WO2023139876A1 - 加熱収縮装置 - Google Patents

加熱収縮装置 Download PDF

Info

Publication number
WO2023139876A1
WO2023139876A1 PCT/JP2022/040345 JP2022040345W WO2023139876A1 WO 2023139876 A1 WO2023139876 A1 WO 2023139876A1 JP 2022040345 W JP2022040345 W JP 2022040345W WO 2023139876 A1 WO2023139876 A1 WO 2023139876A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
tunnel
steam
section
elevating
Prior art date
Application number
PCT/JP2022/040345
Other languages
English (en)
French (fr)
Inventor
雄治 中川
康行 河内
Original Assignee
株式会社フジシールインターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジシールインターナショナル filed Critical 株式会社フジシールインターナショナル
Publication of WO2023139876A1 publication Critical patent/WO2023139876A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • B65B53/04Shrinking wrappers, containers, or container covers during or after packaging by heat supplied by liquids

Definitions

  • the present invention relates to a heat-shrinking device that heat-shrinks a shrink film coated on an article.
  • Patent Document 1 discloses a rotary heat shrinking apparatus including a rotary transfer section, a plurality of heating chambers (heating furnaces) arranged above the rotary transfer section, and an elevating means (elevating section) for elevating the plurality of heating chambers.
  • the plurality of heating chambers are separated from each other, so there is a possibility that the label cannot be efficiently heated.
  • the configuration of the device is complicated.
  • An object of one aspect of the present invention is to provide a rotary heat shrinking device capable of efficiently heating a shrink film while simplifying the device configuration.
  • the heat shrinking apparatus includes a rotary transfer section that transfers an article covered with a film, a heating tunnel that is covered on the transfer path of the rotary transfer section and includes a heating furnace that has an injection section that injects steam for heating the film, and an elevating section that elevates the heating tunnel.
  • FIG. 1 is a perspective view showing the appearance of a heat shrinking device according to an embodiment of the present invention
  • FIG. FIG. 4 is a top view for explaining the internal configuration of the heat shrinking device
  • FIG. 3 is a side view showing a container holding portion included in the rotary transfer portion shown in FIG. 2
  • Figure 3 is a perspective view of the heating tunnel shown in Figure 2
  • FIG. 5 is a perspective view showing a state in which only the main heating zone is raised among the plurality of zones shown in FIG. 4
  • FIG. 5 is a perspective view showing the heating furnace shown in FIG. 4
  • It is a cross-sectional view showing the internal structure of the heating furnace.
  • FIG. 2 is a perspective view showing an elevating unit shown in FIG.
  • FIG. 3 is a schematic diagram showing a saturated steam pipe provided in the heat shrinking device
  • FIG. 1 is a perspective view showing the appearance of a heat shrinking device 1 according to one embodiment of the present invention.
  • FIG. 2 is a top view for explaining the internal configuration of the heat shrinking device 1.
  • FIG. 1, the pair of star wheels 11a and 11b shown in FIG. 2 is omitted.
  • the heat shrinking device 1 is a rotary shrink tunnel.
  • the heat-shrinking device 1 sequentially supplies the containers B coated with the unshrunk labels L to the rotary transfer section 2, heats the labels L while the containers B pass through the heating tunnel 3, and adheres them to the containers B.
  • the loading and unloading of the container B into and out of the heat shrinking device 1 is performed via a pair of star wheels 11a and 11b.
  • Each of the pair of star wheels 11a and 11b has a recess 11c for holding the peripheral surface of the container B on its outer peripheral portion.
  • a pair of guide panels 12a and 12b curved along the star wheels 11a and 11b are arranged between the pair of star wheels 11a and 11b so as to prevent the containers B from coming off and to guide the transfer of the containers B.
  • the container B covered with the unshrunk label L in the previous process is handed over from the star foil 11a on the carry-in side to the rotary transfer section 2, and the label L is heat shrunk while passing through the heating tunnel 3. After passing through the heating tunnel 3, the container B is handed over from the rotary transfer section 2 to the star wheel 11b on the carry-out side and transferred to the next process.
  • the container B is, for example, a polyester PET bottle or the like formed by blow molding.
  • the object to be covered with the label L is not limited to the container B, and any article to be used with the label L wrapped around it may be used.
  • the label L is formed of, for example, a shrink film made of polyethylene, polypropylene, PVC, or the like.
  • the label L is formed by joining both ends of the label L into a cylindrical shape, winding the film into a roll, and cutting the film into a predetermined length while unrolling the film.
  • the label L is opened by an opening device (not shown) and covered on the container B in a previous step.
  • the heat shrinking device 1 includes a rotary transfer section (transfer section) 2 that transfers the container B covered with the label L, and a heating tunnel 3 that is provided so as to partially cover (cover) the annular transfer path 2a of the rotary transfer section 2.
  • the heating tunnel 3 is covered with a cover (tunnel cover) 4 provided with a plurality of windows 41 , and the cover 4 is fixed to the top plate 51 of the frame 5 .
  • the cover 4 is configured such that an outer panel 42 provided with a window portion 41 is slidable in the vertical direction. Therefore, the inside of the cover 4 can be accessed by sliding the outer panel 42 downward.
  • the heat shrinking device 1 also includes an elevating unit 8 that vertically elevates the heating tunnel 3 .
  • the heat shrinking apparatus 1 includes, as the elevating section 8, a first elevating section 8a, a second elevating section 8b, a third elevating section 8c, and a fourth elevating section 8d.
  • the heat shrinking device 1 can individually raise and lower the heating tunnel 3 for each of the plurality of zones Z1 to Z4 by controlling the first elevation unit 8a to the fourth elevation unit 8d (see FIG. 5).
  • the rotary transfer unit 2 is a rotary transfer device that transfers the container B. As shown in FIG.
  • the rotary transfer section 2 includes a rotating shaft 21 , a turntable 22 mounted on the rotating shaft 21 , and a plurality of container holding sections 23 provided along the outer edge of the turntable 22 .
  • the plurality of container holding sections 23 rotate around the rotation shaft 21 by rotating the turntable 22 in accordance with the rotation of the rotation shaft 21 .
  • the annular circular orbit along which the container holding section 23 rotates about the rotation shaft 21 serves as the transfer path of the container B, that is, the transfer path 2 a of the rotary transfer section 2 .
  • FIG. 3 is a side view showing the container holding section 23 provided in the rotary transfer section 2.
  • the container holding portion 23 holds the container B by sandwiching it from above and below.
  • the container holding part 23 includes an upper holding member 231 that holds the container B from above and a lower holding member 232 that holds the container B from below.
  • a rotating shaft 233 connected to a motor 234 is connected to the lower holding member 232 . The rotation of the rotating shaft 233 by the motor 234 allows the lower holding member 232 to move up and down.
  • the container B can be reliably held between the upper holding member 231 and the lower holding member 232 to prevent the container B from falling off during transfer. Further, containers B having different dimensions in the height direction can be held by the container holding portion 23, and the versatility of the rotary transfer portion 2 is improved.
  • the heating tunnel 3 is a tunnel-shaped heating device that covers the transfer path 2a of the rotary transfer section 2 and heats the label L. As shown in FIG.
  • the heating tunnel 3 has a plurality of zones Z1-Z4. Specifically, the heating tunnel 3 has a first preheating zone Z1 and a second preheating zone Z2 that preliminarily heat the label L coated on the container B in order to soften it, a main heating zone Z3 that thermally shrinks the label L so that it adheres to the bottle B, and a finishing zone Z4 that uniformly adheres the label L to the bottle B.
  • the zones Z1 to Z4 of the first preheating zone Z1, the second preheating zone Z2, the main heating zone Z3 and the finishing zone Z4 are arranged in this order from the container B carry-in side.
  • the first and second preheating zones Z1 and Z2, the main heating zone Z3, and the finishing zone Z4 are adjusted to different temperatures.
  • the zones Z1 to Z4 are adjusted so that their temperature increases, for example, in the order of the first and second preheating zones Z1 and Z2, the finishing zone Z4, and the main heating zone Z3.
  • FIG. 4 is a perspective view showing the heating tunnel 3 shown in FIG.
  • the heating tunnel 3 comprises one or more heating furnaces.
  • the heating tunnel 3 includes 12 tunnel-shaped heating furnaces 3a to 3l. That is, the heating furnaces 3a to 3l adjacent to each other are arranged without gaps, thereby forming an arc-shaped heating tunnel 3 along the transfer path 2a.
  • Each zone Z1 to Z4 is configured by connecting three heating furnaces out of the twelve heating furnaces 3a to 3l.
  • the first preheating zone Z1 is configured by connecting heating furnaces 3a to 3c
  • the second preheating zone Z2 is configured by connecting heating furnaces 3d to 3f
  • the main heating zone Z3 is configured by connecting heating furnaces 3g to 3i
  • the finishing zone Z4 is configured by connecting heating furnaces 3j to 3l.
  • the heating tunnel 3 is configured by connecting a plurality of heating furnaces 3a to 3l along the transfer path 2a. For this reason, the amount of leaked steam can be reduced compared to a conventional configuration in which a plurality of heating chambers are separated from each other.
  • FIG. 5 is a perspective view showing a state in which only the main heating zone Z3 among the multiple zones Z1 to Z4 shown in FIG. 4 is raised.
