WO2023138622A1 - 资源配置方法与装置、网络设备和终端设备 - Google Patents

资源配置方法与装置、网络设备和终端设备 Download PDF

Info

Publication number
WO2023138622A1
WO2023138622A1 PCT/CN2023/072924 CN2023072924W WO2023138622A1 WO 2023138622 A1 WO2023138622 A1 WO 2023138622A1 CN 2023072924 W CN2023072924 W CN 2023072924W WO 2023138622 A1 WO2023138622 A1 WO 2023138622A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
uplink
resource
resources
information
Prior art date
Application number
PCT/CN2023/072924
Other languages
English (en)
French (fr)
Inventor
黄曲芳
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023138622A1 publication Critical patent/WO2023138622A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present application relates to the technical field of communications, and in particular to a resource configuration method and device, network equipment, and terminal equipment.
  • the standard protocol specified by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) specifies the transmission of uplink data.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP
  • implementation methods may exist:
  • the terminal device applies for uplink resources from the network device only when it needs to transmit uplink data, and waits for the network device to configure uplink resources before the terminal device can start to transmit uplink data, resulting in a long transmission delay of uplink data.
  • the terminal device directly uses pre-configured uplink resources to transmit uplink data without applying, but the pre-configured uplink resources may not be able to completely transmit uplink data, thereby reducing the reliability of uplink data transmission.
  • the first aspect is a resource configuration method of the present application, which is applied to a network device; the method includes:
  • resource configuration information is sent, where the resource configuration information is used to indicate uplink resources.
  • the embodiment of the present application can indicate (configure/allocate/schedule, etc.) the uplink resources used to carry the uplink data according to the data distribution characteristics of the uplink data, so that the indicated uplink resources can satisfy the transmission of the uplink data, and avoid redundant or insufficient configured uplink resources when transmitting uplink data, thereby improving resource utilization and ensuring reliability of uplink data transmission.
  • the second aspect is a resource configuration method of the present application, which is applied to a terminal device; the method includes:
  • the third aspect is a resource allocation device of the present application, including:
  • a receiving unit configured to receive first information, the first being used to indicate the data distribution characteristics of the uplink data
  • a sending unit configured to send resource configuration information according to the data distribution characteristics of the uplink data, where the resource configuration information is used to indicate uplink resources.
  • the fourth aspect is a resource allocation device of the present application, including:
  • a sending unit configured to send first information, where the first information is used to indicate data distribution characteristics of uplink data
  • the receiving unit is configured to receive resource configuration information, the resource configuration information is used to indicate uplink resources, and the resource configuration information is determined by the data distribution characteristics of the uplink data.
  • the fifth aspect is a network device of the present application, including a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps in the method designed in the first aspect above.
  • the sixth aspect is a terminal device of the present application, including a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps in the method designed in the second aspect above.
  • a seventh aspect is a chip of the present application, including a processor, wherein the processor executes the steps in the method designed in the above-mentioned first aspect or the second aspect.
  • the eighth aspect is a chip module of the present application, including a transceiver component and a chip, and the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the ninth aspect is a computer-readable storage medium of the present application, wherein it stores computer programs or instructions, and when executed, the computer programs or instructions implement the steps in the method designed in the first aspect or the second aspect.
  • the tenth aspect is a computer program product of the present application, including computer programs or instructions, wherein, when the computer program or instructions are executed, the steps in the method designed in the first aspect or the second aspect above are realized.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a data transmission process in an embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of an uplink data transmission according to an embodiment of the present application.
  • FIG. 4 is a schematic flow diagram of data transmission of an XR service according to an embodiment of the present application.
  • FIG. 5 is a schematic flow diagram of data transmission of another XR service according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a BSR format according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another BSR format according to the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another BSR format according to the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another BSR format according to the embodiment of the present application.
  • FIG. 10 is a schematic flow diagram of data transmission of another XR service according to an embodiment of the present application.
  • FIG. 11 is a schematic flow diagram of data transmission of a variety of services in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of uplink data according to an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a resource allocation method according to an embodiment of the present application.
  • FIG. 14 is a block diagram of functional units of a resource configuration device according to an embodiment of the present application.
  • FIG. 15 is a block diagram of functional units of another resource configuration device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • At least one in the embodiments of the present application refers to one or more, and multiple refers to two or more.
  • At least one of the following or similar expressions in the embodiments of the present application refer to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one item (piece) of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, and c may be an element, or a set containing one or more elements.
  • the “equal to” in the embodiment of the present application can be used in conjunction with greater than, and is applicable to the technical solution adopted when it is greater than, and can also be used in conjunction with less than, and is applicable to the technical solution adopted when it is less than.
  • equal to is used in conjunction with greater than it is not used in conjunction with less than; when equal to is used in conjunction with less than, it is not used in conjunction with greater than.
  • connection in the embodiments of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in any way.
  • Network and “system” in the embodiments of the present application may be expressed as the same concept, for example, a communication system is a communication network.
  • Instruction in this embodiment of the present application can be expressed as the same concept as “configuration”, “allocation”, and “scheduling", for example, configuring resources means allocating resources or scheduling resources.
  • Transmission in the embodiments of the present application may be expressed as the same concept as "bearer", for example, transmission data is bearer data.
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum
  • NR NR-based Access to Unlicensed Spectrum, NR-U) system on unlicensed spectrum
  • Non-Terrestrial Networks Non-Terrestrial Networks, NTN
  • Universal mobile communication system Universal Mobile Telecommunications System, UMTS
  • wireless local area network Wireless Local Area Networks, WLAN
  • wireless fidelity Wireless Fidelity, WiFi
  • 6G 6th generation (6th-Generation, 6G) communication system or other communication systems, etc.
  • wireless communication systems can not only support traditional wireless communication systems, but also support such as device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), vehicle to vehicle (V2V) communication, vehicle to everything (V2X) communication , narrow band internet of things (narrow band internet of things, NB-IoT) communication, etc., therefore, the technical solution of the embodiment of the present application can also be applied to the above wireless communication system.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • narrow band internet of things narrow band internet of things
  • NB-IoT narrow band internet of things
  • the technical solutions of the embodiments of the present application can be applied to beamforming (beamforming), carrier aggregation (carrier aggregation, CA), dual connectivity (dual connectivity, DC) or independent (standalone, SA) deployment scenarios, etc.
  • the embodiments of the present application may be applied to unlicensed spectrum.
  • the unlicensed spectrum may also be regarded as the shared spectrum.
  • the wireless communication system in the embodiment of the present application may also be applied to a licensed spectrum.
  • the licensed spectrum can also be regarded as a non-shared spectrum.
  • the terminal device may be a device having a transceiver function, and may also be referred to as user equipment (user equipment, UE), remote terminal (remote UE), relay device (relay UE), terminal device (terminal device), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, mobile device, user terminal, intelligent terminal, wireless communication device, user agent, or user device.
  • the relay device may be a terminal device capable of providing relay and forwarding services for other terminals (including remote terminals).
  • the terminal device may also be referred to as a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a handheld device with a wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a next-generation communication system (such as an NR communication system, 6G communication system) or a terminal device in a future evolved public land mobile network (public land mobile network, PLMN), etc., which are not specifically limited.
  • a cellular phone a cordless phone
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PDA personal digital assistant
  • a handheld device with a wireless communication function a computing device or other processing device connected to a wireless modem
  • a vehicle-mounted device such as an NR communication system, 6G communication system
  • terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) device, an augmented reality (augmented reality, AR) device, a wireless device in industrial control, a wireless device in unmanned automatic driving, a wireless device in remote medical, a wireless device in smart grid, a transportation security Wireless devices in (transportation safety), wireless devices in smart cities or wireless devices in smart homes, etc.
  • a virtual reality (VR) device an augmented reality (augmented reality, AR) device
  • a wireless device in industrial control a wireless device in unmanned automatic driving, a wireless device in remote medical, a wireless device in smart grid, a transportation security Wireless devices in (transportation safety), wireless devices in smart cities or wireless devices in smart homes, etc.
  • the terminal device may include an apparatus having a wireless communication function, such as a chip system, a chip, a chip module, and the like.
  • the chip system may include a chip, and may also include other discrete devices.
  • the network device may be a device having a transceiver function, may be a device for communicating with a terminal device, and is responsible for radio resource management (radio resource management, RRM), quality of service (quality of service, QoS) management, data compression and encryption, data transmission and reception, etc. on the air interface side.
  • RRM radio resource management
  • QoS quality of service
  • the network device may be a base station (base station, BS) in a communication system or a device deployed in a radio access network (radio access network, RAN) to provide a wireless communication function.
  • a base transceiver station base transceiver station, BTS
  • BTS base transceiver station
  • node B node B
  • eNB evolved node B
  • eNodeB evolved node B
  • ng-eNB next generation evolved node B
  • ng-eNB next generation evolved node B
  • ng-eNB next generation evolved node B
  • ng-eNB next generation evolved node B
  • ng-eNB next generation evolved node B
  • gNB next generation evolved node B
  • gNB master node
  • MN master node
  • secondary node, SN secondary node
  • the network device can also be other devices in the core network (core network, CN), such as access and mobility management function (access and mobility management function, AMF), user plan function (user plan function, UPF), etc.; it can also be an access point (access point, AP) in a wireless local area network (wireless local area network, WLAN), a relay station, a future evolution Communication equipment in the PLMN network, communication equipment in the NTN network, etc.
  • core network core network, CN
  • AMF access and mobility management function
  • UPF user plan function
  • AP access point
  • WLAN wireless local area network
  • WLAN wireless local area network
  • relay station a relay station
  • future evolution Communication equipment in the PLMN network communication equipment in the NTN network, etc.
  • the network device may include a device having a wireless communication function, such as a chip system, a chip, a chip module, and the like.
  • the chip system may include a chip, and may also include other discrete devices.
  • the network device may also communicate with an Internet Protocol (Internet Protocol, IP) network.
  • Internet Protocol Internet Protocol
  • IP Internet Protocol
  • the Internet Internet
  • private IP network private IP network or other data networks and the like.
  • the network device can be an independent node to implement all the functions of the above-mentioned base station, which can include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU), such as gNB-CU and gNB-DU; it can also include an active antenna unit (active antenna unit, AAU).
  • the CU can realize some functions of the network equipment, and the DU can also realize some functions of the network equipment.
  • the CU is responsible for processing non-real-time protocols and services, realizing the functions of the radio resource control (radio resource control, RRC) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer, and packet data convergence protocol (PDCP) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU can implement some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be converted from the information of the PHY layer, under this network deployment, high-level signaling (such as RRC layer signaling) can be considered to be sent by the DU, or jointly sent by the DU and the AAU.
  • the network device may include at least one of CU, DU, and AAU.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network, which is not specifically limited.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (high elliptical orbit, HEO) satellite, etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide communication services for terminal devices within the coverage of the cell.
  • the cell may include a macro cell, a small cell, a metro cell, a micro cell, a pico cell, a femto cell, and the like.
  • a network architecture of a wireless communication system may refer to FIG. 1 .
  • a wireless communication system 10 may include a network device 110 and a terminal device 120 .
  • the network device 110 and the terminal device 120 may communicate in a wireless manner.
  • FIG. 1 is only an illustration of a network architecture of a wireless communication system, and does not limit the network architecture of the communication system in this embodiment of the present application.
  • the wireless communication system may further include a server or other devices.
  • the wireless communication system may include multiple network devices and/or multiple terminal devices.
  • the embodiment of the present application mainly involves the data transmission process, and the following uses the data transmission process in the fifth generation (5G) new radio (new radio, NR) communication system as an example to illustrate.
  • 5G fifth generation
  • NR new radio
  • data transmission can pass through the service data adaptation protocol (service data adaptation protocol, SDAP) layer, packet data convergence protocol (packet data convergence protocol, PDCP) layer, radio link control (radio link control, RLC) layer, media access control (medium access control, MAC) layer, physical (PHY) layer between the network device and the terminal device.
  • SDAP service data adaptation protocol
  • packet data convergence protocol packet data convergence protocol
  • RLC radio link control
  • media access control medium access control
  • PHY physical
  • the SDAP layer maps IP data packets to different radio bearers (radio bearer, RB).
  • radio bearer radio bearer
  • SDU service data units
  • PDU protocol data units
  • the SDAP layer outputs the SDAP PDU to the PDCP layer by adding the SDAP header to the IP packet, and the PDCP layer outputs the PDCP SDU to the SDAP layer, and the SDAP PDU is equivalent to the PDCP SDU.
  • the PDCP layer outputs the PDCP PDU to the RLC layer by adding a PDCP header to the SDAP PDU.
  • the RLC layer outputs the RLC PDU to the MAC layer by adding an RLC header to the PDCP PDU.
  • the MAC layer multiplexes multiple RLC PDUs and adds a MAC header to form a transport block (TB), And finally, the PHY layer performs channel coding, modulation, multi-antenna processing, resource mapping and other processing on the TB for transmission.
  • the downlink data from the network device to the terminal device and the uplink data from the terminal device to the network device may adopt different transmission methods.
  • downlink radio resources required for transmitting downlink data are configured (allocated) by network equipment.
  • the network device can determine the amount of downlink data to be transmitted to the terminal device each time and the time-frequency resource position of the downlink wireless resource according to the amount of downlink data to be transmitted and the wireless channel condition of the terminal device.
  • the MAC layer of the network device generates a TB of a corresponding size, and then transmits it through downlink wireless resources.
  • uplink resources required for transmitting uplink data are configured (allocated) by the network device.
  • the uplink data transmission process is as follows:
  • the terminal device reports to the network device the amount of uplink data stored by itself to be transmitted;
  • the network device configures (allocates/schedules, etc.) uplink resources for the terminal device according to the amount of uplink data to be transmitted;
  • the MAC layer of the terminal device generates a TB of a corresponding size according to the configured uplink resource, and then transmits it through the uplink resource.
  • implementation manners of uplink data transmission may include the following implementation manners:
  • the terminal device can apply for uplink resources by sending a buffer status report (buffer status report, BSR) to the network device.
  • BSR buffer status report
  • the terminal device can insert a BSR control element (control elment) in the TB of the MAC layer to tell the network device: how many bytes (bytes) of data currently need to be sent in one or some logical channel groups of the terminal device, and hope that the network device can configure some uplink resources for itself.
  • BSR buffer status report
  • the network device can know the amount of uplink data to be sent by the terminal device, so that the network device can configure uplink resources in a targeted manner to ensure the transmission of uplink data.
  • the terminal device applies to the network device for uplink resources only when it needs to transmit uplink data.
  • the terminal device can start to transmit the uplink data after waiting for the uplink resources to be configured by the network device, which results in a relatively long transmission delay of the uplink data.
  • the network device may pre-configure uplink resources, that is, semi-persistent uplink resources, to the terminal device.
  • uplink resources that is, semi-persistent uplink resources
  • the terminal device does not need to apply for the uplink resource from the network device, but directly uses the pre-configured uplink resource for transmission.
  • Mode 2 although the terminal device can directly use the pre-configured uplink resources to transmit uplink data, so that the delay of uplink data transmission is small, but because the network device cannot know the amount of uplink data in advance, the pre-configured uplink resources may not be able to completely transmit the uplink data, thereby reducing the reliability of data transmission.
  • pre-configured uplink resources that is, the amount of uplink data that can be carried is large
  • the actual amount of uplink data is small, resulting in waste of resources
  • the pre-configured uplink resources are few (that is, the amount of uplink data that can be carried is small)
  • the actual amount of uplink data is large, so that the entire uplink data cannot be transmitted, thereby reducing the reliability of data transmission.
  • the network device may obtain first information from an application in the application layer of the terminal device or an application server of the application, and the first information may be used to indicate data distribution characteristics of uplink data to be transmitted by the terminal device;
  • the network device may send resource configuration information according to the first information, and the resource configuration information may be used to indicate uplink resources.
  • the resource configuration information may be used to indicate (configure/schedule, etc.) the uplink resources bearing uplink data.
  • the terminal device may send the first information to the network device;
  • the terminal device can receive the resource configuration information from the network device, and the resource configuration information is determined by the data distribution characteristics of the uplink data;
  • the terminal device can use the uplink resource to transmit uplink data, and enter the power saving mode after the uplink data is transmitted.
  • the embodiment of the present application can indicate (configure/allocate/schedule, etc.) the uplink resources used to carry the uplink data according to the data distribution characteristics of the uplink data to be transmitted by the terminal device, so that the indicated uplink resources can meet the transmission of the uplink data, avoiding the configured There are redundant or insufficient uplink resources when transmitting uplink data, which is conducive to improving resource utilization and ensuring reliability of uplink data transmission.
  • uplink data may refer to data sent by a terminal device to a network device.
  • the uplink data may be data of the same (one type) service, or may be data of different (multiple) services.
  • the service may be a delay-sensitive service, a delay-sensitive service with a large amount of data, a service with low delay and high reliability, a service with low delay and high reliability and a large amount of data, or a service with a large amount of data.
  • the service may be one of an extended reality (extended reality, ER) service, a virtual reality (virtual reality, VR) service, an online video service, an online live broadcast service, an online voice service, etc., and there is no specific limitation on this.
  • extended reality extended reality
  • VR virtual reality
  • online video service an online live broadcast service
  • online voice service etc.
  • the uplink data is data of multiple services
  • the data of the multiple services may have priority. Therefore, the terminal device may need to transmit the data of the various services sequentially according to the priority.
  • delay-sensitive and data-intensive services have a higher priority, so the terminal device needs to consider prioritizing the transmission of the delay-sensitive and large-data-intensive services, and firstly apply for the uplink resources required for transmission of the delay-sensitive and large-data-intensive services.
  • the terminal device needs to give priority to transmitting the data of a service with high transmission priority (for example, the service with high transmission priority has strict delay requirements or is sensitive to delay), and then considers whether to transmit the data of other services with low transmission priority (for example, the service with low transmission priority has relatively loose delay requirements or is relatively insensitive to delay).
  • the data of other services with low transmission priority is transmitted, so that the data of other services with low transmission priority cannot always obtain a transmission opportunity, thus causing packet loss.
  • the uplink data may be generated by an application in the application layer of the terminal device.
  • the data generated by the application in the application layer will be processed by the SDAP layer, PDCP layer and RLC layer to become an RLC PDU, and then assembled into a TB in the MAC layer, and finally transmitted through the PHY layer.
  • the application may be called an application program (application, APP).
  • An application program refers to a program to complete a certain/multiple specific tasks or have a certain function, and the program runs on the operating system, can run on the application layer to interact with the user, and has a visual user interface.
  • the data generated by the same (certain) application may be the data of the same service
  • the data generated by different (certain) applications may be the data of different services.
  • the data distribution characteristics of the uplink data can be used to represent the distribution/distribution characteristics/distribution rules, etc., of the uplink data in at least one of period, data volume, generation time, arrival time, data packet location distribution, etc. described by data statistics.
  • the data distribution characteristics of the uplink data may include at least one of the following:
  • applications in the application layer of the terminal device may periodically generate uplink data.
  • the XR application in the application layer of the terminal device may periodically generate a frame of video.
  • Multiple data packets of the same frame of video can form a burst (burst), that is, each burst contains multiple data packets, which collectively arrive at the access layer and wait for transmission through the air interface.
  • each burst contains multiple data packets, and the data volume of each burst may fluctuate within a certain range.
  • the uplink data generated each time may consist of multiple data packets, and different data packets may have different data sizes, so the amount of uplink data generated each time may fluctuate within a certain range.
  • the average data volume of the uplink data generated each time may be used as one of the data distribution characteristics used to describe the uplink data.
  • each burst includes multiple data packets, and different data packets have different data amounts, the data amount of each burst may be different. For this reason, the "average amount of data per burst" is used to describe the XR business Data distribution characteristics.
  • the data amount range of the uplink data may be used to represent the range between the minimum data amount and the maximum data amount of the uplink data.
  • the range between the minimum data amount and the maximum data amount of each burst is the range between the minimum data amount and the maximum data amount of each burst.
  • the uplink data generated each time may consist of multiple data packets, and there may be more important data packets in the multiple data packets, that is, important data packets. Therefore, the introduction of "position distribution of important data packets in the uplink data" is used to describe the position of important data packets in the multiple data packets, that is, the number or number of data packets in which the important data packets are located in the uplink data.
  • the position distribution of important data packets in uplink data may be as follows:
  • the important data packet is located in the Xth data packet in the uplink data
  • the uplink data includes multiple data packets, and the Xth data packet in the multiple data packets is an important data packet.
  • -Important data packets are located in the X to Yth data packets in the uplink data
  • the uplink data includes multiple data packets, and the Xth to Yth data packets in the multiple data packets are important data packets.
  • the data volume of important data packets is located in the M to N Bytes of the uplink data
  • the data volume of the uplink data includes a plurality of Bytes, and the Mth Bytes to the Nth Bytes of the multiple Bytes are the data volumes of important data packets.
  • the time when uplink data arrives at the access layer of the terminal device (time/sequence, etc.)
  • the access layer of the terminal device can be understood as the protocol stack other than the application layer of the terminal device.
  • the user plane protocol stack includes SDAP layer, PDCP layer, RLC layer, MAC layer and PHY layer
  • the control plane protocol stack includes NAS layer, RRC layer, PDCP layer, RLC layer, MAC layer and PHY layer.
  • the embodiment of the present application may ignore the processing delay of data from the application layer to the access layer. Therefore, the time (time/sequence) when an application in the application layer generates uplink data, that is, the time when the uplink data is generated by the application layer, may be equivalent to the time when the uplink data arrives at the access layer. In other words, from the perspective of the application layer, it is the time when the uplink data is generated, and from the perspective of the access layer, it is the time when the uplink data arrives at the access layer.
  • the time when the uplink data arrives at the access layer of the terminal device may be an absolute time, or a hyperframe number (hyperframe number)/wireless frame number (system frame number, SFN)/subframe number (subframe number)/slot number (slot index/number)/symbol (symbol index/number), etc.
  • each wireless frame contains 10 subframes, that is, the duration of each subframe is fixed at 1ms.
  • Each subframe includes several (such as 1/2/4/816/32, etc.) time slots. For example, when the subcarrier interval is 15 KHz, each subframe includes 1 time slot, that is, each time slot is 1 ms. Each slot contains 14 or 12 OFDM symbols.
  • the transmission time interval (transmission time interval, TTI) of 5G NR is 1 time slot.
  • the XR application of the terminal device may notify the access layer of the time when each burst periodically arrives at the access layer.
  • the time is an absolute time, and the period is 17ms (for example, 60 frames are output per second, that is, a burst needs to be transmitted every 16.67ms (about 17ms)
  • the current burst will arrive at the access layer at 17:15:32:267ms on December 20, 2021, and the next burst will arrive at the access layer at 17:15:32:284ms on December 20, 2021.
  • time slot number is used for this time, and the period is 17 time slots (for example, 1 time slot is 1 ms), then the current burst will arrive at the access layer at time slot 20, and the next burst will arrive at the access layer at time slot 37.
  • the superframe number/radio frame number/subframe number/time slot number/symbol can be obtained by absolute time mapping.
  • the superframe number/radio frame number/subframe number/slot number/symbol may not exist. For example, if some cells do not use superframes, there is no need to use a superframe number; in some scenarios, only one of the subframe number or the time slot number needs to be indicated.
  • the jitter range of the time when the uplink data arrives at the access layer of the terminal device may be used to represent the range between the earliest time and the latest time when the uplink data arrives at the access layer of the terminal device.
  • the embodiment of the present application introduces "first information".
  • the first information may be used to indicate the data distribution characteristics of the uplink data.
  • the data distribution characteristics of uplink data may include at least one of the following items: period of uplink data, average data volume of uplink data, range of data volume of uplink data, position distribution of important data packets in uplink data, data volume of important data packets in uplink data, time when uplink data arrives at the access layer of the terminal device (time/sequence)/time when uplink data is generated (time/sequence), time for uplink data to reach the access layer of the terminal device Jitter range.
  • the first information may be a kind of information (information), may be a kind of signaling (signalling), may be a kind of information element (information element), may be a kind of field (field)/subfield (subfield), may be a kind of signal (signal), there is no specific limitation on this.
  • first information may also be described in other terms, such as first indication information, data distribution information, data feature information, and the like. As long as they have the same meaning/function/interpretation, they are all within the protection scope of the present application, and there is no specific limitation thereon.
  • the first information may be sent by a terminal device in an RRC connection state; or, the first information may be sent by an application server, which will be specifically described below.
  • the first information may be carried by RRC signaling/high layer signaling/terminal device specific signaling.
  • Step 1 Send the first message
  • the terminal device sends the first information to the network device
  • the network device receives the first information from the terminal device.
  • the application in the application layer of the terminal device may notify (send/transmit) the first information to the access layer of the terminal device, and then the access layer of the terminal device notifies (sends/transmits) the first information to the network device.
  • the XR application in the application layer of the terminal device notifies the access layer of the data distribution characteristics of the XR service, and then the access layer notifies the network device of the data distribution characteristics of the XR service.
  • the application server sends the first information to the network device
  • the network device receives the first information from the application server.
  • the application server may notify (send/transmit) the first information to the network device.
  • the first information sent by the application server can pass through the SMF and AMF in the core network (5GC) in turn, and then be transmitted by the AMF to the gNB/ng-eNB of the access network (NR-RAN).
  • 5GC core network
  • NR-RAN access network
  • the application in the application layer of the terminal device needs to interact with the application server of the application in advance, and during the interaction process, the terminal device sends the first information to the application server.
  • the XR application in the application layer of the terminal device notifies the XR server of the data distribution characteristics of the XR service, and then the XR server notifies the network device of the data distribution characteristics of the XR service.
