass.
  • the solution used in the anodizing treatment is preferably an acid solution, more preferably sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, amidosulfonic acid, glycolic acid, tartaric acid, malic acid, citric acid, etc., and among these, sulfuric acid, phosphoric acid, and oxalic acid are further preferable, and oxalic acid is particularly preferable.
  • These acids can be used alone or in combination of two or more kinds.
  • the conditions for the anodizing treatment vary depending on the electrolyte used and cannot be determined in general, but generally, the electrolyte concentration is preferably 0.1 to 20% by mass, the solution temperature is -10 to 30°C, the current density is 0.01 to 20 A/ dm2 , the voltage is 3 to 300 V, and the electrolysis time is 0.5 to 30 hours, more preferably the electrolyte concentration is 0.5 to 15% by mass, the solution temperature is -5 to 25°C, the current density is 0.05 to 15 A/ dm2 , the voltage is 5 to 250 V, and the electrolysis time is 1 to 25 hours, and even more preferably the electrolyte concentration is 1 to 10% by mass, the solution temperature is 0 to 20°C, the current density is 0.1 to 10 A/ dm2 , the voltage is 10 to 200 V, and the electrolysis time is 2 to 20 hours.
  • the anodizing treatment time is preferably 0.5 minutes to 16 hours, more preferably 1 minute to 12 hours, and even more preferably 2 minutes to 8 hours.
  • the thickness of the anodized film formed by the anodization process is not particularly limited, but from the viewpoint of adjusting the length of the metal nanowires, it is preferably 0.3 to 300 ⁇ m, more preferably 0.5 to 120 ⁇ m, and even more preferably 0.5 to 100 ⁇ m.
  • the thickness of the anodic oxide film can be calculated as the average value of measurements taken at 10 points by cutting the anodic oxide film in the thickness direction with a focused ion beam (FIB), taking surface photographs (magnification: 50,000 times) of the cross section with a field emission scanning electron microscope (FE-SEM).
  • the density of the pores formed by the anodization process is not particularly limited, but is preferably 2 million pores/ mm2 or more, more preferably 10 million pores/ mm2 or more, even more preferably 50 million pores/mm2 or more, and particularly preferably 100 million pores/ mm2 or more.
  • the density of the pores can be measured and calculated by the method described in paragraphs [0168] and [0169] of JP-A-2008-270158.
  • the average opening diameter of the pores formed by the above-mentioned anodization process is not particularly limited, but from the viewpoint of adjusting the diameter of the metal nanowires, it is preferably 5 to 500 nm, more preferably 20 to 400 nm, even more preferably 40 to 200 nm, and particularly preferably 50 to 100 nm.
  • the average opening diameter of the pores can be calculated as the average value of measurements taken at 50 points on a surface photograph (magnification: 50,000 times) taken with an FE-SEM.
  • the metal filling step is a step of filling the inside of the pores with a metal after the anodization step.
  • the metal may be the same as those described above as the metal constituting the metal nanowire.
  • Examples of the method for filling the interior of the pores with the metal include the methods described in paragraphs [0123] to [0126] and [FIG. 4] of JP-A-2008-270158.
  • the metal filling step includes a plating step, because this makes it difficult for the produced metal nanowires to contain hollow portions.
  • an electrolytic plating method as a method for filling the inside of the pores with the metal, and for example, an electrolytic plating method or an electroless plating method can be used.
  • an electrolytic plating method or an electroless plating method can be used.
  • the manufacturing method of the present invention when filling metal by electrolytic plating, it is necessary to provide a rest period during pulse electrolysis or constant potential electrolysis.
  • the rest period must be 10 seconds or more, and is preferably 30 to 60 seconds. It is also preferable to apply ultrasonic waves to promote stirring of the electrolyte.
  • the electrolysis voltage is usually 20 V or less, and preferably 10 V or less, but it is preferable to measure the deposition potential of the target metal in the electrolyte solution to be used in advance and perform constant-potential electrolysis at a potential within +1 V of that potential.
  • a device that can also be used with cyclic voltammetry, and a potentiostat device manufactured by Solartron, BAS, Hokuto Denko, IVIUM, etc. can be used.
  • the plating solution a conventionally known plating solution can be used. Specifically, when copper is precipitated, an aqueous solution of copper sulfate is generally used, and the concentration of the copper sulfate is preferably 1 to 300 g/L, and more preferably 100 to 200 g/L. Precipitation can be promoted by adding hydrochloric acid to the electrolyte. In this case, the concentration of hydrochloric acid is preferably 10 to 20 g/L. When gold is to be deposited, it is preferable to use a sulfuric acid solution of gold tetrachloride and to perform plating by AC electrolysis.
  • the electrolytic plating method a treatment method in which AC electrolytic plating and DC electrolytic plating are combined in this order.
  • a voltage is applied modulated into a sine wave at a predetermined frequency.
  • the waveform of the voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or an inverse sawtooth wave.
  • the DC electrolytic plating method can appropriately use the treatment methods in the electrolytic plating method described above.
  • the metal filling step is a process that is performed on the region from the bottom of the hole to halfway through the opening, out of the entire region from the bottom of the hole to the opening.
  • the isolation step is a step of isolating the filled metal from the anodized film and the valve metal substrate after the metal filling step.
  • the method of isolating the filled metal from the anodized film and the valve metal base material is not particularly limited, and for example, the method of removing (for example, dissolving, peeling, etc.) the anodized film and the valve metal base material and isolating the filled metal can be preferably mentioned.
  • the embodiment after the above-mentioned isolation process also includes, for example, the embodiment in which the filled metal is dispersed in an isolated state in the treatment liquid used in the dissolution process (dissolution treatment) described later.
  • the method for removing the anodic oxide film and the valve metal substrate is not particularly limited, and may be, for example, by polishing.
  • the isolation process includes a dissolution process, that is, that at least a portion of the anodic oxide film and the valve metal substrate is removed by a dissolution process.
  • the isolation process includes a one-step removal process of removing the anodic oxide film and the valve metal substrate, and it is more preferable that the removal of the anodic oxide film is a process in which the anodic oxide film is removed by a dissolution treatment.
  • the isolation step may include a two-step removal step of removing the valve metal base material and then removing the anodic oxide film, and in this case, it is more preferable that both of the two removal steps are performed by dissolution treatment.
  • the removal of the valve metal substrate is preferably carried out by a dissolution treatment using a treatment liquid which does not easily dissolve the anodized film but easily dissolves the valve metal.
  • the dissolution rate of such a treatment solution for valve metal is preferably 1 ⁇ m/min or more, more preferably 3 ⁇ m/min or more, and even more preferably 5 ⁇ m/min or more.
  • the dissolution rate of anodized film is preferably 0.1 nm/min or less, more preferably 0.05 nm/min or less, and even more preferably 0.01 nm/min or less.
  • the treatment liquid preferably contains at least one metal compound having a lower ionization tendency than the valve metal, and has a pH of 4 or less or 8 or more, more preferably a pH of 3 or less or 9 or more, and even more preferably a pH of 2 or less or 10 or more.
  • Such a treatment liquid is preferably based on an acid or alkaline aqueous solution and contains, for example, compounds of manganese, zinc, chromium, iron, cadmium, cobalt, nickel, tin, lead, antimony, bismuth, copper, mercury, silver, palladium, platinum, and gold (e.g., chloroplatinic acid), their fluorides, or their chlorides.
  • an acid aqueous solution base is preferred, and a chloride blend is preferred.
  • a treatment solution in which mercury chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/mercury chloride) and a treatment solution in which copper chloride is blended into an aqueous hydrochloric acid solution (hydrochloric acid/copper chloride) are preferred from the viewpoint of treatment latitude.
  • the composition of such a treatment liquid is not particularly limited, and for example, a bromine/methanol mixture, a bromine/ethanol mixture, aqua regia, etc. can be used.
  • the acid or alkali concentration of such a treatment solution is preferably from 0.01 to 10 mol/L, and more preferably from 0.05 to 5 mol/L.
  • the processing temperature when using such a processing solution is preferably from -10°C to 80°C, and more preferably from 0°C to 60°C.
  • the valve metal substrate is removed by contacting the valve metal substrate after the metal filling step with the treatment liquid described above.
  • the contact method is not particularly limited, and examples include the immersion method and the spray method. Of these, the immersion method is preferred.
  • the contact time is preferably 10 seconds to 5 hours, and more preferably 1 minute to 3 hours.
  • the anodic oxide film can be removed using a solvent that does not dissolve the metal filled in the pores but selectively dissolves the anodic oxide film, and either an aqueous alkaline solution or an aqueous acid solution can be used.
  • an alkaline aqueous solution When an alkaline aqueous solution is used, it is preferable to use an aqueous solution of at least one alkali selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide, and it is more preferable to use an aqueous solution of potassium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 1 to 30 mass %.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60°C, more preferably 20 to 60°C, and even more preferably 30 to 60°C.
  • an aqueous acid solution it is preferable to use an aqueous solution of an inorganic acid such as chromic acid, sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, oxalic acid, or a mixture thereof, and it is more preferable to use an aqueous solution of chromic acid.
  • the concentration of the aqueous acid solution is preferably 1 to 30 mass %.
  • the temperature of the aqueous acid solution is preferably 15 to 80°C, more preferably 20 to 60°C, and even more preferably 30 to 50°C.
  • the anodic oxide film is removed by contacting the above-mentioned alkaline aqueous solution and acid aqueous solution after the metal filling step (preferably after the valve metal substrate is removed).
  • the contacting method is not particularly limited, and examples include immersion and spraying. Of these, the immersion method is preferred.
  • the immersion time in the alkaline aqueous solution and acid aqueous solution is preferably 1 to 120 minutes, more preferably 2 to 90 minutes, even more preferably 3 to 60 minutes, and particularly preferably 3 to 30 minutes. Of these, 3 to 20 minutes is preferred, and 3 to 10 minutes is more preferred.
  • the crushing step is a step of crushing the isolated metal after the isolation step.
  • the method for crushing the isolated metal is not particularly limited, but a suitable example is a method in which the isolated metal is crushed by applying an impact to the isolated metal in a liquid.
  • the liquid (solvent) used for disintegration is not particularly limited as long as it does not alter or dissolve the isolated metal, and examples thereof include water, ethanol, methanol, acetone, methyl ethyl ketone, butanol, ethyl acetate, butyl acetate, tetrahydrofuran, toluene, dimethylformamide, cyclohexane, cyclohexanone, etc. Among these, water is preferred from the viewpoint of safety.
  • the crushing step is preferably carried out in water or in an aqueous solution having an alkali or acid concentration of less than 1 mass %, from the viewpoint of producing metal nanowires having higher bonding strength when bonded.
  • the crushing treatment include a crushing treatment using cavitation and a crushing treatment using ceramic balls, and devices such as an ultrasonic cleaner, an ultrasonic homogenizer, a jet mill, a wet type micronizer, etc.
  • a crushing treatment using cavitation or a crushing treatment using ceramic balls is preferred, and a crushing treatment using cavitation is more preferred.