  • an elevating unit 8 is attached to each of zones Z1 to Z4. Therefore, the heating tunnel 3 can be raised and lowered individually for each of the zones Z1 to Z4. Therefore, as shown in FIG. 5, among the plurality of zones Z1 to Z4, for example, only the main heating zone Z3 can be raised.
  • FIG. 6 is a perspective view showing the heating furnace 3h shown in FIG.
  • the heating furnaces 3a to 3l have substantially the same configuration except for the number of stages of nozzle holes 33, which will be described later. Therefore, the configuration of the heating furnace 3h will be described below as an example.
  • the heating furnace 3h has a tunnel shape along the transfer path 2a of the rotary transfer section 2, and a main heating zone Z3 through which the container B passes is formed between a pair of furnace walls 32.
  • a window portion 31 is provided in the heating furnace 3h, and the main heating zone Z3 can be visually recognized from the outside of the heat shrinking apparatus 1 through the window portion 31 of the heating furnace 3h and the window portion 41 of the cover 4.
  • FIG. As a result, the contracted state of the label L can be visually confirmed.
  • the heating furnace 3h includes a transfer path 2a of the rotary transfer section 2, that is, a pair of furnace walls 32 including opposing flat surfaces 32a to 32d facing each other in the furnace width direction across the container B transferred by the rotary transfer section 2.
  • each of the pair of furnace walls 32 has four opposing planes 32a-32d aligned along the transfer path 2a. Since the pair of furnace walls 32 includes a plurality of opposing flat surfaces 32a to 32d, the pair of furnace walls 32 can be preferably arranged along the annular transfer path 2a.
  • the heating furnace 3h includes a plurality of nozzle holes (injection portions) 33 that are provided on each of the opposing flat surfaces 32a to 32d and that inject steam toward the label L.
  • each of the opposed planes 32a to 32d is provided with four rows of four nozzle holes 33 aligned along the transfer path 2a in the vertical direction (furnace height direction).
  • the heating furnace 3h is provided with a plurality of nozzle holes 33 on each of the facing planes 32a to 32d, so steam can be injected from both sides of the container B. Therefore, according to the heating furnace 3h, the label L can be efficiently heated as compared with the case where the steam is jetted from one side of the container B.
  • the pair of furnace walls 32 of the heating furnace 3h are formed of flat surfaces instead of curved surfaces, it becomes easy to equalize the intervals between the nozzle holes 33 in the transfer direction between the two opposing flat surfaces. Therefore, according to the heating furnace 3h, the label L can be heated more uniformly.
  • FIG. 7 is a cross-sectional view showing the internal structure of the heating furnace 3h shown in FIG.
  • a steam circulation chamber 34 for circulating the steam S and a steam diffusion chamber 35 communicating with the nozzle hole 33 are provided on the back side of the furnace wall 32 of the heating furnace 3h, that is, on the side opposite to the main heating zone Z3 across the furnace wall 32.
  • the vapor S supplied from the vapor circulation chamber 34 to the vapor diffusion chamber 35 collides with the bottom surface 35 a of the vapor diffusion chamber 35 and diffuses, and then is jetted from the nozzle hole 33 .
  • the injection amount of the steam S from each nozzle hole 33 becomes substantially uniform, and the label L can be uniformly heated.
  • the bottom surface 35a of the vapor diffusion chamber 35 may be provided with a diffusion structure for diffusing the vapor S more efficiently.
  • the diffusion structure include a structure that promotes diffusion of the vapor S, the shape of the bottom surface 35a, and the like. As a result, the vapor S can be diffused more efficiently in the vapor diffusion chamber 35, and the label L can be heated more uniformly.
  • Table 1 shows the types of steam and the number of nozzle stages in each zone Z1 to Z4.
  • the label L is heated and shrunk by injecting saturated steam onto the label L in the first preheating zone Z1, the second preheating zone Z2 and the finishing zone Z4.
  • the label L is heated and shrunk by jetting saturated steam or superheated steam to the label L.
  • Superheated steam steam obtained by heating saturated steam evaporated at 100°C to a higher temperature
  • the supply temperature can be set to 100°C or higher.
  • the supply temperature of the superheated steam supplied to the main heating zone Z3 is set to a temperature that greatly exceeds the heat shrinkage temperature of 100°C for thermally shrinking the various labels L to their respective limit shrinkage rates, for example, about 150°C or more and 200°C or less, the labels L will instantly thermally shrink to their limit shrinkage rates.
  • the label L can be heated more efficiently than when heated with hot air of the same temperature or when heated with saturated steam. Therefore, it is possible to save the space of the heat-shrinking device 1, and to reduce the steam supply amount compared to the case of heating with saturated steam.
  • the number of nozzle holes 33 is one in the first preheating zone Z1 and the second preheating zone Z2, and the lower side of the label L covered on the container B is heated to position the label L with respect to the container B.
  • the number of stages of the nozzle holes 33 is four, and the entire label L covered on the container B is heated to adhere the label L to the container B.
  • FIG. it is possible to appropriately change the type of steam, the number of stages of the nozzle holes 33, etc. according to the actions and functions of the zones Z1 to Z4.
  • the heating tunnel 3 may be configured such that the intervals between the nozzle holes 33 in the furnace width direction can be changed.
  • the interval between the nozzle holes 33 in the furnace width direction can be adjusted to a desired range according to the size (diameter) of the container B, and the label L can be efficiently heated.
  • the heating efficiency of the label L can be remarkably improved by adjusting the interval between the nozzle holes 33 in the furnace width direction to a desired range in the main heating zone Z3 where the label L is thermally shrunk by injecting superheated steam.
  • the method of changing the interval between the nozzle holes 33 in the furnace width direction is not particularly limited.
  • the interval in the furnace width direction may be changed in units of the facing planes 32a to 32d on which the nozzle holes 33 are provided.
  • the interval in the furnace width direction may be changed for each furnace wall 32 including the facing planes 32a to 32d.
  • the elevating unit 8 is an elevating mechanism that elevates the heating tunnel 3 .
  • the elevating section 8 is fixed to the top plate 51 of the frame 5 positioned above the heating tunnel 3 , and the lower end thereof is connected to the upper wall of the heating tunnel 3 through a through hole formed in the cover 4 .
  • FIG. 8 is a perspective view showing the lifting section 8 shown in FIG.
  • FIG. 9 is a cross-sectional view showing the enclosing region R shown in FIG. In addition, in FIG. 8, only the heating tunnel 3 and the lifting section 8 are illustrated.
  • the first elevating section 8a has its lower end connected to the upper wall of the heating furnace 3b, and elevates the connected heating furnaces 3a to 3c that constitute the first preheating zone Z1.
  • the second elevating section 8b has its lower end connected to the upper wall of the heating furnace 3e, and elevates the connected heating furnaces 3d to 3f constituting the second preheating zone Z2.
  • the third lifter 8c has its lower end connected to the upper wall of the heating furnace 3h, and lifts and lowers the connected heating furnaces 3g to 3i that constitute the main heating zone Z3.
  • the fourth lifting section 8d has its lower end connected to the upper wall of the heating furnace 3k and lifts and lowers the connected heating furnaces 3j to 3l that constitute the finishing zone Z4.
  • the heating tunnel 3 can be individually lifted for each of the plurality of zones Z1 to Z4.
  • first elevating section 8a to fourth elevating section 8d have substantially the same configuration. Therefore, the configuration of the first lifting unit 8a will be described below as an example.
  • the first elevating unit 8a includes an elevating rod 81 connected to the upper wall of the heating furnace 3b, a rod cover 82 that covers the elevating rod 81, and a motor 83 that drives the elevating rod 81.
  • the lifting rod 81 is a rod-shaped member that moves up and down.
  • the first lifting section 8a includes a pair of lifting rods 81 arranged parallel to each other in the vertical direction. Each lower end of the pair of lifting rods 81 is connected to the upper wall of the heating furnace 3b. A pair of lifting rods 81 are driven by a motor 83 to enable the first preheating zone Z1 to move up and down.
  • the rod cover 82 is a tubular member that covers the upper end side of the lifting rod 81 .
  • a rod cover 82 is provided on each of the pair of lifting rods 81 .
  • the rod cover 82 is provided coaxially with the lifting rod 81 , and the lifting rod 81 can move (slid) in the axial direction inside the rod cover 82 .
  • the rod cover 82 is arranged through a through hole 4a formed in the upper wall 43 of the cover 4 covering the heating tunnel 3, and an annular packing (seal member) 84 extending in the circumferential direction of the peripheral surface 82a is attached to the peripheral surface 82a.
  • the packing 84 is interposed between the through-hole 4a of the cover 4 and the peripheral surface 82a of the rod cover 82, and is in close contact with the through-hole 4a and the peripheral surface 82a, thereby reducing leakage of steam from the through-hole 4a.
  • the motor 83 is a power source that drives the lifting rod 81.
  • the motor 83 is arranged on the upper surface of the top plate 51 of the frame 5 .
  • an electric lifting mechanism including the motor 83 is used as the lifting unit 8, but for example, a hydraulic lifting mechanism or the like may be used.