  • the application layer of the terminal device and the application layer of the application server directly exchange information of the application layer, so from the perspective of the application layer, the first information includes the time when the uplink data is generated.
  • the uplink data generation time can only use absolute time instead of the superframe number/radio frame number/subframe number/slot number/symbol.
  • the application server may be a software and hardware unit for providing functions such as application data.
  • the software and hardware unit may be an infrastructure as a service (infrastructure as a service, IaaS), a platform as a service (platform as a service, PaaS), a software as a service (software as service, SAAS) platform, etc.
  • the application server may be a cloud server, a hardware server, a software server, a software and hardware server, a web server, a load balancer (Nginx), a data center network device, a personal computer (personal computer, PC), a computing device, a computer supporting the 802.11 protocol, etc., without specific limitations.
  • Step 2 Configure uplink resources
  • the network device may send resource configuration information according to the first information, where the resource configuration information is used to indicate uplink resources, and the uplink resources may be used to bear (transmit) uplink data.
  • the network device may send the resource configuration information to the terminal device before the time (time/sequence) when the uplink data arrives at the access layer of the terminal device, thereby facilitating the configuration of uplink resources for carrying uplink data before the time when the uplink data arrives at the access layer of the terminal device.
  • the uplink resource can be one of the following:
  • resource configuration information may be used to indicate uplink scheduling-free resources. It will be described by the following "Form 1".
  • resource configuration information may be used to indicate uplink dynamic scheduling resources. It will be described by the following "method 2".
  • the embodiment of the present application may configure uplink resources in a semi-persistent or scheduling-free manner.
  • the uplink resources configured by the network device are uplink scheduling-free resources (or uplink static scheduling resources).
  • the resource configuration information can be carried by high-level signaling (such as RRC signaling or MAC CE, etc.).
  • the uplink scheduling-free resources can be understood as that the network device does not need to schedule the resources required by the uplink data to be transmitted by the terminal device every time, that is, it only needs to pre-configure the resources once. Since the application in the application layer of the terminal device generates uplink data periodically, the uplink scheduling-free resources are periodic, and the uplink scheduling-free resources only need to be configured once, and the periodicity is effective, so as to improve configuration efficiency.
  • the network device may pre-configure periodic resources for the terminal device directly according to the data distribution characteristic after receiving the data distribution characteristic of the service data and before the time when the first uplink data arrives at the access layer. Finally, after the first (or first) uplink data arrives at the access layer, the terminal device can directly use the pre-configured periodic resources to transmit the first uplink data. Similarly, after the next (or next) uplink data arrives at the access layer, the terminal device can directly use pre-configured periodic resources to transmit the next uplink data, and so on.
  • the uplink scheduling-free resources can be regarded as being composed of N (N ⁇ 1, N is a positive integer) resources, that is, the uplink scheduling-free resources include N resources, each resource is used to carry (transmit) a TB, and each resource has a different time-frequency domain location, such as each resource may be located in a different wireless frame number/subframe number/slot number/symbol in the time domain, and each resource may be located in a different sub-frequency band in the frequency domain (RB/RE/Subcarrier/PRB).
  • the network device obtains the data distribution characteristics of the XR service, and pre-configures periodic resources for the terminal device before the first burst reaches the access layer, and the period is 16ms.
  • the resources used to bear the first burst are respectively located in subframe 67, subframe 68 and subframe 69, and each subframe is 1 ms, and the resources used to bear the next burst are respectively located in subframe 83, subframe 84 and subframe 85.
  • the network device may configure the N resources in a one-time configuration manner, or configure the N resources in a multi-time configuration manner, depending on the implementation of the network device.
  • the network device may configure resources to the current terminal device in a manner of multiple configurations. 4 How to send resource configuration information according to the data distribution characteristics of uplink data
  • the network device can determine according to the data distribution characteristics of the uplink data The following information:
  • the network device may determine the period of the uplink scheduling-free resources according to the period of the uplink data, so that the period of the uplink scheduling-free resources is greater than or equal to the period of the uplink data.
  • the network device can determine the time-domain position of the uplink scheduling-free resource according to the time when the uplink data arrives at the access layer of the terminal device/the time when the uplink data is generated (and/or the jitter range of the time when the uplink data arrives at the access layer of the terminal device), so that the time-domain position of the uplink scheduling-free resource (such as the time-domain position of the first resource in the uplink scheduling-free resource) can be located at a certain moment (such as a subframe/time slot) after the time when the uplink data arrives at the access layer of the terminal device/the time when the uplink data is generated.
  • the device can use the uplink scheduling-free resource to transmit uplink data as soon as possible, thereby reducing the waiting time of the uplink data in the access layer of the terminal device.
  • the network device can configure N resources in the uplink scheduling-free resources in one-time configuration mode, or configure the N resources in multiple configuration mode.
  • the network device may determine the number N of resources in the uplink scheduling-free resources according to the average amount of uplink data (and/or the range of the amount of uplink data).
  • N may be larger; or, if the average amount of uplink data is larger, and there are other terminal devices that need to allocate resources urgently, the network device cannot allocate too many resources to the current terminal device at one time, and needs to configure multiple times, which will also cause N to increase.
  • the network device can determine the amount of data that can be carried by the uplink scheduling-free resources according to the average data volume of the uplink data (and/or the data volume range of the uplink data), so that the data volume that can be carried by the uplink scheduling-free resources can be greater than or equal to the average data volume of the uplink data, so as to prevent the uplink data from being unable to be completely transmitted, thereby helping to ensure the reliability of data transmission.
  • the uplink scheduling-free resources may include N resources, this embodiment of the present application does not relate to the amount of data that each resource can carry.
  • the resource configuration information may include at least one of the following items: the period of the uplink scheduling-free resources, the time-frequency domain position of the uplink scheduling-free resources, the configuration times of the uplink scheduling-free resources, the resource quantity in the uplink scheduling-free resources, and the amount of data that can be carried by the uplink scheduling-free resources, so that the uplink scheduling-free resources required for transmitting uplink data can be configured through the resource configuration information.
  • the uplink data is the data of the XR service as an example for specific description.
  • Step 1 The XR application in the application layer of the terminal device indicates the data distribution characteristics of each burst to be transmitted to the access layer of the terminal device.
  • an XR application can periodically generate a frame of video, and multiple data packets of the same frame of video can form each burst, that is, each burst contains multiple data packets.
  • Step 2 The access layer of the terminal device sends the first information to the network device.
  • the first information is used to indicate the data distribution characteristics of each burst to be transmitted by the terminal device.
  • Step 3 The network device sends resource configuration information to the terminal device.
  • the network device sends resource configuration information according to the first information, and the resource configuration information is used to indicate (bearer/configure/allocate) the uplink scheduling-free resource for bearing burst.
  • the resource configuration information includes the period of the uplink scheduling-free resource, the time-frequency domain position of the uplink scheduling-free resource, the configuration frequency of the uplink scheduling-free resource is 1, the number of resources in the uplink scheduling-free resource is 3, and the amount of data that the uplink scheduling-free resource can carry is 1000 Bytes, etc.
  • Step 4 The XR application in the application layer of the terminal device generates the current burst and sends it to the access layer of the terminal device.
  • the current burst consists of 3 data packets, that is, data packet 1, data packet 2, and data packet 3.
  • the data volume of the current burst is 700 Bytes.
  • Step 5 The access layer of the terminal device uses uplink scheduling-free resources to transmit the current burst.
  • the MAC layer in the access layer of the terminal device will form the data packet 1 and part of the data packets 2 into the first TB, and use the first resource among the uplink scheduling-free resources to transmit the first TB.
  • the MAC layer in the access layer of the terminal device forms the second TB with the remaining data packets 2 and some data packets 3, and uses the second resource among the uplink scheduling-free resources to transmit the second TB.
  • the MAC layer in the access layer of the terminal device forms the remaining data packets 3 into a third TB, and uses the third resource among the uplink scheduling-free resources to transmit the third TB.
  • the embodiment of the present application may configure uplink resources in a dynamic scheduling manner.
  • the uplink resources configured by the network device are uplink dynamic scheduling resources.
  • the resource configuration information can be carried by high-level signaling (such as RRC signaling or MAC CE, etc.).
  • the uplink dynamic scheduling resource can be understood as that the network device needs to perform separate dynamic scheduling for the resource required for each uplink data to be transmitted by the terminal device, that is, the resource needs to be configured separately for each uplink data.
  • the network device After the network device receives the data distribution characteristic of the uplink data and before or after (preferably before) the time when each uplink data arrives at the access layer, it needs to dynamically configure resources for the terminal device according to the data distribution characteristic.
  • the terminal device Before or after the current uplink data needs to be transmitted (preferably before), the terminal device needs to monitor the channel to obtain the resources dynamically scheduled for the current uplink data. Therefore, after the current uplink data reaches the access layer, the terminal device can use the dynamically configured resource to transmit the current uplink data.
  • the terminal device needs to monitor the channel to obtain the resources dynamically scheduled for the next uplink data. Therefore, after the next uplink data reaches the access layer, the terminal device can use the dynamically configured resource to transmit the next uplink data, and so on.
  • the uplink dynamic scheduling resource can be regarded as composed of N (N ⁇ 1, N is a positive integer) resources, that is, the uplink dynamic scheduling resource includes N resources, each resource is used to bear (transmit) a TB, and each resource has a different time-frequency domain location, such as each resource may be located in a different wireless frame number/subframe number/slot number/symbol in the time domain, and each resource may be located in a different sub-frequency band in the frequency domain (RB/RE/Subcarrier/PRB).
  • the network device obtains the data distribution of the XR service, and dynamically schedules resources for the terminal device before the time when the current burst reaches the access layer.
  • the resources used to bear the current burst are respectively located in subframe 67, subframe 68 and subframe 69.
  • the network device may configure the N resources in a one-time configuration manner, or configure the N resources in a multiple configuration (scheduling) manner, depending on the implementation of the network device.
  • the uplink dynamic scheduling resources to be configured by the network device include 3 resources
  • the 3-time scheduling method is adopted, three DCIs are issued, and each DCI schedules 1 resource in the uplink dynamic scheduling resources, and this resource is used to bear one TB.
  • a DCI is issued once, and the DCI schedules three resources among the uplink dynamic scheduling resources, and each resource is used to bear one TB.
  • the network device may dynamically schedule resources to the current terminal device in a manner of multiple configurations.
  • the network device may dynamically schedule resources to the current terminal device in a one-time configuration manner.
  • the uplink data is the data of the XR service as an example for further illustration.
  • the XR application in the application layer of the terminal device generates a burst every 17ms.
  • the terminal device monitors the PDCCH in subframe 63 (determined by network configuration/preconfiguration/autonomous implementation of the terminal device, specifically described below), and obtains the first resource in the uplink dynamic scheduling of subframe 67 through DCI; the terminal device monitors PDCCH in subframe 64, and obtains the second resource in the uplink dynamic scheduling of subframe 68 through DCI;
  • Frame 65 monitors the PDCCH, and obtains the third resource in the uplink dynamic scheduling of subframe 69 through DCI.
  • the next burst will arrive at the access layer of the terminal device at subframe 83, and the terminal device monitors the PDCCH at subframe 79, and obtains the first resource in the uplink dynamic scheduling at subframe 84 through DCI, and the rest can be understood in the same way.
  • the data distribution characteristics of the uplink data may include at least one of the following items: the period of the uplink data, the average data volume of the uplink data, the data volume range of the uplink data, the position distribution of important data packets in the uplink data, the data volume of important data packets in the uplink data, the time when the uplink data reaches the access layer of the terminal device (time/sequence)/the time when the uplink data is generated (time/sequence), and the jitter range of the time when the uplink data reaches the access layer of the terminal device
  • the network device can The data distribution characteristics determine the following information:
  • the network device can configure the uplink dynamic scheduling resource before or after (preferably before) the time when the current uplink data arrives at the access layer of the terminal device, and carry the time-frequency domain position of the uplink dynamic scheduling resource through DCI.
  • the terminal device needs to blindly detect or monitor the PDCCH to obtain DCI, and obtain the uplink dynamic scheduling resource through the DCI.
  • the embodiment of the present application introduces the "monitoring timing of uplink dynamic scheduling resources", which can be understood as the time range (moment) for monitoring the PDCCH.
  • the time range can be understood as a position for a period of time, such as within the time slot 10 to the time slot 20; the time can be understood as a specific time position, such as the time slot 10.
  • the network device will deliver the DCI within the monitoring opportunity of the uplink dynamic scheduling resource, and the terminal device only needs to monitor the PDCCH during the monitoring opportunity of the uplink dynamic scheduling resource.
  • monitoring opportunity of the uplink dynamic scheduling resource may also be described by using other terms. As long as they have the same meaning/function/interpretation, they are all within the protection scope of the present application, and there is no specific limitation thereon.
  • the network device needs to notify the terminal device in advance of the monitoring timing of the uplink dynamic scheduling resources configured for the current uplink data transmission.
  • the network device can determine the monitoring timing of the uplink dynamic scheduling resource according to the time when the uplink data arrives at the access layer of the terminal device/the time when the uplink data is generated (and/or the jitter range of the time when the uplink data arrives at the access layer of the terminal device), so that the monitoring timing can be located before or after (preferably before) the time when the uplink data arrives at the access layer of the terminal device/the time when the uplink data is generated, so as to avoid continuous blind detection of the PDCCH by the terminal device to save energy consumption.
  • the monitoring timing of uplink dynamic scheduling resources is the time range of monitoring PDCCH
  • the monitoring timing of the uplink dynamic scheduling resource is within the time range of monitoring the PDCCH
  • the monitoring timing may be regarded as a window (window).
  • window for how to configure the window, there may be the following ways:
  • this manner can be regarded as a display indication manner.
  • the network device can directly indicate the duration/size (size) of the window and the initial position of the window through high-layer signaling (such as RRC signaling or MAC CE, etc.), thereby realizing the network configuration of the window.
  • high-layer signaling such as RRC signaling or MAC CE, etc.
  • the duration/size of the window and the starting position of the window are determined by the network device according to the data distribution characteristics of the uplink data.
  • the standard protocol can predetermine the duration/size of the window, and predetermine the gap between the time when the uplink data arrives at the access layer of the terminal device and the start position of the window (gap), that is, the gap is determined by the time when the uplink data arrives at the access layer of the terminal device.
  • the network device and the terminal device may pre-negotiate the duration/size of the window, and pre-negotiate the interval between the time when the uplink data arrives at the access layer of the terminal device and the start position of the window, that is, the interval is determined by the time when the uplink data arrives at the access layer of the terminal device.
  • the terminal device Since the terminal device knows the time when the uplink data arrives at the access layer of the terminal device, the terminal device can determine the starting position of the window according to the above-mentioned interval, combined with the pre-specified/pre-negotiated duration/size of the window, so as to realize the pre-configuration of the window.
  • the monitoring timing of uplink dynamic scheduling resource is the time of monitoring PDCCH
  • the monitoring timing of the uplink dynamic scheduling resources is the timing of monitoring the PDCCH
  • how to configure the timing can be as follows:
  • the network device configures the moment
  • this manner can be regarded as a display indication manner.
  • the network device can directly indicate this moment through high-level signaling (such as RRC signaling or MAC CE, etc.).
  • high-level signaling such as RRC signaling or MAC CE, etc.
  • the position at this moment is determined by the network device according to the data distribution characteristics of the uplink data.
  • the standard protocol may predefine the interval between the time when the uplink data arrives at the access layer of the terminal device and the time, that is, the interval is determined by the data distribution characteristics of the uplink data.
  • the network device and the terminal device may pre-negotiate the interval between the time when the uplink data arrives at the access layer of the terminal device and the time, that is, the interval is determined by the data distribution characteristics of the uplink data.
  • the terminal device Since the terminal device knows the time when the uplink data arrives at the access layer of the terminal device, the terminal device can determine the location at this time according to the above-mentioned interval, thereby realizing preconfiguring the time.
  • the network device since the uplink data is periodically generated by the terminal device, the network device only needs to determine a fixed interval between a certain moment (at which the network device sends the DCI indicating the resource for transmitting the current uplink data) and the time when the current uplink data arrives at the access layer of the terminal device. Therefore, when resources for transmitting the next uplink data are needed, the network device only needs to determine the time to deliver the DCI according to the fixed interval and the time when the next uplink data arrives at the access layer of the terminal device, that is, the time to deliver the DCI Ticks are periodic.
  • the terminal device since the uplink data is periodically generated by the terminal device, during the process of transmitting the first uplink data, the terminal device needs to blindly detect the PDCCH until the DCI is obtained, and determine a fixed interval between the time when the DCI is obtained and the time when the first uplink data arrives at the access layer of the terminal device. Therefore, in the process of transmitting the second uplink data, the terminal device determines a time according to the fixed interval and the time when the second uplink data arrives at the access layer of the terminal device, and then blindly detects the PDCCH at this time.
  • the network device needs to tell the terminal device that the DCI delivered is periodic.
  • the network device can configure N resources in the uplink dynamic scheduling resources by means of one scheduling, or can configure the N resources by means of multiple scheduling.
  • the network device may notify the terminal device in advance of the scheduling times of the uplink dynamic scheduling resource configured for the current uplink data transmission.
  • the network device may notify the terminal device in advance of the resource quantity N in the uplink dynamic scheduling resources configured for the current uplink data transmission.
  • the network device may also notify the terminal device of the resource quantity N in the uplink dynamic scheduling resources configured for the current uplink data transmission when configuring the first resource for the current uplink data transmission, which is not specifically limited.
  • the number of resources configured by the network device for each uplink data may be different or the same, depending on the implementation of the network device.
  • the network device may determine the number N of resources in the uplink scheduling-free resources according to the average data volume of the uplink data (and/or the data volume range of the uplink data).
  • N may be larger; or, if the average amount of uplink data is larger, and there are other terminal devices that need to allocate resources urgently, the network device cannot allocate too many resources to the current terminal device at one time, and needs to configure multiple times, which will also cause N to increase.
  • the network device needs to notify the terminal device in advance of the amount of data that can be carried by the uplink dynamic scheduling resource configured for the current uplink data transmission.
  • the amount of data that can be carried by the uplink dynamic scheduling resource configured by the network device for each uplink data may be different or the same, depending on the implementation of the network device.
  • the network device can determine the amount of data that can be carried by the uplink scheduling-free resources according to the average data amount of the uplink data (and/or the data amount range of the uplink data), so that the amount of data that can be carried by the uplink dynamic scheduling resource can be greater than or equal to the average data amount of the uplink data, so as to prevent the uplink data from being unable to be completely transmitted, thereby helping to ensure the reliability of data transmission.
  • the uplink dynamic scheduling resources may include N resources, this embodiment of the present application does not relate to the amount of data that each resource can carry.
  • the resource configuration information may include at least one of the following items: monitoring timing of uplink dynamic scheduling resources, scheduling times of uplink dynamic scheduling resources, number of resources in uplink dynamic scheduling resources, and data volume that can be carried by uplink dynamic scheduling resources, so as to implement configuration of uplink dynamic scheduling resources required for current uplink data through resource configuration information.
  • the uplink data is the data of the XR service as an example for specific description.
  • Step 1 The XR application in the application layer of the terminal device indicates the data distribution characteristics of each burst to be transmitted to the access layer of the terminal device.
  • each burst contains multiple data packets.
  • Step 2 The access layer of the terminal device sends the first information to the network device.
  • the first information is used to indicate the data distribution characteristics of each burst to be transmitted by the terminal device.
  • Step 3 The network device sends resource configuration information to the terminal device.
  • the network device sends resource configuration information according to the first information, where the resource configuration information is used to indicate uplink dynamic scheduling resources bearing the current burst.
  • the resource configuration information includes the monitoring timing of the uplink dynamic scheduling resource, the scheduling frequency of the uplink dynamic scheduling resource is 3, the number of resources in the uplink dynamic scheduling resource is 3, and the amount of data that the uplink dynamic scheduling resource can carry is 1000 Bytes, etc.
  • Step 4 The XR application in the application layer of the terminal device generates the current burst and sends it to the access layer of the terminal device.
  • the current burst consists of 3 data packets, that is, data packet 1, data packet 2, and data packet 3.
  • the data volume of the current burst is 700 Bytes.
  • Step 5 The access layer of the terminal device uses uplink dynamic scheduling resources to transmit the current burst.
  • the terminal device monitors the PDCCH to obtain DCI during the monitoring opportunity of the uplink dynamic scheduling resources, and obtains the time-frequency domain position of the first resource among the uplink dynamic scheduling resources through the DCI. Then, the MAC layer in the access layer of the terminal device will form the data packet 1 and part of the data packet 2 into the first TB, and use the first resource to transmit the first TB.
  • the terminal device monitors the PDCCH to obtain DCI during the monitoring opportunity of the uplink dynamic scheduling resources, and obtains the time-frequency domain position of the second resource among the uplink dynamic scheduling resources through the DCI. Then, the MAC layer in the access layer of the terminal device forms the remaining data packet 2 and part of the data packet 3 into a second TB, and uses the second resource to transmit the second TB.
  • the terminal device monitors the PDCCH during the monitoring opportunity of the uplink dynamic scheduling resources to obtain the DCI, and obtains the time-frequency domain position of the third resource among the uplink dynamic scheduling resources through the DCI. Then, the MAC layer in the access layer of the terminal device forms the remaining data packets 3 into a third TB, and uses the third resource among the uplink scheduling-free resources to transmit the third TB.
  • the terminal device uses the uplink scheduling-free resources to transmit uplink data.
  • the network device configures uplink dynamic scheduling resources for the terminal device, the terminal device uses the uplink dynamic scheduling resources to transmit uplink data.
  • mode 3 if the network device configures both uplink scheduling-free resources and uplink dynamic scheduling resources for the terminal device, the terminal device can use the preferentially used resource among the concurrently configured uplink scheduling-free resources and uplink dynamic scheduling resources to transmit uplink data.
  • the terminal device preferentially uses the uplink dynamic scheduling resources to transmit uplink data.
  • the resource configuration information may include at least one of the following items: period of uplink scheduling-free resources, time-frequency domain position of uplink scheduling-free resources, configuration times of uplink scheduling-free resources, number of resources in uplink scheduling-free resources, amount of data that can be carried by uplink scheduling-free resources, monitoring timing of uplink dynamic scheduling resources, scheduling times of uplink dynamic scheduling resources, number of resources in uplink dynamic scheduling resources, and data volume that can be carried by uplink dynamic scheduling resources.
  • the resource configuration information is realized by simultaneously configuring uplink scheduling-free resources and uplink dynamic scheduling resources for each uplink data.
  • Step 3 Send the second message (the third message or the fourth message)
  • the second information may be a buffer status report (Buffer Status Report, BSR) or other MAC CEs other than the BSR.
  • BSR Buffer Status Report
  • the BSR may indicate (report) the amount of uplink data. Since the uplink data in the embodiment of the present application may be the data of the same (one) service, or the data of different (multiple) services, the BSR may indicate the data volume of one service, or simultaneously indicate the data volume of multiple services, which are specifically described below.
  • the second information (third information or fourth information) can also be described by other terms, as long as they have the same meaning/function/interpretation, they are all within the scope of protection claimed in this application.
  • the second information (third information or fourth information) is BSR as an example for specific description, and the rest can be understood in the same way.
  • the uplink data can be data of the same (one) service, or can be data of different (multiple) services.
  • the uplink resource configured by the network device for the terminal device can transmit the data of the service every time, but may not be able to transmit the data of the service, resulting in packet loss of the unfinished data and reducing the reliability of data transmission.
  • how to adjust the configuration of the uplink resource can be realized through the transmission of the second information or the third information in the embodiment of the present application.
  • the terminal device needs to give priority to transmitting the data of a service with a high transmission priority (for example, the service with a high transmission priority has strict delay requirements or is sensitive to delay), and then consider whether to transmit the data of other services with a low transmission priority (for example, the service with a low transmission priority has a relatively loose delay requirement or is relatively insensitive to delay).
  • the data of the other low transmission priority services are then transmitted, so that the data of the other low transmission priority services always cannot obtain a transmission opportunity, thereby causing packet loss.
  • how to adjust the configuration of uplink resources to avoid packet loss can be realized by reporting the fourth information in the embodiment of the present application.
  • case 1 is a case where the uplink data is data of the same (one type of) service
  • case 2 is a case where the uplink data is data of different (multiple) services.
  • the uplink data is the data of the same (one) service, and the uplink resources configured by the network equipment are used to bear the same Data of a (one) business.
  • step 2 it can be seen that before or after (preferably before) the current uplink data arrives at the access layer of the terminal device, the terminal device acquires uplink resources for carrying the current uplink data.
  • the uplink resources configured in the above "step 2" may carry the current uplink data, that is, the amount of data that the uplink resources can carry is greater than or equal to the data amount of the current uplink data, or may not be able to carry the current uplink data, that is, the amount of data that the uplink resources can carry is less than the data amount of the current uplink data, so the terminal device can carry the BSR in the transmitted TB, and the network device can determine whether it is necessary to allocate some resources (that is, increase the resources in the configured uplink resources) to the terminal device according to the BSR.
  • the transmission of uplink data is guaranteed, or the network device can determine according to the BSR whether to reduce some resources (that is, reduce resources in the configured uplink resources) to improve resource utilization.
  • the access layer of the terminal device since the data packets of the current uplink data may successively arrive at the access layer of the terminal device, that is, not all the data packets of the current uplink data may arrive at the access layer, so when the access layer of the terminal device is transmitting the current uplink data to the network device, the access layer of the terminal device may or may not know the data volume of the current uplink data.