  • the concentration of the isolated metal in the liquid during pressure disintegration in the liquid is preferably 0.1 to 50 mass % because this makes the treatment uniform and improves productivity. Furthermore, the concentration of the isolated metal in the liquid when the pressure is released in the liquid is more preferably 0.5 to 30 mass%, and even more preferably 1 to 10 mass%, because this allows for the production of metal nanowires having higher bonding strength upon bonding.
  • the manufacturing method of the present invention preferably further includes a drying step for drying the isolated metal between the isolation step and the crushing step, since this makes apparent the effect of the present invention, that is, the ability to obtain metal nanowires having high bonding strength when bonded.
  • the method for drying the isolated metal is not particularly limited, but after removing the anodized film and the valve metal substrate, the isolated metal can be recovered and dried by performing a separation operation such as filtration using a filter or centrifugation.
  • the manufacturing method of the present invention further includes a step of forming a protective layer containing a corrosion inhibitor on the isolated metal after the isolation step (or after the drying step if the drying step is included).
  • the corrosion inhibitor is not particularly limited, and any known corrosion inhibitor can be used.
  • the corrosion inhibitor include compounds containing at least one of a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the corrosion inhibitor is preferably a heterocyclic compound containing at least one of a nitrogen atom and an oxygen atom, more preferably a compound containing a five-membered ring structure containing one or more nitrogen atoms, and particularly preferably at least one compound selected from the group consisting of a compound containing a triazole structure, a compound containing a benzimidazole structure, and a compound containing a thiadiazole structure.
  • the five-membered ring structure containing one or more nitrogen atoms may be a monocyclic structure or a partial structure constituting a condensed ring.
  • the corrosion inhibitor is preferably a compound containing at least one of a polar group-containing acid and a polar group-containing base, because this makes it easier for the corrosion inhibitor to be adsorbed onto the surface of the isolated metal.
  • the polar group contained in the polar group-containing acid and the polar group-containing base include a carboxylic acid group (carboxy group), a sulfonic acid group (sulfo group), a phosphonic acid group, a phosphoric acid group, a primary to quaternary ammonium base, a carboxylate group, a sulfonate group, a phosphonate group, and a phosphate group.
  • the corrosion inhibitor is preferably a compound containing a carboxy group, because it bonds with metal ions to form complex ions, which makes it easier to protect the surface of the isolated metal.
  • corrosion inhibitors include imidazole, benzimidazole, 1,2,4-triazole, benzotriazole (BTA), tolyltriazole (TTA), butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole (DMTDA), 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole (MBT), 2-mercaptobenzimidazole, etc.
  • corrosion inhibitors include aliphatic carboxylic acids such as acetic acid, propionic acid, palmitic acid, stearic acid, lauric acid, arachidic acid, terephthalic acid, and oleic acid; carboxylic acids such as glycolic acid, lactic acid, oxalic acid, malic acid, tartaric acid, and citric acid; aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediaminediacetic acid (EDDA), and ethylene glycol diethyl ether diaminetetraacetic acid (GEDA); uric acid; and gallic acid.
  • carboxylic acids such as glycolic acid, lactic acid, oxalic acid, malic acid, tartaric acid, and citric acid
  • aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA), n
  • the corrosion inhibitors may be used alone or in appropriate combination of two or more kinds.
  • the corrosion inhibitor preferably contains a compound containing a nitrogen atom (nitrogen-containing compound), more preferably is a nitrogen-containing compound, and further preferably is a heterocyclic compound containing at least one of a nitrogen atom and a sulfur atom.
  • the method for forming such a protective layer containing a corrosion inhibitor is not particularly limited, and examples include a method in which the isolated metal recovered in the drying process is added to an aqueous solution containing a corrosion inhibitor and stirred; a method in which the corrosion inhibitor is added to a washing solvent that washes the isolated metal recovered in the drying process; etc.
  • the manufacturing method of the present invention further includes a step of reducing or removing the surface oxide layer of the isolated metal between the isolation step and the crushing step (or before the drying step, if the drying step is included).
  • the reduction or removal step may be, for example, a step of carrying out an immersion treatment using an aqueous alkaline solution or an aqueous acid solution as described above in the removal treatment of the anodic oxide film.
  • the solvent contained in the composition of the present invention is mainly an organic solvent.
  • an organic solvent miscible with water water can be used in combination with the organic solvent in a proportion of 20% by volume or less.
  • the organic solvent for example, an alcohol-based compound having a boiling point of 50° C. to 250° C., more preferably 55° C. to 200° C., is suitably used. By using such an alcohol-based compound in combination, it is possible to improve the application and reduce the drying load in the coating step when forming the conductive film.
  • the alcohol-based compound is not particularly limited and can be appropriately selected depending on the purpose. Specific examples thereof include polyethylene glycol, polypropylene glycol, alkylene glycol, glycerol, etc.
  • those having a small number of carbon atoms such as ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol, which have low viscosity at room temperature, are preferred, but those having a large number of carbon atoms, such as pentanediol, hexanediol, octanediol, and polyethylene glycol, can also be used. Of these, the most preferred solvent is diethylene glycol.
  • surfactant It is preferable to use a surfactant in the composition of the present invention because this provides better dispersion stability.
  • the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorine-based surfactants. These surfactants may be used alone or in combination of two or more.
  • the nonionic surfactant is not particularly limited, and any of the conventionally known surfactants can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkylphenyl ethers, polyoxyethylene polystyrylphenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, polyoxyethylated castor oils, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N,N-bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid
  • the anionic surfactant is not particularly limited, and any of the conventionally known surfactants can be used.
  • fatty acid salts, abietic acid salts, hydroxyalkanesulfonates, alkanesulfonates, dialkylsulfosuccinate salts linear alkylbenzenesulfonates, branched alkylbenzenesulfonates, alkylnaphthalenesulfonates, alkylphenoxypolyoxyethylenepropylsulfonates, polyoxyethylenealkylsulfophenylether salts, N-methyl-N-oleyltaurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated beef tallow oil, sulfate ester salts of fatty acid alkyl esters, alkane sulfonates, dialkylsulfosuccinate salts, alkylsulfon
  • alkyl sulfate salts examples include polyoxyethylene alkyl ether sulfate salts, fatty acid monoglyceride sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, polyoxyethylene styryl phenyl ether sulfate salts, alkyl phosphate salts, polyoxyethylene alkyl ether phosphate salts, polyoxyethylene alkyl phenyl ether phosphate salts, partially saponified products of styrene/maleic anhydride copolymers, partially saponified products of olefin/maleic anhydride copolymers, and naphthalenesulfonate-formaldehyde condensates.
  • the cationic surfactant is not particularly limited, and any conventionally known surfactant can be used. Examples include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • amphoteric surfactant is not particularly limited, and any conventionally known surfactant can be used. Examples include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric acid esters, and imitazolines.
  • polyoxyethylene can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc., and these surfactants can also be used in the present invention.
  • preferred surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorine-based surfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; cationic types such as perfluoroalkyl trimethyl ammonium salts; and nonionic types such as perfluoroalkyl amine oxides, perfluoroalkyl ethylene oxide adducts, oligomers containing a perfluoroalkyl group and a hydrophilic group, oligomers containing a perfluoroalkyl group and a lipophilic group, oligomers containing a perfluoroalkyl group, a hydrophilic group, and a lipophilic group, and urethanes containing a
  • the HLB hydrophile-lipophile balance
  • the HLB value ranges from 0 to 20, with the closer to 0 the higher the lipophilicity and the closer to 20 the higher the hydrophilicity.
  • these surfactants may be used alone or in combination of two or more.
  • the content of these surfactants is preferably 0.001 to 10% by mass, and more preferably 0.01 to 5% by mass, based on the total mass of the conductive material.
  • the composition of the present invention can use a water-soluble dispersant such as a water-soluble organic molecule having a hydroxyl group, a carboxyl group, a sulfone group, a phosphate group, an amino group, an SH group, or the like at its terminal, for example, succinic acid, polyvinyl alcohol (PVA), or polyvinylpyrrole (PVP).
  • a water-soluble dispersant such as a water-soluble organic molecule having a hydroxyl group, a carboxyl group, a sulfone group, a phosphate group, an amino group, an SH group, or the like at its terminal, for example, succinic acid, polyvinyl alcohol (PVA), or polyvinylpyrrole (PVP).
  • composition of the present invention may further contain conductive particles in addition to the above-mentioned conductive material.
  • the conductive particles preferably contain a metal, and more preferably contain at least one metal selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc and cobalt.
  • the conductive particles may also contain one or more conductive components other than metals.
  • the shape of the conductive particles is not particularly limited, and they may be either solid or hollow.
  • the average major axis of the minimum enclosing ellipsoid of the conductive particle is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 20 ⁇ m or less, for the reason that the metal can be filled more densely into the space relative to the thickness of the conductive bonding material described below.
  • the average major axis of the minimum enclosing ellipsoid of the conductive particles is preferably 1 to 10 times the average minor axis, for the reason of selecting a shape that efficiently fills the space.
  • the minimum enclosing ellipsoid refers to the ellipsoid that has the smallest volume among the ellipsoids that contain the conductive particles therein, and includes an ellipsoid whose major axis and minor axis are the same (i.e., a sphere).
  • the average major axis of the minimum enclosing ellipsoid can be obtained by observing the cross section of the layer formed using the dispersion in the thickness direction with a microscope (e.g., electron microscope), measuring the major axis of 100 arbitrary fine particles, and calculating and averaging them.
  • the average minor axis of the minimum enclosing ellipsoid can be obtained by observing the cross section of the layer formed using the dispersion in the thickness direction with a microscope (e.g., electron microscope), measuring the minor axis of 100 arbitrary fine particles, and calculating and averaging them.
  • the median diameter (D50) described later refers to the median diameter of the conductive particles when the volume of the conductive particles is approximated to that of a sphere, and can be determined by a laser diffraction/scattering method or a dynamic light scattering method.
  • the content of the conductive particles is not particularly limited, but is preferably 5 to 70 parts by mass, and more preferably 10 to 45 parts by mass, per 100 parts by mass of the metal nanowires.
  • the composition of the present invention preferably further contains a resin material.
  • the resin material include epoxy resin, acrylic resin, and urethane resin, and among these, epoxy resin is preferable.
  • the epoxy resin include epoxy resins having a naphthalene skeleton, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins, siloxane type epoxy resins, biphenyl type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, and hydantoin type epoxy resins. These may be used alone or in combination of two or more.
  • the epoxy resin is preferably an epoxy resin having a naphthalene skeleton, a bisphenol A type epoxy resin, or a bisphenol F type epoxy resin that is liquid at room temperature.
  • the composition of the present invention contains an epoxy resin
  • an epoxy resin curing agent that is, a catalyst that accelerates the curing reaction of the epoxy resin.
  • the epoxy resin curing agent for example, imidazole-based, phenol-based, amine-based, acid anhydride-based, organic peroxide-based, etc. can be used.
  • the epoxy resin curing agent is preferably a latent curing agent from the viewpoint of the storage property (life) of the composition of the present invention at room temperature, and more preferably an encapsulated imidazole-based curing agent with latent property.