  • the heat shrinking apparatus 1 includes the first elevating section 8a to the fourth elevating section 8d as the elevating section 8, and these first elevating section 8a to the fourth elevating section 8d enable the heating furnaces 3a to 3l to be individually elevated for each of the four zones Z1 to Z4. Therefore, there is no need to provide an elevating means for each of the plurality of heating chambers, unlike the conventional art, and the number of the first elevating units 8a to the fourth elevating units 8d can be reduced with respect to the number of the heating furnaces 3a to 3l. Therefore, the device configuration of the heat shrinking device 1 can be simplified.
  • the number of elevating units 8 provided in the heat shrinking device 1 is not particularly limited as long as it is smaller than the number of heating furnaces 3a to 3l constituting the heating tunnel 3.
  • the heat-shrinking device 1 may be configured to have one elevating unit 8 and be able to elevate the entire heating tunnel 3 by the one elevating unit 8 . This makes it possible to further simplify the configuration of the heat shrinking device 1 .
  • FIG. 10 is a schematic diagram showing a saturated steam supply pipe 61 provided in the heat shrinking device 1.
  • FIG. 11 is a schematic diagram showing a superheated steam supply pipe 62 provided in the heat shrinking device 1. As shown in FIG.
  • the heat shrinking device 1 includes a saturated steam supply pipe 61 and a superheated steam supply pipe 62 as a steam supply mechanism for supplying steam to the heating tunnel 3 .
  • the saturated steam supply pipe 61 and the superheated steam supply pipe 62 are attached to, for example, the top plate 51 of the frame 5 and connected to the heating tunnel 3 .
  • the saturated steam supply pipe 61 is a pipe that supplies saturated steam to the first preheating zone Z1, the second preheating zone Z2 and the finishing zone Z4.
  • the superheated steam supply pipe 62 is a pipe that supplies superheated steam to the main heating zone Z3.
  • the saturated steam supply pipe 61 includes an ON/OFF valve 63 that switches fully open/fully closed, a pressure reducing valve 64 that reduces steam pressure, and a flow rate adjustment valve 65 that adjusts the flow rate of steam.
  • the steam (saturated steam) supplied to the saturated steam supply pipe 61 passes through the ON/OFF valve 63 and the pressure reducing valve 64, and after the flow rate is adjusted by the flow rate adjustment valve 65, is supplied to the first preheating zone Z1, the second preheating zone Z2 and the finishing zone Z4.
  • the heat shrinking apparatus 1 may be provided with a saturated steam supply pipe 61 for each of the first preheating zone Z1, the second preheating zone Z2 and the finishing zone Z4.
  • the superheated steam supply pipe 62 includes an ON/OFF valve 63, a pressure reducing valve 64, and a superheater 66 that heats the steam.
  • the steam (saturated steam) supplied to the superheated steam supply pipe 62 passes through the ON/OFF valve 63 and the pressure reducing valve 64, is heated by the superheater 66, and is then supplied to the main heating zone Z3 as superheated steam. That is, the steam supplied to the superheated steam supply pipe 62 is heated by the superheater 66 to, for example, about 150° C. or more and 200° C. or less, and becomes superheated steam and is supplied to the main heating zone Z3.
  • a plurality of superheaters 66 may be arranged in the superheated steam supply pipe 62 . Thereby, superheated steam can be generated more efficiently.
  • the ON/OFF valve 63 of each of the saturated steam supply pipe 61 and the superheated steam supply pipe 62 By controlling the ON/OFF valve 63 of each of the saturated steam supply pipe 61 and the superheated steam supply pipe 62, the supply/stop of steam to each zone Z1 to Z4 can be switched. Therefore, for example, when the container B during transfer is clogged in the heating tunnel 3, the clogged container B can be safely taken out by stopping the supply of steam to the heating tunnel 3 and raising the zone where the container B is clogged.
  • the ON/OFF valve 63, the pressure reducing valve 64 and the flow control valve 65 may be manual valves or automatic valves. Further, in the main heating zone Z3 and the finishing zone Z4, the flow rate may be adjustable according to the number of stages of the nozzle holes 33. For example, in the main heating zone Z3, the flow rate may be adjustable in each of the upper and lower stages, or in the finishing zone Z4, the flow rate may be adjustable in each stage.
  • FIG. 12 is a perspective view showing the exhaust mechanism 7 provided in the heat shrinking device 1. As shown in FIG. In FIG. 12, the elevation unit 8 is omitted from illustration. As shown in FIG. 12, the exhaust mechanism 7 includes an inner exhaust pipe 71 for exhausting steam from each zone Z1 to Z4, an outer exhaust pipe 72 for exhausting the air in the cover 4, a collecting pipe 73 to which the inner exhaust pipe 71 and the outer exhaust pipe 72 are connected, and an intermediate duct 74 for discharging the exhaust from the collecting pipe 73 to the factory duct. A fan 75 is provided between the collecting pipe 73 and the intermediate duct 74 . Each part of the exhaust mechanism 7 is attached to, for example, the top plate 51 of the frame 5 .
  • the inner exhaust pipe 71 is connected to the upper part of the heating tunnel 3 and communicates with the zones Z1 to Z4.
  • the inner exhaust pipe 71 sucks the steam from each zone Z1 to Z4 injected from the nozzle hole 33 and discharges it to the collecting pipe 73 .
  • One inner exhaust pipe 71 is connected to each of the zones Z1 to Z4.
  • the outer exhaust pipe 72 is connected to the upper portion of the cover 4 and communicates with the inside of the cover 4 .
  • the external exhaust pipe 72 sucks in the steam that has leaked into the cover 4 from the zones Z1 to Z4, that is, the steam that has leaked into the space between the heating tunnel 3 and the cover 4, and discharges it to the collecting pipe 73.
  • a plurality of external exhaust pipes 72 are connected to the cover 4 .
  • a damper 76 is provided in each of the inner exhaust pipe 71 and the outer exhaust pipe 72 .
  • the exhaust amount from each of the inner exhaust pipe 71 and the outer exhaust pipe 72 can be adjusted.
  • An inner exhaust pipe 71 and an outer exhaust pipe 72 are connected to the collecting pipe 73 .
  • the heat-shrinking device 1 is provided with two collecting pipes 73 , each of which discharges steam from the inner exhaust pipe 71 and the outer exhaust pipe 72 to an intermediate duct 74 .
  • the fans 75 are provided between the two collecting pipes 73 and the intermediate duct 74 respectively. By operating each fan 75, steam is sucked by the inner exhaust pipe 71 and the outer exhaust pipe 72, and the steam is forcibly discharged from the intermediate duct 74 to the factory duct.
  • the exhaust mechanism 7 since the exhaust mechanism 7 has its own fan 75, steam can be discharged to the factory duct without relying on the fan provided in the factory duct as in the past. Therefore, stable operation of the heat shrinking apparatus 1 becomes possible.
  • the heat shrinking apparatus 1 includes a rotary transfer section 2 that transfers the container B coated with the label L, a heating tunnel 3 that is covered by the transfer path 2a of the rotary transfer section 2 and configured by a plurality of heating furnaces 3a to 3l having nozzle holes 33 for injecting steam for heating the label L along the transfer path 2a, and an elevating section 8 that raises and lowers the heating tunnel 3.
  • the heating tunnel 3 is configured by connecting a plurality of heating furnaces 3a to 3l having nozzle holes 33 for injecting steam along the transfer path 2a, so that the amount of steam leakage can be reduced compared to a conventional configuration in which a plurality of heating chambers are separated from each other. Moreover, since there is no need to provide an elevating means for each of the plurality of heating chambers as in the conventional art, the configuration of the device can be simplified.
  • the amount of steam leaked from the heating tunnel 3 is reduced, so energy efficiency can be improved by saving power. This will contribute to the achievement of the Sustainable Development Goals (SDGs).
  • the rotating mechanism for the container B can be omitted from the rotary transfer section 2, and the structure of the rotary transfer section 2 can be simplified.
  • the rotary transfer section 2 may be provided with a rotation mechanism for the container B.
  • a heat-shrinking apparatus includes a rotary transfer section that transfers an article covered with a film, a heating tunnel that includes a heating furnace that is covered on a transfer path of the rotary transfer section and has an injection section that injects steam for heating the film, and an elevating section that raises and lowers the heating tunnel.
  • a plurality of heating furnaces having injection parts for injecting steam are connected along the transfer path to form a heating tunnel, so the amount of steam leakage can be reduced compared to a conventional configuration in which a plurality of heating chambers are separated from each other. Moreover, since there is no need to provide an elevating means for each of the plurality of heating chambers as in the conventional art, the configuration of the device can be simplified.
  • a tunnel cover covering the heating tunnel may be provided, and the elevating section may be connected to the heating tunnel through a through hole formed in the tunnel cover.
  • the heat shrinking device includes a tunnel cover that covers the heating tunnel, so the amount of steam leakage can be further reduced.
  • a sealing member (packing 84) interposed between the through hole and the lifting section may be further provided.
  • the sealing member interposed between the through-hole of the tunnel cover and the elevating portion can reduce leakage of steam from the through-hole.
  • the elevating unit may further include an elevating rod connected to the heating tunnel, and a rod cover that covers the peripheral surface of the elevating rod and is arranged through the through hole, and the sealing member is attached in the circumferential direction of the peripheral surface.
  • the sealing member interposed between the through-hole of the tunnel cover and the rod cover of the elevating section can reduce steam leakage from the through-hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Labeling Devices (AREA)