  • the BSR sent by the terminal device may have the following four situations:
  • the access layer of the terminal device knows the data volume of the current uplink data, and the access layer of the terminal device knows the data volume that the uplink resource configured by the network device for the current uplink data can carry, which is specifically described in "Case 1" below.
  • the access layer of the terminal device does not know the data volume of the current uplink data, and the access layer of the terminal device knows the data volume that the uplink resource configured by the network device for the current uplink data can carry, which is specifically described in "Case 2" below.
  • the access layer of the terminal device knows the data volume of the current uplink data, and the access layer of the terminal device does not know the data volume that can be carried by the uplink resources configured by the network device for the current uplink data, specifically described in "Case 3" below.
  • the access layer of the terminal device does not know the data volume of the current uplink data, and the access layer of the terminal device does not know the data volume that can be carried by the uplink resources configured by the network device for the current uplink data, specifically described in "Case 4" below.
  • the access layer of the terminal device knows the data volume of the current uplink data
  • the access layer of the terminal device when the access layer of the terminal device is transmitting a TB composed of the current uplink data to the network device (the TB may be the first TB or any TB), the access layer of the terminal device knows the data volume of the current uplink data, which can be realized in the following manner:
  • the access layer of the terminal device When transmitting a TB (the TB may be the first TB or any TB), the access layer of the terminal device has received all data packets of the current uplink data. At this time, the terminal device can count the data volume of each data packet by itself, so as to know the data volume of the current uplink data.
  • the access layer of the terminal device When transmitting a TB (the TB may be the first TB or any TB), the access layer of the terminal device only receives part of the data packets of the current uplink data. Wherein, the header of one or some of the data packets in the part of the data packets carries information for indicating the data volume of the current uplink data. Therefore, the access layer of the terminal device knows the data volume of the current uplink data by reading the information.
  • the access layer of the terminal device knows the amount of data that the uplink resource configured by the network device for the current uplink data can carry
  • the access layer of the terminal device can know it by receiving the resource configuration information.
  • the terminal device since the access layer of the terminal device knows the data volume of the current uplink data and the data volume that the uplink resource can carry, the terminal device can determine whether to generate a BSR according to the data volume that the uplink resource can carry and the data volume of the uplink data. There are two specific ways:
  • the terminal device determines to generate a BSR according to the amount of data that the uplink resources can carry and the amount of uplink data, and carries the BSR in the transmitted TB (the TB can be the first TB, or any TB) to send to the network device.
  • the BSR can be used to indicate (report) the difference between the amount of data that can be carried by uplink resources and the amount of uplink data.
  • the BSR may be used to indicate (report) the shortfall or balance of the data volume (in Bytes) between the data volume that the uplink resource can carry and the data volume of the uplink data.
  • the BSR may indicate that the difference is 300 Bytes (that is, the difference is greater than zero), or the BSR may indicate that the balance is 300 Bytes of data.
  • the BSR may indicate that the difference is -300 Bytes (that is, the difference is less than zero), or the BSR may indicate that the difference is 300 Bytes of data.
  • the BSR may carry information used to indicate the difference between the amount of data that can be carried by uplink resources and the amount of uplink data.
  • the BSR may carry information indicating the gap or balance of the data volume between the data volume that can be carried by the uplink resource and the data volume of the uplink data.
  • the information can be coded by an index value of m (m is a positive integer) bits.
  • the index value can be used to indicate the range of the difference between the amount of data that can be carried by the uplink resource and the amount of uplink data, or the index value can be used to indicate the range of the difference or balance between the amount of data that can be carried by the uplink resource and the amount of uplink data.
  • the use of an index value of m bits can reduce the number of bits carried by the BSR, thereby reducing the transmission over the air interface. number of bits.
  • an index value of 0 indicates that the difference is zero; an index value of 1 indicates that the range of the difference is (0,10); an index value of 2 indicates that the range of the difference is (-10,0); an index value of 3 indicates that the range of the difference is (20,30); an index value of 4 indicates that the range of the difference is (-30,-20), and so on.
  • the terminal device determines not to generate a BSR according to the amount of data that can be carried by the uplink resource and the amount of uplink data.
  • the network device can receive the BSR from the terminal device, and adjust the configuration of uplink resources according to the BSR.
  • adjusting the configuration of the uplink resources may include: increasing resources in the uplink resources (for example, reconfiguring some resources), reducing resources in the uplink resources (for example, recovering some resources in the uplink resources).
  • the network device may adjust the uplink resource.
  • the air interface becomes better, it means that the same wireless resource can transmit more data, and the network device can reduce the resource in the uplink resource; on the contrary, if the air interface becomes worse, it means that the same wireless resource can transmit less data, and the network device can increase the resource in the uplink resource.
  • the network device may reduce resources in the uplink resources allocated to the current terminal device.
  • the network device may allocate resources among the uplink resources of the current terminal device.
  • the network device may increase resources in the uplink resources.
  • the network device may reduce resources in the uplink resource.
  • the network device may send resource adjustment information to the terminal device, and the resource adjustment information may be used to indicate to increase or decrease resources in the uplink resources, so as to notify the terminal of resource adjustment.
  • resource adjustment information can also be described by other terms, as long as they have the same meaning/function/interpretation, they are all within the scope of protection claimed in this application.
  • the network device sends resource adjustment information, which can be used to indicate to increase resources in the uplink resource.
  • the network device sends resource adjustment information, which can be used to indicate the reduction of resources in the uplink resources.
  • the network device increases the resource in the uplink resource, and there may be the following implementation methods:
  • additional allocating L resources refers to allocating L additional resources in addition to uplink resources, where L is a positive integer.
  • the network device and the terminal device reach a consensus, and the terminal device considers that the current uplink data transmission is over after completing the transmission of 4 TB.
  • the time-frequency domain position and/or the amount of data that can be carried by the fourth resource can be indicated by the network device through the DCI, and the UE only needs to monitor the PDCCH to obtain the DCI.
  • the "fourth resource” is the fourth in logical meaning, and does not specifically mean that the time domain position of the newly added resource must be behind the originally configured three resources.
  • enlarging the amount of data that can be carried by the T-th resource in the uplink resources and increasing Y Bytes refers to increasing the amount of data that can be carried by the T-th resource among the uplink resources originally allocated for the current uplink data of the terminal device by Y Bytes, where T is a positive integer and Y is a positive integer.
  • the network device and the terminal device reach a consensus, and the amount of data that the Tth resource can carry is increased to (C+Y) Bytes on the basis of the C Bytes of the original configuration.
  • the network device can indicate through DCI, or some rules can be pre-configured by the base station, and the terminal device can determine how to increase Y Bytes according to these rules.
  • the network device expands the amount of data that can be carried by the T-th resource, and the specific amount of data carried is indicated by the network device through the DCI.
  • the network device may indicate a specific amount of data in the DCI corresponding to the Tth resource. After receiving the DCI, the terminal device discards the amount of data that can be carried by the Tth resource among the originally configured uplink resources based on the amount of data indicated in the DCI.
  • the network device reduces resources in uplink resources, and there may be the following implementation methods:
  • reclaiming the Kth resource among the uplink resources refers to reclaiming the Kth resource among the uplink resources, where K is a positive integer.
  • the network device and the terminal device reach a consensus, and the terminal device considers that the current uplink data transmission is over after completing the transmission of 2 TB.
  • reducing the amount of data that can be carried by the S-th resource in the uplink resources, and reducing Z Bytes refers to reducing the amount of data that can be carried by the S-th resource among the uplink resources originally allocated for the current uplink data of the terminal device by Z Bytes, where S is a positive integer and Z is a positive integer.
  • the network device and the terminal device reach a consensus, and the amount of data that the Tth resource can carry is reduced to (D-Z) Bytes on the basis of the originally configured D Bytes.
  • the network device can indicate through DCI, or some rules can be pre-configured by the base station, and the terminal device can determine how to reduce Z Bytes according to these rules.
  • the network device reduces the amount of data that can be carried by the S-th resource in the uplink resources, and the specific amount of data carried is indicated by the network device through the DCI.
  • the network device may indicate a specific amount of data in the DCI corresponding to the S resource. After receiving the DCI, the terminal device discards the amount of data that can be carried by the S th resource among the originally configured uplink resources based on the amount of data indicated in the DCI.
  • the network device can adjust the configuration of uplink resources according to the BSR.
  • the terminal may request the network device to adjust the uplink resource.
  • the BSR may also be used to request adjustment of uplink resources.
  • the BSR is used to indicate that the difference between the amount of data that can be carried by the uplink resource and the amount of uplink data is less than zero, and to request an increase of resources in the uplink resource.
  • the BSR is used to indicate that the difference between the amount of data that can be carried by the uplink resources and the amount of uplink data is greater than zero, and to request to reduce resources in the uplink resources.
  • FIG. 6 shows that the terminal only reports the amount of data to be transmitted in one logical channel group (logical channel group, LCG). Therefore, the terminal needs to indicate a logical channel group identifier (LCG ID) and the corresponding data volume.
  • LCG logical channel group
  • Figure 7 shows that the terminal reports the data volume of all logical channel groups of data to be transmitted, so a bitmap is used to indicate "which logical channel group has data to be transmitted". If the corresponding logical channel group has data to be transmitted, the corresponding bit in the bitmap is filled with 1; if the corresponding logical channel has no data to be transmitted, the corresponding bit in the bitmap is filled with 0;
  • the embodiment of the present application introduces a negative value indication for the BSR format.
  • the essential reason is that the terminal device knows in advance the amount of data that the uplink resource that the network device will allocate for itself can carry. If the terminal device finds that the amount of uplink data is less than the amount of data that the uplink resources can carry, it will indicate a negative value to the network device and notify the network device "please don't allocate so many resources for me, please take back some resources".
  • a new bit is added for each logical channel group in FIG. 8 , which is used to indicate whether the corresponding value is a positive value (ie, sign "+”) or a negative value (ie, sign "-").
  • the bit is 1, it means that the Burrer size field indicates a positive value, that is, the network device is requested to increase the resource in the uplink resource; if the bit is 0, it means that the Burrer size field indicates a negative value, that is, the network device is requested to reduce the resource in the uplink resource.
  • a new bit is added for each logical channel group in FIG. 9 , which is used to indicate whether the corresponding value is a positive value or a negative value. Specifically, if the bit is 1, it means that the Burrer size field indicates a positive value, that is, the network device is requested to increase the resource in the uplink resource; if the bit is 0, it means that the Burrer size field indicates a negative value, that is, the network device is requested to reduce the resource in the uplink resource.
  • FIG. 8 and FIG. 9 it is not necessary to use FIG. 8 and FIG. 9 to improve the BSR format, but to modify the corresponding value of the buffer size field.
  • the following takes a request to reduce resources in the uplink resources as an example for illustration.
  • Step 1 The XR application in the application layer of the terminal device indicates the data distribution characteristics of each burst to be transmitted to the access layer of the terminal device.
  • each burst contains multiple data packets.
  • Step 2 The access layer of the terminal device sends the first information to the network device.
  • the first information is used to indicate the data distribution characteristics of each burst to be transmitted by the terminal device.
  • Step 3 The network device sends resource configuration information to the terminal device.
  • the network device sends resource configuration information according to the first information, where the resource configuration information is used to indicate uplink dynamic scheduling resources bearing the current burst.
  • the resource configuration information includes the monitoring timing of the uplink dynamic scheduling resource, the scheduling frequency of the uplink dynamic scheduling resource is 3, the number of resources in the uplink dynamic scheduling resource is 3, and the amount of data that the uplink dynamic scheduling resource can carry is 1000 Bytes, etc.
  • Step 4 The XR application in the application layer of the terminal device generates the current burst and sends it to the access layer of the terminal device.
  • the current burst consists of 3 data packets, that is, data packet 1, data packet 2, and data packet 3.
  • the data volume of the current burst is 700 Bytes.
  • Step 5 The access layer of the terminal device uses uplink dynamic scheduling resources to transmit the current burst.
  • the terminal device monitors the PDCCH to obtain DCI during the monitoring timing of the uplink dynamic scheduling resources, and obtains the time-frequency domain position of the first resource in the uplink dynamic scheduling resources and the amount of data that the first resource can carry is 600 Bytes through the DCI. Then, the MAC layer in the access layer of the terminal device will form the data packet 1 and part of the data packet 2 into the first TB, the data volume of the first TB is 300 Bytes, and use the first resource to transmit the first TB.
  • the terminal device Since the terminal device knows that the data volume that the first resource can carry is 600Bytes, and the data volume of the first TB is 300Bytes, the terminal device can carry a BSR in the first TB, and the BST is used to request the network device to reclaim the 300Bytes resource.
  • the network device after receiving the BSR, the network device adjusts the uplink dynamic scheduling resource, and configures the amount of data that can be carried by the second resource of the uplink dynamic scheduling resource worker as 300 Bytes.
  • the access layer of the terminal device does not know the data volume of the current uplink data
  • the access layer of the terminal device when the access layer of the terminal device is transmitting the first TB composed of the current uplink data to the network device, the access layer of the terminal device does not know the data volume of the current uplink data, which can be realized in the following way:
  • the access layer of the terminal device When transmitting a TB (the TB may be the first TB or any TB), the access layer of the terminal device has not received all the data packets of the current uplink data, that is, some data packets of the current uplink data arrive at the access layer of the terminal device, and the header of each data packet in the part of the data packets does not carry information indicating the data volume of the current uplink data. At this time, the access layer of the terminal device cannot know the data volume of the current uplink data.
  • the access layer of the terminal device knows the amount of data that the uplink resource configured by the network device for the current uplink data can carry
  • the access layer of the terminal device can know it by receiving the resource configuration information.
  • the terminal device may not generate a BSR. Until the access layer of the terminal device knows the data volume of the current uplink data, the content in the above "case 1" is used for implementation, and details are not repeated here.
  • the access layer of the terminal device does not yet know the data volume of the current uplink data, so the terminal device does not generate a BSR, that is, the current secondary TB does not carry a BSR.
  • the access layer of the terminal device When the next TB is transmitted, the access layer of the terminal device already knows the data volume of the current uplink data, so the terminal device determines whether to generate a BSR according to the data volume that the uplink resource can carry and the data volume of the uplink data. At this time, if a BSR is generated, the next TB carries a BSR; if a BSR is not generated, the next TB does not carry a BSR.
  • the access layer of the terminal device knows the data volume of the current uplink data
  • the access layer of the terminal device does not know the amount of data that the uplink resource configured by the network device for the current uplink data can carry
  • step 2 it can be known that the access layer of the terminal device cannot know the resource configuration information because the data volume that the uplink resources can carry is not included.
  • the terminal device can generate a BSR according to the data volume that the uplink resource can carry, and carry the BSR in the transmitted TB (the TB can be the first TB, or any TB) and report it to the network device.
  • the BSR may be used to indicate (report) the data volume of the current uplink data, or the BSR may be used to indicate (report) the untransmitted (remaining to be transmitted) data volume of the current uplink data at the time when the BSR is sent.
  • the BSR can carry information, and the information can be used to indicate the data volume of the current uplink data or the untransmitted (remaining to be transmitted) data volume of the current uplink data at the time when the BSR is sent.
  • the MAC layer in the access layer of the terminal device composes the data packets in the uplink data to generate a TB, and the untransmitted data volume in the uplink data after the generation of the TB is 300 Bytes. Then, the terminal device generates a BSR, the information carried by the BSR indicates that the data volume of the uplink data is 700 Bytes or the untransmitted data volume of the uplink data is 300 Bytes, and carries the BSR in the TB to report to the network equipment.
  • an index value of n bits (n is a positive integer) can be used to encode.
  • the index value can be used to indicate the data volume range of the data volume of the uplink data or the data volume range of the untransmitted data volume in the uplink data at the time of sending the BSR.
  • the use of the n-bit index value can reduce the number of bits carried by the BSR, thereby reducing the number of bits transmitted over the air interface.
  • an index value of 0 indicates that there is no data volume; an index value of 1 indicates that the data volume range is (0,10); an index value of 2 indicates that the data volume range is (10,20); an index value of 3 indicates that the data volume range is (20,30), and so on.
  • the network device can receive the BSR from the terminal device, and adjust the configuration of the uplink resource according to the BSR and the amount of data that the uplink resource can carry.
  • adjusting the configuration of the uplink resources includes one of the following: increasing resources in the uplink resources (for example, reconfiguring some resources), reducing resources in the uplink resources (for example, recovering some resources in the uplink resources).
  • the network device determines whether the uplink resource can bear the amount of uplink data according to the amount of uplink data and the amount of data that can be carried by the uplink resource.
  • the network device may reduce the resources in the uplink resources or not increase or decrease the resources in the uplink resources.
  • the network device may increase resources in the uplink resource.
  • the network device can The data volume of the uplink data is determined by the data volume and the received data volume of the uplink data. Therefore, the network device may determine whether the uplink resource can fully carry the data amount of the uplink data according to the data amount of the uplink data and the data amount that the uplink resource can carry.
  • the network device may reduce the resources in the uplink resources or not increase or decrease the resources in the uplink resources.
  • the network device may increase resources in the uplink resource.
  • the access layer of the terminal device does not know the data volume of the current uplink data
  • the access layer of the terminal device does not know the amount of data that the uplink resource configured by the network device for the current uplink data can carry
  • step 2 it can be known that the access layer of the terminal device cannot know the resource configuration information because the data volume that the uplink resources can carry is not included.
  • the terminal device may not generate a BSR. Until the access layer of the terminal device knows the data volume of the current uplink data, the content in the above "case 3" is used for implementation, and details are not repeated here.
  • the access layer of the terminal device does not yet know the data volume of the current uplink data, so the terminal device does not generate a BSR, that is, the current secondary TB does not carry a BSR.
  • the access layer of the terminal device When the next TB is transmitted, the access layer of the terminal device already knows the data volume of the current uplink data, so the terminal device generates a BSR according to the data volume of the uplink data. At this time, if a BSR is generated, the next TB carries a BSR; if a BSR is not generated, the next TB does not carry a BSR.
  • the uplink data is data of different (multiple) services
  • the uplink resources configured by the network device are used to bear the data of the first service in the different (multiple) services
  • the first service may be a service with high transmission priority, that is, the transmission priority of the first service is higher than that of other services except the first service (other services may also be called second services).
  • the uplink data may include the data of the first service and the data of the second service, the data transmission priority of the first service is higher than the data transmission priority of the second service, and the uplink resources may be used to bear the data of the first service.
  • first business and second business are mainly for the convenience of distinction, and other terms can also be used to describe them, as long as they have the same meaning/interpretation/function, they are all within the scope of protection claimed in this application.
  • the terminal device may or may not generate a BSR.
  • the BSR may be used to indicate the difference between the amount of data that can be carried by uplink resources and the amount of uplink data (similar to the above-mentioned "case 1" or "case 2"), may be used to indicate the data volume of the current first service data (similar to the above-mentioned "case 3” or “case 4"), and may be used to indicate the amount of data not transmitted in the data of the current first service at the time when the BSR is sent (similar to the above-mentioned "case 3" or "case 4").
  • the cache (buffer) of the terminal device will first store the data of the second service to wait for transmission, but the buffer stores the data for a certain period of time. If this time is exceeded (timeout), the buffer will discard the stored data, resulting in data loss.
  • the BSR in "case 2" can also be used to indicate the amount of data of the second service that needs to be scheduled.
  • the BSR is also used to indicate the amount of data of the second service to be scheduled, so that the network device can allocate resources for the transmission of the second service and avoid packet loss of the data of the second service.
  • the network device can receive the BSR from the terminal device. At this time, similar to the above "case 1", the network device can adjust the configuration of uplink resources according to the BSR.
  • the network device can configure (schedule) resources for carrying the data of the second service according to the BSR.
  • the network device may add (multi-configure) resources for carrying data of the second service when configuring uplink resources for the first service, or additionally configure resources for carrying data of the second service in addition to configuring uplink resources for the first service.
  • the network device may configure resources for carrying the data of the second service according to the BSR, and the resources configured for transmitting the data of the second service may include one of the following items: adding resources for carrying the data of the second service when configuring uplink resources for the first service, and additionally configuring resources for carrying data of the second service in addition to configuring uplink resources for the first service.
  • the network device can instruct the terminal device not to enter the sleep state after transmitting the last TB of the first service to monitor the PDCCH by sending high-level signaling (such as RRC signaling, MAC CE or DCI signaling, etc.) to the terminal device, so as to obtain resources for carrying data of the second service.
  • high-level signaling such as RRC signaling, MAC CE or DCI signaling, etc.
  • the network device may instruct the terminal device not to enter the sleep state to monitor the PDCCH after transmitting the last TB of the first service through the frequency domain position (sub-band (such as RB or RE, etc.)) or the time domain position of the last resource configured for the first service, so as to obtain resources for carrying data of the second service. or,
  • the network device may instruct the terminal device not to enter the sleep state to monitor the PDCCH after transmitting the last TB of the first service by scheduling the frequency domain position or the time domain position of the DCI of the last resource in the uplink resources for the first service, so as to obtain resources for carrying data of the second service.
  • configuring (scheduling) resources for transmitting the data of the second service through the report of the BSR is beneficial to avoid packet loss caused by the data of the second service always being unable to obtain transmission resources.
  • the network device before the data of the current first service reaches the access layer of the terminal device at time A, the network device only configures the terminal device with an uplink resource for carrying the data of the first service, the uplink resource can carry a data volume of 1200 Bytes, and the data volume of the current first service is 1500 Bytes.
  • the buffer of the terminal device also buffers the data of the current second service, but has no uplink resources to transmit the data of the current second service. If the terminal device finds that the data of the current second service will time out at time B before the next data transmission of the first service, the terminal device carries a BSR in the first TB that transmits the current first service.
  • the BSR is used to indicate the difference between the amount of data that can be carried by uplink resources and the data amount of the current first service, and is also used for the data amount of the current second service that needs to be scheduled.
  • the network device may use the above-mentioned implicit or explicit method to instruct the terminal device not to enter the sleep state before receiving the last TB of the current first service, continue to monitor the PDCCH, and obtain resources for carrying the data of the current second service.
  • the terminal device obtains the DCI by continuing to monitor the PDCCH, and obtains the resource used to carry the data of the current second service through the DCI. source, and use this resource to transmit the data of the current secondary service.
  • Step 4 Transmit Uplink Data
  • step 2 it can be seen that before or after (preferably before) the current uplink data reaches the access layer of the terminal device, the terminal device obtains the uplink resource used to carry the current uplink data, and uses the uplink resource to transmit the current uplink data.
  • the terminal device may have the following implementation methods in the process of transmitting uplink data:
  • the terminal device may enter a sleep state to save energy consumption.
  • the terminal device can perform transmission optimization. If the amount of data that can be carried by the uplink resources is greater than the amount of data in the current uplink data, the terminal device can repeatedly transmit important data packets in as many TBs as possible.
  • the application in the application layer of the terminal device generates the current uplink data, specifically as follows:
  • the current uplink data includes 4 data packets, namely data packet A, data packet B, data packet C, and data packet D;
  • the importance of the data packet B is higher than that of other data packets, that is, the data packet B is an important data packet.
  • the data volume of the current uplink data is 1000Bytes
  • the data volume of data package A is 300Bytes
  • the data volume of data package B is 200Bytes
  • the data volume of data package C is 400Bytes
  • the data volume of data package D is 100Bytes.
  • the uplink resource configured by the network device for the current uplink data is as follows:
  • the amount of data that can be carried by uplink resources is 1200Bytes
  • - Uplink resources include 2 resources, the first resource can carry 500Bytes of data, and the second resource can carry 700Bytes of data.
  • the terminal device Since the access layer of the terminal device knows the data volume of the current uplink data and the data volume that can be carried by the uplink resource configured by the network device for the current uplink data, the terminal device can transmit the data packet B twice, that is, the transmission block 1 carried by the first resource includes data packet A and data packet B, and the transmission block 2 carried by the second resource also includes data packet B.
  • the terminal device can perform transmission optimization. If the amount of data that can be carried by the uplink resources is less than the amount of data in the current uplink data, the terminal device may transmit important data packets first, or may transmit data packets out of order.
  • the application in the application layer of the terminal device generates the current uplink data, specifically as follows:
  • the current uplink data includes 4 data packets, namely data packet A, data packet B, data packet C, and data packet D;
  • the importance of the data packet B is higher than that of other data packets, that is, the data packet B is an important data packet.
  • the data volume of the current uplink data is 700Bytes
  • the data volume of data package A is 200Bytes
  • the data volume of data package B is 200Bytes
  • the data volume of data package C is 200Bytes
  • the data volume of data package D is 100Bytes.
  • the uplink resource configured by the network device for the current uplink data is as follows:
  • the amount of data that can be carried by the uplink resources is 500Bytes;
  • Uplink resources include 2 resources, the first resource can carry 200Bytes of data, and the second resource can carry 300Bytes of data.
  • the terminal device may use the first resource to transmit the data packet B first. Since the second resource is sufficient to transmit the remaining data packet A, data packet B, or data packet C, and when data packet A, data packet B, or data packet C form a TB, if the data packet A is already placed, if the data packet C is to be added, the data packet C needs to be segmented, and if the data packet D is to be added, the data packet D does not need to be segmented, so the data packet A and the data packet D can be formed into a TB, and the second resource can be used to transmit the TB.
  • Step 1 Send the first message
  • Step 2 Configure uplink resources
  • the network device can configure the terminal device with the amount of data that can be carried by the uplink resource and the number of resources in the uplink resource.
  • step 2 in addition to configuring the amount of data that can be carried by the uplink resource and the number of resources in the uplink resource to the terminal device, the network device also needs to configure the amount of data that can be carried by each resource in the uplink resource to the terminal device.