  • the epoxy resin curing agent a microencapsulated latent curing agent in which a latent imidazole modified body is used as a core and the surface is coated with polyurethane can be used.
  • a commercially available product for example, Novacure 3941 (manufactured by Asahi Kasei E-Materials Corporation) can be used.
  • the epoxy resin curing agent may be used alone or in combination of two or more types.
  • the total content of these is preferably 50 mass% or less, more preferably 30 mass% or less, and even more preferably 10 to 20 mass%, based on the total mass of the composition of the present invention.
  • the composition of the present invention may contain a reducing agent.
  • the reducing agent include hydrazine compounds such as hydrazine, hydrazine derivatives, hydrazine hydrochloride, hydrazine sulfate, and hydrazine hydrate; hydroxylamine compounds such as hydroxylamine and hydroxylamine derivatives; and sodium compounds such as sodium borohydride, sodium sulfite, sodium hydrogen sulfite, sodium thiosulfate, and sodium hypophosphite; and the like. These may be used alone or in combination of two or more.
  • the conductive bonding material of the present invention is a conductive bonding material formed using the above-mentioned composition of the present invention.
  • the shape of the conductive bonding material is not particularly limited, and may be, for example, a paste or a sheet.
  • the conductive bonding material of the present invention can be suitably used as a conductive bonding material for use in, for example, semiconductor bonding members, touch panels, electrode bonding materials for displays, electromagnetic wave shields, sintering materials, electrode materials for thin-layer ceramic capacitors, and various other devices.
  • the method for producing a conductive bonding material of the present invention is a production method having a step of supplying the above-mentioned composition of the present invention onto a substrate.
  • the substrate is not particularly limited, but examples of the material include polyethylene terephthalate, polytetrafluoroethylene, polyimide, PEEK (polyether ether ketone), aluminum, glass, alumina, silicon nitride, stainless steel, etc. Note that cloth coated or impregnated with the above material may be used as the substrate.
  • the substrate may also be a temporary support that can be peeled off after the composition is supplied.
  • examples of a method for supplying the composition of the present invention include inkjet printing, screen printing, jet printing, a dispenser, a jet dispenser, a comma coater, a slit coater, a die coater, a gravure coater, a slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, a bar coat, an applicator, a spray coater, and electrodeposition coating.
  • the method for producing a conductive bonding material of the present invention may include a step of drying the composition of the present invention supplied onto the substrate.
  • the drying method may be drying at room temperature, drying by heating, or drying under reduced pressure.
  • a hot plate, a hot air dryer, a hot air heating furnace, a nitrogen dryer, an infrared ray dryer, an infrared heating furnace, a far-infrared heating furnace, a microwave heating device, a laser heating device, an electromagnetic heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like may be used.
  • drying may be performed in a non-oxidizing atmosphere or a reducing atmosphere, for example, by substitution or blowing with a non-oxidizing gas such as argon, nitrogen, or water vapor, or with hydrogen or formic acid.
  • a non-oxidizing gas such as argon, nitrogen, or water vapor, or with hydrogen or formic acid.
  • the device of the present invention has the conductive bonding material of the present invention described above and a member provided on at least one surface of the conductive bonding material, and the member is at least one member selected from the group consisting of a semiconductor element, an electrode, and wiring.
  • the above-mentioned members include the above-mentioned applications of the conductive bonding material of the present invention, i.e., semiconductor bonding members, touch panels, electrode bonding materials for displays, electromagnetic wave shields, sintering materials, electrode materials for thin-layer ceramic capacitors, and semiconductor elements, electrodes, and wiring used in various other devices.
  • the device of the present invention may also have an underfill.
  • the composition forming the underfill typically includes a composition containing an epoxy resin, a curing agent, and an inorganic filler.
  • examples of such compositions include those described in JP-A-2014-091744, JP-A-2014-192238, JP-A-2015-021122, JP-A-2015-032639, JP-A-2015-053436, JP-A-2015-056464, JP-A-2015-140389, and JP-A-2017-008312.
  • Example 1 ⁇ Preparation of Aluminum Substrate> A molten metal was prepared using an aluminum alloy containing 0.06 mass% Si, 0.30 mass% Fe, 0.005 mass% Cu, 0.001 mass% Mn, 0.001 mass% Mg, 0.001 mass% Zn, 0.001 mass% Ti, and the remainder being Al and unavoidable impurities. The molten metal was treated and filtered, and an ingot having a thickness of 500 mm and a width of 1,200 mm was produced by a DC (Direct Chill) casting method. Next, the surface was scraped off by an average thickness of 10 mm using a facing machine, and then the plate was soaked at 550°C for about 5 hours.
  • DC Direct Chill
  • the plate When the temperature was lowered to 400°C, the plate was rolled into a 2.7 mm thick plate using a hot rolling machine. Further, the sheet was heat-treated at 500° C. using a continuous annealing machine, and then cold-rolled to a thickness of 1.0 mm to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material. The aluminum substrate was formed into a wafer having a diameter of 200 mm (8 inches) and then subjected to the following treatments.
  • JIS Japanese Industrial Standards
  • Electrolytic polishing treatment The above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing solution having the following composition under conditions of a voltage of 25 V, a solution temperature of 65° C., and a solution flow rate of 3.0 m/min.
  • the cathode was a carbon electrode
  • the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.)
  • the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • (Electrolytic polishing solution composition) 85% by weight phosphoric acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ 160mL of pure water ⁇ 150mL sulfuric acid ⁇ 30mL ethylene glycol
  • the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-ordering method according to the procedure described in JP-A-2007-204802.
  • the aluminum substrate after electrolytic polishing was subjected to a pre-anodizing treatment for 5 hours in an electrolytic solution of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a solution temperature of 16° C., and a solution flow rate of 3.0 m/min.
  • the aluminum substrate after the pre-anodizing treatment was subjected to a coating removal treatment by immersing it in a mixed aqueous solution of 0.2 mol/L chromic anhydride and 0.6 mol/L phosphoric acid (liquid temperature: 50° C.) for 12 hours. Thereafter, re-anodization was performed for 5 hours in an electrolyte of 0.50 mol/L oxalic acid under conditions of a voltage of 40 V, a liquid temperature of 16° C., and a liquid flow rate of 3.0 m/min, to obtain an anodized film with a thickness of 40 ⁇ m.
  • the cathode was a stainless steel electrode, and the power source was GP0110-30R (manufactured by Takasago Manufacturing Co., Ltd.).
  • the cooling device was NeoCool BD36 (manufactured by Yamato Scientific Co., Ltd.), and the stirring and heating device was Pair Stirrer PS-100 (manufactured by EYELA Tokyo Rikakikai Co., Ltd.).
  • the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • the surface of the anodized film after the pores were filled with metal was observed with an FE-SEM to determine whether 1,000 pores were sealed with metal.
  • the sealing rate (number of sealed pores/1,000) was calculated to be 96%.
  • the anodized film was cut in the thickness direction using an FIB, and the cross section was photographed with an FE-SEM (magnification 50,000x) to check the inside of the holes. It was found that the filling height from the bottom of the sealed holes was 35 ⁇ m.
  • ⁇ Isolation step> The filled metal was isolated from the anodized film and the aluminum base material by immersing the aluminum base material in an aqueous potassium hydroxide solution (concentration: 5 mol/L) at 60° C. for 300 seconds, to obtain an isolated metal. Specifically, the anodized film was dissolved by immersing the aluminum base material in an aqueous potassium hydroxide solution (concentration: 5 mol/L) at 60° C. for 300 seconds, and the filled metal was isolated by peeling off the aluminum base material at the same time as the anodized film was dissolved (after 300 seconds had elapsed).
  • Example 1 ⁇ Cleaning/Protective Layer Forming Step/Reduction or Removal Step> Next, the isolated metal recovered on the membrane was washed for 1 minute using the washing solvent shown below. In Example 1, since a corrosion inhibitor was added to the washing solvent, a protective layer was formed at the same time as washing. In Example 1, since citric acid was used as the corrosion inhibitor, the surface oxide layer of the isolated metal was also removed at the same time as the protective layer was formed. The isolated metals on the membrane were then collected. (Washing Solvent) An aqueous solution containing 1% by weight of citric acid
  • ⁇ Crushing process> the recovered isolated metal was added to water at 1 mass %, and the mixture was subjected once to a cavitation-based crushing treatment (pressure: 50 MPa) using a Starburst Mini manufactured by Sugino Machine Ltd. Thereafter, the crushed isolated metal was collected by suction filtration using a membrane (0.4 ⁇ m, PTFE, manufactured by Omnipore Corporation) and dried under reduced pressure for 12 hours to produce metal nanowires.
  • the specific surface area was measured by a krypton gas adsorption method and found to be 7000 m 2 /kg.
  • FIG. 2 shows an SEM image (magnification: 2000 times) of the produced metal nanowires.
  • Example 2 A paste was prepared in the same manner as in Example 1, except that 68 mass% of metal nanowires recovered in the same manner as in Example 1, 7.2 mass% of bisphenol A type epoxy resin (YD014, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 4.8 mass% of a microcapsule-type latent hardener (Novacure 3941, manufactured by Asahi Kasei E-materials Corporation) consisting of an imidazole modified body having a core and its surface coated with polyurethane was added, and polyethylene glycol (molecular weight 200) was added to make up 20 mass% of the total amount.
  • a microcapsule-type latent hardener Novacure 3941, manufactured by Asahi Kasei E-materials Corporation
  • Example 3 A paste was prepared in the same manner as in Example 2, except that the pressure in the crushing step was 100 MPa and the number of uses was 5.
  • Example 4 A paste was prepared in the same manner as in Example 2, except that the content of metal nanowires recovered in the same manner as in Example 1 was changed to 56 mass%, and 12 mass% of conductive fine particles A having an average long diameter and an average short diameter of both 3.5 ⁇ m was further added.
  • Example 5 A paste was prepared in the same manner as in Example 4, except that instead of the conductive fine particles A, conductive fine particles B having an average major axis of 3.1 ⁇ m and an average minor axis of 500 nm were added.
  • Example 6 A paste was prepared in the same manner as in Example 4, except that the conductive fine particles A were changed to conductive fine particles C having an average major axis of 25 ⁇ m and an average minor axis of 17 ⁇ m.
  • Example 7 A paste was prepared in the same manner as in Example 2, except that the content of metal nanowires recovered in the same manner as in Example 1 was changed to 61.6 mass%, and 6.4 mass% of conductive fine particles A having an average long diameter and an average short diameter of both 3.5 ⁇ m was further added.
  • Example 8 A paste was prepared in the same manner as in Example 2, except that the content of metal nanowires recovered in the same manner as in Example 1 was changed to 66.4 mass%, and 1.6 mass% of conductive fine particles A having an average long diameter and an average short diameter of both 3.5 ⁇ m was further added.
  • Example 9 A paste was prepared in the same manner as in Example 2, except that the content of the metal nanowires recovered in the same manner as in Example 1 was changed to 36 mass%, the content of the bisphenol A type epoxy resin (YD014, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.) was changed to 26.4 mass%, and the content of the microcapsule type latent hardener (Novacure 3941, manufactured by Asahi Kasei E-materials Corporation) was changed to 17.6 mass%.