Abstract

装置構成を簡略化しつつ、シュリンクフィルムを効率的に加熱する。 本発明の一態様に係る熱収縮装置は、ラベルが被覆された容器を移送するロータリー移送部の移送路(2a)に覆設され、蒸気を噴射する加熱炉(3a~3l)を含んで構成される加熱トンネル(3)と、加熱トンネル(3)を昇降させる昇降部(8)と、を備える。

Description

加熱収縮装置
 本発明は、物品に被覆されたシュリンクフィルムを加熱収縮させる加熱収縮装置に関する。
 従来、PETボトル等の容器に被覆されたシュリンクフィルムから成るラベル(熱収縮性ラベル)を加熱収縮させて、該ラベルを容器に密着させる加熱収縮装置が知られている。この種の加熱収縮装置に関し、特許文献1には、回転式のロータリー移送部と、ロータリー移送部の上方に配置される複数の加熱室(加熱炉)と、該複数の加熱室を昇降させる昇降手段(昇降部)とを備えるロータリー式加熱収縮装置が開示されている。
特開平9-175515号公報
 しかしながら、上述のような従来技術では、複数の加熱室が互いに分離されているため、ラベルを効率的に加熱できない可能性があった。また、複数の加熱室ごとに昇降手段を設ける必要性があるため、装置構成が複雑であった。
 本発明の一態様は、装置構成を簡略化しつつ、シュリンクフィルムを効率的に加熱可能なロータリー式の加熱収縮装置を供することを目的とする。
 前記の課題を解決するために、本発明の一態様に係る加熱収縮装置は、フィルムが被覆された物品を移送するロータリー移送部と、前記ロータリー移送部の移送路に覆設され、前記フィルム加熱する蒸気を噴射する噴射部を有する加熱炉を含んで構成される加熱トンネルと、前記加熱トンネルを昇降させる昇降部と、を含む。
 前記発明の一態様によれば、装置構成を簡略化しつつ、シュリンクフィルムを効率的に加熱可能なロータリー式の加熱収縮装置を提供することができる。
本発明の一実施形態に係る加熱収縮装置の外観を示す斜視図である。 前記加熱収縮装置の内部構成を説明するための上面図である。 図2示されるロータリー移送部が備える容器保持部を示す側面図である。 図2に示される加熱トンネルを示す斜視図である。 図4に示される複数のゾーンのうち本加熱ゾーンだけを上昇させた状態を示す斜視図である。 図4に示される加熱炉を示す斜視図である。 前記加熱炉の内部構造を示す断面図である。 図1に示される昇降部を示す斜視図である。 図8に示される枠囲み領域を示す断面図である。 前記加熱収縮装置が備える飽和水蒸気配管を示す模式図である。 前記加熱収縮装置が備える過熱水蒸気配管を示す模式図である。 前記加熱収縮装置が備える排気機構を示す斜視図である。
 以下、本発明の一実施形態について、図面に基づいて詳細に説明する。ただし、以下の説明は本発明に係る加熱収縮装置の一例であり、本発明の技術的範囲は図示例に限定されるものではない。
 本実施形態では、シュリンクフィルムから形成されるラベルへ蒸気を噴射して加熱収縮させて、PETボトル等の容器に密着させる加熱収縮装置の一例について説明する。
 〔加熱収縮装置の概要〕
 図1は、本発明の一実施形態に係る加熱収縮装置1の外観を示す斜視図である。図2は、加熱収縮装置1の内部構成を説明するための上面図である。なお、図1では、図2に示される一対のスターホイル11a・11bを省略している。
 加熱収縮装置1は、ロータリー式シュリンクトンネルである。加熱収縮装置1は、未収縮のラベルLが被覆された容器Bをロータリー移送部2に順次に供給し、容器Bが加熱トンネル3を通過する間にラベルLを加熱して容器Bに密着させる。
 加熱収縮装置1への容器Bの搬入および搬出は、一対のスターホイル11a・11bを介して行われる。一対のスターホイル11a・11bの各々は、その外周部に容器Bの周面を保持する凹部11cを有する。また、一対のスターホイル11a・11bの間には、容器Bの離脱を防ぎかつ容器Bの移送をガイドするように、スターホイル11a・11bに沿って湾曲した形状の一対のガイドパネル12a・12bが配置される。
 前工程で未収縮のラベルLが被覆された容器Bは、搬入側のスターホイル11aからロータリー移送部2へ引き渡され、加熱トンネル3を通過する間にラベルLが加熱収縮される。加熱トンネル3を通過した容器Bは、ロータリー移送部2から搬出側のスターホイル11bへ引き渡され、次工程へ移送される。
 本実施形態において、容器Bは、例えば、ブロー成形により形成されたポリエステル製のPETボトル等である。ただし、ラベルLが被覆される対象は容器Bに限定されず、ラベルLを巻き付けて使用される物品であれば良い。
 ラベルLは、例えば、ポリエチレン、ポリプロピレン、PVC等から成るシュリンクフィルムにより形成される。ラベルLは、その両端を接合させることにより筒状に形成した後にロール状に巻き取り、このフィルムを繰り出しながら所定の長さに切断したものである。ラベルLは、前工程にて、図示しない開口装置により開口されて容器Bに被覆される。
 〔加熱収縮装置の構成〕
 加熱収縮装置1は、ラベルLが被覆された容器Bを移送するロータリー移送部(移送部)2と、ロータリー移送部2の環状の移送路2aの一部を覆うように設けられる(覆設される)加熱トンネル3とを含む。加熱トンネル3は、複数の窓部41が設けられたカバー(トンネルカバー)4によって覆われており、カバー4はフレーム5の天板51に固定される。カバー4は、窓部41が設けられた外郭パネル42が上下方向へスライド可能に構成される。このため、外郭パネル42を下方へスライドさせることにより、カバー4の内部にアクセス可能になっている。
 また、加熱収縮装置1は、加熱トンネル3を上下方向へ昇降させる昇降部8を含む。加熱収縮装置1は、昇降部8として、第1昇降部8aと、第2昇降部8bと、第3昇降部8cと、第4昇降部8dとを含む。加熱収縮装置1は、これらの第1昇降部8a~第4昇降部8dを制御することにより、複数のゾーンZ1~Z4ごとに加熱トンネル3を個別に昇降させることができるようになっている(図5参照)。
 (ロータリー移送部)
 ロータリー移送部2は、容器Bを移送する回転式の移送装置である。ロータリー移送部2は、回動軸21と、回動軸21に軸設されたターンテーブル22と、ターンテーブル22の外縁部に沿って設けられた複数の容器保持部23とを含む。
 ロータリー移送部2は、回動軸21の回転に応じてターンテーブル22が回転することにより、複数の容器保持部23が回動軸21を中心に回動する。ロータリー移送部2では、容器保持部23が回動軸21を中心に回動するときの環状の円軌道が、容器Bの移送経路、つまりロータリー移送部2の移送路2aとなる。
 図3は、ロータリー移送部2が備える容器保持部23を示す側面図である。図3に示すように、容器保持部23は、容器Bを上下から挟んで保持するようになっている。具体的には、容器保持部23は、容器Bを上方から保持する上部保持部材231と、容器Bを下方から保持する下部保持部材232とを備える。下部保持部材232には、モータ234と接続される回転シャフト233が連結される。モータ234によって回転シャフト233が回転することにより、下部保持部材232が上下方向へ昇降可能になっている。