  • step 2 the uplink scheduling-free mechanism needs to notify the amount of data that the uplink resource can carry and the time-frequency domain position of the uplink resource at the same time, while “step 2" of "(3) Another specific process of resource allocation mode” has the following differences:
  • the network device obtains the time when the uplink data arrives at the access layer of the terminal device through the first information. Then, before the uplink data arrives at the access layer of the terminal device, the network device only needs to first notify the terminal device of the amount of data that can be carried by each resource in the uplink resources. Next, after the time when the uplink data arrives at the access layer of the terminal device, the network device reconfigures the time-frequency domain position of each resource in the uplink resource to notify the terminal device.
  • the resource configuration information includes: the following information sent before the time when the uplink data arrives at the access layer of the terminal device: the resource quantity of the uplink resource, the amount of data that each resource in the uplink resource can carry; the following information sent after the time when the uplink data arrives at the access layer of the terminal device: the time-frequency domain position of each resource in the uplink resource.
  • the terminal device Before the uplink data arrives at the access layer of the terminal device, although the terminal device does not know the time-frequency domain position of the uplink resource, it knows the amount of data that can be carried by each resource in the uplink resource. Therefore, the terminal device can determine in advance whether to generate a BSR, the information content carried by the BSR, etc. according to the amount of data that can be carried by the uplink resource and the amount of uplink data.
  • the dynamic scheduling mechanism will not configure in advance the amount of data that can be carried by each resource in the uplink resource, but this "step 2" can configure in advance the amount of data that can be carried by each resource in the uplink resource, so that the terminal device can determine in advance whether to generate a BSR and the information content carried by the BSR according to the amount of data that can be carried by the uplink resource and the amount of uplink data.
  • Step 3 A specific flow of a resource configuration method
  • the network device when a terminal device requests to adjust the configuration of uplink resources, the network device "agree" to the request by default.
  • the network device may "agree”, “partially agree” or “deny” the request for the terminal device to adjust the configuration of uplink resources.
  • Agree can be understood as that the network device can adjust the configuration of uplink resources to meet the request of the terminal device, that is, agree to the request of the terminal device.
  • the network device may determine whether to agree to the request of the terminal device according to the change of the air interface condition.
  • the air interface becomes better, it means that the same wireless resource can transmit more data, and the network device can agree to reduce the resource in the uplink resource; on the contrary, if the air interface becomes worse, it means that the same wireless resource can transmit less data, and the network device can agree to increase the resource in the uplink resource.
  • the network device may refuse to re-allocate resources among the uplink resources allocated to the current terminal device.
  • the network device may agree to reallocate resources in the uplink resources to the current terminal device.
  • the network device needs to determine whether to agree to the request of the terminal device according to the change of the air interface condition, the adequacy of resources, or the resources required by other terminal devices. If resources are sufficient, agree; if other terminal devices require less resources but have excess resources, agree.
  • the terminal device can request the network device to increase the resources in the uplink resource by 300 Bytes through the BSR. If there are sufficient remaining resources that can be allocated to the terminal device, or there are a small number of other terminal devices that urgently need to allocate resources, the network device can agree to the request of the terminal device to increase the resources used to carry 300Bytes to meet the needs of the terminal device to transmit uplink data.
  • Partial agreement can be understood as that the network device adjusts the configuration of uplink resources to partially meet the request of the terminal device, that is, partially agrees to the request of the terminal device.
  • the network device needs to determine whether to partially agree to the request of the terminal device according to the change of the air interface condition, the adequacy of resources, or the resources required by other terminal devices.
  • the terminal device can request the network device to increase the resources in the uplink resource by 300 Bytes through the BSR. If currently only If there is a small amount of remaining resources that can be allocated to terminal devices, or there are a large number of other terminal devices that urgently need to allocate resources, the network device can partially agree to the request of the terminal device to increase the resources used to carry up to 100 Bytes to partially meet the needs of the terminal device for uplink data transmission.
  • Rejection can be understood as that the network device does not adjust the configuration of the uplink resources so as to reject the request of the terminal device.
  • the network device needs to determine whether to reject the request of the terminal device according to the change of the air interface condition, the adequacy of resources, or the resources required by other terminal devices.
  • the terminal device can request the network device to increase the resources in the uplink resource by 300 Bytes through the BSR. If there is currently no remaining resource that can be allocated to the terminal device, or there are a large number of other terminal devices that urgently need to allocate resources, the network device may reject the request of the terminal device so as not to adjust the configured resources.
  • the network device may or may not perform adjustments to the configuration of uplink resources, the network device may feed back to the terminal device: "agree”, “partially agree” or “deny” to adjust the configuration of uplink resources, so that the terminal device can perform transmission optimization.
  • the network device may send resource adjustment request information to the terminal device, and the resource adjustment request information may be used to indicate approval, partial approval, or rejection of the uplink resource adjustment request, so as to notify the terminal device of the decision of the network device, and then the terminal device may perform transmission optimization.
  • resource adjustment request information can also be described by other terms, as long as they have the same meaning/function/interpretation, they are all within the scope of protection required by this application.
  • the terminal device sends a BSR to the network device, where the BSR can be used to indicate the difference between the amount of data that can be carried by the uplink resource and the amount of uplink data, and request to adjust the uplink data.
  • the network device may come from the BSR of the terminal device, and may send resource adjustment request information according to the BSR, where the resource adjustment request information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • adjusting the configuration of the uplink resources includes one of the following: increasing resources in the uplink resources (for example, reconfiguring some resources), reducing resources in the uplink resources (for example, recovering some resources in the uplink resources).
  • the terminal device may not generate a BSR. Until the access layer of the terminal device knows the data volume of the current uplink data, the content in the above "case 1" is used for implementation, and details are not repeated here.
  • the terminal device sends a BSR to the network device, and the BSR can be used to indicate the data volume of the current uplink data or the untransmitted data volume of the current uplink data at the moment when the BSR is sent, and request to adjust the uplink data.
  • the network device Since the network device knows the amount of data that can be carried by the uplink resources configured by itself and the amount of data received in the uplink data, the network device can receive the BSR from the terminal device, and send resource adjustment request information according to the BSR and the amount of data that the uplink resources can carry.
  • the resource adjustment request information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the terminal device may not generate a BSR. Until the access layer of the terminal device knows the data volume of the current uplink data, the content in the above "case 3" is used for implementation, and details are not repeated here.
  • Step 4 Transmit Uplink Data
  • the terminal device after receiving the resource adjustment request information, the terminal device may have the following implementation methods in the process of transmitting uplink data:
  • the terminal device may enter a sleep state to save energy consumption.
  • the terminal device requests to reduce the resources in the uplink resources, and the resource adjustment request information indicates that the adjustment request of the uplink resources is rejected, then in as many TBs as possible, the final End devices can repeatedly transmit important packets. Specifically, it is similar to the description in "Step 4" of "(2) A specific flow of a resource allocation method", as shown in FIG. 12 , which will not be repeated here.
  • the terminal device can transmit important data packets first, or can transmit data packets out of sequence. Specifically, it is similar to the description in "Step 4" of "(2) A specific flow of a resource allocation method", and details will not be repeated here.
  • the interaction between a network device and a terminal device is taken as an example below to illustrate a resource configuration method in the embodiment of the present application.
  • the network equipment can also be regarded as a chip/chip module/device/processor, etc.
  • the terminal equipment can also be regarded as a chip/chip module/device/processor, etc., and there is no specific limitation on this.
  • FIG. 13 it is a schematic flowchart of a resource allocation method in the embodiment of the present application, which specifically includes the following steps:
  • the terminal device sends first information, where the first information is used to indicate a data distribution feature of uplink data.
  • the network device receives the first information.
  • the network device sends resource configuration information according to the data distribution characteristics of the uplink data, where the resource configuration information is used to indicate uplink resources.
  • the terminal device receives the resource configuration information.
  • the resource configuration information is determined by the data distribution characteristics of the uplink data.
  • the embodiment of the present application can indicate (configure/allocate/schedule, etc.) the uplink resources used to carry the uplink data according to the data distribution characteristics of the uplink data, so that the indicated uplink resources can satisfy the transmission of the uplink data, and avoid redundant or insufficient configured uplink resources when transmitting uplink data, thereby improving resource utilization and ensuring reliability of uplink data transmission.
  • the data distribution characteristics of the uplink data include at least one of the following:
  • the period of uplink data The period of uplink data, the average data volume of uplink data, the data volume range of uplink data, the position distribution of important data packets in uplink data, the data volume of important data packets in uplink data, the time when uplink data reaches the access layer of terminal equipment, and the jitter range of the time when uplink data arrives at the access layer of terminal equipment.
  • the important data packet is located in the Xth data packet in the uplink data
  • the uplink data includes multiple data packets, and the Xth data packet in the multiple data packets is an important data packet.
  • -Important data packets are located in the X to Yth data packets in the uplink data
  • the uplink data includes multiple data packets, and the Xth to Yth data packets in the multiple data packets are important data packets.
  • the data volume of important data packets is located in the M to N Bytes of the uplink data
  • the data volume of the uplink data includes a plurality of Bytes, and the Mth Bytes to the Nth Bytes of the multiple Bytes are the data volumes of important data packets.
  • the data distribution characteristics of the uplink data are defined by the period of the uplink data, the average data volume of the uplink data, and the like.
  • the resource configuration information is used to indicate uplink resources, including: the resource configuration information is used to indicate uplink scheduling-free resources.
  • uplink resources may be configured in a semi-persistent scheduling or scheduling-free manner, that is, uplink scheduling-free resources (or uplink static scheduling resources).
  • the resource configuration information includes at least one of the following:
  • the embodiment of the present application can determine information such as the period of the uplink scheduling-free resources and the time-frequency domain position of the uplink scheduling-free resources according to the data distribution characteristics of the uplink data, so as to realize the configuration of the uplink scheduling-free resources.
  • the resource configuration information is used to indicate uplink resources, including: the resource configuration information is used to indicate uplink dynamic scheduling resources.
  • uplink resources may be configured in a dynamic scheduling manner, that is, uplink dynamic scheduling resources.
  • the resource configuration information includes at least one of the following: monitoring timing of uplink dynamic scheduling resources, scheduling times of uplink dynamic scheduling resources, resource quantity of uplink dynamic scheduling resources, and data volume that can be carried by uplink dynamic scheduling resources.
  • information such as the monitoring timing of the uplink dynamic scheduling resources, the scheduling times of the uplink dynamic scheduling resources and the like can be determined according to the data distribution characteristics of the uplink data, so as to configure the uplink dynamic scheduling resources.
  • the method also includes the following steps:
  • the terminal device If the access layer of the terminal device knows the amount of uplink data and the amount of data that can be carried by the uplink resource, the terminal device sends second information, where the second information is used to indicate the difference between the amount of data that the uplink resource can carry and the amount of uplink data.
  • the network device receives the second information, and adjusts the configuration of the uplink resource according to the difference between the amount of data carried by the uplink resource and the amount of uplink data.
  • the second information may be the BSR or other MAC CEs except the BSR.
  • the second information can be used to inform the network device of the difference between the amount of data carried by the uplink resource and the data amount of the uplink data, so that the network device can adjust the configuration of the uplink resource, thereby improving resource utilization and ensuring the stability of uplink data transmission.
  • the method also includes the following steps:
  • the terminal device waits until the access layer of the terminal device knows the amount of uplink data before sending the second information; the second information is used to indicate the difference between the amount of data that can be carried by the uplink resources and the amount of uplink data.
  • the network device receives the second information, and adjusts the configuration of the uplink resource according to the difference between the amount of data carried by the uplink resource and the amount of uplink data.
  • the second information can be used to inform the network device of the difference between the amount of data carried by the uplink resource and the data amount of the uplink data, so that the network device can adjust the configuration of the uplink resource, thereby improving resource utilization and ensuring the stability of uplink data transmission.
  • the configuration of the uplink resource is adjusted according to the difference between the amount of data carried by the uplink resource and the amount of uplink data, including:
  • the network device sends resource adjustment information, where the resource adjustment information is used to indicate to reduce resources in the uplink resources.
  • the terminal device receives the resource adjustment information.
  • the resources in the uplink resources can be reduced according to the difference between the amount of data carried by the uplink resources and the amount of uplink data, which is beneficial to improve resource utilization.
  • the resource adjustment information is used to indicate at least one of the following:
  • K is a positive integer
  • S is a positive integer
  • the resource adjustment information can be used to instruct to reclaim the Kth resource in the uplink resources and/or reduce the amount of data that can be carried by the Sth resource in the uplink resources, so as to reduce the resources in the uplink resources.
  • the method also includes the following steps:
  • the network device sends resource adjustment request feedback information, and the resource adjustment request feedback information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the terminal device receives the resource adjustment request feedback information.
  • the terminal device in the embodiment of the present application can request to adjust the uplink resources, and the network device can send feedback information to the resource adjustment request, so as to notify the terminal device of the decision on the request, and the terminal device can perform transmission optimization according to the decision, so as to improve the stability of uplink data transmission.
  • the method also includes the following steps:
  • the terminal equipment sends third information; the third information is used to indicate the data volume of the uplink data; or, the third information is used to indicate the untransmitted data volume in the uplink data at the time when the third information is sent.
  • the network device receives the third information, and adjusts the configuration of the uplink resource according to the third information and the amount of data that the uplink resource can carry.
  • the third information may be the BSR or other MAC CEs except the BSR.
  • the third information can be used to inform the network device of the amount of uplink data or the amount of untransmitted data in the uplink data at the time when the third information is sent, so that the network device can adjust the configuration of uplink resources, thereby improving resource utilization and ensuring the stability of uplink data transmission.
  • the method also includes the following steps:
  • the access layer of the terminal device If the access layer of the terminal device does not know the amount of uplink data and the amount of data that the uplink resources can carry, it waits until After the access layer of the terminal device knows the amount of uplink data, the terminal device sends third information to the network device; the third information is used to indicate the amount of uplink data; or, the third information is used to indicate the amount of data not transmitted in the uplink data at the moment when the third information is sent.
  • the network device receives the third information, and adjusts the configuration of the uplink resource according to the third information and the amount of data that the uplink resource can carry.
  • the third information can be used to inform the network device of the amount of uplink data or the amount of untransmitted data in the uplink data at the time when the third information is sent, so that the network device can adjust the configuration of uplink resources, thereby improving resource utilization and ensuring the stability of uplink data transmission.
  • the method also includes the following steps:
  • the network device sends resource adjustment request feedback information, and the resource adjustment request feedback information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the terminal device receives the resource adjustment request feedback information.
  • the terminal device in the embodiment of the present application can request to adjust the uplink resources, and the network device can send feedback information to the resource adjustment request, so as to notify the terminal device of the decision on the request, and the terminal device can perform transmission optimization according to the decision, so as to improve the stability of uplink data transmission.
  • the uplink data includes data of the first service and data of the second service
  • the data transmission priority of the first service is higher than that of the second service
  • the uplink resources are used to bear the data of the first service.
  • the uplink data in the embodiment of the present application may be data of different (multiple) services, and the data of the various services may have priorities, and the terminal device may need to transmit the data of the various services sequentially according to the priorities.
  • the method also includes the following steps:
  • the terminal device sends fourth information; the fourth information is used to indicate the difference between the amount of data that can be carried by the uplink resource and the data amount of the first service; or, the fourth information is used to indicate the data amount of the data of the first service; or, the fourth information is used to indicate the amount of data not transmitted in the data of the first service at the moment when the fourth information is sent.
  • the network device receives the fourth information.
  • the fourth information may be the BSR or other MAC CEs other than the BSR.
  • the embodiment of the present application can use the fourth information to inform the network device of the difference between the amount of data that can be carried by the uplink resource and the data amount of the first service, the data amount of the data of the first service, or the amount of data not transmitted in the data of the first service at the time when the fourth information is sent, so that the network device can adjust the configuration of the uplink resources, thereby improving resource utilization and ensuring the stability of uplink data transmission.
  • the fourth information is also used to indicate the amount of data of the second service to be scheduled.
  • the fourth information can be used to inform the network device of the data volume of the second service, so that the network device can schedule the data resources of the second service for the terminal device, ensure the transmission of the data of the second service, and avoid packet loss.
  • the method also includes the following steps:
  • resources for carrying data of the second service are added, and resources for carrying data of the second service are additionally configured in addition to uplink resources for the first service.
  • the fourth information can be used to schedule data resources of the second service for the terminal device, so as to ensure the transmission of the data of the second service and avoid packet loss.
  • additionally configuring resources for carrying data of the second service includes:
  • resources for carrying data of the second service may be additionally configured in various ways.
  • resource configuration information includes:
  • resource quantity of uplink resources uplink resources
  • uplink resources The amount of data that each resource can carry
  • the following information sent after the uplink data arrives at the access layer of the terminal device the time-frequency domain position of each resource in the uplink resource.
  • information may be issued at different timings to configure uplink resources, which is beneficial to improve the flexibility of uplink resource configuration.
  • the terminal device or network device includes corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may implement the described functionality using different methods for each particular application, but such implementation should not be considered as exceeding the scope of the present application.
  • the terminal device or the network device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented not only in the form of hardware, but also in the form of software program modules. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • FIG. 14 is a block diagram of functional units of a resource configuration device according to an embodiment of the present application.
  • the resource configuration apparatus 1400 includes: a receiving unit 1401 and a sending unit 1402 .
  • the receiving unit 1401 may be a modular unit for processing signals, data, information, etc., which is not specifically limited.
  • the sending unit 1402 may be a modular unit for processing signals, data, information, etc., which is not specifically limited.
  • the receiving unit 1401 and the sending unit 1402 may be integrated into one unit, or separated into two units.
  • the receiving unit 1401 and the sending unit 1402 may be integrated into a communication unit, which may be a communication interface, a transceiver, a transceiver circuit, and the like.
  • the receiving unit 1401 and the sending unit 1402 can be integrated in a processing unit, and the processing unit can be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) ) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processing unit may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the resource configuration apparatus 1400 may further include a storage unit for storing computer program codes or instructions executed by the resource configuration apparatus 1400 .
  • the storage unit may be a memory.
  • the resource configuration device 1400 may be a chip or a chip module.
  • the receiving unit 1401 and the sending unit 1402 are configured to perform any step in the foregoing method embodiments. Detailed description will be given below.
  • the receiving unit 1401 is configured to receive first information, the first being used to indicate the data distribution characteristics of the uplink data;
  • the sending unit 1402 is configured to send resource configuration information according to the data distribution characteristics of the uplink data, where the resource configuration information is used to indicate uplink resources.
  • the embodiment of the present application can indicate (configure/allocate/schedule, etc.) the uplink resources used to carry the uplink data according to the data distribution characteristics of the uplink data, so that the indicated uplink resources can satisfy the transmission of the uplink data, and avoid redundant or insufficient configured uplink resources when transmitting uplink data, thereby improving resource utilization and ensuring reliability of uplink data transmission.
  • the receiving unit 1401 is configured to:
  • the data distribution characteristics of the uplink data include at least one of the following:
  • the period of uplink data The period of uplink data, the average data volume of uplink data, the data volume range of uplink data, the position distribution of important data packets in uplink data, the data volume of important data packets in uplink data, the time when uplink data reaches the access layer of terminal equipment, and the jitter range of the time when uplink data arrives at the access layer of terminal equipment.
  • resource configuration information is used to indicate uplink resources, including: resource configuration information is used to indicate uplink scheduling-free resource.
  • the resource configuration information includes at least one of the following:
  • the resource configuration information is used to indicate uplink resources, including: the resource configuration information is used to indicate uplink dynamic scheduling resources.
  • the resource configuration information includes at least one of the following:
  • the monitoring timing of the uplink dynamic scheduling resources the scheduling times of the uplink dynamic scheduling resources, the resource quantity of the uplink dynamic scheduling resources, and the amount of data that the uplink dynamic scheduling resources can carry.
  • the resource configuration apparatus 1400 further includes an adjustment unit,
  • the receiving unit 1401 is further configured to receive second information, where the second information is used to indicate the difference between the amount of data that can be carried by uplink resources and the amount of uplink data;
  • the adjustment unit is configured to adjust the configuration of the uplink resource according to the difference between the amount of data carried by the uplink resource and the amount of uplink data.
  • the adjustment unit may be integrated in the processing unit.
  • the adjustment unit in terms of adjusting the configuration of the uplink resource according to the difference between the amount of data carried by the uplink resource and the amount of uplink data, is configured to:
  • the sending unit 1402 sends resource adjustment information, where the resource adjustment information is used to indicate to reduce resources in the uplink resources.
  • the resource adjustment information is used to indicate at least one of the following: reclaiming the Kth resource in the uplink resources, reducing the amount of data that can be carried by the Sth resource in the uplink resources, K is a positive integer, and S is a positive integer.
  • the sending unit 1402 is also configured to:
  • the second information is also used to request adjustment of uplink resources, then send resource adjustment request feedback information, where the resource adjustment request feedback information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the resource configuration apparatus 1400 further includes an adjustment unit,
  • the receiving unit 1401 is also used to receive third information, where the third information is used to indicate the amount of uplink data; or, the third information is used to indicate the amount of data not transmitted in the uplink data at the time when the third information is sent;
  • the adjusting unit is configured to adjust the configuration of the uplink resource according to the third information and the amount of data that the uplink resource can carry.
  • the sending unit 1402 is also configured to:
  • the uplink data includes data of the first service and data of the second service
  • the data transmission priority of the first service is higher than that of the second service
  • the uplink resources are used to bear the data of the first service.
  • the receiving unit 1401 is also used to:
  • the fourth information is received; the fourth information is used to indicate the difference between the amount of data that can be carried by the uplink resource and the data amount of the first service; or, the fourth information is used to indicate the data amount of the data of the first service; or, the fourth information is used to indicate the amount of data not transmitted in the data of the first service at the moment when the fourth information is sent.
  • the fourth information is also used to indicate the amount of data of the second service to be scheduled.
  • the resource configuration apparatus 1400 further includes a configuration unit
  • the configuring unit is configured to configure resources for carrying data of the second service according to the fourth information, and configuring the resources for transmitting data of the second service includes one of the following:
  • resources for carrying data of the second service are added, and resources for carrying data of the second service are additionally configured in addition to uplink resources for the first service.
  • configuration unit may be integrated in the processing unit.
  • additionally configuring resources for carrying data of the second service includes:
  • the resource configuration information includes: the following information sent before the time when the uplink data arrives at the access layer of the terminal device: the resource quantity of the uplink resource, the amount of data that each resource in the uplink resource can carry; the following information sent after the time when the uplink data arrives at the access layer of the terminal device: the time-frequency domain position of each resource in the uplink resource.
  • FIG. 15 is a block diagram of functional units of another resource configuration device according to an embodiment of the present application.
  • the resource configuration apparatus 1500 includes: a sending unit 1501 and a receiving unit 1502 .
  • the sending unit 1501 may be a modular unit for processing signals, data, information, etc., and there is no specific limitation on this.
  • the receiving unit 1502 may be a modular unit for processing signals, data, information, etc., and there is no specific limitation on this.
  • the sending unit 1501 and the receiving unit 1502 may be integrated into one unit, or separated into two units.
  • the sending unit 1501 and the receiving unit 1502 may be integrated into a communication unit, which may be a communication interface, a transceiver, a transceiver circuit, and the like.
  • the sending unit 1501 and the receiving unit 1502 may be integrated in a processing unit, and the processing unit may be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) ) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processing unit may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the resource configuration apparatus 1500 may further include a storage unit for storing computer program codes or instructions executed by the resource configuration apparatus 1500 .
  • the storage unit may be a memory.
  • the resource configuration device 1500 may be a chip or a chip module.
  • the sending unit 1501 and the receiving unit 1502 are configured to perform any step in the foregoing method embodiments. Detailed description will be given below.
  • a sending unit 1501 configured to send first information, where the first information is used to indicate data distribution characteristics of uplink data;
  • the receiving unit 1502 is configured to receive resource configuration information, the resource configuration information is used to indicate uplink resources, and the resource configuration information is determined by data distribution characteristics of uplink data.
  • the embodiment of the present application can indicate (configure/allocate/schedule, etc.) the uplink resources used to carry the uplink data according to the data distribution characteristics of the uplink data, so that the indicated uplink resources can satisfy the transmission of the uplink data, and avoid redundant or insufficient configured uplink resources when transmitting uplink data, thereby improving resource utilization and ensuring reliability of uplink data transmission.
  • the data distribution characteristics of the uplink data include at least one of the following:
  • the cycle of uplink data the average data volume of uplink data, the data volume range of uplink data, the location of important data packets in uplink data, the data volume of important data packets in uplink data, the time when uplink data reaches the access layer of terminal equipment, and the jitter range of the time when uplink data arrives at the access layer of terminal equipment.
  • the resource configuration information is used to indicate uplink resources, including: the resource configuration information is used to indicate uplink scheduling-free resources.
  • the resource configuration information includes at least one of the following:
  • the resource configuration information is used to indicate uplink resources, including: the resource configuration information is used to indicate uplink dynamic scheduling resources.
  • the resource configuration information includes at least one of the following:
  • the monitoring timing of the uplink dynamic scheduling resources the scheduling times of the uplink dynamic scheduling resources, the resource quantity of the uplink dynamic scheduling resources, and the amount of data that the uplink dynamic scheduling resources can carry.
  • the sending unit 1501 is further configured to: if the access layer of the terminal device knows the amount of uplink data and the amount of data that can be carried by the uplink resource, then send the second information; the second information is used to indicate the difference between the amount of data that the uplink resource can carry and the amount of uplink data.
  • the sending unit 1501 is also used to:
  • the second information is sent after the access layer of the terminal device knows the amount of uplink data; the second information is used to indicate the difference between the amount of data that can be carried by the uplink resources and the amount of uplink data.