  • the content of the metal nanowires recovered in the same manner as in Example 1 was changed to 36 mass%
  • the content of the bisphenol A type epoxy resin (YD014, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.) was changed to 26.4 mass%
  • the content of the microcapsule type latent hardener Novacure 3941, manufactured by Asahi Kasei E-materials Corporation
  • Example 10 A paste was prepared in the same manner as in Example 2, except that the type of metal used in the metal filling step was changed to nickel.
  • Example 11 The paste prepared in Example 2 was applied to a Teflon (registered trademark)-coated stainless steel plate using an applicator in an amount adjusted so that the thickness after drying would be 30 ⁇ m, and then dried at 250° C. for 2 hours in a nitrogen atmosphere to prepare a sheet.
  • Teflon registered trademark
  • Example 12 A sheet was prepared in the same manner as in Example 11, except that the paste prepared in Example 4 was used.
  • Comparative Example 1 A paste was prepared in the same manner as in Example 2, except that metal nanowires prepared by a method not including a crushing step were used. Moreover, an SEM image (magnification: 2000 times) of the metal nanowires produced in Comparative Example 1 is shown in FIG.
  • Example 2 A paste was prepared in the same manner as in Example 2, except that the content of the metal nanowires recovered in the same manner as in Example 1 was changed to 12 mass%, the content of the bisphenol A type epoxy resin (YD014, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.) was changed to 40 mass%, and the content of the microcapsule type latent hardener (Novacure 3941, manufactured by Asahi Kasei E-materials Corporation) was changed to 28 mass%.
  • the content of the metal nanowires recovered in the same manner as in Example 1 was changed to 12 mass%
  • the content of the bisphenol A type epoxy resin (YD014, manufactured by Nippon Steel Sumikin Chemical Co., Ltd.) was changed to 40 mass%
  • the content of the microcapsule type latent hardener Novacure 3941, manufactured by Asahi Kasei E-materials Corporation
  • the thermal conductivity of the prepared paste or sheet was measured by the following method and evaluated according to the following criteria. The results are shown in Table 1 below. Specifically, the prepared paste or sheet was placed on the flat side of an aluminum heat sink with a size of 20 mm x 20 mm. At that time, the paste was applied with a squeegee using a metal mask (opening: 20 x 20 mm x 0.2 mm), and then heated at 250 ° C. for 1 minute under non-pressurized conditions using a room temperature bonding device (WP-100, manufactured by PMT Co., Ltd.) and reducing gas (N2: 85%, formic acid: 15%) to replace the atmosphere inside the device with reducing gas.
  • WP-100 room temperature bonding device
  • reducing gas N2: 85%, formic acid: 15%
  • the sheet was processed to a size of 20 mm x 20 mm and then attached to the heat sink using heat dissipation grease. After both the paste and the sheet were attached to the heat sink, the power semiconductor TO-247 was attached as a heat source using heat dissipation grease. Next, the temperature difference between the heat source and the heat sink plane was divided by the power consumption to calculate the thermal resistance, which was then converted into thermal conductivity.
  • B 10 to less than 50 W/mK
  • C Less than 10 W/mK
  • Valve metal substrate Porous (micropore) 3 Anodic oxide film 4 Metal 5 Isolated metal 10 Metal nanowire

Abstract

本発明は、高い導電性および接合強度を有する導電性接合材を形成することができる導電性接合材形成用組成物、ならびに、導電性接合材、デバイスおよび導電性接合材の製造方法の製造方法を提供することを課題とする。本発明の導電性接合材形成用組成物は、金属ナノワイヤおよび金属ナノワイヤ凝集体からなる群から選択される少なくとも1種の導電材料と、溶媒とを含有し、導電材料の単位質量あたりの比表面積が100~50000m2/kgであり、導電材料の含有量が30質量%以上である、導電性接合材形成用組成物である。

Description

導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法
 本発明は、導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法の製造方法に関する。
 近年、金属ナノワイヤや金属ナノピラーを用いた導電性材料について種々の検討が試みられている。
 このような導電性材料として、ポーラスアルミナをナノ材料製作におけるテンプレートとすることは既に知られており、例えば、特許文献1には、アルミニウム基材に対して、陽極酸化処理、アルミニウム基材除去処理、貫通化処理、金属充填処理および陽極酸化膜除去処理をこの順に施して金属ナノワイヤを得る方法が記載されており([0025][図1])、また、この方法で得られた所定の金属ナノワイヤを含有する分散液についても記載されている([請求項1])。
特開2012-238592号公報
 本発明者らは、特許文献1に記載された金属ナノワイヤを含有する分散液について検討を行った結果、導電性接合材(例えば、半導体チップと基材との接合に用いる材料など)の形成に用いた場合、導電性および接合強度が十分でない場合があることを明らかとした。
 そこで、本発明は、高い導電性および接合強度を有する導電性接合材を形成することができる導電性接合材形成用組成物、ならびに、導電性接合材、デバイスおよび導電性接合材の製造方法の製造方法を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意研究した結果、所定の比表面積を有する金属ナノワイヤなどの導電材料を特定量配合した導電性接合材形成用組成物を用いることにより、高い導電性および接合強度を有する導電性接合材を形成できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] 金属ナノワイヤおよび金属ナノワイヤ凝集体からなる群から選択される少なくとも1種の導電材料と、溶媒とを含有し、
 導電材料の単位質量あたりの比表面積が100~50000m/kgであり、
 導電材料の含有量が30質量%以上である、導電性接合材形成用組成物。
 [2] 更に、導電性粒子を含有し、
 導電性粒子の最小包囲楕円体における平均長径が、0.01μm以上50μm以下であり、かつ、導電性粒子の最小包囲楕円体における平均短径に対して1~10倍である、[1]に記載の導電性接合材形成用組成物。
 [3] 更に、樹脂材料を含有する、[1]または[2]に記載の導電性接合材形成用組成物。
 [4] 金属ナノワイヤの長さの相加平均値が0.3~300μmである、[1]~[3]のいずれかに記載の導電性接合材形成用組成物。
 [5] [1]~[4]のいずれかに記載の導電性接合材形成用組成物を用いて形成される導電性接合材。
 [6] [5]に記載の導電性接合材と、導電性接合材の少なくとも一方の表面に設けられた部材とを有し、
 部材が、半導体素子、電極および配線からなる群から選択される少なくとも1種である、デバイス。
 [7] 導電性接合材を作製する導電性接合材の製造方法であって、
 基材上に、[1]~[4]のいずれかに記載の導電性接合材形成用組成物を供給する工程を有する、導電性接合材の製造方法。
 本発明によれば、高い導電性および接合強度を有する導電性接合材を形成することができる導電性接合材形成用組成物、ならびに、導電性接合材、デバイスおよび導電性接合材の製造方法の製造方法を提供することができる。
図1Aは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程前のバルブ金属基材の模式的断面図である。 図1Bは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、陽極酸化工程後の構造体の模式的断面図である。 図1Cは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、金属充填工程後の構造体の模式的断面図である。 図1Dは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、単離工程後の構造体の模式的断面図である。 図1Eは、本発明の金属ナノワイヤの製造方法の一例を示す手順のうち、解砕工程後の構造体(金属ナノワイヤ)の模式的断面図である。 図2は、実施例1で作製した金属ナノワイヤの走査電子顕微鏡(SEM:Scanning Electron Microscope)で撮影した画像である。 図3は、比較例1で作製した金属ナノワイヤのSEMで撮影した画像である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[導電性接合材形成用組成物]
 本発明の導電性接合材形成用組成物(以下、「本発明の組成物」とも略す。)は、金属ナノワイヤおよび金属ナノワイヤ凝集体からなる群から選択される少なくとも1種の導電材料と、溶媒とを含有する。
 また、本発明の組成物に含まれる導電材料の単位質量あたりの比表面積は、100~50000m/kgである。
 また、本発明の組成物に含まれる導電材料の含有量は、本発明の組成物の総質量に対して30質量%以上である。
 本発明においては、上述した通り、比表面積が100~50000m/kgとなる金属ナノワイヤなどの導電材料を30質量%以上含有する導電性接合材形成用組成物を用いることにより、高い導電性および接合強度を有する導電性接合材を形成できる。
 ここで、高い導電性および接合強度を有する導電性接合材を形成できる理由は、詳細には明らかではないが、およそ以下のとおりと推測される。