 このように、下部保持部材232が昇降可能になっているため、上部保持部材231と下部保持部材232との間で容器Bを確実に挟持して、移送中の容器Bの脱落等を防止することができる。また、高さ方向の寸法が異なる容器Bを容器保持部23により保持することが可能となり、ロータリー移送部2の汎用性が向上する。
 (加熱トンネル)
 加熱トンネル3は、ロータリー移送部2の移送路2aに覆設され、ラベルLを加熱するトンネル形状の加熱装置である。加熱トンネル3は、複数のゾーンZ1~Z4を有する。具体的には、加熱トンネル3は、容器Bに被覆されたラベルLを軟化させるために予備的に加熱する第1予備加熱ゾーンZ1および第2予備加熱ゾーンZ2と、ラベルLを熱収縮させてボトルBに密着させる本加熱ゾーンZ3と、ラベルLをボトルBに均一に密着させる仕上げゾーンZ4とを有する。第1予備加熱ゾーンZ1、第2予備加熱ゾーンZ2、本加熱ゾーンZ3および仕上げゾーンZ4の各ゾーンZ1~Z4は、容器Bの搬入側からこの順で配置される。
 第1および第2予備加熱ゾーンZ1・Z2と、本加熱ゾーンZ3と、仕上げゾーンZ4とは、互いに異なる温度に調整される。各ゾーンZ1~Z4は、例えば、第1および第2予備加熱ゾーンZ1・Z2、仕上げゾーンZ4、本加熱ゾーンZ3の順で、温度が高くなるように調整される。
 図4は、図2に示される加熱トンネル3を示す斜視図である。加熱トンネル3は、1つまたは複数の加熱炉を含んで構成される。図4に示すように、本実施形態では、加熱トンネル3は、12個のトンネル形状の加熱炉3a~3lを含み、これらの加熱炉3a~3lがロータリー移送部2の移送路2aに沿って円弧状に連なって構成される。つまり、隣り合う加熱炉3a~3l同士が互いに当接して隙間なく配置されることにより、移送路2aに沿った円弧状の加熱トンネル3が構成される。各ゾーンZ1~Z4は、12個の加熱炉3a~3lのうちの3個の加熱炉が連結されて構成される。具体的には、第1予備加熱ゾーンZ1は加熱炉3a~3cが連結されて構成され、第2予備加熱ゾーンZ2は加熱炉3d~3fが連結されて構成され、本加熱ゾーンZ3は加熱炉3g~3iが連結されて構成され、仕上げゾーンZ4は加熱炉3j~3lが連結されて構成される。
 このように、加熱収縮装置1では、複数の加熱炉3a~3lが移送路2aに沿って複数連なって加熱トンネル3が構成される。このため、従来のように複数の加熱室が互いに分離された構成に比べて、蒸気の漏出量を低減することができる。
 図5は、図4に示す複数のゾーンZ1~Z4のうち本加熱ゾーンZ3だけを上昇させた状態を示す斜視図である。加熱収縮装置1では、ゾーンZ1~Z4ごとに昇降部8が取り付けられている。このため、ゾーンZ1~Z4ごとに加熱トンネル3が個別に昇降可能になっている。従って、図5に示すように、複数のゾーンZ1~Z4のうち、例えば本加熱ゾーンZ3だけを上昇させることが可能となる。
 図6は、図4に示される加熱炉3hを示す斜視図である。なお、加熱炉3a~3lは、後述するノズル孔33の段数を除いて概ね同じ構成である。このため、以下では、加熱炉3hの構成を例に挙げて説明する。
 図6に示すように、加熱炉3hは、ロータリー移送部2の移送路2aに沿ったトンネル形状であり、一対の炉壁32の間に容器Bを通過させる本加熱ゾーンZ3が形成される。加熱炉3hには窓部31が設けられ、加熱炉3hの窓部31とカバー4の窓部41とを介して、加熱収縮装置1の外部から本加熱ゾーンZ3が視認可能である。これにより、ラベルLの収縮状態を目視で確認できるようになっている。
 加熱炉3hは、ロータリー移送部2の移送路2a、つまりロータリー移送部2により移送される容器Bを挟んで炉幅方向に対向する対向平面32a~32dを含む一対の炉壁32を含む。図示の例では、一対の炉壁32の各々は、移送路2aに沿って並ぶ4つの対向平面32a~32dを有する。一対の炉壁32が複数の対向平面32a~32dを含むことにより、環状の移送路2aに沿わせて一対の炉壁32を好適に配置することができる。
 また、加熱炉3hは、対向平面32a~32dの各々の平面に複数設けられ、ラベルLへ向けて蒸気を噴射するノズル孔(噴射部)33を含む。図示の例では、対向平面32a~32dの各々に、移送路2aに沿って並ぶ4つのノズル孔33の列が、上下方向(炉高方向)に4段ずつ設けられる。
 このように、加熱炉3hは、各対向平面32a~32dに複数のノズル孔33が設けられるため、容器Bの両側から蒸気を噴射することができる。従って、加熱炉3hによれば、容器Bの片側から蒸気を噴射する場合に比べて、ラベルLを効率的に加熱することができる。また、加熱炉3hは、一対の炉壁32が曲面ではなく平面で構成されるため、対向する2つの平面間で移送方向におけるノズル孔33の間隔を均等化し易くなる。従って、加熱炉3hによれば、ラベルLをより均一に加熱することができる。
 図7は、図4に示される加熱炉3hの内部構造を示す断面図である。図7に示すように、加熱炉3hの炉壁32の背面側、つまり炉壁32を挟んで本加熱ゾーンZ3とは反対側に、蒸気Sを流通させる蒸気流通室34と、ノズル孔33に連通する蒸気拡散室35とが設けられる。蒸気流通室34から蒸気拡散室35へ供給された蒸気Sは、蒸気拡散室35の底面35aに衝突して拡散した後、ノズル孔33から噴射される。これにより、各ノズル孔33からの蒸気Sの噴射量が概ね均等になり、ラベルLを均一に加熱することができる。
 なお、蒸気拡散室35の底面35aに、蒸気Sをより効率的に拡散するための拡散構造が設けられても良い。拡散構造としては、蒸気Sの拡散を促す構造物または底面35aの形状等が挙げられる。これにより、蒸気拡散室35においてより効率的に蒸気Sを拡散して、ラベルLをさらに均一に加熱することができる。
 表1は、各ゾーンZ1~Z4の蒸気の種類およびノズル段数を示す表である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、加熱収縮装置1では、第1予備加熱ゾーンZ1、第2予備加熱ゾーンZ2および仕上げゾーンZ4において、ラベルLに対して飽和水蒸気を噴射して、ラベルLを加熱収縮させる。一方、本加熱ゾーンZ3において、ラベルLに対して飽和水蒸気または過熱水蒸気を噴射して、ラベルLを加熱収縮させる。
 過熱水蒸気(100℃で蒸発した飽和水蒸気をさらに高温度に加熱した水蒸気)は、
 (1)供給温度が100℃である飽和水蒸気とは異なり、供給温度を100℃以上に設定することができる。
 (2)加熱空気に比べて熱容量が大きいので、同一温度の加熱空気によって加熱する場合に比べて、被加熱物を急速に加熱することができる。
 (3)加熱空気の場合は対流によって熱伝達されるだけであるが、過熱水蒸気の場合は対流、放射および凝縮によって複合的に熱伝達される。しかも、対流による熱伝達も、加熱空気の10倍以上であるので、加熱空気に比べて、加熱効率が格段に優れているという特性を有している。
 このため、本加熱ゾーンZ3に供給する過熱水蒸気の供給温度を、各種ラベルLをそれぞれの限界収縮率まで熱収縮させるための熱収縮温度である100℃付近を大きく上回る温度、例えば、150℃以上200℃以下程度に設定しておくと、ラベルLが瞬時に限界収縮率まで熱収縮を起こす。これにより、同一温度の熱風によって加熱する場合または飽和水蒸気によって加熱する場合に比べて、効率的にラベルLを加熱することができる。従って、加熱収縮装置1の省スペース化を図ることが可能になると共に、飽和水蒸気によって加熱する場合に比べて蒸気供給量を少なくすることができる。