  • the receiving unit 1502 is also configured to:
  • resource adjustment information is received, and the resource adjustment information is used to indicate to reduce resources in the uplink resource.
  • the resource adjustment information is used to indicate at least one of the following: reclaiming the Kth resource in the uplink resources, reducing the amount of data that can be carried by the Sth resource in the uplink resources, K is a positive integer, and S is a positive integer.
  • the receiving unit 1502 is also configured to:
  • resource adjustment request feedback information is received, and the resource adjustment request feedback information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the sending unit 1501 is also used to:
  • the access layer of the terminal device knows the amount of uplink data and does not know the amount of data that can be carried by the uplink resource, then send the third information; the third information is used to indicate the amount of uplink data; or, the third information is used to indicate the amount of data not transmitted in the uplink data at the moment when the third information is sent.
  • the sending unit 1501 is also used to:
  • the third information is sent to the network device after the access layer of the terminal device knows the amount of uplink data; the third information is used to indicate the amount of uplink data; or, the third information is used to indicate the amount of data not transmitted in the uplink data at the moment when the third information is sent.
  • the receiving unit 1502 is also configured to:
  • resource adjustment request feedback information is received, and the resource adjustment request feedback information is used to indicate approval, partial approval or rejection of the uplink resource adjustment request.
  • the uplink data includes data of the first service and data of the second service, the transmission priority of the first service is higher than that of the second service, and the uplink data is used to bear the data of the first service.
  • the sending unit 1501 is also used to:
  • the fourth information is used to indicate the difference between the amount of data that can be carried by the uplink resource and the data amount of the first service; or, the fourth information is used to indicate the data amount of the data of the first service; or, the fourth information is used to indicate the amount of data not transmitted in the data of the first service at the moment when the fourth information is sent.
  • the fourth information is also used to indicate the amount of data of the second service to be scheduled.
  • the resource configuration information includes: the following information sent before the time when the uplink data arrives at the access layer of the terminal device: the resource quantity of the uplink resource, the amount of data that each resource in the uplink resource can carry; the following information sent after the time when the uplink data arrives at the access layer of the terminal device: the time-frequency domain position of each resource in the uplink resource.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 1600 includes a processor 1610 , a memory 1620 and a communication bus for connecting the processor 1610 and the memory 1620 .
  • the memory 1620 includes but is not limited to random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • Network device 1600 may also include a communication interface for receiving and sending data.
  • the processor 1610 may be one or more CPUs. In the case where the processor 1610 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1610 in the network device 1600 is configured to execute the computer program or instruction 1621 stored in the memory 1620, and perform the following operations: receive first information, the first information is used to indicate the data distribution characteristics of the uplink data; according to the data distribution characteristics of the uplink data, send resource configuration information, and the resource configuration information is used to indicate uplink resources.
  • each operation may use the corresponding description of the above-mentioned method embodiments, and the network device 1600 may be used to execute the above-mentioned method embodiments of the present application, which will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1700 includes a processor 1710 , a memory 1720 and a communication bus for connecting the processor 1710 and the memory 1720 .
  • the memory 1720 includes but is not limited to random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • portable read-only memory compact disc read-only memory
  • Terminal device 1700 may also include a communication interface for receiving and sending data.
  • the processor 1710 may be one or more CPUs. In the case where the processor 1710 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1710 in the terminal device 1700 is configured to execute the computer program or instruction 1721 stored in the memory 1720, and perform the following operations: send first information, the first information is used to indicate the data distribution characteristics of the uplink data; receive resource configuration information, the resource configuration information is used to indicate uplink resources, and the resource configuration information is determined by the data distribution characteristics of the uplink data.
  • An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps described in the above method embodiments.
  • the embodiment of the present application also provides a chip module, including a transceiver component and a chip.
  • the chip includes a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps described in the above method embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program or instruction, and when the computer program or instruction is executed, implements the steps described in the above method embodiments.
  • the embodiment of the present application also provides a computer program product, including a computer program or an instruction.
  • a computer program product including a computer program or an instruction.
  • the embodiments of the present application have different emphases in the description of each embodiment, and for the parts not described in detail in a certain embodiment, refer to the relevant descriptions of other embodiments.
  • Those skilled in the art should know that the methods, steps or functions of related modules/units described in the embodiments of the present application may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it may be implemented in whole or in part in the form of a computer program product, or may be implemented in a manner in which a processor executes computer program instructions.
  • the computer program product includes at least one computer program instruction
  • the computer program instructions may be composed of corresponding software modules, and the software modules may be stored in RAM, flash memory, ROM, EPROM, EEPROM, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • the computer program instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer program instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium, or a semiconductor medium (such as an SSD).
  • Each module/unit contained in each device or product described in the above embodiments may be a software module/unit, may be a hardware module/unit, or may be a part of a software module/unit while the other part is a hardware module/unit.
  • each module/unit contained therein may be realized by means of hardware such as circuits; or, a part of the modules/units contained therein may be realized by means of a software program, which runs on a processor integrated in the chip, while some modules/units of the other part (if any) may be realized by means of hardware such as circuits.
  • a software program which runs on a processor integrated in the chip
  • some modules/units of the other part if any

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了资源配置方法与装置、网络设备和终端设备;该方法包括:终端设备发送第一信息,该第一信息用于指示上行数据的数据分布特征;网络设备接收该第一信息;网络设备根据上行数据的数据分布特征,发送资源配置信息,该资源配置信息用于指示上行资源;终端设备接收该资源配置信息。可见,本申请根据上行数据的数据分布特征来指示用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。

Description

资源配置方法与装置、网络设备和终端设备 技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法与装置、网络设备和终端设备。
背景技术
第三代合作伙伴计划组织(3rd Generation Partnership Project,3GPP)所规定的标准协议规定了上行数据的传输。其中,在上行数据传输中,可以存在如下实现方式:
一种是,终端设备只有在需要传输上行数据时才向网络设备申请上行资源,并在等待网络设备配置上行资源之后,终端设备才能开始进行上行数据的传输,从而导致上行数据的传输时延较大。
一种是,终端设备无需申请而直接使用预先配置好的上行资源以进行上行数据的传输,但是预先配置的上行资源可能无法将上行数据传输完,从而降低了上行数据传输的可靠性。
因此,如何降低上行数据的传输时延,以及提高上行数据传输的可靠性,还需要进一步研究。
发明内容
第一方面,为本申请的一种资源配置方法,应用于网络设备;所述方法包括:
接收第一信息,所述第一信息用于指示上行数据的数据分布特征;
根据所述上行数据的数据分布特征,发送资源配置信息,所述资源配置信息用于指示上行资源。
可见,本申请实施例可以根据上行数据的数据分布特征来指示(配置/分配/调度等)用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。
第二方面,为本申请的一种资源配置方法,应用于终端设备;所述方法包括:
发送第一信息,所述第一信息用于指示上行数据的数据分布特征;
接收资源配置信息,所述资源配置信息用于指示上行资源,所述资源配置信息由所述上行数据的数据分布特征确定。
第三方面,为本申请的一种资源配置装置,包括:
接收单元,用于接收第一信息,所述第一用于指示上行数据的数据分布特征;
发送单元,用于根据所述上行数据的数据分布特征,发送资源配置信息,所述资源配置信息用于指示上行资源。
第四方面,为本申请的一种资源配置装置,包括:
发送单元,用于发送第一信息,所述第一信息用于指示上行数据的数据分布特征;
接收单元,用于接收资源配置信息,所述资源配置信息用于指示上行资源,所述资源配置信息由所述上行数据的数据分布特征确定。
第五方面,为本申请的一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第六方面,为本申请的一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第二方面所设计的方法中的步骤。
第七方面,为本申请的一种芯片,包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第八方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第九方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第二方面至第十方面的技术方案所带来的有益效果可以参见第一方面的技术方案所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例的一种无线通信系统的架构示意图;
图2是本申请实施例的一种数据传输过程的结构示意图;
图3是本申请实施例的一种上行数据的传输的流程示意图;
图4是本申请实施例的一种XR业务的数据的传输的流程示意图;
图5是本申请实施例的又一种XR业务的数据的传输的流程示意图;
图6是本申请实施例的一种BSR格式的结构示意图;
图7是本申请实施例的又一种BSR格式的结构示意图;
图8是本申请实施例的又一种BSR格式的结构示意图;
图9是本申请实施例的又一种BSR格式的结构示意图;
图10是本申请实施例的又一种XR业务的数据的传输的流程示意图;
图11是本申请实施例的一种多种业务的数据的传输的流程示意图;
图12是本申请实施例的一种上行数据的结构示意图;
图13是本申请实施例的一种资源配置方法的流程示意图;
图14是本申请实施例的一种资源配置装置的功能单元组成框图;
图15是本申请实施例的又一种资源配置装置的功能单元组成框图;
图16是本申请实施例的一种网络设备的结构示意图;
图17是本申请实施例的一种终端设备的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“至少一个”,指的是一个或多个,多个指的是两个或两个以上。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示如下三种情况:单独存在A,同时存在A和B,单独存在B。其中,A、B可以是单数或者复数。字符“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。
本申请实施例中的“以下至少一项(个)”或其类似表达,指的是这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中的“等于”可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案。当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请实施例中涉及“的(of)”、“相应的(corresponding,relevant)”、“对应的(corresponding)”、“指示的(indicated)”、“配置的”、“分配的”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”与“系统”可以表达为同一概念,如通信系统即为通信网络。
本申请实施例中的“指示”可以与“配置”、“分配”、“调度”表达为同一概念,如配置资源即为分配资源或调度资源。
本申请实施例中的“传输”可以与“承载”表达为同一概念,如传输数据即为承载数据。
1、无线通信系统、终端设备和网络设备
1)无线通信系统
本申请实施例的技术方案可以应用于各种无线通信系统,例如:全球移动通讯(Global System of  Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based Access to Unlicensed Spectrum,LTE-U)系统、非授权频谱上的NR(NR-based Access to Unlicensed Spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第6代(6th-Generation,6G)通信系统或者其他通信系统等。
传统的无线通信系统所支持的连接数有限,且易于实现。然而,随着通信技术的发展,无线通信系统不仅可以支持传统的无线通信系统,还可以支持如设备到设备(device to device,D2D)通信、机器到机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)、车辆间(vehicle to vehicle,V2V)通信、车联网(vehicle to everything,V2X)通信、窄带物联网(narrow band internet of things,NB-IoT)通信等,因此本申请实施例的技术方案也可以应用于上述无线通信系统。
示例性的,本申请实施例的技术方案可以应用于波束赋形(beamforming)、载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或者独立(standalone,SA)部署场景等。
示例性的,本申请实施例可以应用于非授权频谱。其中,在本申请实施例中,非授权频谱也可以认为是共享频谱。或者,本申请实施例中的无线通信系统也可以应用于授权频谱。其中,授权频谱也可以认为是非共享频谱。
2)终端设备
在本申请实施例中,终端设备可以为一种具有收发功能的设备,又可以称之为用户设备(user equipment,UE)、远程终端(remote UE)、中继设备(relay UE)、终端设备(terminal device)、接入终端、用户单元、用户站、移动站、移动台、远方站、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置。需要说明的是,中继设备可以是能够为其他终端(包括远程终端)提供中继转发服务的终端设备。
本申请实施例中,终端设备还可以称之为蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR通信系统、6G通信系统)中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,对此不作具体限定。
本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
本申请实施例中,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线设备、无人自动驾驶中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或者智慧家庭(smart home)中的无线设备等
本申请实施例中终端设备可以包括具有无线通信功能的装置,例如芯片系统、芯片、芯片模组等。其中,该芯片系统可以包括芯片,还可以包括其它分立器件。
3)网络设备
本申请实施例中,网络设备可以为一种具有收发功能的设备,可以是用于与终端设备之间进行通信的设备,负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。
本申请实施例中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)以用于提供无线通信功能的设备。例如,GSM或CDMA通信系统中的基站(base transceiver station,BTS)、WCDMA通信系统中的节点B(node B,NB)、LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双链接架构中的主节点(master node,MN)、双链接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
本申请实施例中,网络设备还可以是核心网(core network,CN)中的其他设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户计划功能(user plan function,UPF)等;还可以是无线局域网(wireless local area network,WLAN)中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
本申请实施例中,网络设备可以包括具有无线通信功能的装置,例如芯片系统、芯片、芯片模组等。其中,该芯片系统可以包括芯片,还可以包括其它分立器件。
本申请实施例中,网络设备还可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