 まず、後述する比較例1および3の結果から、比表面積が100m/kg未満となる金属ナノワイヤを用いた場合には、その含有量が30質量%以上であっても、接合強度が劣ることが分かる。
 また、後述する比較例2および4の結果から、比表面積が100~50000m/kgとなる金属ナノワイヤを用いた場合でも、その含有量が30質量%未満であると、導電性が劣ることが分かる。
 そのため、本発明においては、金属ナノワイヤなどの導電材料の含有量が30質量%以上であることで、金属ナノワイヤなどの導電材料同士の接合箇所が増加し、導通パスが増加したため、導電性が向上したと考えられる。
 また、金属ナノワイヤなどの導電材料の比表面積が100~50000m/kgであることにより、導電材料が凝着した状態(例えば、束のような状態)で存在する割合が減少し、導電材料の向きがランダムの状態で存在する割合が増加したことにより、接合材料として用いた際に柔軟性が向上したため、接合強度が向上したと考えられる。
 〔導電材料〕
 本発明の組成物に含まれる導電材料は、金属ナノワイヤおよび金属ナノワイヤ凝集体からなる群から選択される少なくとも1種であり、かつ、単位質量あたりの比表面積が100~50000m/kgとなる導電材料である。
 ここで、「金属ナノワイヤ」とは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。なお、金属ナノワイヤの材質は、金属を含むものであれば特に限定されず、金属とともに金属以外の成分を含むものであってもよい。
 また、「金属ナノワイヤ凝集体」とは、金属ナノワイヤの凝集体をいう。
 なお、導電材料は、単位質量あたりの比表面積が100~50000m/kgであれば、金属ナノワイヤおよび金属ナノワイヤ凝集体のいずれか一方のみであってもよく、両者を含む態様であってもよい。
 本発明の組成物に含まれる導電材料の単位質量あたりの比表面積は、上述した通り、100~50000m/kgであり、100m/kg超50000m/kg以下であることが好ましく、1000m/kg超50000m/kg以下であることがより好ましく、2000m/kg超30000m/kg以下であることが更に好ましく、3000m/kg超20000m/kg以下であることが特に好ましい。
 ここで、単位質量あたりの比表面積は、得られた金属ナノワイヤの比表面積は既知の解析手法により測定可能であるが、本発明においては、クリプトンガス吸着法による測定値を採用する。
 本発明においては、上記金属ナノワイヤを構成する金属は特に限定されないが、電気抵抗率が10Ω・cm以下の材料であることが好ましく、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、コバルト(Co)等が好適に例示される。
 中でも、電気伝導性の観点から、Cu、Au、Al、Ni、Coが好ましく、Cu、Ni、Coがより好ましく、Cuが更に好ましい。
 上記金属ナノワイヤの直径(相加平均値)は、10~200nmであることが好ましく、10~100nmであることがより好ましく、10~50nmであるのことが更に好ましい。
 上記金属ナノワイヤの長さ(相加平均値)は、0.3~300μmであることが好ましく、0.5~200μmであることがより好ましく、1μm~100μmであることが更に好ましい。
 ここで、上記金属ナノワイヤの直径および長さは、例えば、電界放射型走査型電子顕微鏡(FE-SEM)を用い、100~500倍の倍率でSEM像を観察することにより求めることができる。具体的には、金属ナノワイヤの直径および長さは、100~500倍の倍率で撮影されたSEM像からランダムに10本選択した金属ナノワイヤを観察して直径および長さを測定し、それを10視野で行い、計100本の金属ナノワイヤの直径および長さの測定値の平均値をいう。
 上記金属ナノワイヤの直径に対する長さの比(長さ/直径)(以下、「アスペクト比」とも略す。)は、10以上であることが好ましく、100~1000であるのがより好ましい。
 本発明の組成物に含まれる導電材料の含有量は、上述した通り、本発明の組成物の総質量に対して30質量%以上であるが、経時での分散安定性が良好に維持され、塗布時の均一性も良好となる理由から、30~90質量%であることが好ましく、導電性および接合強度がより高くなり、放熱性も良好となる理由から、50~90質量%であることがより好ましい。
[導電材料の作製方法]
 本発明の組成物に含まれる導電材料の製造方法(以下、形式的に「本発明の製造方法」とも略す。)は、単位質量あたりの比表面積を100~50000m/kgに調整することが容易となる理由から、ポーラスを有する陽極酸化膜をバルブ金属基材の表面に形成する陽極酸化工程と、ポーラスに金属を充填する金属充填工程と、充填した金属を陽極酸化膜およびバルブ金属基材から単離する単離工程と、単離した金属(以下、「単離金属」とも略す。)を解砕して金属ナノワイヤを得る解砕工程とを有する方法であることが好ましい。
 次に、図1A~図1Eを用いて、本発明の製造方法における各工程の概要を説明した後に、各処理工程について詳述する。
 図1Aおよび図1Bに示すように、陽極酸化工程において、バルブ金属基材1の表面に陽極酸化処理を施し、バルブ金属基材1の表面に、ポーラス(マイクロポア)2を有する陽極酸化膜3を形成する。
 次いで、図1Cに示す通り、金属充填工程において、ポーラス2に金属4を充填する。
 次いで、図1Dに示す通り、単離工程において、充填した金属4を陽極酸化膜3およびバルブ金属基材1から単離する。なお、図1Dに示す態様は、単離工程によって得られた単離金属5を回収した状態(単離金属の一部が凝着している状態)を示すものである。
 次いで、図1Eに示す通り、解砕工程において、単離金属5が解砕された金属ナノワイヤ10を得ることができる。
 〔バルブ金属基材〕
 本発明の製造方法に用いられるバルブ金属基材は、バルブ金属を含有する基材であれば特に限定されない。
 ここで、バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムであることが好ましい。
 そのため、本発明の製造方法においては、バルブ金属基材としてアルミニウムを含む基材(以下、「アルミニウム基材」と略す。)を用いることが好ましい。
 アルミニウム基材は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基材;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基材;アルミニウムをラミネートした樹脂基材;等が挙げられる。
 バルブ金属基材のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、バルブ金属純度が、99.5質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが更に好ましい。バルブ金属純度が上述の範囲であると、貫通路の配列の規則性が十分となる。
 また、バルブ金属基材のうち、後述する陽極酸化工程において陽極酸化処理を施す側の表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されることが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特開2008-270158号公報の段落[0044]~[0054]に記載された各処理と同様の処理を施すことができる。
 〔陽極酸化工程〕
 上記陽極酸化工程は、上記バルブ金属基材の表面に陽極酸化処理を施すことにより、上記バルブ金属基材の表面に、ポーラスを有する陽極酸化膜を形成する工程である。
 上記陽極酸化工程で行う陽極酸化処理は、従来公知の方法を用いることができるが、後述する単離工程において、直径にバラツキの少ない充填した金属を単離することができる理由から、自己規則化法や定電圧処理を用いるのが好ましい。
 ここで、陽極酸化処理の自己規則化法や定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落および[図3]に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理は、例えば、酸濃度1~10質量%の溶液中で、バルブ金属基材を陽極として通電する方法を用いることができる。
 陽極酸化処理に用いられる溶液としては、酸溶液であることが好ましく、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸、グリコール酸、酒石酸、りんご酸、クエン酸等がより好ましく、中でも硫酸、リン酸、シュウ酸が更に好ましく、シュウ酸が特に好ましい。これらの酸は単独でまたは2種以上を組み合わせて用いることができる。
 極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度0.1~20質量%、液温-10~30℃、電流密度0.01~20A/dm、電圧3~300V、電解時間0.5~30時間であるのが好ましく、電解液濃度0.5~15質量%、液温-5~25℃、電流密度0.05~15A/dm、電圧5~250V、電解時間1~25時間であるのがより好ましく、電解液濃度1~10質量%、液温0~20℃、電流密度0.1~10A/dm、電圧10~200V、電解時間2~20時間であるのが更に好ましい。
 陽極酸化処理の処理時間は、0.5分~16時間であるのが好ましく、1分~12時間であるのがより好ましく、2分~8時間であるのが更に好ましい。
 上記陽極酸化工程により形成される陽極酸化膜の厚みは特に限定されないが、金属ナノワイヤの長さを調整する観点から、0.3~300μmであることが好ましく、0.5~120μmであることがより好ましく、0.5~100μmであることが更に好ましい。
 なお、陽極酸化膜の厚みは、陽極酸化膜を厚さ方向に対して集束イオンビーム(FIB)で切削加工し、その断面を電界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率5万倍)を撮影し、10点測定した平均値として算出することができる。
 上記陽極酸化工程により形成されるポーラスの密度は特に限定されないが、200万個/mm以上であることが好ましく、1000万個/mm以上であるのことがより好ましく、5000万個/mm以上であるのが更に好ましく、1億個/mm以上であるのが特に好ましい。
 なお、ポーラスの密度は、特開2008-270158号公報の[0168]および[0169]段落に記載された方法で測定し、算出することができる。
 上記陽極酸化工程により形成されるポーラスの平均開口径は特に限定されないが、金属ナノワイヤの直径を調整する観点から、5~500nmであることが好ましく、20~400nmであることがより好ましく、40~200nmであることが更に好ましく、50~100nmであることが特に好ましい。
 なお、ポーラスの平均開口径は、FE-SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出することができる。
 〔金属充填工程〕
 上記金属充填工程は、上記陽極酸化工程の後に、ポーラスの内部に金属を充填する工程である。
 <金属>
 上記金属は、上記金属ナノワイヤを構成する金属として説明したものと同様のものが挙げられる。
 <充填方法>
 上記金属をポーラスの内部に充填する方法としては、例えば、特開2008-270158号公報の段落[0123]~[0126]および[図4]に記載された各方法と同様の方法等が挙げられる。
 本発明の製造方法においては、作製される金属ナノワイヤに空洞部分が含まれ難くなる理由から、上記金属充填工程がめっき工程を含むことが好ましい。
 具体的には、上記金属をポーラスの内部に充填する方法として、電解めっき処理方法を用いることが好ましく、例えば、電解めっき法または無電解めっき法を用いることができる。
 ここで、着色などに用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、本発明の製造方法においては、電解めっき法により金属を充填する場合は、パルス電解または定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒あることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
 めっき液は、従来公知のめっき液を用いることができる。
 具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであるのが好ましく、100~200g/Lであるのがより好ましい。また、電解液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであるのが好ましい。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
 なお、無電解めっき法では、アスペクトの高いポーラスからなる孔中に金属を完全に充填には長時間を要するので、本発明の製造方法においては、電解めっき法により金属を充填するのが望ましい。
 本発明の製造方法においては、電解めっき処理方法として、交流電解めっき法と直流電解めっき法とをこの順で組み合わせた処理方法を用いることが好ましい。
 ここで、交流電解めっき法は、例えば、電圧を予め定めた周波数で正弦波状に変調させて印加する。なお、電圧の変調の際の波形は正弦波に限定されるものではなく、例えば、矩形波、三角波、のこぎり波、または逆のこぎり波とすることもできる。
 また、直流電解めっき法は、上述した電解めっき法における処理方法を適宜用いることができる。
 本発明の製造方法においては、金属ナノワイヤを製造する時間を短縮できる理由から、図1Cにも示す通り、上記金属充填工程における金属の充填が、ポーラスの底部から開口部までの全領域のうち、ポーラスの底部から開口部の途中までの領域に対して施される処理であることが好ましい。
 〔単離工程〕
 上記単離工程は、上記金属充填工程の後に、充填した金属を上記陽極酸化膜および上記バルブ金属基材から単離する工程である。
 ここで、充填した金属を上記陽極酸化膜および上記バルブ金属基材から単離する方法は特に限定されず、例えば、上記陽極酸化膜および上記バルブ金属基材を除去(例えば、溶解、剥離など)し、充填した金属を単離する方法が好適に挙げられる。そのため、上記単離工程後の態様としては、例えば、後述する溶解工程(溶解処理)に用いた処理液中に、充填した金属が単離された状態で分散している態様も含まれる。