 また、表1に示すように、加熱収縮装置1では、第1予備加熱ゾーンZ1および第2予備加熱ゾーンZ2において、ノズル孔33の段数は1段であり、容器Bに被覆されたラベルLの下方側を加熱して、容器Bに対するラベルLの位置決めを行うようになっている。一方、本加熱ゾーンZ3および仕上げゾーンZ4において、ノズル孔33の段数は4段であり、容器Bに被覆されたラベルLの全体を加熱して、ラベルLを容器Bに密着させる。このように、各ゾーンZ1~Z4の作用・機能に応じて、蒸気の種類またはノズル孔33の段数等を適宜変更することが可能である。
 なお、加熱トンネル3は、炉幅方向におけるノズル孔33の間隔が変更可能になっていても良い。これにより、容器Bの寸法(径)等に合わせて炉幅方向におけるノズル孔33の間隔を所望の範囲に調整することが可能となり、ラベルLを効率的に加熱することができる。特に、過熱水蒸気を噴射してラベルLを熱収縮させる本加熱ゾーンZ3において炉幅方向におけるノズル孔33の間隔を所望の範囲に調整することにより、ラベルLの加熱効率を顕著に向上させることができる。
 炉幅方向におけるノズル孔33の間隔を変更する方法は特に限定されず、例えば、ノズル孔33が設けられた対向平面32a~32d単位で炉幅方向における間隔が変更可能になっていても良い。または、対向平面32a~32dを含む炉壁32単位で炉幅方向における間隔が変更可能になっていても良い。
 (昇降部)
 昇降部8は、加熱トンネル3を昇降させる昇降機構である。昇降部8は、加熱トンネル3の上方に位置するフレーム5の天板51に固定されており、カバー4に形成される貫通孔を通って、その下端が加熱トンネル3の上壁に接続される。
 図8は、図1に示される昇降部8を示す斜視図である。図9は、図8に示される枠囲み領域Rを示す断面図である。なお、図8では、加熱トンネル3および昇降部8のみを図示している。
 図8に示すように、第1昇降部8aは、その下端が加熱炉3bの上壁に接続されており、第1予備加熱ゾーンZ1を構成する連結された加熱炉3a~3cを昇降させる。また、第2昇降部8bは、その下端が加熱炉3eの上壁に接続されており、第2予備加熱ゾーンZ2を構成する連結された加熱炉3d~3fを昇降させる。また、第3昇降部8cは、その下端が加熱炉3hの上壁に接続されており、本加熱ゾーンZ3を構成する連結された加熱炉3g~3iを昇降させる。さらに、第4昇降部8dは、その下端が加熱炉3kの上壁に接続されており、仕上げゾーンZ4を構成する連結された加熱炉3j~3lを昇降させる。
 このように、加熱収縮装置1では、第1昇降部8a~第4昇降部8dを制御することにより、複数のゾーンZ1~Z4ごとに加熱トンネル3を個別に昇降させることが可能になっている。
 これらの第1昇降部8a~第4昇降部8dは、概ね同じ構成である。このため、以下では、第1昇降部8aの構成を例に挙げて説明する。
 図8に示すように、第1昇降部8aは、加熱炉3bの上壁に接続される昇降ロッド81と、昇降ロッド81の周囲を覆うロッドカバー82と、昇降ロッド81を駆動させるモータ83とを備える。
 昇降ロッド81は、上下方向へ昇降する棒状部材である。本実施形態では、第1昇降部8aは、鉛直方向に互いに平行に配置された1対の昇降ロッド81を備える。これら一対の昇降ロッド81は、各々の下端が加熱炉3bの上壁に接続される。一対の昇降ロッド81がモータ83によって駆動されることにより、第1予備加熱ゾーンZ1が昇降可能になっている。
 ロッドカバー82は、昇降ロッド81の上端側を覆う筒状部材である。ロッドカバー82は、一対の昇降ロッド81の各々に設けられる。図9に示すように、ロッドカバー82は、昇降ロッド81と同軸に設けられており、ロッドカバー82の内部を昇降ロッド81が軸方向へ移動(摺動)可能になっている。ロッドカバー82は、加熱トンネル3を覆うカバー4の上壁43に形成された貫通孔4aを通って配置されており、その周面82aには、該周面82aの周方向に延伸する環状のパッキン(シール部材)84が取り付けられている。このパッキン84が、カバー4の貫通孔4aとロッドカバー82の周面82aとの間に介在し、貫通孔4aと周面82aとに密着することにより、貫通孔4aからの蒸気の漏出を低減することができる。
 モータ83は、昇降ロッド81を駆動させる動力源である。モータ83は、フレーム5の天板51の上面に配置される。なお、本実施形態では、昇降部8として、モータ83を備える電動式の昇降機構を使用しているが、例えば油圧式の昇降機構等を使用しても良い。
 このように、加熱収縮装置1は、昇降部8として第1昇降部8a~第4昇降部8dを備え、これらの第1昇降部8a~第4昇降部8dによって、加熱炉3a~3lを4つのゾーンZ1~Z4ごとに個別に昇降可能になっている。このため、従来のように複数の加熱室ごとに昇降手段を設ける必要性がなく、加熱炉3a~3lの数に対して第1昇降部8a~第4昇降部8dの数を少なくすることができる。従って、加熱収縮装置1の装置構成を簡略化することができる。
 なお、加熱収縮装置1が備える昇降部8の数は、加熱トンネル3を構成する加熱炉3a~3lの数よりも少なければ特に限定されない。例えば、加熱収縮装置1は、1つの昇降部8を備え、該1つの昇降部8によって加熱トンネル3全体を昇降可能な構成であっても良い。これにより、加熱収縮装置1の装置構成をより簡略化することが可能となる。
 〔蒸気供給機構および排気機構〕
 次に、加熱収縮装置1が備える蒸気供給機構および排気機構について説明する。
 (蒸気供給機構)
 図10は、加熱収縮装置1が備える飽和水蒸気供給管61を示す模式図である。また、図11は、加熱収縮装置1が備える過熱水蒸気供給管62を示す模式図である。
 加熱収縮装置1は、加熱トンネル3へ蒸気を供給する蒸気供給機構として、飽和水蒸気供給管61および過熱水蒸気供給管62を備える。飽和水蒸気供給管61および過熱水蒸気供給管62は、例えばフレーム5の天板51等に取り付けられ、加熱トンネル3に連結される。
 飽和水蒸気供給管61は、第1予備加熱ゾーンZ1、第2予備加熱ゾーンZ2および仕上げゾーンZ4へ飽和水蒸気を供給する配管である。過熱水蒸気供給管62は、本加熱ゾーンZ3へ過熱水蒸気を供給する配管である。
 図10に示すように、飽和水蒸気供給管61は、全開/全閉を切り替えるON/OFF弁63、蒸気の圧力を減少させる減圧弁64および蒸気の流量を調整する流量調整弁65を含む。飽和水蒸気供給管61へ供給された蒸気(飽和水蒸気)は、ON/OFF弁63および減圧弁64を経由し、流量調整弁65により流量が調整された後、第1予備加熱ゾーンZ1、第2予備加熱ゾーンZ2および仕上げゾーンZ4へ供給される。なお、加熱収縮装置1は、第1予備加熱ゾーンZ1、第2予備加熱ゾーンZ2および仕上げゾーンZ4ごとに、飽和水蒸気供給管61を備えていても良い。
 また、図11に示すように、過熱水蒸気供給管62は、ON/OFF弁63、減圧弁64および蒸気を加熱するスーパーヒータ66を含む。過熱水蒸気供給管62へ供給された蒸気(飽和水蒸気)は、ON/OFF弁63および減圧弁64を経由し、スーパーヒータ66により加熱された後、本加熱ゾーンZ3へ過熱水蒸気として供給される。つまり、過熱水蒸気供給管62へ供給された蒸気は、スーパーヒータ66によって例えば150℃以上200℃以下程度に加熱され、過熱水蒸気となって本加熱ゾーンZ3へ供給される。これにより、本加熱ゾーンZ3において、ラベルLを効率的に加熱することができる。なお、過熱水蒸気供給管62に配置されるスーパーヒータ66は複数であっても良い。これにより、過熱水蒸気をより効率的に生成することができる。