在一些网络部署中,网络设备可以是一个独立的节点以实现上述基站的所有功能,其可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU;还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现网络设备的部分功能,而DU也可以实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
本申请实施例中,网络设备可以为小区覆盖范围内的终端设备提供通信服务。其中,该小区可以包括宏小区(macro cell)、小小区(small cell)、城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)等。
4)示例说明
下面对本申请实施例的无线通信系统做一个示例性说明。
示例性的,本申请实施例的一种无线通信系统的网络架构,可以参阅图1。如图1所示,无线通信系统10可以包括网络设备110和终端设备120。网络设备110与终端设备120可以通过无线方式进行通信。
图1仅为一种无线通信系统的网络架构的举例说明,对本申请实施例的通信系统的网络架构并不构成限定。例如,本申请实施例中,无线通信系统中还可以包括服务器或其它设备。再例如,本申请实施例中,无线通信系统中可以包括多个网络设备和/或多个终端设备。
2、数据传输过程
1)数据传输的用户面协议栈
本申请实施例主要涉及数据传输过程,下面以第五代(5G)新无线(new radio,NR)通信系统中的数据传输过程为例进行示例性说明。
如图2所示,在5G NR通信系统中,数据传输可以通过网络设备和终端设备之间的服务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层、物理(physical,PHY)层等用户面协议栈执行。
在数据传输过程中,SDAP层将IP数据包映射到不同的无线承载(radio bearer,RB)。通常,来自或去往更高协议层的数据实体称为服务数据单元(service data unit,SDU),而来自或者去往较低协议层的数据实体称为协议数据单元(protocol data unit,PDU)。因此,SDAP层通过向IP数据包添加SDAP报头以向PDCP层输出SDAP PDU,而PDCP层向SDAP层输出PDCP SDU,SDAP PDU等价于PDCP SDU。
同理,PDCP层通过向SDAP PDU添加PDCP报头以向RLC层输出PDCP PDU。RLC层通过向PDCP PDU添加RLC报头以向MAC层输出RLC PDU。
最后,MAC层会对多个RLC PDU进行复用并添加MAC报头以形成传输块(transport block,TB), 并最终由PHY层对TB进行信道编码、调制、多天线处理以及资源映射等处理以传输。
2)上下行数据传输的区别
在实际的数据传输中,网络设备到终端设备的下行数据以及终端设备到网络设备的上行数据,可能采用不同的传输方式。
对于下行数据,传输下行数据所需的下行无线资源由网络设备配置(分配)。其中,网络设备可以根据其待传输的下行数据的数据量,以及终端设备的无线信道状况,确定每次向终端设备传输的下行数据的数据量以及下行无线资源的时频资源位置。之后,网络设备的MAC层生成相应大小的TB,再通过下行无线资源进行传输。
对于上行数据,传输上行数据所需的上行资源由网络设备配置(分配)。如图3所示,上行数据的传输流程如下:
第一,终端设备向网络设备上报自己存储的待传输的上行数据的数据量;
第二,网络设备根据待传输的上行数据的数据量为终端设备配置(分配/调度等)上行资源;
第三,终端设备的MAC层根据所配置的上行资源,生成相应大小的TB,再通过上行资源进行传输。
3、上行数据传输的实现方式
目前,上行数据传输的实现方式可以存在如下实现方式:
方式一:
当终端设备需要传输上行数据时,终端设备可以通过向网络设备发送缓存状态报告(buffer status report,BSR)以申请上行资源。其中,终端设备可以在MAC层的TB中插入一个BSR控制信元(control elment)来告诉网络设备:终端设备的某个或某些逻辑信道组当前有多少字节(bytes)的数据需要发送,希望网络设备能配置一些上行资源给自己。
通过发送BSR控制单元的方式,可以让网络设备知道终端设备待发送的上行数据的数据量,从而网络设备可以针对性的配置上行资源以保证上行数据的传输。
然而,在“方式一”中,终端设备只有在需要传输上行数据时才向网络设备申请上行资源。在等待网络设备配置上行资源之后,终端设备才能开始进行上行数据的传输,从而导致上行数据的传输时延较大。
方式二:
在终端设备需要传输上行数据之前,网络设备可以预先向终端设备配置上行资源,即半静态(semi-persistent)上行资源。当终端设备需要上行数据时,终端设备可以无需再向网络设备申请上行资源,而直接使用预先配置好的上行资源进行传输即可。
然而,在“方式二”中,虽然终端设备可以直接使用预先配置的上行资源以传输上行数据,使得上行数据传输的时延较小,但是由于网络设备无法预先知道上行数据的数据量,因此预先配置的上行资源可能无法将上行数据传输完,从而降低了数据传输可靠性。
如果预先配置的上行资源较多(即能够承载的上行数据的数据量较多),但实际的上行数据的数据量又较少,从而造成资源浪费;如果预先配置的上行资源较少(即能够承载的上行数据的数据量较少),而实际的上行数据的数据量又较多,使得无法将整个上行数据传输完,从而降低了数据传输可靠性。
4、一种新的资源配置方式
由于“方式一”和“方式二”存在一定的不足,因此为了减小上行数据的传输时延,提高资源利用率,保证上行数据能够传输完,以及提升上行数据传输的可靠性,本申请实施例引入一种新的资源配置方式,如下:
对于网络设备来说:
网络设备可以从终端设备的应用层中的应用或该应用的应用服务器获取第一信息,该第一信息可以用于指示终端设备待传输的上行数据的数据分布特征;
网络设备可以根据该第一信息发送资源配置信息,该资源配置信息可以用于指示上行资源。或者说,该资源配置信息可以用于指示(配置/调度等)承载上行数据的上行资源。
对于终端设备来说:
终端设备可以向网络设备发送该第一信息;
终端设备可以接收来自网络设备的该资源配置信息,该资源配置信息由上行数据的数据分布特征确定;
终端设备可以利用该上行资源传输上行数据,并在上行数据传输完之后,进入省电模式。
可见,本申请实施例可以根据终端设备待传输的上行数据的数据分布特征来指示(配置/分配/调度等)用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置 的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。
下面对本申请实施例所涉及的相关概念和技术方案进行具体说明。
(1)上行数据和第一信息
①上行数据的概念
在本申请实施例中,上行数据,可以是指由终端设备向网络设备发送的数据。
②上行数据的类别
在本申请实施例中,上行数据可以为同一(一种)业务的数据,也可以为不同(多种)业务的数据。
需要说明的是,当上行数据为一种业务的数据时,该业务可以是时延敏感的业务、时延敏感且数据量大的业务、低时延高可靠性的业务、低时延高可靠且数据量大的业务或者数据量大的业务等。
例如,该业务可以为扩展现实(extended reality,ER)业务、虚拟现实(virtual reality,VR)业务、在线视频业务、在线直播业务、在线语音业务等中的之一项,对此不作具体限制。
当上行数据为多种业务的数据时,该多种业务的数据可能存在优先级。因此,终端设备可能需要按照优先级来将该多种业务的数据进行先后传输。
例如,时延敏感且数据量大的业务具有较高的优先级,因此终端设备需要先考虑将该时延敏感且数据量大的业务进行优先传输,并优先申请传输该时延敏感且数据量大的业务所需的上行资源。
另外,在多种业务的数据中,由于终端设备需要优先考虑传输一种高传输优先级的业务(如高传输优先级的业务对时延要求严格或时延敏感)的数据,再考虑是否传输除该高传输优先级的业务之外的其他低传输优先级的业务(如低传输优先级的业务对时延要求相对宽松或时延相对非敏感)的数据,因此,如果网络设备每次为终端设备所配置的上行资源都只够传输该种高传输优先级的业务的数据,而无法再传输该其他低传输优先级的业务的数据,使得该其他低传输优先级的业务的数据总是无法获得传输机会,从而造成丢包。
对此,如何配置(指示/分配/调度等)上行资源以避免丢包,具有在下文进行说明。
③上行数据的生成
在本申请实施例中,上行数据可以是由终端设备的应用层中的应用生成的。
需要说明的是,应用层中的应用所生成的数据会经过SDAP层、PDCP层和RLC层处理,成为RLC PDU,之后在MAC层中组装为TB,最终经由PHY层传输。
应用,可以称为应用程序(application,APP)。应用程序,是指为完成某项/多项特定工作或具有某种功能的程序,而程序是运行于操作系统上的,可以运行在应用层上与用户进行交互,具有可视的用户界面。
另外,同一(某个)应用所生成的数据可以为同一业务的数据,而不同(某些)应用所生成的数据可以为不同业务的数据。
④上行数据的数据分布特征
需要说明的是,上行数据的数据分布特征可以用于表示通过数据统计来描述该上行数据在周期、数据量、生成时间、达到时间、数据包位置分布等中的至少之一项上的分布情况/分布特征/分布规律等。
在本申请实施例中,上行数据的数据分布特征可以包括以下至少之一项:
●上行数据是周期性生成的
需要说明的是,终端设备的应用层中的应用可以周期性的生成上行数据。
例如,以上行数据为XR业务的数据为例,终端设备的应用层中的XR应用可以周期性的生成一帧视频。同一帧视频的多个数据包可以组成一个突发(burst),即每次burst包含多个数据包,集中到达接入层,等待通过空口传输。
其中,对于一种典型的视频数据流,每秒周期性的生成60个帧,即每16.67ms就有一次burst需要传输,每次burst包含多个数据包,而每次burst的数据量可能会在一定范围内波动。
●上行数据的平均数据量
需要说明的是,由于上行数据是周期性生成的,而每次所生成的上行数据可以由多个数据包组成,而不同数据包可能具有不同的数据量大小,因此每次所生成的上行数据的数据量可能会在一定范围内波动。
为此,本申请实施例可以将每次所生成的上行数据的平均数据量作为用于描述该上行数据的数据分布特征之一。
例如,以上述举例为例,由于每次burst包含多个数据包,而不同的数据包具有不同的数据量,因此每次burst的数据量可能存在不同。为此,通过引入“每次burst的平均数据量”以用于描述XR业务的 数据分布特征。
●上行数据的数据量范围
需要说明的是,上行数据的数据量范围,可以用于表示该上行数据的最小数据量与最大数据量之间的范围。
例如,以上述举例为例,每次burst的最小数据量与最大数据量之间的范围。
●重要数据包在上行数据中的位置分布
需要说明的是,每次所生成的上行数据可以由多个数据包组成,而该多个数据包中可能存在比较重要的数据包,即重要数据包,因此通过引入“重要数据包在上行数据中的位置分布”以用于描述重要数据包在该多个数据包中的位置,即重要数据包位于该上行数据中的第几个或哪几个数据包。
在一些可能的实现中,重要数据包在上行数据中的位置分布,可以存在如下:
-重要数据包在上行数据中位于第X个数据包
需要说明的是,上行数据包括多个数据包,而该多个数据包中的第X个数据包为重要数据包。
-重要数据包在上行数据中位于第X至Y个数据包
需要说明的是,上行数据包括多个数据包,而该多个数据包中的第X个数据包到第Y个数据包为重要数据包。
-重要数据包的数据量在上行数据中位于第M至N个Bytes
需要说明的是,上行数据的数据量包括多个Bytes,而该多个Bytes中的第M个Bytes到第N个Bytes为重要数据包的数据量。
●上行数据中的重要数据包的数据量
●上行数据到达终端设备的接入层的时间(时刻/时序等)
需要说明的是,终端设备的接入层,可以理解为,除终端设备的应用层之外的协议栈,如用户面协议栈包括SDAP层、PDCP层、RLC层、MAC层和PHY层,控制面协议栈包括NAS层、RRC层、PDCP层、RLC层、MAC层和PHY层。
另外,为了简化计算,本申请实施例可以忽略数据从应用层到接入层的处理时延。因此,应用层中的应用生成上行数据的时间(时刻/时序),即上行数据由应用层生成的时间,可以等效于上行数据到达接入层的时间。或者说,从应用层看,是上行数据生成的时间,而从接入层看,是上行数据到达接入层的时间。
在一些可能的实现中,上行数据到达终端设备的接入层的时间可以采用绝对时间,也可以采用超帧号(hyperframe number)/无线帧号(system frame number,SFN)/子帧号(subframe number)/时隙号(slot index/number)/符号(symbol index/number)等。
需要说明的是,在5G NR的帧结构中,一个无线帧的时长固定为10ms,每个无线帧包含10个子帧,即每个子帧的时长固定为1ms。每个子帧包含若干(如1/2/4/816/32等)个时隙,例如当子载波间隔为15KHz时,每个子帧包含1个时隙,即每个时隙为1ms。每个时隙包含14或12个OFDM符号。另外,5G NR的传输时间间隔(transmission time interval,TTI)为1个时隙。
例如,以上述举例为例,终端设备的XR应用可以通知接入层每次burst周期性到达接入层的时间。
若该时间采用绝对时间,且周期为17ms(如每秒输出60个帧,即每16.67ms(约17ms)就有一次burst需要传输),则当前次burst在2021年12月20日17时15分32秒267ms到达接入层,而下一次burst将在2021年12月20日17时15分32秒284ms到达接入层。
若该时间采用时隙号,且周期为17个时隙(如1个时隙为1ms),则当前次burst在时隙20到达接入层,而下一次burst将在时隙37到达接入层。
需要说明的是,若采用超帧号/无线帧号/子帧号/时隙号/符号,则超帧号/无线帧号/子帧号/时隙号/符号可以由绝对时间映射得到。
另外,超帧号/无线帧号/子帧号/时隙号/符号可能并不会存在。比如,有的小区没有使用超帧,就不需要采用超帧号了;有的场景下,只需指示子帧号或时隙号中的一个即可。
●上行数据到达终端设备的接入层的时间(时刻/时序)的抖动范围
需要说明的是,上行数据到达终端设备的接入层的时间的抖动范围,可以用于表示上行数据到达终端设备的接入层的最早时间与最晚时间之间的范围。
⑤第一信息
为了实现网络设备为终端设备待传输的上行数据配置(指示/分配/调度等)资源,本申请实施例引入了“第一信息”。其中,该第一信息可以用于指示上行数据的数据分布特征。
结合上述“④上行数据的数据分布特征”中的内容可知,上行数据的数据分布特征可以包括以下至少之一项:上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、重要数据包在上行数据中的位置分布、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间(时刻/时序)/上行数据生成的时间(时刻/时序)、上行数据到达终端设备的接入层的时间的抖动范围。
需要说明的是,第一信息可以是一种信息(information),可以是一种信令(signalling),可以是一种信息元素(information element),可以是一种字段(field)/子字段(subfield),可以是一种信号(signal),对此不作具体限制。
另外,第一信息也可以采用其他术语描述,如第一指示信息、数据分布信息、数据特征信息等。只要具有相同的含义/功能/解释,都在本申请所保护的范围内,对此不作具体限制。
在一些可能的实现中,第一信息可以由处于RRC连接态的终端设备发送;或者,第一信息可以由应用服务器发送,具体在下文进行说明。
在一些可能的实现中,第一信息可以由RRC信令/高层信令/终端设备专属信令携带。
(2)一种资源配置方式的具体流程
下面对本申请实施例的一种资源配置方式的具体流程进行示例性说明。
步骤一:发送第一信息
①第一信息的发送方式
需要说明的是,本申请实施例可以采用如下两种方式:
●终端设备向网络设备发送第一信息
对应的,网络设备接收来自终端设备的第一信息。
在一些可能的实现中,终端设备的应用层中的应用可以将该第一信息通知给(发送给/传输给)终端设备的接入层,再由终端设备的接入层将该第一信息通知给(发送给/传输给)网络设备。
例如,以上行数据为XR业务的数据为例,终端设备的应用层中的XR应用将该XR业务的数据分布特征通知给接入层,再由接入层将该XR业务的数据分布特征通知给网络设备。
●应用服务器向网络设备发送第一信息
对应的,网络设备接收来自应用服务器的第一信息。
可以理解的是,应用服务器可以将该第一信息通知给(发送给/传输给)网络设备。
另外,以5G NR的通信系统架构为例,应用服务器发送的第一信息可以依次经由核心网(5GC)中的SMF和AMF,再由AMF传输给接入网(NR-RAN)的gNB/ng-eNB。
在一些可能的实现中,终端设备的应用层中的应用需要与该应用的应用服务器预先交互,并在交互过程中,终端设备将该第一信息发送给应用服务器。
例如,以上行数据为XR业务的数据为例,终端设备的应用层中的XR应用将该XR业务的数据分布特征通知给XR服务器,再由XR服务器将该XR业务的数据分布特征通知给网络设备。
需要说明的是,由于该方式是终端设备的应用层与应用服务器的应用层之间直接交互应用层的信息,因此从应用层看,第一信息包含上行数据生成的时间。
另外,由于应用服务器并没有网络设备为小区配置的超帧号/无线帧号/子帧号/时隙号/符号,因此上行数据生成的时间只能采用绝对时间,而无法采用超帧号/无线帧号/子帧号/时隙号/符号。
②应用服务器
在本申请实施例中,应用服务器可以为用于提供应用数据等功能的软硬件单元。例如,该软硬件单元可以是基础设施即服务(infrastructure as a service,IaaS)、平台即服务(platform as a service,PaaS)、软件即服务(software as service,SAAS)平台等。
另外,应用服务器可以是云服务器、硬件服务器、软件服务器、软硬件服务器、web服务器、负载均衡器(Nginx)、数据中心网络设备、个人计算机(personal computer,PC)、计算设备、支持802.11协议的计算机等,对此不作具体限制。
步骤二:配置上行资源
需要说明的是,网络设备可以根据第一信息发送资源配置信息,该资源配置信息用于指示上行资源,该上行资源可以用于承载(传输)上行数据。
为了保证上行数据的传输,网络设备可以在上行数据到达终端设备的接入层的时间(时刻/时序)之前,向终端设备发送该资源配置信息,从而有利于在上行数据到达终端设备的接入层的时间之前实现配置用于承载上行数据的上行资源。
另外,本申请实施例可以配置不同类型的上行资源。例如,上行资源可以为以下之一:
◆上行免调度资源
也就是说,资源配置信息可以用于指示上行免调度资源。具有通过下述“方式1”进行说明。
◆上行动态调度资源
也就是说,资源配置信息可以用于指示上行动态调度资源。具有通过下述“方式2”进行说明。
◆在同时配置上行免调度资源和上行动态调度资源中所优先使用的资源
具有通过下述“方式3”进行说明。
下面对上述三种方式进行具体说明。
方式1:
在“方式1”中,本申请实施例可以采用半静态调度或免调度的方式来配置上行资源。此时,网络设备所配置的上行资源为上行免调度资源(或上行静态调度资源)。
另外,在“方式1”中,资源配置信息可以由高层信令(如RRC信令或MAC CE等)携带。
①上行免调度资源
需要说明的是,上行免调度资源,可以理解为,网络设备无需每次都为终端设备待传输的上行数据所需的资源进行调度,即只需预先配置一次资源即可。由于终端设备的应用层中的应用是周期性生成上行数据,因此上行免调度资源是周期性的,并且上行免调度资源只需一次配置好,周期性有效,以便有利于提高配置效率。
具体实现时,网络设备可以在接收到业务数据的数据分布特征之后且在第一个上行数据到达接入层的时间之前,直接根据该数据分布特征为终端设备预先配置周期性的资源。最终,在第一次(或第一个)上行数据到达接入层之后,终端设备可以直接使用预先配置的周期性资源来传输该第一次上行数据。同理,在下一次(或下一个)上行数据到达接入层之后,终端设备可以直接使用预先配置的周期性资源来传输该下一次上行数据,依次类推。
②上行免调度资源的组成
由于终端设备的应用层中的应用每次所生成的上行数据经过MAC层处理以组装成多个TB,因此上行免调度资源可以看做是由N(N≥1,N为正整数)个资源组成的,即上行免调度资源包括N个资源,每个资源用于承载(传输)一个TB,且每个资源具有不同的时频域位置,如每个资源在时域上可能位于不同的无线帧号/子帧号/时隙号/符号,每个资源在频域上可能位于不同的子频带(RB/RE/子载波/PRB)。
例如,以上行数据为XR业务的数据为例,网络设备获取到XR业务的数据分布特征,并在第一次burst到达接入层的时间之前,为终端设备预先配置周期性的资源,且周期为16ms。其中,用于承载第一次burst的资源分别位于子帧67、子帧68和子帧69,且每个子帧为1ms,用于承载下一次burst的资源分别位于子帧83、子帧84、子帧85。
③上行免调度资源的一次或多次配置
可以理解的是,网络设备可以采用一次配置的方式来配置该N个资源,也可以采用多次配置的方式来配置该N个资源,具体取决于网络设备的实现。
需要说明的是,若网络设备除了需要给当前终端设备配置资源,还需要给其他多个终端设备配置资源,则网络设备不能一次把太多的资源配置给当前终端设备,避免其他多个终端设备没有资源可以配置。对此,网络设备可以采用多次配置的方式来向当前终端设备配置资源。④如何根据上行数据的数据分布特征,发送资源配置信息
由于上行数据的数据分布特征可以包括以下至少之一项:上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、重要数据包在上行数据中的位置分布、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间(时刻/时序)/上行数据生成的时间(时刻/时序)、上行数据到达终端设备的接入层的时间的抖动范围,因此网络设备可以根据上行数据的数据分布特征确定出如下信息:
●上行免调度资源的周期
需要说明的是,网络设备可以根据上行数据的周期确定上行免调度资源的周期,使得上行免调度资源的周期大于或等于上行数据的周期。
●上行免调度资源的时频域位置
需要说明的是,网络设备可以根据上行数据到达终端设备的接入层的时间/上行数据生成的时间(和/或上行数据到达终端设备的接入层的时间的抖动范围)确定上行免调度资源的时域位置,使得上行免调度资源的时域位置(如上行免调度资源中的第一个资源的时域位置)可以位于上行数据到达终端设备的接入层的时间/上行数据生成的时间之后的某个时刻(如子帧/时隙等),保证终端设备能够尽快使用该上行免调度资源来传输上行数据,从而有利于减小上行数据在终端设备的接入层中的等待时间。
●上行免调度资源的配置次数
结合上述“③上行免调度资源的一次或多次配置”中的内容可知,网络设备可以采用一次配置的方式来配置上行免调度资源中的N个资源,也可以采用多次配置的方式来配置该N个资源。
●上行免调度资源中的资源数量,即N
需要说明的是,网络设备可以根据上行数据的平均数据量(和/或上行数据的数据量范围)确定上行免调度资源中的资源数量N。
例如,若上行数据的平均数据量越大,则N可能越大;或者,若上行数据的平均数据量越大,且当还有其他终端设备也亟待配置资源时,则网络设备不能一次把太多的资源配置给当前终端设备,需要分多次进行配置,也会导致N增大。
●上行免调度资源所能承载的数据量
需要说明的是,网络设备可以根据上行数据的平均数据量(和/或上行数据的数据量范围)确定上行免调度资源所能承载的数据量,使得上行免调度资源所能承载的数据量可以大于或等于上行数据的平均数据量,避免上行数据无法传输完,从而有利于保证数据传输可靠性。
另外,虽然上行免调度资源可以包括N个资源,但此处本申请实施例并不涉及每个资源所能承载的数据量。
综上所述,在“方式1”中,资源配置信息可以包括以下至少之一项:上行免调度资源的周期、上行免调度资源的时频域位置、上行免调度资源的配置次数、上行免调度资源中的资源数量、上行免调度资源所能承载的数据量,从而通过资源配置信息实现为传输上行数据所需的上行免调度资源进行配置。
⑤示例说明
下面以上行数据为XR业务的数据为例进行具体说明。
如图4所示,流程如下:
步骤1:终端设备的应用层中的XR应用向终端设备的接入层指示待传输的每次burst的数据分布特征。
需要说明的是,XR应用可以周期性的生成一帧视频,而同一帧视频的多个数据包可以组成每次burst,即每次burst包含多个数据包。
步骤2:终端设备的接入层向网络设备发送第一信息。
其中,第一信息用于指示终端设备待传输的每次burst的数据分布特征。
步骤3:网络设备向终端设备发送资源配置信息。
需要说明的是,网络设备根据第一信息发送资源配置信息,该资源配置信息用于指示(承载/配置/分配)承载burst的上行免调度资源。
其中,该资源配置信息包括该上行免调度资源的周期、该上行免调度资源的时频域位置、上行免调度资源的配置次数为1、上行免调度资源中的资源数量为3、该上行免调度资源所能承载的数据量为1000Bytes等。
步骤4:终端设备的应用层中的XR应用生成当前次burst,并发送给终端设备的接入层。
需要说明的是,当前次burst由3个数据包组成,即数据包1、数据包2和数据包3。其中,该当前次burst的数据量为700Bytes。
步骤5:终端设备的接入层利用上行免调度资源传输当前次burst。
需要说明的是,终端设备的接入层中的MAC层会将数据包1和部分数据包2组成第一个TB,并利用上行免调度资源中的第一个资源传输第一个TB。
同理,终端设备的接入层中的MAC层将剩余数据包2和部分数据包3组成第二个TB,并利用上行免调度资源中的第二个资源传输第二个TB。
终端设备的接入层中的MAC层将剩余数据包3组成第三个TB,并利用上行免调度资源中的第三个资源传输第三个TB。
方式2:
在“方式2”中,本申请实施例可以采用动态调度的方式来配置上行资源。此时,网络设备所配置的上行资源为上行动态调度资源。
另外,在“方式2”中,资源配置信息可以由高层信令(如RRC信令或MAC CE等)携带。
①上行动态调度资源
需要说明的是,上行动态调度资源,可以理解为,网络设备需要为终端设备待传输的每个上行数据所需的资源进行单独的动态调度,即需要为每个上行数据单独配置资源。
具体实现时,网络设备可以在接收到上行数据的数据分布特征之后且在每个上行数据到达接入层的时间之前或之后(优选之前),均需要根据该数据分布特征为终端设备动态配置资源。
在需要传输当前次上行数据之前或之后(优选之前),终端设备需要通过监听信道以获取为当前次上行数据所动态调度的资源。因此,在该当前次上行数据到达接入层之后,终端设备可以使用该动态配置的资源来传输该当前次上行数据。
同理,在需要传输下一次上行数据之前或之后(优选之前),终端设备需要通过监听信道以获取为该下一次上行数据所动态调度的资源。因此,在该下一次上行数据到达接入层之后,终端设备可以使用该动态配置的资源来传输该下一次上行数据,依次类推。
②上行动态调度资源的组成
由于终端设备的应用层中的应用每次所生成的上行数据经过MAC层处理以组装成多个TB,因此上行动态调度资源可以看做是由N(N≥1,N为正整数)个资源组成的,即上行动态调度资源包括N个资源,每个资源用于承载(传输)一个TB,且每个资源具有不同的时频域位置,如每个资源在时域上可能位于不同的无线帧号/子帧号/时隙号/符号,每个资源在频域上可能位于不同的子频带(RB/RE/子载波/PRB)。
例如,以上行数据为XR业务的数据为例,网络设备获取到XR业务的数据分布,并在当前次burst到达接入层的时间之前,为终端设备动态调度资源。其中,用于承载当前次burst的资源分别位于子帧67、子帧68和子帧69。
③上行动态调度资源的一次或多次配置(指示/调度/分配)
可以理解的是,网络设备可以采用一次配置的方式来配置该N个资源,也可以采用多次配置(调度)的方式来配置该N个资源,具体取决于网络设备的实现。
例如,当网络设备所需配置的上行动态调度资源包括3个资源时,若采用3次调度的方式,则下发三次DCI,每次DCI调度上行动态调度资源中的1个资源,该资源用于承载一个TB。
若采用1次调度的方式,则下发一次DCI,该DCI调度上行动态调度资源中的3个资源,每个资源用于承载一个TB。
需要说明的是,若网络设备除了需要给当前终端设备调度资源,还需要给其他多个终端设备调度资源,即网络设备需要动态调度的终端设备较多,则网络设备不能一次把太多的资源调度给当前终端设备,避免其他多个终端设备没有资源可以调度。对此,网络设备可以采用多次配置的方式来向当前终端设备动态调度资源。
若网络设备需要动态调度的终端设备较少,网络设备可以采用一次配置的方式来向当前终端设备动态调度资源。
下面以上行数据为XR业务的数据为例再进行举例说明。
例如,终端设备的应用层中的XR应用每17ms生成一次burst。对于当前次burst的传输,若当前次burst将在子帧66到达终端设备的接入层,则终端设备在子帧63(由网络配置/预配置/终端设备自主实现所确定的,具体在下文说明)监听PDCCH,并通过DCI获得位于子帧67的上行动态调度中的第1个资源;终端设备在子帧64监听PDCCH,并通过DCI获得位于子帧68的上行动态调度中的第2个资源;终端设备在子帧65监听PDCCH,并通过DCI获得位于子帧69的上行动态调度中的第3个资源。
对于下一次burst的传输,下一次burst将在子帧83到达终端设备的接入层,终端设备在子帧79监听PDCCH,并通过DCI获得位于子帧84的上行动态调度中的第1个资源,其余同理可知。
④如何根据上行数据的数据分布特征发送资源配置信息
与上述类似,由于上行数据的数据分布特征可以包括以下至少之一项:上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、重要数据包在上行数据中的位置分布、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间(时刻/时序)/上行数据生成的时间(时刻/时序)、上行数据到达终端设备的接入层的时间的抖动范围,因此网络设备可以根据上行数据的数据分布特征确定出如下信息:
●上行动态调度资源的监听时机(monitor occasion)