 本発明の製造方法においては、上記陽極酸化膜および上記バルブ金属基材を除去する方法は特に限定されず、例えば、研摩により除去する態様であってもよいが、作製される金属ナノワイヤの長さが均一になる理由から、上記単離工程が溶解工程を含むこと、すなわち、溶解処理によって上記陽極酸化膜および上記バルブ金属基材の少なくとも一部を除去することが好ましい。
 本発明の製造方法においては、作製される金属ナノワイヤの形状やサイズが維持される理由から、上記単離工程が、上記陽極酸化膜を除去するとともに、上記バルブ金属基材を除去する1段階の除去工程を含むことが好ましく、上記陽極酸化膜の除去が溶解処理によって除去される工程であることがより好ましい。
 また、同様の理由から、上記単離工程が、上記バルブ金属基材を除去し、その後に上記陽極酸化膜を除去する2段階の除去工程を含む工程であってもよく、この場合、2段階の除去工程がいずれも溶解処理によって除去される工程であることがより好ましい。
 <バルブ金属基材の除去>
 上記バルブ金属基材の除去は、陽極酸化膜を溶解しにくく、バルブ金属を溶解しやすい処理液を用いた溶解処理が好ましい。
 このような処理液は、バルブ金属に対する溶解速度が、1μm/分以上であるのが好ましく、3μm/分以上であるのがより好ましく、5μm/分以上であるのが更に好ましい。同様に、陽極酸化膜に対する溶解速度が、0.1nm/分以下となるのが好ましく、0.05nm/分以下となるのがより好ましく、0.01nm/分以下となるのが更に好ましい。
 具体的には、バルブ金属よりもイオン化傾向の低い金属化合物を少なくとも1種含み、かつ、pHが4以下または8以上となる処理液であるのが好ましく、そのpHが3以下または9以上であるのがより好ましく、2以下または10以上であるのが更に好ましい。
 このような処理液としては、酸またはアルカリ水溶液をベースとし、例えば、マンガン、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、鉛、アンチモン、ビスマス、銅、水銀、銀、パラジウム、白金、金の化合物(例えば、塩化白金酸)、これらのフッ化物、これらの塩化物等を配合したものであるのが好ましい。
 中でも、酸水溶液ベースが好ましく、塩化物をブレンドするのが好ましい。
 特に、塩酸水溶液に塩化水銀をブレンドした処理液(塩酸/塩化水銀)、塩酸水溶液に塩化銅をブレンドした処理液(塩酸/塩化銅)が、処理ラチチュードの観点から好ましい。
 なお、このような処理液の組成は特に限定されず、例えば、臭素/メタノール混合物、臭素/エタノール混合物、王水等を用いることができる。
 また、このような処理液の酸またはアルカリ濃度は、0.01~10mol/Lが好ましく、0.05~5mol/Lがより好ましい。
 更に、このような処理液を用いた処理温度は、-10℃~80℃が好ましく、0℃~60℃が好ましい。
 また、上記バルブ金属基材の除去は、上記金属充填工程後のバルブ金属基材を上述した処理液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。このときの接触時間としては、10秒~5時間が好ましく、1分~3時間がより好ましい。
 <陽極酸化膜の除去>
 上記陽極酸化膜の除去は、ポーラスに充填した金属を溶解せず、陽極酸化膜を選択的に溶解する溶媒を用いることができ、アルカリ水溶液および酸水溶液のいずれも用いることができる。
 ここで、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウムおよび水酸化リチウムからなる群から選ばれる少なくとも1つのアルカリの水溶液を用いることが好ましく、水酸化カリウムの水溶液を用いることがより好ましい。また、アルカリ水溶液の濃度は1~30質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、20~60℃がより好ましく、30~60℃であるのが更に好ましい。
 一方、酸水溶液を用いる場合は、クロム酸、硫酸、リン酸、硝酸、塩酸、シュウ酸等の無機酸またはこれらの混合物の水溶液を用いることが好ましく、クロム酸の水溶液を用いることがより好ましい。また、酸水溶液の濃度は1~30質量%であるのが好ましい。酸水溶液の温度は、15~80℃が好ましく、20~60℃がより好ましく、30~50℃が更に好ましい。
 また、上記陽極酸化膜の除去は、上記金属充填工程後(好ましくはバルブ金属基材を除去した後)に上述したアルカリ水溶液および酸水溶液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。アルカリ水溶液および酸水溶液への浸せき時間は、1~120分であるのが好ましく、2~90分であるのがより好ましく、3~60分であるのが更に好ましく、3~30分であるのが特に好ましい。なかでも、3~20分であるのが好ましく、3~10分であるのがより好ましい。
 〔解砕工程〕
 上記解砕工程は、上記単離工程の後に、単離金属を解砕する工程である。
 単離金属を解砕する方法は特に限定されないが、例えば、液中で単離金属に衝撃与えて解砕する方法が好適に挙げられる。
 解砕に用いる液体(溶媒)としては、単離金属を変質および溶解させなければ特に限定されないが、例えば、水、エタノール、メタノール、アセトン、メチルエチルケトン、ブタノール、酢酸エチル、酢酸ブチル、テトラヒドロフラン、トルエン、ジメチルホルムアミド、シクロヘキサン、シクロヘキサノンなどが挙げられる。これらのうち、安全性の観点から水であることが好ましい。
 また、上記解砕工程は、接合時により高い接合強度を有する金属ナノワイヤを作製できる観点から、水中、または、アルカリもしくは酸の濃度が1質量%未満となる水溶液中で行われることが好ましい。
 解砕処理としては、例えば、キャビテーションを利用した解砕処理や、セラミックスボールを衝突させた解砕処理などが挙げられ、超音波洗浄機、超音波ホモジナイザー、ジェットミル、湿式微粒化装置などの装置を用いることができる。これらのうち、キャビテーションを利用した解砕処理、または、セラミックスボールを衝突させた解砕処理が好ましく、キャビテーションを利用した解砕処理がより好ましい。
 本発明においては、液中で圧力を解砕する際の液中での単離金属の濃度は、処理が均一となり、生産性が向上する理由から、0.1~50質量%が好ましい。
 また、液中で圧力を解砕する際の液中での単離金属の濃度は、接合時により高い接合強度を有する金属ナノワイヤを得ることができる理由から、0.5~30質量%がより好ましく、1~10質量%が更に好ましい。
 〔乾燥工程〕
 本発明の製造方法は、接合時に高い接合強度を有する金属ナノワイヤを得ることができるという本発明の効果が顕在化する理由から、上記単離工程と上記解砕工程との間に、更に、単離金属を乾燥する乾燥工程を有していることが好ましい。
 ここで、単離金属を乾燥する方法は特に限定されないが、上記陽極酸化膜および上記バルブ金属基材を除去した後に、フィルター等を用いた濾過、遠心分離などの分離操作を行うことにより、単離金属を回収することにより乾燥することができる。
 〔保護層形成工程〕
 本発明の製造方法は、接続抵抗の低い金属ナノワイヤを得ることができる理由から、上記単離工程の後(上記乾燥工程を有している場合には上記乾燥工程の後)に、更に、上記単離金属に腐食防止剤を含有する保護層を形成する工程を有していることが好ましい。
 上記腐食防止剤は特に限定されず、公知の腐食防止剤を適用できる。
 腐食防止剤としては、例えば、窒素原子、酸素原子および硫黄原子の少なくとも1つを含有する化合物等が挙げられる。
 腐食防止剤は、耐久性の観点から、窒素原子および酸素原子の少なくとも1つを含有する複素環式化合物であることが好ましく、1つ以上の窒素原子を含有する5員環構造を含む化合物であることがより好ましく、トリアゾール構造を含む化合物、ベンゾイミダゾール構造を含む化合物、および、チアジアゾール構造を含む化合物からなる群より選択される少なくとも1種の化合物であることが特に好ましい。1つ以上の窒素原子を含有する5員環構造は、単環の構造であってもよく、縮合環を構成する部分構造であってもよい。
 また、腐食防止剤は、単離金属の表面に吸着しやすくなる理由から、極性基含有酸および極性基含有塩基の少なくとも一方を含む化合物であることが好ましい。
 極性基含有酸および極性基含有塩基が有する極性基としては、例えば、カルボン酸基(カルボキシ基)、スルホン酸基(スルホ基)、ホスホン酸基、リン酸基、第一級~第四級アンモニウム塩基、カルボン酸塩基、スルホン酸塩基、ホスホン酸塩基、リン酸塩基などが挙げられる。
 また、腐食防止剤は、金属イオンと結合して錯イオンを形成し、単離金属の表面が保護されやすくなる理由から、カルボキシ基を含む化合物であることが好ましい。
 上記腐食防止剤の具体例としては、イミダゾール、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール(BTA)、トリルトリアゾール(TTA)、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール(DMTDA)、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾイミダゾール等が挙げられる。
 上記腐食防止剤の他の具体例としては、酢酸、プロピオン酸、パルミチン酸、ステアリン酸、ラウリン酸、アラキジン酸、テレフタル酸、オレイン酸などの脂肪族カルボン酸;グリコール酸、乳酸、シュウ酸、リンゴ酸、酒石酸、クエン酸などのカルボン酸;エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(EDDA)、エチレングリコールジエチルエーテルジアミン四酢酸(GEDA)などのアミノポリカルボン酸;尿酸;没食子酸;などが挙げられる。
 腐食防止剤は、1種単独でも2種類以上適宜組み合わせて用いてもよい。
 また、経時安定性が良好となる理由から、上記腐食防止剤が窒素原子を含有する化合物(窒素含有化合物)を含むことが好ましく、窒素含有化合物であることがより好ましく、窒素原子および硫黄原子の少なくとも1つを含有する複素環式化合物であることが更に好ましい。
 このような腐食防止剤を含有する保護層を形成する方法は特に限定されず、例えば、腐食防止剤を含有する水溶液に、上記乾燥工程で回収された単離金属を添加し、撹拌する方法;上記乾燥工程で回収された単離金属を洗浄する洗浄溶媒に腐食防止剤を添加する方法;などが挙げられる。
 〔還元または除去する工程〕
 本発明の製造方法は、接続抵抗の低い金属ナノワイヤを得ることができる理由から、上記単離工程と上記解砕工程との間(上記乾燥工程を有している場合には上記乾燥工程の前)に、更に、上記単離金属の表面酸化層を還元または除去する工程を有していることが好ましい。
 還元または除去する工程としては、例えば、上述した陽極酸化膜の除去処理に記載したアルカリ水溶液および酸水溶液を用いた浸漬処理を施す工程などが挙げられる。
 〔溶媒〕
 本発明の組成物に含まれる溶媒としては、主として有機溶媒が用いられ、水と混和する有機溶媒を用いる場合には、有機溶媒とともに水を20容量%以下の割合で併用することができる。
 上記有機溶媒としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール系化合物が好適に用いられる。このようなアルコール系化合物を併用することにより、導電膜の形成時の塗布工程での塗り付け良化、乾燥負荷の低減をすることができる。
 上記アルコール系化合物は、特に限定はなく、目的に応じて適宜選択することができ、その具体例としては、ポリエチレングリコール、ポリプロピレングリコール、アルキレングリコール、グリセロール等が挙げられる、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 具体的には、室温において粘度の低いエチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール等の炭素数の小さなものが好ましいが、ペンタンジオール、ヘキサンジオール、オクタンジオール、ポリエチレングリコール等の炭素数の大きなものも使用可能である。
 これらのうち、最も好ましい溶媒はジエチレングリコールである。
 〔界面活性剤〕
 本発明の組成物は、分散安定性がより良好となる理由から、界面活性剤を用いるのが好ましい。
 上記界面活性剤としては、例えば、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられ、こられを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記ノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール(例えば、モノステアリン酸ポリエチレングリコール等)、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。
 上記アニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。
 例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。
 上記カチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。
 上記両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。
 本発明においては、好ましい界面活性剤として、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。
 このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基および親水性基を含有するオリゴマー、パーフルオロアルキル基および親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基および親油性基を含有するオリゴマー、パーフルオロアルキル基および親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号および同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。