 飽和水蒸気供給管61および過熱水蒸気供給管62の各々は、ON/OFF弁63を制御することにより、各ゾーンZ1~Z4への蒸気の供給/停止を切り替えることができる。従って、例えば移送中の容器Bが加熱トンネル3内で詰まった場合、加熱トンネル3への蒸気の供給を停止し、容器Bが詰まったゾーンを上昇させることで、詰まった容器Bを安全に取り出すことができる。
 なお、ON/OFF弁63、減圧弁64および流量調整弁65は、手動弁であっても良く、または自動弁であっても良い。また、本加熱ゾーンZ3および仕上げゾーンZ4において、ノズル孔33の段数に応じて流量が調整可能であっても良い。例えば本加熱ゾーンZ3において上下2段ずつで流量が調整可能であっても良く、または仕上げゾーンZ4において各段で流量が調整可能であっても良い。
 (排気機構)
 図12は、加熱収縮装置1が備える排気機構7を示す斜視図である。図12では、昇降部8を省略して図示している。図12に示すように、排気機構7は、各ゾーンZ1~Z4の蒸気を排気する内排気管71と、カバー4内の空気を排気する外排気管72と、内排気管71および外排気管72が接続される集合管73と、集合管73からの排気を工場ダクトへ排出する中間ダクト74とを含む。集合管73と中間ダクト74との間には、ファン75が設けられる。排気機構7の各部は、例えばフレーム5の天板51等に取り付けられる。
 内排気管71は、加熱トンネル3の上部に連結され、各ゾーンZ1~Z4に連通する。内排気管71は、ノズル孔33から噴射された各ゾーンZ1~Z4の蒸気を吸引し、集合管73へ排出する。内排気管71は、各ゾーンZ1~Z4に対して1つずつ連結される。
 外排気管72は、カバー4の上部に連結され、カバー4内に連通する。外排気管72は、各ゾーンZ1~Z4からカバー4内へ漏れ出した蒸気、つまり加熱トンネル3とカバー4との間の空間に漏れ出した蒸気を吸引し、集合管73へ排出する。外排気管72は、カバー4に対して複数連結される。
 内排気管71および外排気管72の各々には、ダンパー76が設けられる。各ダンパー76を手動または自動で制御することにより、内排気管71および外排気管72の各々から排気量を調整することができる。
 集合管73には、内排気管71および外排気管72が連結される。加熱収縮装置1では2つの集合管73が設けられており、各々が内排気管71および外排気管72からの蒸気を中間ダクト74へ排出する。
 ファン75は、2つの集合管73と中間ダクト74との間に、各々設けられる。各ファン75を動作させることにより、内排気管71および外排気管72によって蒸気が吸引されると共に、中間ダクト74から工場ダクトへ蒸気が強制的に排出される。
 このように、排気機構7は独自のファン75を備えるため、従来のように工場ダクトに設けられたファンに依存することなく、蒸気を工場ダクトへ排出することができる。従って、加熱収縮装置1の安定した運転が可能となる。
 〔加熱収縮装置のまとめ〕
 このように、本実施形態に係る加熱収縮装置1は、ラベルLが被覆された容器Bを移送するロータリー移送部2と、ロータリー移送部2の移送路2aに覆設され、ラベルLを加熱する蒸気を噴射するノズル孔33を有する加熱炉3a~3lが移送路2aに沿って複数連なって構成される加熱トンネル3と、加熱トンネル3を昇降させる昇降部8とを備える。
 前記加熱収縮装置1では、蒸気を噴射するノズル孔33を有する加熱炉3a~3lが移送路2aに沿って複数連なって加熱トンネル3が構成されるため、従来のように複数の加熱室が互いに分離された構成に比べて、蒸気の漏出量を低減することができる。また、従来のように複数の加熱室ごとに昇降手段を設ける必要性がないため、装置構成を簡略化することができる。
 従って、本実施形態によれば、装置構成を簡略化しつつ、ラベルLを効率的に加熱可能なロータリー式の加熱収縮装置1を実現することができる。
 また、加熱収縮装置1では、加熱トンネル3からの蒸気の漏出量が低減されるため、省電力化によりエネルギー効率を改善することができる。これにより、持続可能な開発目標(SDGs)の達成に貢献できる。
 なお、加熱収縮装置1では、容器Bの両側から蒸気を噴射するため、容器Bを自転させながら移送しなくても良い。従って、ロータリー移送部2から容器Bの自転機構を省略することが可能であり、ロータリー移送部2の構造を簡略化することができる。ただし、ロータリー移送部2が、容器Bの自転機構を備えていても構わない。
 〔備考〕
 本発明の態様1に係る加熱収縮装置は、フィルムが被覆された物品を移送するロータリー移送部と、前記ロータリー移送部の移送路に覆設され、前記フィルム加熱する蒸気を噴射する噴射部を有する加熱炉を含んで構成される加熱トンネルと、前記加熱トンネルを昇降させる昇降部と、を備える。
 前記構成では、蒸気を噴射する噴射部を有する加熱炉が移送路に沿って複数連なって加熱トンネルが構成されるため、従来のように複数の加熱室が互いに分離された構成に比べて蒸気の漏出量を低減することができる。また、従来のように複数の加熱室ごとに昇降手段を設ける必要性がないため、装置構成を簡略化することができる。
 従って、前記構成によれば、装置構成を簡略化しつつ、シュリンクフィルムを効率的に加熱可能なロータリー式の加熱収縮装置を実現することができる。
 本発明の態様2に係る加熱収縮装置では、前記態様1において、前記加熱トンネルを覆うトンネルカバーを備え、前記昇降部は、前記トンネルカバーに形成される貫通孔を通って前記加熱トンネルに接続されていても良い。
 前記構成によれば、加熱収縮装置が加熱トンネルを覆うトンネルカバーを備えるため、蒸気の漏出量をより低減することができる。
 本発明の態様3に係る加熱収縮装置では、前記態様2において、前記貫通孔と前記昇降部との間に介在するシール部材(パッキン84)をさらに備えていても良い。
 前記構成によれば、トンネルカバーの貫通孔と昇降部との間に介在するシール部材によって、貫通孔からの蒸気の漏出を低減することができる。
 本発明の態様4に係る加熱収縮装置では、前記態様3において、前記昇降部は、前記加熱トンネルに接続される昇降ロッドと、前記昇降ロッドの周面を覆い、前記貫通孔を通って配置されるロッドカバーと、をさらに備え、前記シール部材は、前記周面の周方向に取り付けられていても良い。
 前記構成によれば、トンネルカバーの貫通孔と昇降部のロッドカバーとの間に介在するシール部材によって、貫通孔からの蒸気の漏出を低減することができる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1 加熱収縮装置
 2 ロータリー移送部(移送部)
 2a 移送路
 3 加熱トンネル
 3a~3l 加熱炉
 4 カバー(トンネルカバー)
 4a 貫通孔
 8 昇降部
 8a~8d 第1~第4昇降部(昇降部)
 32 炉壁
 33 ノズル孔(噴射部)
 81 昇降ロッド
 82 ロッドカバー
 82a 周面
 84 パッキン(シール部材)
 B 容器(物品)
 L ラベル(フィルム)
 S 蒸気