在“方式2”的动态调度中,对于网络设备来说,网络设备可以在当前次上行数据到达终端设备的接入层的时间之前或之后(优选之前),配置好上行动态调度资源,并通过DCI来携带该上行动态调度资源的时频域位置等。
对于终端设备来说,终端设备需要盲检或监听PDCCH以获取DCI,并通过该DCI获取该上行动态调度资源。
为了避免终端设备持续盲检PDCCH以节省能耗,本申请实施例引入了“上行动态调度资源的监听时机”,其可以理解为,监听PDCCH的时间范围(时刻)。其中,时间范围,可以理解为,一段时间位置,如时隙10至时隙20之内;时刻,可以理解为,一个具体时间位置,如时隙10。
对此,网络设备会在该上行动态调度资源的监听时机内下发DCI,而终端设备只需在该上行动态调度资源的监听时机内监听PDCCH即可。
另外,上行动态调度资源的监听机会也可以采用其他术语描述。只要具有相同的含义/功能/解释,都在本申请所保护的范围内,对此不作具体限制。
因此,在获取为当前次上行数据的传输所配置的上行动态调度资源之前,网络设备需要预先通知终端设备为当前次上行数据的传输所配置的上行动态调度资源的监听时机。
具体实现时,网络设备可以根据上行数据到达终端设备的接入层的时间/上行数据生成的时间(和/或上行数据到达终端设备的接入层的时间的抖动范围)确定上行动态调度资源的监听时机,使得该监听时机可以位于上行数据到达终端设备的接入层的时间/上行数据生成的时间之前或之后(优选之前),避免终端设备持续盲检PDCCH以节省能耗,实现由上行数据的数据分布特征确定该上行动态调度资源的监听时机。
●上行动态调度资源的监听时机为监听PDCCH的时间范围
当上行动态调度资源的监听时机为监听PDCCH的时间范围时,该监听时机可以看做一个窗口(window)。其中,对于如何配置该窗口,可以存在如下方式:
a.网络设备配置该窗口
需要说明的是,该方式可以看做是一种显示指示方式。
具体实现时,网络设备可以直接通过高层信令(如RRC信令或MAC CE等)指示该窗口的时长/大小(size)以及该窗口的起始位置,从而实现网络配置该窗口。
其中,该窗口的时长/大小以及该窗口的起始位置是由网络设备根据上行数据的数据分布特征确定的。
b.预配置该窗口
需要说明的是,该方式可以看做是一种隐式指示方式。
具体实现时,标准协议可以预先规定该窗口的时长/大小,以及预先规定上行数据到达终端设备的接入层的时间与该窗口的起始位置之间的间隔(gap),即该间隔由上行数据到达终端设备的接入层的时间确定。
或者,网络设备与终端设备之间可以预先协商该窗口的时长/大小,以及预先协商上行数据到达终端设备的接入层的时间与该窗口的起始位置之间的间隔,即该间隔由上行数据到达终端设备的接入层的时间确定。
由于终端设备知道上行数据到达终端设备的接入层的时间,因此终端设备可以根据上述间隔确定该窗口的起始位置,再结合预先规定/预先协商的该窗口的时长/大小,从而实现预配置该窗口。
●上行动态调度资源的监听时机为监听PDCCH的时刻
当上行动态调度资源的监听时机为监听PDCCH的时刻时,对于如何配置该时刻,可以存在如下方式:
a.网络设备配置该时刻
需要说明的是,该方式可以看做是一种显示指示方式。
具体实现时,网络设备可以直接通过高层信令(如RRC信令或MAC CE等)指示该时刻。
其中,该时刻的位置是由网络设备根据上行数据的数据分布特征确定的。
b.预配置该时刻
需要说明的是,该方式可以看做是一种隐式指示方式。
具体实现时,标准协议可以预先规定上行数据到达终端设备的接入层的时间与该时刻之间的间隔,即该间隔由上行数据的数据分布特征确定。
或者,网络设备与终端设备之间可以预先协商上行数据到达终端设备的接入层的时间与该时刻之间的间隔,即该间隔由上行数据的数据分布特征确定。
由于终端设备知道上行数据到达终端设备的接入层的时间,因此终端设备可以根据上述间隔确定该时刻的位置,从而实现预配置该时刻。
c.终端设备自主实现
需要说明的是,该方式可以理解为无需网络设备配置或预配置该时机。这是因为:
对于网络设备来说,由于上行数据是终端设备周期性生成,因此网络设备只需确定某一时刻(网络设备在该时刻下发送用于指示传输当前次上行数据的资源的DCI)与当前次上行数据到达终端设备的接入层的时间之间的一个固定间隔。因此,在需要为传输下一次上行数据的资源时,网络设备只需根据该固定间隔和下一次上行数据到达终端设备的接入层的时间确定下发DCI的时刻即可,即下发DCI的时 刻是周期性的。
对于终端设备来说,由于上行数据是终端设备周期性生成,因此在传输第一个上行数据的过程中,终端设备需要盲检PDCCH,直到获取到DCI,并确定获取到该DCI的时刻与第一个上行数据到达终端设备的接入层的时间之间的一个固定间隔。因此,在传输第二个上行数据的过程中,终端设备根据该固定间隔和第二个上行数据到达终端设备的接入层的时间确定一个时刻,再在该时刻盲检PDCCH。
另外,在该方式中,网络设备需要告诉终端设备下发的DCI是周期性的。
●上行动态调度资源的调度次数
结合上述“③上行动态调度资源的一次或多次配置(调度)”可知,网络设备可以采用一次调度的方式来配置上行动态调度资源中的N个资源,也可以采用多次调度的方式来配置该N个资源。
因此,在获取为当前次上行数据的传输配置上行动态调度资源之前,网络设备可以预先通知终端设备为当前次上行数据的传输所配置的上行动态调度资源的调度次数。
●上行动态调度资源中的资源数量,即N
可以理解的是,在获取为当前次上行数据的传输配置上行动态调度资源之前,网络设备可以预先通知终端设备为当前次上行数据的传输所配置的上行动态调度资源中的资源数量N。
或者,网络设备也可以是在为当前次上行数据配置第1个资源时,再通知终端设备为当前次上行数据的传输所配置的上行动态调度资源中的资源数量N,对此不作具体限制。
另外,网络设备为每次上行数据所配置的资源数量可以是不同的或相同的,具体取决于网络设备的实现。
具体实现时,网络设备可以根据上行数据的平均数据量(和/或上行数据的数据量范围)确定上行免调度资源中的资源数量N。
例如,若上行数据的平均数据量越大,则N可能越大;或者,若上行数据的平均数据量越大,且当还有其他终端设备也亟待配置资源时,则网络设备不能一次把太多的资源配置给当前终端设备,需要分多次进行配置,也会导致N增大。
●上行动态调度资源所能承载的数据量
可以理解的是,在获取为当前次上行数据的传输配置上行动态调度资源之前,网络设备需要预先通知终端设备为当前次上行数据的传输所配置的上行动态调度资源所能承载的数据量。
另外,网络设备为每次上行数据所配置的上行动态调度资源所能承载的数据量可以是不同的或相同的,具体取决于网络设备的实现。
具体实现时,网络设备可以根据上行数据的平均数据量(和/或上行数据的数据量范围)确定上行免调度资源所能承载的数据量,使得上行动态调度资源所能承载的数据量可以大于或等于上行数据的平均数据量,避免上行数据无法传输完,从而有利于保证数据传输可靠性。
此外,虽然上行动态调度资源可以包括N个资源,但此处本申请实施例并不涉及每个资源所能承载的数据量。
综上所述,在“方式2”中,资源配置信息可以包括以下至少之一项:上行动态调度资源的监听时机、上行动态调度资源的调度次数、上行动态调度资源中的资源数量、上行动态调度资源所能承载的数据量,从而通过资源配置信息实现为当前次上行数据所需的上行动态调度资源进行配置。
⑤示例说明
下面以上行数据为XR业务的数据为例进行具体说明。
如图5所示,流程如下:
步骤1:终端设备的应用层中的XR应用向终端设备的接入层指示待传输的每次burst的数据分布特征。
需要说明的是,XR应用周期性的生成一帧视频,而同一帧视频的多个数据包可以组成每次burst,即每次burst包含多个数据包。
步骤2:终端设备的接入层向网络设备发送第一信息。
其中,第一信息用于指示终端设备待传输的每次burst的数据分布特征。
步骤3:网络设备向终端设备发送资源配置信息。
需要说明的是,网络设备根据第一信息发送资源配置信息,该资源配置信息用于指示承载当前次burst的上行动态调度资源。
其中,该资源配置信息包括上行动态调度资源的监听时机、上行动态调度资源的调度次数为3、上行动态调度资源中的资源数量为3、上行动态调度资源所能承载的数据量为1000Bytes等。
步骤4:终端设备的应用层中的XR应用生成当前burst,并发送给终端设备的接入层。
需要说明的是,当前次burst由3个数据包组成,即数据包1、数据包2和数据包3。其中,该当前次burst的数据量为700Bytes。
步骤5:终端设备的接入层利用上行动态调度资源传输当前次burst。
需要说明的是,终端设备在上行动态调度资源的监听时机内监听PDCCH以获取DCI,并通过该DCI得到上行动态调度资源中的第一个资源的时频域位置等。然后,终端设备的接入层中的MAC层会将数据包1和部分数据包2组成第一个TB,并利用该第一个资源传输第一个TB。
同理,终端设备在上行动态调度资源的监听时机内监听PDCCH以获取DCI,并通过该DCI得到上行动态调度资源中的第二个资源的时频域位置等。然后,终端设备的接入层中的MAC层将剩余数据包2和部分数据包3组成第二个TB,并利用该第二个资源传输第二个TB。
终端设备在上行动态调度资源的监听时机内监听PDCCH以获取DCI,并通过该DCI得到上行动态调度资源中的第三个资源的时频域位置等。然后,终端设备的接入层中的MAC层将剩余数据包3组成第三个TB,并利用上行免调度资源中的第三个资源传输第三个TB。
方式3:
结合上述“方式1”可知,若网络设备为终端设备配置上行免调度资源,则终端设备利用该上行免调度资源传输上行数据。
同理,结合上述“方式2”可知,若网络设备为终端设备配置上行动态调度资源,则终端设备利用该上行动态调度资源传输上行数据。
在“方式3”中,若网络设备为终端设备同时配置上行免调度资源和上行动态调度资源,则终端设备可以利用该同时配置的上行免调度资源和上行动态调度资源中所优先使用的资源来传输上行数据。
例如,当同时配置上行免调度资源和上行动态调度资源时,终端设备优先使用上行动态调度资源来传输上行数据。
可见,“方式3”是上述“方式1”和“方式2”的结合,因此资源配置信息可以包括以下至少之一项:上行免调度资源的周期、上行免调度资源的时频域位置、上行免调度资源的配置次数、上行免调度资源中的资源数量、上行免调度资源所能承载的数据量、上行动态调度资源的监听时机、上行动态调度资源的调度次数、上行动态调度资源中的资源数量、上行动态调度资源所能承载的数据量,从而通过资源配置信息实现为每次上行数据同时配置上行免调度资源和上行动态调度资源。
步骤三:发送第二信息(第三信息或第四信息)
需要说明的是,第二信息(第三信息或第四信息)可以为缓存状态报告(Buffer Status Report,BSR)或除该BSR外的其他MAC CE等。
需要说明的是,该BSR可以指示(报告)上行数据的数据量。由于本申请实施例的上行数据可以为同一(一种)业务的数据情形,也可以为不同(多种)业务的数据的情形,因此该BSR可以指示一种业务的数据的数据量,也可以同时指示多种业务的数据的数据量,具体在下文描述。
另外,第二信息(第三信息或第四信息)也可以采用其他术语描述,只要具有相同的含义/功能/解释,都在本申请所要求保护的范围内。
下面以第二信息(第三信息或第四信息)为BSR为例进行具体说明,其余同理可知。
结合上述“②上行数据的类别”中的内容可知,上行数据可以为同一(一种)业务的数据,也可以为不同(多种)业务的数据。
在一种业务的数据中,网络设备每次为终端设备所配置的上行资源能够传输完该业务的数据,可能传输不完该业务的数据,从而造成未传输完的数据发生丢包,以及降低数据传输可靠性。对此,如何对上行资源的配置进行调整,本申请实施例可以通过第二信息或第三信息的传输来实现。
同理,在多种业务的数据中,由于终端设备需要优先考虑传输一种高传输优先级的业务(如高传输优先级的业务对时延要求严格或时延敏感)的数据,再考虑是否传输除该高传输优先级的业务之外的其他低传输优先级的业务(如低传输优先级的业务对时延要求相对宽松或时延相对非敏感)的数据,因此,如果网络设备每次为终端设备所配置的上行资源都只够传输该高传输优先级的业务的数据,而无法再传输该其他低传输优先级的业务的数据,使得该其他低传输优先级的业务的数据总是无法获得传输机会,从而造成丢包。对此,如何对上行资源的配置进行调整以避免丢包,本申请实施例可以通过第四信息的上报来实现。
下面本申请分情形进行说明。其中,“情形一”是上行数据为同一(一种)业务的数据的情形,“情形二”是上行数据为不同(多种)业务的数据的情形。
情形一:
在“情形一”中,上行数据为同一(一种)业务的数据,而网络设备所配置的上行资源用于承载该同 一(一种)业务的数据。
结合上述“步骤二”可知,在当前次上行数据到达终端设备的接入层之前或之后(优选之前),终端设备获取用于承载该当前次上行数据的上行资源。
由于上述“步骤二”中所配置的上行资源可能承载完该当前次上行数据,即上行资源所能承载的数据量大于或等于该当前次上行数据的数据量,也可能无法承载完该当前次上行数据,即上行资源所能承载的数据量小于该当前次上行数据的数据量,因此终端设备可以在传输的TB中携带BSR,而网络设备可以根据BSR来确定是否需要再分配一些资源(即增加所配置的上行资源中的资源)给终端设备以保证上行数据的传输,或者网络设备可以根据BSR来确定是否需要减少部分资源(即减少所配置的上行资源中的资源)以提高资源利用率。
另外,由于当前次上行数据的数据包可能会先后到达终端设备的接入层,即当前次上行数据的数据包可能并不是全部都到达接入层,因此当终端设备的接入层在向网络设备传输当前次上行数据时,终端设备的接入层可能知道该当前次上行数据的数据量,也可能不知道该当前次上行数据的数据量。
基于此,终端设备发送的BSR可能存在如下四种情况:
●终端设备的接入层知道当前次上行数据的数据量,以及终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,具体在下文的“情况1”中说明。
●终端设备的接入层不知道当前次上行数据的数据量,以及终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,具体在下文的“情况2”中说明。
●终端设备的接入层知道当前次上行数据的数据量,以及终端设备的接入层不知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,具体在下文的“情况3”中说明。
●终端设备的接入层不知道当前次上行数据的数据量,以及终端设备的接入层不知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,具体在下文的“情况4”中说明。
下面对上述四种情况进行具体说明。
情况1:
①终端设备的接入层知道当前次上行数据的数据量
需要说明的是,当终端设备的接入层在向网络设备传输当前次上行数据所组成的一个TB(该TB可以是第一个TB,可以是任一个TB)时,终端设备的接入层知道该当前次上行数据的数据量,可以通过如下方式实现:
●在传输一个TB(该TB可以是第一个TB,可以是任一个TB)时,终端设备的接入层已经收到该当前次上行数据的所有数据包。此时,终端设备可以自行统计每个数据包的数据量,从而知道该当前次上行数据的数据量。
●在传输一个TB(该TB可以是第一个TB,可以是任一个TB)时,终端设备的接入层只收到该当前次上行数据的部分数据包。其中,该部分数据包中的某个或某些数据包的报头中携带用于指示该当前次上行数据的数据量的信息。因此,终端设备的接入层通过读取该信息以知道该当前次上行数据的数据量。
②终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量
结合上述“步骤二”中的内容可知,由于资源配置信息包括上行资源所能承载的数据量,因此终端设备的接入层可以通过接收该资源配置信息获知。
③BSR
●对于终端设备
对于终端设备来说,由于终端设备的接入层知道当前次上行数据的数据量以及上行资源所能承载的数据量,因此终端设备可以根据上行资源所能承载的数据量和上行数据的数据量确定是否生成BSR,具体存在如下两种方式:
●终端设备根据上行资源所能承载的数据量和上行数据的数据量确定生成BSR,并在传输的TB(该TB可以是第一个TB,也可以是任一个TB)中携带该BSR以发送给网络设备。
另外,BSR可以用于指示(报告)上行资源所能承载的数据量与上行数据的数据量之间的差值。或者说,BSR可以用于指示(报告)上行资源所能承载的数据量与上行数据的数据量之间的数据量(以字节Bytes为单位)的缺额或余额。
例如,若上行资源所能承载的数据量为1000Bytes,且上行数据的数据量为700Bytes,则BSR可以指示差值为300Bytes(即差值为大于零),或者BSR可以指示余额为300Bytes的数据量。
又例如,若上行资源所能承载的数据量为700Bytes,且上行数据的数据量为1000Bytes,则BSR可以指示差值为-300Bytes(即差值为小于零),或者BSR可以指示差额为300Bytes的数据量。
在一些可能的实现中,BSR可以携带用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值的信息。或者说,BSR可以携带用于指示上行资源所能承载的数据量与上行数据的数据量之间的数据量的缺额或余额的信息。
需要说明的是,该信息可以采用m(m为正整数)比特(bits)的索引(index)值来编码,该索引值可以用于表示上行资源所能承载的数据量与上行数据的数据量之间的差值所在的范围,或者该索引值可以用于表示上行资源所能承载的数据量与上行数据的数据量之间的数据量的差额或余额所在的数据量范围,而采用m比特的索引值可以减少BSR所携带的比特数,从而减少了空口传输的比特数。
例如,索引值为0,表示差值为零;索引值为1,表示差值的范围为(0,10);索引值为2,表示差值的范围为(-10,0);索引值为3,表示差值的范围为(20,30);索引值为4,表示差值的范围为(-30,-20),依次类推。
●终端设备根据上行资源所能承载的数据量和上行数据的数据量确定不生成BSR。
具体实现时,若该上行资源所能承载的数据量大于或等于该上行数据的数据量,则不生成BSR。
●对于网络设备
对于网络设备来说,网络设备可以接收来自终端设备的该BSR,并根据该BSR对上行资源的配置进行调整。
其中,对上行资源的配置进行调整可以包括:增加上行资源中的资源(如再配置一些资源)、减少上行资源中的资源(如回收上行资源中的部分资源)。
需要说明的是,如果空口条件有变化,那么网络设备可以执行对上行资源进行调整。
比如,若空口变好,说明相同的无线资源可以传输更多的数据,则网络设备就可以减少上行资源中的资源;反之,若空口变差,说明相同的无线资源可以传输较少的数据,则网络设备可以增加上行资源中的资源。
如果有其它终端设备需要接入网络,且重要性高,而网络设备当前又没有多余的剩余资源,则网络设备可以减少分配给当前终端设备的上行资源中的资源。
如果其它终端设备的业务结束,使得网络设备当前有富余的剩余资源,则网络设备可以分配给当前终端设备的上行资源中的资源。
可见,通过增加上行资源中的资源,有利于保证上行数据的传输;通过减少上行资源中的资源,有利于提高资源利用率。
例如,若BSR指示上行资源所能承载的数据量与上行数据的数据量之间的差值小于零,则网络设备可以增加上行资源中的资源。
又例如,若BSR指示上行资源所能承载的数据量与上行数据的数据量之间的差值大于零,则网络设备可以减少上行资源中的资源。
另外,网络设备可以向终端设备发送资源调整信息,该资源调整信息可以用于指示增加或减少上行资源中的资源,从而实现告知终端资源调整的情况。
需要说明的是,资源调整信息也可以采用其他术语描述,只有具有相同的含义/功能/解释,都在本申请所要求保护的范围内。
例如,若BSR指示上行资源所能承载的数据量与上行数据的数据量之间的差值小于零,则网络设备发送资源调整信息,该资源调整信息可以用于指示增加上行资源中的资源。
又例如,若BSR指示上行资源所能承载的数据量与上行数据的数据量之间的差值大于零,则网络设备发送资源调整信息,该资源调整信息可以用于指示减少上行资源中的资源。
●增加上行资源中的资源
网络设备增加上行资源中的资源,可以存在如下实现方式:
●额外分配L个资源
需要说明的是,“额外分配L个资源”,是指在除上行资源之外再额外分配L个资源,L为正整数。
例如,网络设备原本为终端设备的当前次上行数据分配3个资源,现在增加1个资源,即L=1。
这种情况下,网络设备和终端设备达成共识,终端设备完成4个TB的传输后,认为当前次上行数据的传输结束。
其中,第4个资源的时频域位置和/或所能承载的数据量,可以由网络设备通过DCI指示,而UE只需监听PDCCH以获取DCI。
值得注意的是,此处“第4个资源”是逻辑含义的第4个,并不特指新增加的资源的时域位置一定位于原来配置的3个资源之后。
●扩大上行资源中的第T个资源所能承载的数据量,并增加Y Bytes
需要说明的是,“扩大上行资源中的第T个资源所能承载的数据量,并增加Y Bytes”,是指将原本为终端设备的当前次上行数据分配的上行资源中的第T个资源所能承载的数据量增加Y Bytes,T为正整数,Y为正整数。
这种情况下,网络设备和终端设备达成共识,第T个资源所能承载的数据量,在原有配置的C Bytes的基础上,增加为(C+Y)Bytes。
对于如何从C Bytes增加到(C+Y)Bytes,可以由网络设备通过DCI指示,也可以预先由基站配置一些规则,而终端设备可以根据这些规则确定如何增加Y Bytes。
例如,原来配置终端设备在PRB索引号为131至150的这20个PRB传输C bytes,即C=100。通过更新后,终端设备在PRB索引号为131至160的这30个PRB传输(C+Y)bytes,即Y=50。或者,通过更新后,终端设备在PRB索引号为121至150的这30个PRB传输(C+Y)bytes,即Y=50。
●扩大上行资源中的第T个资源所能承载的数据量
需要说明的是,网络设备扩大第T个资源所能承载的数据量,而具体承载多少数据量,则由网络设备通过DCI指示。
具体实现时,网络设备可以在第T个资源对应的DCI中,指示具体多少数据量。终端设备在收到该DCI之后,以DCI中指示的数据量为准,丢弃原来配置上行资源中的第T个资源所能承载的数据量。
●减少上行资源中的资源
网络设备减少上行资源中的资源,可以存在如下实现方式:
-收回上行资源中的第K个资源
需要说明的是,“回收上行资源中的第K个资源”,是指将上行资源中的第K个资源进行回收,K为正整数。
例如,网络设备原本为终端设备的当前次上行数据分配3个资源,现在将第3个资源进行回收,即K=3。
这种情况下,网络设备和终端设备达成共识,终端设备完成2个TB的传输后,认为当前次上行数据的传输结束。
-减小上行资源中的第S个资源所能承载的数据量,并减少Z Bytes
需要说明的是,“减小上行资源中的第S个资源所能承载的数据量,并减少Z Bytes”,是指将原本为终端设备的当前次上行数据分配的上行资源中的第S个资源所能承载的数据量减小Z Bytes,S为正整数,Z为正整数。
这种情况下,网络设备和终端设备达成共识,第T个资源所能承载的数据量,在原有配置的D Bytes的基础上,减小为(D-Z)Bytes。
对于如何从D Bytes减小到(D-Z)Bytes,可以由网络设备通过DCI指示,也可以预先由基站配置一些规则,而终端设备可以根据这些规则确定如何减小Z Bytes。
例如,原来配置终端设备在PRB索引号为131至150的这20个PRB传输D bytes,即D=100。通过更新后,终端设备在PRB索引号为131至140的这10个PRB传输(D-Z)bytes,即Z=50。或者,通过更新后,终端设备在PRB索引号为141至150的这10个PRB传输(D-Z)bytes,即Z=50。
●减小上行资源中的第S个资源所能承载的数据量
需要说明的是,网络设备减小上行资源中的第S个资源所能承载的数据量,而具体承载多少数据量,则由网络设备通过DCI指示。
具体实现时,网络设备可以在第S个资源对应的DCI中,指示具体多少数据量。终端设备在收到该DCI之后,以DCI中指示的数据量为准,丢弃原来配置上行资源中的第S个资源所能承载的数据量。
●请求对上行资源进行调整
结合上述可知,网络设备可以根据BSR对上行资源的配置进行调整。另外,本申请实施例还可以是由终端请求网络设备对上行资源进行调整。
具体实现时,BSR还可以用于请求对上行资源进行调整。
例如,BSR用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值小于零,以及请求增加上行资源中的资源。
又例如,BSR用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值大于零,以及请求减少上行资源中的资源。
需要说明的是,下面现有5G系统中的BSR,有两种可能的格式,如图6和图7所示。其中,图6表示终端只上报一个逻辑信道组(logical channel group,LCG)的待传输的数据量。因此,终端需要指示一个逻辑信道组标识(LCG ID),以及对应的数据量。
图7表示终端上报所有待传输的数据的逻辑信道组的数据量,所以用一个比特位图指示“哪个逻辑信道组有待传数据”,如果对应的逻辑信道组有待传输的数据,则比特位图中相应的比特填1;如果对应的逻辑信道没有待传输的数据,则比特位图中对应的比特填0;如果逻辑信道组有待传输的数据,则在后面对应的位置填入具体的待传输的数据量指示。
可见,现有协议中,BSR指示的待传输的数据量全是正值,不可能为负值。然而,本申请实施例针对BSR格式,引入了负值指示,其本质原因是终端设备事先知道网络设备即将为自己分配的上行资源所能承载的数据量。如果终端设备发现上行数据的数据量小于上行资源所能承载的数据量,则向网络设备指示一个负值,通知网络设备“请不要为我分配这么多资源,请收回部分资源”。
示例性的,如图8和图9所示。相比于图6,图8中对每个逻辑信道组新增了一个比特,用于指示对应的值是正值(即符号“+”)还是负值(即符号“-”)。具体地,如果该比特为1,表示Burrer size字段指示的是正值,即请求网络设备增加上行资源中的资源;如果该比特为0,表示Burrer size字段指示的是负值,即请求网络设备减少上行资源中的资源。
相比于图7,图9中对每个逻辑信道组新增了一个比特,用于指示对应的值是正值还是负值。具体地,如果该比特为1,表示Burrer size字段指示的是正值,即请求网络设备增加上行资源中的资源;如果该比特为0,表示Burrer size字段指示的是负值,即请求网络设备减少上行资源中的资源。
另外,本申请实施例也可以无需采用图8和图9对BSR格式进行改进,而通过对buffer size字段的对应值进行修改。
●示例性说明
下面以请求减少上行资源中的资源为例进行示例性说明。
如图10所示,流程如下:
步骤1:终端设备的应用层中的XR应用向终端设备的接入层指示待传输的每次burst的数据分布特征。
需要说明的是,XR应用周期性的生成一帧视频,而同一帧视频的多个数据包可以组成每次burst,即每次burst包含多个数据包。
步骤2:终端设备的接入层向网络设备发送第一信息。
其中,第一信息用于指示终端设备待传输的每次burst的数据分布特征。
步骤3:网络设备向终端设备发送资源配置信息。
需要说明的是,网络设备根据第一信息发送资源配置信息,该资源配置信息用于指示承载当前次burst的上行动态调度资源。
其中,该资源配置信息包括上行动态调度资源的监听时机、上行动态调度资源的调度次数为3、上行动态调度资源中的资源数量为3、上行动态调度资源所能承载的数据量为1000Bytes等。
步骤4:终端设备的应用层中的XR应用生成当前burst,并发送给终端设备的接入层。
需要说明的是,当前次burst由3个数据包组成,即数据包1、数据包2和数据包3。其中,该当前次burst的数据量为700Bytes。
步骤5:终端设备的接入层利用上行动态调度资源传输当前次burst。
需要说明的是,终端设备在上行动态调度资源的监听时机内监听PDCCH以获取DCI,并通过该DCI得到上行动态调度资源中的第一个资源的时频域位置和第一个资源所能承载的数据量为600Bytes。然后,终端设备的接入层中的MAC层会将数据包1和部分数据包2组成第一个TB,该第一个TB的数据量为300Bytes,并利用该第一个资源传输第一个TB。
由于终端设备知道第一个资源所能承载的数据量为600Bytes,以及该第一个TB的数据量为300Bytes,因此终端设备可以在第一个TB携带BSR,该BST用于请求网络设备收回300Bytes的资源。对此,网络设备在收到该BSR之后,对上行动态调度资源进行调整,并将上行动态调度资源职工的第二个资源所能承载的数据量配置为300Bytes。
情况2:
①终端设备的接入层不知道当前次上行数据的数据量
需要说明的是,当终端设备的接入层在向网络设备传输当前次上行数据所组成的第一个TB时,终端设备的接入层不知道该当前次上行数据的数据量,可以通过如下方式实现:
●在传输一个TB(该TB可以是第一个TB,可以是任一个TB)时,终端设备的接入层未收到该当前次上行数据的所有数据包,即该当前次上行数据的部分数据包到达终端设备的接入层,且该部分数据包中每个数据包的报头中未携带用于指示该当前次上行数据的数据量的信息。此时,终端设备的接入层无法知道该当前次上行数据的数据量。
②终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量
结合上述“步骤二”中的内容可知,由于资源配置信息包括上行资源所能承载的数据量,因此终端设备的接入层可以通过接收该资源配置信息获知。
③BSR
由于终端设备的接入层不知道当前次上行数据的数据量,因此终端设备可以不生成BSR。直到终端设备的接入层知道当前次上行数据的数据量时,再采用上述“情况1”中的内容进行实现,对此不再赘述。
例如,终端设备在传输当前次TB时,终端设备的接入层还不知道当前次上行数据的数据量,因此终端设备不生成BSR,即当前次TB不携带BSR。
等到在传输下一次TB时,终端设备的接入层已经知道当前次上行数据的数据量,因此终端设备根据上行资源所能承载的数据量和上行数据的数据量确定是否生成BSR。此时,若生成BSR,则该下一次TB携带BSR;若不生成BSR,则该下一次TB不携带BSR。
情况3:
①终端设备的接入层知道当前次上行数据的数据量
具体详见上述“情况1”的“①终端设备的接入层知道当前次上行数据的数据量”中的内容,在此不再赘述。
②终端设备的接入层不知道网络设备为当前次上行数据配置的上行资源所能承载的数据量
结合上述“步骤二”中的内容可知,由于资源配置信息未包括上行资源所能承载的数据量,因此终端设备的接入层无法获知。
③BSR
●对于终端设备