 また、本発明においては、これらの界面活性剤のうち、分散安定性が更に良好となる理由から、HLB値が10以上のものを用いるのが望ましい。
 ここで、HLB(Hydrophile-Lipophile Balance)値とは、界面活性剤の水と油(水に不溶性の有機化合物)への親和性の程度を表す値である。HLB値は0から20までの値を取り、0に近いほど親油性が高く20に近いほど親水性が高くなる。
 本発明においては、これらの界面活性剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 また、これらの界面活性剤の含有量は、上記導電材料の全質量に対して、0.001~10質量%であるのが好ましく、0.01~5質量%であるのがより好ましい。
 〔水溶性分散剤〕
 本発明の組成物は、水酸基やカルボキシル基、スルホン基、リン酸基、アミノ基、SH基等を末端に有する水溶性の有機分子、例えば、コハク酸、ポリビニルアルコール(PVA)、ポリビニールピロール(PVP)等の水溶性分散剤を用いることができる。
 〔導電性粒子〕
 本発明の組成物は、上記導電材料以外に、導電性粒子を更に含有していてもよい。
 ここで、導電性粒子は、金属を含むことが好ましく、金、銀、銅、アルミニウム、ニッケル、亜鉛およびコバルトからなる群から選択される少なくとも1種の金属を含むことがより好ましい。
 また、導電性粒子は、金属以外の導電成分を1種または2種以上含んでもよい。
 本発明においては、導電性粒子の形状は特に限定されず、中実および中空のいずれであってもよい。
 また、導電性粒子の最小包囲楕円体における平均長径は、後述する導電性接合材の厚みに対して空間をより密に金属を充填できる理由から、0.01μm以上50μm以下であることが好ましく、0.1μm以上20μm以下であることがより好ましい。
 また、導電性粒子の最小包囲楕円体における平均長径は、効率的に空間を埋める形状を選択する理由から、平均短径に対して1~10倍であることが好ましい。
 ここで、最小包囲楕円体とは、導電性粒子を内部に包含する楕円体の中で体積が最少となるものをいい、長径と短径とが一致する楕円体(すなわち球体)も含むものである。
 また、最小包囲楕円体における平均長径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の長径を測定して、それらを算出平均して求めることができる。同様に、最小包囲楕円体における平均短径は、分散液を用いて形成した層の厚み方向の断面を顕微鏡(例えば、電子顕微鏡)にて観察し、100個の任意の微粒子の短径を測定して、それらを算出平均して求めることができる。
 更に、後述するメジアン径(D50)は、導電性粒子の体積を球に近似した場合の直径のメジアン径のことをいい、レーザー回折・散乱法または動的光散乱法により求めることができる。
 本発明の組成物が導電性粒子を含有する場合、導電性粒子の含有量は特に限定されないが、金属ナノワイヤ100質量部に対して5~70質量部であることが好ましく、10~45質量部であることがより好ましい。
 〔樹脂材料〕
 本発明の組成物は、密着性向上の観点から、樹脂材料を更に含有していることが好ましい。
 樹脂材料としては、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂などが挙げられ、中でも、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、具体的には、例えば、ナフタレン骨格を有するエポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、シロキサン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 特に、エポキシ樹脂は、フィルムの成形性の観点から、ナフタレン骨格を有するエポキシ樹脂、ビスフェノールA型エポキシ樹脂、または、ビスフェノールF型エポキシ樹脂であって、常温で液状であるものが好ましい。
 〔エポキシ樹脂硬化剤〕
 本発明の組成物がエポキシ樹脂を含有する場合、本発明の組成物は、エポキシ樹脂硬化剤、すなわち、エポキシ樹脂の硬化反応を促進する触媒を含有することが好ましい。
 エポキシ樹脂硬化剤としては、例えば、イミダゾール系、フェノール系、アミン系、酸無水物系、有機過酸化物系等を用いることができる。特に、エポキシ樹脂硬化剤は、本発明の組成物の常温での保管性(ライフ)の観点から、潜在性をもった硬化剤であることが好ましく、カプセル化されて潜在性をもったイミダゾール系の硬化剤であることがより好ましい。常温での保管性が良好となることにより、本発明の組成物の供給や使用における管理をより簡便にすることができる。具体的には、エポキシ樹脂硬化剤としては、潜在性イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることができる。市販品としては、例えば、ノバキュア3941(旭化成イーマテリアルズ社製)を用いることができる。エポキシ樹脂硬化剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 本発明の組成物が、エポキシ樹脂およびエポキシ樹脂硬化剤を含有する場合、これらの含有量の合計は、本発明の組成物の総質量に対して、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10~20質量%であることが更に好ましい。
 〔還元剤〕
 本発明の組成物は、還元剤を含有していてもよい。
 還元剤としては、例えば、ヒドラジン、ヒドラジン誘導体、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物;ヒドロキシルアミン、ヒドロキシルアミン誘導体等のヒドロキシルアミン化合物;水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、次亜リン酸ナトリウム等のナトリウム化合物;などを挙げることができ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
[導電性接合材]
 本発明の導電性接合材は、上述した本発明の組成物を用いて形成される導電性接合材である。なお、導電性接合材の形状は特に限定されず、例えば、ペースト状であってもシート状であってもよい。
 また、本発明の導電性接合材は、例えば、半導体接合部材、タッチパネル、ディスプレイ用電極接合材、電磁波シールド、シンタリング材、薄層セラミックコンデンサ用電極材、その他の各種デバイス等に利用される導電性接合材として好適に用いることができる。
[導電性接合材の製造方法]
 本発明の導電性接合材の製造方法は、基材上に、上述した本発明の組成物を供給する工程を有する製造方法である。
 ここで、上記基材は特に限定されないが、その材質としては、例えば、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリイミド、PEEK(ポリエーテルエーテルケトン)、アルミニウム、ガラス、アルミナ、窒化ケイ素、ステンレススチールなどが挙げられる。なお、クロスに上記材質をコートまたは含浸したものを、基材として用いてもよい。また、上記基材は、組成物の供給後に剥離できる仮支持体であってもよい。
 また、本発明の組成物を供給する方法としては、例えば、インクジェット印刷、スクリーン印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、バーコート、アプリケータ、スプレーコータ、電着塗装等を用いることができる。
 本発明の導電性接合材の製造方法は、基材上に供給された本発明の組成物を乾燥させる工程を有していてもよい。なお、本発明の組成物を乾燥させることにより、自立シートとして基材から分離することができる。
 上記の乾燥方法は、常温放置による乾燥、加熱乾燥または減圧乾燥を用いることができる。加熱乾燥または減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度および時間は、使用した分散媒の種類および量に合わせて適宜調整することが好ましく、例えば、50~300℃で1~180分間乾燥させることが好ましい。
 また、金属の酸化抑制の観点から、非酸化雰囲気や還元性雰囲気で乾燥してもよい。アルゴン、窒素、水蒸気などの非酸化性ガス、水素、ギ酸による置換、吹きつけ、が挙げられる。
[デバイス]
 本発明のデバイスは、上述した本発明の導電性接合材と、上記導電性接合材の少なくとも一方の表面に設けられた部材とを有し、上記部材が、半導体素子、電極および配線からなる群から選択される少なくとも1種である、デバイスである。
 ここで、上記部材としては、上述した本発明の導電性接合材の用途、すなわち、半導体接合部材、タッチパネル、ディスプレイ用電極接合材、電磁波シールド、シンタリング材、薄層セラミックコンデンサ用電極材、その他の各種デバイス等に用いられる半導体素子、電極および配線が挙げられる。
 また、本発明のデバイスは、アンダーフィルを有していてもよい。
 ここで、アンダーフィルを形成する組成物としては、代表的にはエポキシ樹脂、硬化剤および無機充填剤を含む組成物が挙げられる。このような組成物としては、例えば、特開2014-091744号公報、特開2014-192238号公報、特開2015-021122号公報、特開2015-032639号公報、特開2015-053436号公報、特開2015-056464号公報、特開2015-140389号公報、特開2017-008312号公報に記載の組成物が挙げられる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[実施例1]
 <アルミニウム基材の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理およびろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(日本工業規格) 1050材のアルミニウム基材を得た。
 アルミニウム基材を、直径200mm(8インチ)のウエハ状に形成した後、以下に示す各処理を施した。
 <電解研磨処理>
 上述のアルミニウム基材に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/分の条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬社製試薬)  660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
 <陽極酸化工程>
 次いで、電解研磨処理後のアルミニウム基材に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基材に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基材を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/分の条件で、5時間の再陽極酸化処理を施し、膜厚40μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 <金属充填工程>
 次いで、アルミニウム基材を陰極にし、白金を正極にして電解めっき処理を施した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、ポーラス(マイクロポア)の内部に銅が充填された金属充填微細構造体を作製した。
 ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
 (銅めっき液組成および条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・温度 25℃
 ・電流密度 10A/dm
 ポーラスに金属を充填した後の陽極酸化膜の表面をFE-SEMで観察し、1000個のポーラスにおける金属による封孔の有無を観察して封孔率(封孔ポーラスの個数/1000個)を算出したところ、96%であった。
 また、ポーラスに金属を充填した後の陽極酸化膜を厚さ方向に対してFIBで切削加工し、その断面をFE-SEMにより表面写真(倍率50000倍)を撮影し、ポーラスの内部を確認したところ、封孔されたポーラスにおいては、ポーラスの底部からの充填高さが35μmであることが分かった。
 <単離工程>
 60℃の水酸化カリウムの水溶液(濃度:5mol/L)に300秒浸漬させることにより、充填した金属を陽極酸化膜およびアルミニウム基材から単離し、単離金属を得た。具体的には、60℃の水酸化カリウムの水溶液(濃度:5mol/L)に300秒浸漬させることにより、陽極酸化膜を溶解し、陽極酸化膜の溶解と同時に(300秒経過した時点で)アルミニウム基材を剥離することにより、充填した金属を単離した。
 <乾燥工程>
 次いで、メンブレン(0.4μm、PTFE、Omnipore社製)を用いた吸引ろ過により、単離金属金属を回収し、単離金属を乾燥させた。
 <洗浄/保護層形成工程/還元または除去する工程>
 次いで、メンブレン上に回収された単離金属に対して、以下に示す洗浄溶媒を用いて1分間洗浄した。なお、実施例1においては、洗浄溶媒に防食防止剤を添加しているため、洗浄と同時に、保護層の形成を行っている。また、実施例1においては、腐食防止剤としてクエン酸を用いているため、保護層の形成と同時に、単離金属の表面酸化層の除去も行っている。
 その後、メンブレン上の単離金属を回収した。
 (洗浄溶媒)
 クエン酸を1質量%含有する水溶液
 <解砕工程>
 次いで、回収した単離金属を水中に1質量%添加し、スギノマシン社製スターバーストミニを使用し、キャビテーションによる解砕処理(圧力:50MPa)を1回施した。
 その後、メンブレン(0.4μm、PTFE、Omnipore社製)を用いた吸引ろ過により、解砕処理を施した単離金属を回収し、12時間、減圧乾燥させることにより、金属ナノワイヤを製造した。
 ここで、マイクロトラック・ベル製BELSORP-maxを用い、50℃で60分間減圧処理を行なった後にクリプトンガス吸着法により比表面積を測定したところ7000m/kgであった。