Claims (4)

  1.  フィルムが被覆された物品を移送するロータリー移送部と、
     前記ロータリー移送部の移送路に覆設され、前記フィルムを加熱する蒸気を噴射する噴射部を有する加熱炉を含んで構成される加熱トンネルと、
     前記加熱トンネルを昇降させる昇降部と、
    を備える加熱収縮装置。
  2.  前記加熱トンネルを覆うトンネルカバーを備え、
     前記昇降部は、前記トンネルカバーに形成される貫通孔を通って前記加熱トンネルに接続される、請求項1に記載の加熱収縮装置。
  3.  前記貫通孔と前記昇降部との間に介在するシール部材をさらに備える、請求項2に記載の加熱収縮装置。
  4.  前記昇降部は、
      前記加熱トンネルに接続される昇降ロッドと、
      前記昇降ロッドの周面を覆い、前記貫通孔を通って配置されるロッドカバーと、
    をさらに備え、
     前記シール部材は、前記周面の周方向に取り付けられる、請求項3に記載の加熱収縮装置。
PCT/JP2022/040345 2022-01-21 2022-10-28 加熱収縮装置 WO2023139876A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007917 2022-01-21
JP2022007917 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023139876A1 true WO2023139876A1 (ja) 2023-07-27

Family

ID=87348026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040345 WO2023139876A1 (ja) 2022-01-21 2022-10-28 加熱収縮装置

Country Status (1)

Country Link
WO (1) WO2023139876A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175515A (ja) * 1995-12-25 1997-07-08 Shizukou Kk 熱収縮性フィルム包装装置および熱収縮性フィルム包装方法
JP2018531847A (ja) * 2015-10-19 2018-11-01 ナムヤン マジック カンパニー,リミテッド ロータリー式の熱収縮ラベル紙の貼着装置
JP2020001812A (ja) * 2018-06-29 2020-01-09 澁谷工業株式会社 熱収縮性ラベルの熱収縮装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175515A (ja) * 1995-12-25 1997-07-08 Shizukou Kk 熱収縮性フィルム包装装置および熱収縮性フィルム包装方法
JP2018531847A (ja) * 2015-10-19 2018-11-01 ナムヤン マジック カンパニー,リミテッド ロータリー式の熱収縮ラベル紙の貼着装置
JP2020001812A (ja) * 2018-06-29 2020-01-09 澁谷工業株式会社 熱収縮性ラベルの熱収縮装置

Similar Documents

Publication Publication Date Title
US10221613B2 (en) Evacuation and port sealing techniques for vacuum insulating glass units
CA2170370C (en) Method and apparatus for continuous drying in superheated steam
US5022165A (en) Sterilization tunnel
CN1926249B (zh) 双室型热处理炉
WO2017036053A1 (zh) 用于渗碳或碳氮共渗的加热炉
KR20120050472A (ko) 기판의 열처리 장치 및 처리 챔버
WO2023139876A1 (ja) 加熱収縮装置
US4616123A (en) Shrink oven
JP2023106911A (ja) 加熱収縮装置
WO2023053733A1 (ja) 加熱収縮装置
CN211112112U (zh) 分段式连续热处理炉
EP2111343B1 (en) Apparatus for decorating objects including a kiln and a carriage with a concave reflector
CN215050522U (zh) 模具钢用高压气淬真空炉
KR20220136131A (ko) 연속 가열로
JPH03257119A (ja) ローラハース式真空炉
CN210150963U (zh) 封装装置
JPH1163838A (ja) ハイブリッド型熱処理装置
WO2002061154A1 (en) Furnace for heat treatment of metal bars
JP2860998B2 (ja) ローラハース式真空炉
US5788484A (en) Rapid cycle treatment oven
KR20150072440A (ko) 유리 성형체의 제조 방법, 및 유리 성형체의 제조 장치
CN114807570B (zh) 一种连续多室热处理炉及其处理工艺
CN219368330U (zh) 一种大型立式可控气氛多用炉
CN209553679U (zh) 一种l型封切收缩包装机用热缩装置
JP3158506B2 (ja) 竪形コイル熱処理炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922028

Country of ref document: EP

Kind code of ref document: A1