 また、製造した金属ナノワイヤのSEM画像(倍率:2000倍)を図2に示す。
 <組成物(ペースト)の調製>
 次いで回収した金属ナノワイヤをポリエチレングリコール(分子量200)中に、80wt%となるよう添加し、あわとり練太郎(ARE-400TWIN、シンキー社製)を用い、遠心撹拌によりペーストを調製した。
[実施例2]
 実施例1と同様の方法で回収した金属ナノワイヤを68質量%、ビスフェノールA型エポキシ樹脂(YD014、新日鉄住金化学社製)を7.2質量%、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤(ノバキュア3941、旭化成イーマテリアルズ社製)を4.8質量%とし、そこに全量に対して20質量%となるようポリエチレングリコール(分子量200)を添加した以外は、実施例1と同様の方法により、ペーストを調製した。
[実施例3]
 解砕工程における圧力を100MPa、使用回数を5回とした以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例4]
 実施例1と同様の方法で回収した金属ナノワイヤの含有量を56質量%に変更し、平均長径および平均短径が共に3.5μmの導電性微粒子Aを更に12質量%添加した以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例5]
 導電性微粒子Aに代えて、平均長径が3.1μmであり、平均短径が500nmである導電性微粒子Bに添加した以外は、実施例4と同様の方法により、ペーストを調製した。
[実施例6]
 導電性微粒子Aに代えて、平均長径が25μmであり、平均短径が17μmである導電性微粒子Cに変更した以外は、実施例4と同様の方法により、ペーストを調製した。
[実施例7]
 実施例1と同様の方法で回収した金属ナノワイヤの含有量を61.6質量%に変更し、平均長径および平均短径が共に3.5μmの導電性微粒子Aを更に6.4質量%添加した以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例8]
 実施例1と同様の方法で回収した金属ナノワイヤの含有量を66.4質量%に変更し、平均長径および平均短径が共に3.5μmの導電性微粒子Aを更に1.6質量%添加した以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例9]
 実施例1と同様の方法で回収した金属ナノワイヤの含有量を36質量%に変更し、ビスフェノールA型エポキシ樹脂(YD014、新日鉄住金化学社製)の含有量を26.4質量%に変更し、マイクロカプセル型潜在性硬化剤(ノバキュア3941、旭化成イーマテリアルズ社製)の含有量を17.6質量%に変更した以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例10]
 金属充填工程で用いる金属の種類をニッケルに変更した以外は、実施例2と同様の方法により、ペーストを調製した。
[実施例11]
 テフロン(登録商標)コートしたステンレス板上に、実施例2で調製したペーストをアプリケータにより乾燥後の厚みが30μmとなるよう塗布量を調整した。次いで、窒素雰囲気下で250℃2時間乾燥させシート状に調製した。
[実施例12]
 実施例4で調製したペーストを用いた以外は、実施例11と同様の方法により、シート状に調製した。
[比較例1]
 解砕工程を含まない方法で調製した金属ナノワイヤを用いた以外は、実施例2と同様の方法により、ペーストを調製した。
 また、比較例1で製造した金属ナノワイヤのSEM画像(倍率:2000倍)を図3に示す。
[比較例2]
 実施例1と同様の方法で回収した金属ナノワイヤの含有量を12質量%に変更し、ビスフェノールA型エポキシ樹脂(YD014、新日鉄住金化学社製)の含有量を40質量%に変更し、マイクロカプセル型潜在性硬化剤(ノバキュア3941、旭化成イーマテリアルズ社製)の含有量を28質量%に変更した以外は、実施例2と同様の方法により、ペーストを調製した。
[評価]
 〔導電性〕
 実施例1~10および比較例1~2で調製したペーストを、メタルマスク(開口部:1×1mm×0.2mm)を用いて、Cu板(10mm×10mm×0.5mm)にスキージ塗布し、塗布されたペースト上にCu板(5mm×5mm×0.5mm)を設置した。なお、実施例11および12で調製したシートについては、5×5mmにカットしたシートを上記の2枚のCu板に挟んだ積層体を作製した。
 その後、接合装置(WP-100、PMT社製)を用いて、還元ガス(N2:85%,ギ酸:15%)を用い、装置内の雰囲気を還元ガスで置換した後、250℃、1分間、5MPaの条件で加熱圧着を行い、Cu板とペースト(シート)を接合したサンプルを作製した。
 次いで、ダイヤインスツルメンツ製ロレスタGPを用い、測定端子(ピン)間を3mmとし、上下の銅板に測定端子をあて、測定端子の押し付け圧(ばね圧)を200gとし、接続抵抗を測定し、以下の基準で評価した。結果を下記表1に示す。
 <評価基準>
 A:銅の抵抗に対して120%以下
 B:銅の抵抗に対して120%超150%以下
 C:銅の抵抗に対して150%超
 〔接合強度〕
 接続抵抗を測定したサンプルでNordson社製4000万能型ボンドテスターを用いダイシェア強度を測定し、以下の基準で評価した。結果を下記表1に示す。
 <評価基準>
 A:15MPa以上
 B:10MPa以上15MPa未満
 C:10MPa未満
 〔放熱性〕
 作製したペーストまたはシートについて、以下の方法で熱伝導率を測定し、以下の基準で評価した。結果を下記表1に示す。
 具体的には、アルミ製ヒートシンクの平面側に、作製したペーストまたはシートを20mm×20mmサイズで設置した。その際、ペーストはメタルマスク(開口部:20×20mm×0.2mm)を用いて、スキージ塗布後、常温接合装置(WP-100、PMT社製)を用いて、還元ガス(N2:85%,ギ酸:15%)を用い、装置内の雰囲気を還元ガスで置換した後、250℃、1分間、無加圧の条件で加熱をした。シートは20mm×20mmサイズに加工後、放熱グリスを用いヒートシンクに張り付けた。ペースト、シート共にヒートシンクに貼り付け後、放熱グリスを用いて熱源としてパワー半導体TO-247を張り付けた。
 次いで、熱源とヒートシンク平面の温度差を消費電力で割り、熱抵抗を算出し熱伝導率に換算した。
 <評価基準>
 A:50W/mK以上
 B:10以上50W/mK未満
 C:10W/mK未満
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、比表面積が100m/kg未満となる金属ナノワイヤを用いた場合には、その含有量が30質量%以上であっても、接合強度が劣ることが分かった(比較例1)。
 また、比表面積が100~50000m/kgとなる金属ナノワイヤを用いた場合でも、その含有量が30質量%未満であると、導電性が劣ることが分かった(比較例2)。
 これに対し、比表面積が100~50000m/kgとなる金属ナノワイヤを30質量%以上配合した場合には、導電性および接合強度がいずれも高くなることが分かった(実施例1~12)。
 また、実施例1~3および9の結果から、本発明の組成物に含まれる導電材料の含有量が50~90質量%であると、導電性および接合強度がより高くなり、放熱性も良好となることが分かった。
 1 バルブ金属基材
 2 ポーラス(マイクロポア)
 3 陽極酸化膜
 4 金属
 5 単離金属
 10 金属ナノワイヤ
 

Claims (7)

  1.  金属ナノワイヤおよび金属ナノワイヤ凝集体からなる群から選択される少なくとも1種の導電材料と、溶媒とを含有し、
     前記導電材料の単位質量あたりの比表面積が100~50000m/kgであり、
     前記導電材料の含有量が30質量%以上である、導電性接合材形成用組成物。
  2.  更に、導電性粒子を含有し、
     前記導電性粒子の最小包囲楕円体における平均長径が、0.01μm以上50μm以下であり、かつ、前記導電性粒子の最小包囲楕円体における平均短径に対して1~10倍である、請求項1に記載の導電性接合材形成用組成物。
  3.  更に、樹脂材料を含有する、請求項1に記載の導電性接合材形成用組成物。
  4.  前記金属ナノワイヤの長さの相加平均値が0.3~300μmである、請求項1に記載の導電性接合材形成用組成物。
  5.  請求項1~4のいずれか1項に記載の導電性接合材形成用組成物を用いて形成される導電性接合材。
  6.  請求項5に記載の導電性接合材と、前記導電性接合材の少なくとも一方の表面に設けられた部材とを有し、
     前記部材が、半導体素子、電極および配線からなる群から選択される少なくとも1種である、デバイス。
  7.  導電性接合材を作製する導電性接合材の製造方法であって、
     基材上に、請求項1~4のいずれか1項に記載の導電性接合材形成用組成物を供給する工程を有する、導電性接合材の製造方法。
PCT/JP2023/030238 2022-09-30 2023-08-23 導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法 WO2024070339A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157486 2022-09-30
JP2022157486 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070339A1 true WO2024070339A1 (ja) 2024-04-04

Family

ID=90477038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030238 WO2024070339A1 (ja) 2022-09-30 2023-08-23 導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法

Country Status (1)

Country Link
WO (1) WO2024070339A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513220A (ja) * 2009-12-07 2013-04-18 デューク ユニバーシティ 銅ナノワイヤを成長させるための組成および方法
JP2019535850A (ja) * 2016-11-02 2019-12-12 バイオニア コーポレーション コア‐シェル構造の銀コーティングされた銅ナノワイヤを含むエポキシペースト組成物、およびそれを含む導電性フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513220A (ja) * 2009-12-07 2013-04-18 デューク ユニバーシティ 銅ナノワイヤを成長させるための組成および方法
JP2019535850A (ja) * 2016-11-02 2019-12-12 バイオニア コーポレーション コア‐シェル構造の銀コーティングされた銅ナノワイヤを含むエポキシペースト組成物、およびそれを含む導電性フィルム

Similar Documents

Publication Publication Date Title
JP4660701B2 (ja) 銀被覆銅粉およびその製造方法並びに導電ペースト
EP3040450A1 (en) Method for manufacturing metal-filled microstructure
JP5851329B2 (ja) 金属ナノワイヤを含有する分散液および導電膜
Martis et al. Electro-generated nickel/carbon nanotube composites in ionic liquid
WO2010004981A1 (ja) 微細構造体およびその製造方法
JP5876971B2 (ja) 銅粉
EP3090079B1 (en) Composition and method for inhibiting corrosion of an anodized material
JP2012009146A (ja) 微細構造体およびその製造方法
JP6016664B2 (ja) 銅微粒子分散溶液、焼結導電体の製造方法、及び導電接続部材の製造方法
WO2017057150A1 (ja) 金属充填微細構造体の製造方法
JP5453598B2 (ja) 銀被覆銅粉および導電ペースト
WO2024070339A1 (ja) 導電性接合材形成用組成物、導電性接合材、デバイスおよび導電性接合材の製造方法
WO2024070341A1 (ja) 金属ナノワイヤの製造方法
TW202341303A (zh) 金屬填充微細結構體
JP7369871B2 (ja) 異方導電性部材の製造方法
JP7343706B2 (ja) 異方導電性部材の製造方法
Ma et al. Inhibition effect of self-assembled films formed by gold nanoparticles on iron surface
WO2021145129A1 (ja) 導電性ピラー及びその製造方法並びに接合構造の製造方法
KR20090010406A (ko) 주석-나노다이아몬드 복합 도금액 및 이를 이용한 전해도금방법
Li et al. Low temperature sintering of dendritic cu based pastes for power semiconductor device interconnection
WO2023140011A1 (ja) 金属ナノワイヤの製造方法、金属ナノワイヤ、分散液および導電膜
JP5711435B2 (ja) 銅粉
Palaniappa et al. Effect of zincation/sonication on electroplated gold deposited on aluminum substrate
TW202415810A (zh) 金屬奈米線之製造方法
Jiang et al. Cu-Cu bonding with cu nanowire arrays for electronics integration