对于终端设备来说,由于终端设备的接入层知道当前次上行数据的数据量,但不知道上行资源所能承载的数据量,因此终端设备可以根据上行资源所能承载的数据量生成BSR,并在传输的TB(该TB可以是第一个TB,也可以是任一个TB)中携带该BSR以上报给网络设备。
其中,该BSR可以用于指示(报告)该当前次上行数据的数据量,或者该BSR可以用于指示(报告)在该BSR的发送时刻该当前次上行数据中未传输(剩余待传输)的数据量。
同理,BSR可以携带信息,该信息可以用于指示该当前次上行数据的数据量或者在该BSR的发送时刻该当前次上行数据中未传输(剩余待传输)的数据量。
例如,当上行数据的数据量为700Bytes时,终端设备的接入层中的MAC层将上行数据中的数据包进行组成以生成一个TB,且生成该TB之后该上行数据中未传输的数据量为300Bytes。然后,终端设备生成BSR,该BSR所携带的信息指示该上行数据的数据量为700Bytes或者该上行数据中未传输的数据量为300Bytes,并在该TB中携带BSR以上报给网络设备。
同理,为了该信息可以采用n(n为正整数)比特的索引值来编码,该索引值可以用于表示上行数据的数据量所在的数据量范围或者在BSR的发送时刻上行数据中未传输的数据量所在的数据量范围,而采用n比特的索引值可以减少BSR所携带的比特数,从而减少了空口传输的比特数。
例如,索引值为0,表示没有数据量;索引值为1,表示数据量范围为(0,10);索引值为2,表示数据量范围为(10,20);索引值为3,表示数据量范围为(20,30),依次类推。
●对于网络设备
对于网络设备来说,由于网络设备知道自己所配置的上行资源所能承载的数据量,以及上行数据中已经接收的数据量,因此网络设备可以接收来自终端设备的BSR,并根据该BSR和上行资源所能承载的数据量对上行资源的配置进行调整。
其中,对上行资源的配置进行调整包括以下之一:增加上行资源中的资源(如再配置一些资源)、减少上行资源中的资源(如回收上行资源中的部分资源)。
需要说明的是,通过增加上行资源中的资源,有利于保证上行数据的传输;通过减少上行资源中的资源,有利于提高资源利用率。
例如,若BSR指示上行数据的数据量,则网络设备根据上行数据的数据量和上行资源所能承载的数据量确定该上行资源是否能承载完该上行数据的数据量。
当该上行资源能承载完该上行数据的数据量时,网络设备可以减少上行资源中的资源或不增减上行资源中的资源。
当该上行资源不能承载完该上行数据的数据量时,网络设备可以增加上行资源中的资源。
又例如,若BSR指示上行数据中未传输的数据量,则网络设备可以根据上行数据中未传输的数据 量和上行数据中已经接收的数据量确定该上行数据的数据量。因此,网络设备可以根据该上行数据的数据量和该上行资源所能承载的数据量确定该上行资源是否能承载完该上行数据的数据量。
当该上行资源能承载完该上行数据的数据量时,网络设备可以减少上行资源中的资源或不增减上行资源中的资源。
当该上行资源不能承载完该上行数据的数据量时,网络设备可以增加上行资源中的资源。
需要说明的是,“增加上行资源中的资源”和“减少资源中的资源”可以详见上述“情况1”的“③BSR”中的内容,对此不再赘述。
情况4:
①终端设备的接入层不知道当前次上行数据的数据量
具体详见上述“情况2”的“①终端设备的接入层不知道当前次上行数据的数据量”中的内容,在此不再赘述。
②终端设备的接入层不知道网络设备为当前次上行数据配置的上行资源所能承载的数据量
结合上述“步骤二”中的内容可知,由于资源配置信息未包括上行资源所能承载的数据量,因此终端设备的接入层无法获知。
③BSR
由于终端设备的接入层不知道当前次上行数据的数据量,因此终端设备可以不生成BSR。直到终端设备的接入层知道当前次上行数据的数据量时,再采用上述“情况3”中的内容进行实现,对此不再赘述。
例如,终端设备在传输当前次TB时,终端设备的接入层还不知道当前次上行数据的数据量,因此终端设备不生成BSR,即当前次TB不携带BSR。
等到在传输下一次TB时,终端设备的接入层已经知道当前次上行数据的数据量,因此终端设备根据上行数据的数据量生成BSR。此时,若生成BSR,则该下一次TB携带BSR;若不生成BSR,则该下一次TB不携带BSR。
综合上述“情况1”、“情况2”、“情况3”和“情况4”中的内容,下面以上行数据为XR数据为例,总结如表1所示。
表1终端设备的接入层发送BSR的四种情况
情形二:
在“情形二”中,上行数据为不同(多种)业务的数据,而网络设备所配置的上行资源用于承载该不同(多种)业务中第一业务的数据,该第一业务可以为高传输优先级的业务,即该第一业务的传输优先级比除该第一业务外的其他业务(其他业务也可以称为第二业务)的传输优先级都高。
也就是说,上行数据可以包括第一业务的数据和第二业务的数据,第一业务的数据传输优先级高于第二业务的数据传输优先级,上行资源可以用于承载第一业务的数据。
需要说明的是,“第一业务”和“第二业务”主要是便于区分,也可以采用其他术语描述,只要具有相同的含义/解释/功能,都在本申请所要求保护的范围内。
为此,上述“情形一”中的“上行数据的数据量”可以等同于“情形二”中的“第一业务的数据量”。
结合上述“情形一”中的四种情况可知,在“情形二”中,可以存在如下:
●对于终端设备
对于终端设备来说,终端设备可以生成BSR,也可以不生成BSR。
其中,该BSR可以用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值(类似上述“情况1”或“情况2”),可以用于指示当前次第一业务的数据的数据量(类似上述“情况3”或“情况4”),可以用于指示在该BSR发送时刻该当前次第一业务的数据中未传输的数据量(类似上述“情况3”或“情况4”)。
此外,由于终端设备的缓存(buffer)会对第二业务的数据先进行存储以等待传输,但buffer存储数据有一定的时间。若超过这个时间(即超时),则buffer会丢弃存储的数据,从而导致数据的丢失。为了避免该第二业务的数据总是无法获得传输机会,因超时而造成丢包,因此“情形二”中的该BSR还可以用于报指示所需调度的该第二业务的数据量。
例如,若第二业务的数据将在第一业务的下一次周期传输之前超时,则该BSR还用于指示所需调度的第二业务的数据量,以便网络设备可以为传输第二业务配置资源,避免第二业务的数据的丢包。
●对于网络设备
对于网络设备来说,网络设备可以接收来自终端设备的该BSR。此时,与上述“情形一”类似,网络设备可以根据该BSR对上行资源的配置进行调整。
另外,由于该BSR还可以用于指示所需调度的该第二业务的数据量,因此网络设备可以根据该BSR配置(调度)用于承载第二业务的数据的资源。
例如,网络设备在收到该BSR后,可以在为第一业务配置上行资源时增加(多配置)用于承载第二业务的数据的资源,也可以在为第一业务配置上行资源之外额外配置用于承载第二业务的数据的资源。
也就是说,网络设备可以根据该BSR配置用于承载第二业务的数据的资源,该配置用于传输所述第二业务的数据的资源可以包括以下之一项:在为第一业务配置上行资源时增加用于承载第二业务的数据的资源、在为第一业务配置上行资源之外额外配置用于承载第二业务的数据的资源。
需要说明的是,额外配置用于承载第二业务的数据的资源可以存在如下两种方式:
●显示指示
网络设备可以在收到携带BSR的TB之后,通过向终端设备下发高层信令(如RRC信令、MAC CE或DCI信令等)指示终端设备在传输完第一业务的最后一个TB后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源。
●隐藏指示
网络设备可以在收到携带BSR的TB之后,通过为第一业务配置的上行资源中最后一个资源所在的频域位置(子频带(如RB或RE等))或时域位置来指示终端设备在传输完第一业务的最后一个TB后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源。或者,
网络设备可以在收到携带BSR的TB之后,通过为第一业务调度上行资源中最后一个资源的DCI所在的频域位置或时域位置来指示终端设备在传输完第一业务的最后一个TB后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源。
可见,通过BSR的上报为传输第二业务的数据配置(调度)资源,有利于避免第二业务的数据因总是不能获得传输资源而导致丢包。
●示例性说明
下面对“情形二”做一个示例性的说明。
示例性的,如图11所示,当前次第一业务的数据在时刻A到达终端设备的接入层之前,网络设备只向终端设备配置用于承载第一业务的数据的上行资源,该上行资源所能承载的数据量为1200Bytes,以及该当前次第一业务的数据量为1500Bytes。
同时,终端设备的buffer还缓存有当前次第二业务的数据,但无上行资源来传输当前次第二业务的数据。若终端设备发现当前次第二业务的数据将在下一次第一业务的数据进行传输之前的时刻B超时,则终端设备在传输当前次第一业务的第一个TB中携带BSR,该BSR除了用于指示上行资源所能承载的数据量与当前次第一业务的数据的数据量之间的差值,以及还用于所需调度的当前次第二业务的数据量。
网络设备在获取到该BSR之后,可以在收到当前次第一业务的最后一个TB之前采用上述隐式或显示方式指示终端设备不要进入睡眠状态,继续监听PDCCH,获取用于承载当前次第二业务的数据的资源。
终端设备通过继续监听PDCCH以得到DCI,并通过DCI获取用于承载当前次第二业务的数据的资 源,并利用该资源传输当前次第二业务的数据。
步骤四:传输上行数据
结合上述“步骤二”可知,在当前次上行数据到达终端设备的接入层之前或之后(优选之前),终端设备获取用于承载该当前次上行数据的上行资源,并利用该上行资源传输该当前次上行数据。
需要说明的是,终端设备在传输上行数据过程中可以存在如下实现方式:
●在传输该当前次上行数据的最后一个TB后,若网络设备没有其它指示,则终端设备可以进入睡眠状态以节省能耗。
●在上述“步骤三”的“情况1”中,若终端设备的接入层知道当前次上行数据的数据量,以及终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,则终端设备可以进行传输优化。若上行资源所能承载的数据量大于当前次上行数据的数据量,则在尽可能多的TB中,终端设备可以重复传输重要数据包。
例如,如图12所示,终端设备的应用层中的应用生成当前次上行数据,具体如下:
-当前次上行数据包括4个数据包,即数据包A、数据包B、数据包C、数据包D;
-数据包B的重要性高于其它数据包,即数据包B为重要数据包。
-当前次上行数据的数据量为1000Bytes;
-数据包A的数据量为300Bytes,数据包B的数据量为200Bytes,数据包C的数据量为400Bytes,数据包D的数据量为100Bytes。
网络设备为该当前次上行数据所配置的上行资源,具体如下:
-上行资源所能承载的数据量为1200Bytes;
-上行资源包括2个资源,第一个资源所能承载的数据量为500Bytes,第二个资源所能承载的数据量为700Bytes。
由于终端设备的接入层知道当前次上行数据的数据量以及网络设备为当前次上行数据配置的上行资源所能承载的数据量,则终端设备可以将数据包B传输两次,即第一个资源所承载的传输块1包括数据包A和数据包B,第二个资源所承载的传输块2也包括数据包B。
●在上述“步骤三”的“情况1”中,若终端设备的接入层知道当前次上行数据的数据量,以及终端设备的接入层知道网络设备为当前次上行数据配置的上行资源所能承载的数据量,则终端设备可以进行传输优化。若上行资源所能承载的数据量小于当前次上行数据的数据量,则终端设备可以优先传输重要数据包,或者可以不按顺序传输数据包。
例如,终端设备的应用层中的应用生成当前次上行数据,具体如下:
-当前次上行数据包括4个数据包,即数据包A、数据包B、数据包C、数据包D;
-数据包B的重要性高于其它数据包,即数据包B为重要数据包。
-当前次上行数据的数据量为700Bytes;
-数据包A的数据量为200Bytes,数据包B的数据量为200Bytes,数据包C的数据量为200Bytes,数据包D的数据量为100Bytes。
网络设备为该当前次上行数据所配置的上行资源,具体如下:
-上行资源所能承载的数据量为500Bytes;
-上行资源包括2个资源,第一个资源所能承载的数据量为200Bytes,第二个资源所能承载的数据量为300Bytes。
由于数据包B为重要数据包,因此终端设备可以利用第一个资源先传输数据包B。由于第二个资源足以将剩余的数据包A、数据包B或数据包C进行传输,而在数据包A、数据包B或数据包C组成TB时,在已放入数据包A的情况下,如果是再放数据包C,则需要将数据包C进行分段,而如果是再放数据包D,则不需要将数据包D进行分段,因此可以将数据包A和数据包D组成TB,并利用第二个资源传输该TB。
(3)又一种资源配置方式的具体流程
在上述“(2)一种资源配置方式的具体流程”的基础上,本申请实施例需要对一些步骤做了增强。下面具体流程中,仅对增强的步骤做具体说明。
步骤一:发送第一信息
具体详见上述“(2)一种资源配置方式的具体流程”的“步骤一”中的内容,在此不再赘述。
步骤二:配置上行资源
在“(2)一种资源配置方式的具体流程”的“步骤二”中,网络设备可以向终端设备配置上行资源所能承载的数据量、上行资源中的资源数量。
然而,在本“步骤二”中,网络设备除了向终端设备配置上行资源所能承载的数据量、上行资源中的资源数量,还需要向终端设备配置上行资源中各个资源所能承载的数据量。
具体实现时,在上述“步骤二”的“上行免调度资源”中,上行免调度机制需要同时通知上行资源所能承载的数据量和该上行资源的时频域位置,而“(3)又一种资源配置方式的具体流程”的“步骤二”存在如下不同:
对于网络设备来说,网络设备通过第一信息获知上行数据到达终端设备的接入层的时间。然后,在上行数据到达终端设备的接入层的时间之前,网络设备只需先向终端设备通知上行资源中各个资源所能承载的数据量。接着,在上行数据到达终端设备的接入层的时间之后,网络设备再配置上行资源中各个资源的时频域位置以通知给终端设备。
也就是说,资源配置信息包括:在上行数据到达终端设备的接入层的时间之前所发送的以下信息:上行资源的资源数量、上行资源中各个资源所能承载的数据量;在上行数据到达终端设备的接入层的时间之后所发送的以下信息:上行资源中各个资源的时频域位置。
对于终端设备来说,在上行数据到达终端设备的接入层的时间之前,终端设备虽然未获知上行资源的时频域位置,但获知上行资源中各个资源所能承载的数据量。因此,终端设备可以提前根据上行资源所能承载的数据量和上行数据的数据量来确定是否生成BSR,以及BSR所携带的信息内容等。
同理,在上述“步骤二”的“上行动态调度资源”中,动态调度机制不会提前配置上行资源中各个资源所能承载的数据量,而本“步骤二”可以提前配置上行资源中各个资源所能承载的数据量,使得终端设备可以提前根据上行资源所能承载的数据量和上行数据的数据量来确定是否生成BSR,以及BSR所携带的信息内容等。
除了上述不同之外,“(3)又一种资源配置方式的具体流程”的“步骤二”中的其他内容与上述“步骤二”中的内容类似,对此不再赘述。
步骤三:上报BSR
在“(2)一种资源配置方式的具体流程”的“步骤三”中,对于终端设备请求对上行资源的配置进行调整,网络设备是默认“同意”该请求的。
然而,在“(3)又一种资源配置方式的具体流程”的“步骤三”中,对于终端设备请求对上行资源的配置进行调整,网络设备可能存在“同意”、“部分同意”或“拒绝”该请求。
●“同意”的含义
“同意”,可以理解为,网络设备可以执行对上行资源的配置进行调整以满足终端设备的请求,即同意终端的请求。
需要说明的是,网络设备可以根据空口条件的变化情况来确定是否同意终端设备的请求。
比如,若空口变好,说明相同的无线资源可以传输更多的数据,则网络设备就可以同意减少上行资源中的资源;反之,若空口变差,说明相同的无线资源可以传输较少的数据,则网络设备可以同意增加上行资源中的资源。
如果有其它终端设备需要接入网络,且重要性高,而网络设备当前又没有多余的剩余资源,则网络设备可以拒绝再分配给当前终端设备的上行资源中的资源。
如果其它终端设备的业务结束,使得网络设备当前有富余的剩余资源,则网络设备可以同意再分配给当前终端设备的上行资源中的资源。
也就是说,网络设备需要根据空口条件的变化情况、资源的充裕情况或者其他终端设备所需资源的情况来确定是否同意终端设备的请求。若资源充裕,则同意;若其他终端设备所需资源较少,而有多余资源,则同意。
例如,若终端设备知道上行数据的数据量为1000Bytes,以及知道上行资源所能承载的数据量为700Bytes,因此终端设备可以通过BSR请求网络设备增加上行资源中的资源,并增加300Bytes。若当前有充裕的剩余资源可以分配给终端设备,或者有少量的其他终端设备亟待需要分配资源,则网络设备可以同意终端设备的请求以增加用于承载300Bytes的资源,以满足终端设备传输上行数据的需求。
●“部分同意”的含义
“部分同意”,可以理解为,网络设备执行对上行资源的配置进行调整以部分满足终端设备的请求,即部分同意终端的请求。
另外,网络设备需要根据空口条件的变化情况、资源的充裕情况或者其他终端设备所需资源的情况来确定是否部分同意终端设备的请求。
例如,若终端设备知道上行数据的数据量为1000Bytes,以及知道上行资源所能承载的数据量为700Bytes,因此终端设备可以通过BSR请求网络设备增加上行资源中的资源,并增加300Bytes。若当前只 有少量的剩余资源可以分配给终端设备,或者有大量的其他终端设备亟待需要分配资源,则网络设备可以部分同意终端设备的请求以增加用于承载最多100Bytes的资源,以部分满足终端设备传输上行数据的需求。
●“拒绝”的含义
“拒绝”,可以理解为,网络设备不执行对上行资源的配置进行调整以拒绝终端设备的请求。
另外,网络设备需要根据空口条件的变化情况、资源的充裕情况或者其他终端设备所需资源的情况来确定是否拒绝终端设备的请求。
例如,若终端设备知道上行数据的数据量为1000Bytes,以及知道上行资源所能承载的数据量为700Bytes,因此终端设备可以通过BSR请求网络设备增加上行资源中的资源,并增加300Bytes。若当前没有剩余资源可以分配给终端设备,或者有大量的其他终端设备亟待需要分配资源,则网络设备可以拒绝终端设备的请求以不调整所配置的资源。
由于网络设备可以执行或不执行对上行资源的配置进行调整,因此网络设备可以向终端设备反馈:“同意”、“部分同意”或“拒绝”对上行资源的配置进行调整,以便于终端设备可以进行传输优化。
例如,若BSR还用于请求对上行资源进行调整,则网络设备可以向终端设备发送资源调整请求信息,该资源调整请求信息可以用于指示同意、部分同意或拒绝上行资源的调整请求,以便向终端设备通知网络设备的决定,进而终端设备可以进行传输优化。
需要说明的是,资源调整请求信息也可以采用其他术语描述,只有具有相同的含义/功能/解释,都在本申请所要求的保护的范围内。
下面结合“(2)一种资源配置方式的具体流程”的“步骤三”中的四种情况和表1进行具体说明。
情况1:
●对于终端设备
终端设备向网络设备发送BSR,该BSR可以用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值,以及请求对上行数据进行调整。
●对于网络设备
网络设备可以来自终端设备的该BSR,并可以根据BSR发送资源调整请求信息,该资源调整请求信息用于指示同意、部分同意或拒绝上行资源的调整请求。
其中,对上行资源的配置进行调整包括以下之一:增加上行资源中的资源(如再配置一些资源)、减少上行资源中的资源(如回收上行资源中的部分资源)。
情况2:
由于终端设备的接入层不知道当前次上行数据的数据量,因此终端设备可以不生成BSR。直到终端设备的接入层知道当前次上行数据的数据量时,再采用上述“情形1”中的内容进行实现,对此不再赘述。
情况3:
●对于终端设备
终端设备向网络设备发送BSR,该BSR可以用于指示该当前次上行数据的数据量或在该BSR发送时刻该当前次上行数据中未传输的数据量,以及请求对上行数据进行调整。
●对于网络设备
由于网络设备知道自己所配置的上行资源所能承载的数据量,以及上行数据中已经接收的数据量,因此网络设备可以接收来自终端设备的BSR,并根据该BSR和上行资源所能承载的数据量发送资源调整请求信息,该资源调整请求信息用于指示同意、部分同意或拒绝上行资源的调整请求。
情况4:
由于终端设备的接入层不知道当前次上行数据的数据量,因此终端设备可以不生成BSR。直到终端设备的接入层知道当前次上行数据的数据量时,再采用上述“情形3”中的内容进行实现,对此不再赘述。
步骤四:传输上行数据
对于终端设备来说,在接收到资源调整请求信息之后,终端设备在传输上行数据过程中可以存在如下实现方式:
●在传输该当前次上行数据的最后一个TB后,若网络设备没有其它指示,则终端设备可以进入睡眠状态以节省能耗。
●若上行资源所能承载的数据量大于当前次上行数据的数据量,且终端设备请求减小上行资源中的资源,而资源调整请求信息指示拒绝上行资源的调整请求,则在尽可能多的TB中,终 端设备可以重复传输重要数据包。具体类似于“(2)一种资源配置方式的具体流程”的“步骤四”中的描述,如图12,对此不再赘述。
●若上行资源所能承载的数据量小于当前次上行数据的数据量,且终端设备请求增加上行资源中的资源,而资源调整请求信息指示拒绝上行资源的调整请求,则终端设备可以优先传输重要数据包,或者可以不按顺序传输数据包。具体类似于“(2)一种资源配置方式的具体流程”的“步骤四”中的描述,对此不再赘述。
5、一种资源配置方法的示例性说明
下面以网络设备与终端设备之间的交互为例,再对本申请实施例的一种资源配置方法进行示例性说明。需要说明的是,网络设备也可以看做芯片/芯片模组/装置/处理器等,终端设备也可以看做芯片/芯片模组/装置/处理器等,对此不作具体限制。
如图13所示,为本申请实施例的一种资源配置方法的流程示意图,具体包括如下步骤:
S1310、终端设备发送第一信息,该第一信息用于指示上行数据的数据分布特征。
对应的,网络设备接收该第一信息。
S1320、网络设备根据上行数据的数据分布特征,发送资源配置信息,该资源配置信息用于指示上行资源。
对应的,终端设备接收该资源配置信息。
其中,该资源配置信息由上行数据的数据分布特征确定。
需要说明的是,对于“第一信息”、“上行数据的数据分布特征”、“资源配置信息”等的说明具体详见上述内容,对此不再赘述。
可见,本申请实施例可以根据上行数据的数据分布特征来指示(配置/分配/调度等)用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。
在一些可能的实现中,上行数据的数据分布特征包括以下至少之一项:
上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、重要数据包在上行数据中的位置分布、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间、上行数据到达终端设备的接入层的时间的抖动范围。
需要说明的是,重要数据包在上行数据中的位置分布,可以存在如下:
-重要数据包在上行数据中位于第X个数据包
需要说明的是,上行数据包括多个数据包,而该多个数据包中的第X个数据包为重要数据包。
-重要数据包在上行数据中位于第X至Y个数据包
需要说明的是,上行数据包括多个数据包,而该多个数据包中的第X个数据包到第Y个数据包为重要数据包。
-重要数据包的数据量在上行数据中位于第M至N个Bytes
需要说明的是,上行数据的数据量包括多个Bytes,而该多个Bytes中的第M个Bytes到第N个Bytes为重要数据包的数据量。
可见,通过上行数据的周期、上行数据的平均数据量等实现对上行数据的数据分布特征进行定义。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行免调度资源。
可见,本申请实施例可以采用半静态调度或免调度的方式来配置上行资源,即上行免调度资源(或上行静态调度资源)。
在一些可能的实现中,资源配置信息包括以下至少之一项:
上行免调度资源的周期、上行免调度资源的时频域位置、上行免调度资源的配置次数、上行免调度资源的资源数量、上行免调度资源所能承载的数据量。
可见,本申请实施例可以根据上行数据的数据分布特征确定上行免调度资源的周期、上行免调度资源的时频域位置等信息,从而实现配置上行免调度资源。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行动态调度度资源。
可见,本申请实施例可以采用动态调度的方式来配置上行资源,即上行动态调度资源。
在一些可能的实现中,资源配置信息包括以下至少之一项:上行动态调度资源的监听时机、上行动态调度资源的调度次数、上行动态调度资源的资源数量、上行动态调度资源所能承载的数据量。
可见,本申请实施例可以根据上行数据的数据分布特征确定上行动态调度资源的监听时机、上行动态调度资源的调度次数等信息,从而实现配置上行动态调度资源。
在一些可能的实现中,该方法还包括如下步骤:
若终端设备的接入层知道上行数据的数据量,以及知道上行资源所能承载的数据量,则终端设备发送第二信息,该第二信息用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值。
对应的,网络设备接收该第二信息,以及根据上行资源所承载的数据量与上行数据的数据量之间的差值,对上行资源的配置进行调整。
需要说明的是,第二信息可以为BSR或除该BSR外的其他MAC CE。
可见,本申请实施例可以通过第二信息来告知网络设备上行资源所承载的数据量与上行数据的数据量之间的差值,使得网络设备可以对上行资源的配置进行调整,从而有利于提高资源利用率,以及保证上行数据的传输稳定性。
在一些可能的实现中,该方法还包括如下步骤:
若终端设备的接入层不知道所述上行数据的数据量,以及知道上行资源所能承载的数据量,则终端设备在等到终端设备的接入层知道上行数据的数据量之后,发送第二信息;第二信息用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值。
对应的,网络设备接收该第二信息,以及根据上行资源所承载的数据量与上行数据的数据量之间的差值,对上行资源的配置进行调整。
可见,本申请实施例可以通过第二信息来告知网络设备上行资源所承载的数据量与上行数据的数据量之间的差值,使得网络设备可以对上行资源的配置进行调整,从而有利于提高资源利用率,以及保证上行数据的传输稳定性。
在一些可能的实现中,根据上行资源所承载的数据量与上行数据的数据量之间的差值对上行资源的配置进行调整,包括:
若上行资源所承载的数据量与上行数据的数据量之间的差值大于零,则网络设备发送资源调整信息,该资源调整信息用于指示减少上行资源中的资源。
对应的,终端设备接收该资源调整信息。
可见,本申请实施例可以根据上行资源所承载的数据量与上行数据的数据量之间的差值来实现减少上行资源中的资源,从而有利于提高资源利用率。
在一些可能的实现中,资源调整信息用于指示以下至少之一项:
收回上行资源中的第K个资源、减小上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
可见,本申请实施例可以通过资源调整信息来指示收回上行资源中的第K个资源和/或减小上行资源中的第S个资源所能承载的数据量,从而实现减少上行资源中的资源。
在一些可能的实现中,该方法还包括如下步骤:
若第二信息还用于请求对上行资源进行调整,则网络设备发送资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
对应的,终端设备接收该资源调整请求反馈信息。
可见,本申请实施例的终端设备可以请求对上行资源进行调整,而网络设备可以向发送资源调整请求反馈信息,使得通知终端设备对该请求的决定,而终端设备可以根据该决定进行传输优化,以便提高上行数据传输的稳定性。
在一些可能的实现中,该方法还包括如下步骤:
若终端设备的接入层知道所述上行数据的数据量,以及不知道上行资源所能承载的数据量,则终端设备发送第三信息;第三信息用于指示上行数据的数据量;或者,第三信息用于指示在第三信息发送时刻上行数据中未传输的数据量。
对应的,网络设备接收该第三信息,以及根据第三信息和上行资源所能承载的数据量,对上行资源的配置进行调整。
需要说明的是,第三信息可以为BSR或除该BSR外的其他MAC CE。
可见,本申请实施例可以通过第三信息来告知网络设备上行数据的数据量或在第三信息发送时刻上行数据中未传输的数据量,使得网络设备可以对上行资源的配置进行调整,从而有利于提高资源利用率,以及保证上行数据的传输稳定性。
在一些可能的实现中,该方法还包括如下步骤:
若终端设备的接入层不知道上行数据的数据量,以及不知道上行资源所能承载的数据量,则在等到 终端设备的接入层知道上行数据的数据量之后,终端设备向网络设备发送第三信息;第三信息用于指示上行数据的数据量;或者,第三信息用于指示在第三信息发送时刻上行数据中未传输的数据量。
对应的,网络设备接收该第三信息,以及根据第三信息和上行资源所能承载的数据量,对上行资源的配置进行调整。
可见,本申请实施例可以通过第三信息来告知网络设备上行数据的数据量或在第三信息发送时刻上行数据中未传输的数据量,使得网络设备可以对上行资源的配置进行调整,从而有利于提高资源利用率,以及保证上行数据的传输稳定性。
在一些可能的实现中,该方法还包括如下步骤:
若第三信息还用于请求对上行资源进行调整,则网络设备发送资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
对应的,终端设备接收该资源调整请求反馈信息。
可见,本申请实施例的终端设备可以请求对上行资源进行调整,而网络设备可以向发送资源调整请求反馈信息,使得通知终端设备对该请求的决定,而终端设备可以根据该决定进行传输优化,以便提高上行数据传输的稳定性。
在一些可能的实现中,上行数据包括第一业务的数据和第二业务的数据,第一业务的数据传输优先级高于第二业务的数据传输优先级,上行资源用于承载第一业务的数据。
可见,本申请实施例的上行数据可以为不同(多种)业务的数据,并该多种业务的数据可能存在优先级,而终端设备可能需要按照优先级来将该多种业务的数据进行先后传输。
在一些可能的实现中,该方法还包括如下步骤:
终端设备发送第四信息;第四信息用于指示上行资源所能承载的数据量与第一业务的数据量之间的差值;或者,第四信息用于指示第一业务的数据的数据量;或者,第四信息用于指示在第四信息发送时刻第一业务的数据中未传输的数据量。
对应的,网络设备接收该第四信息。
需要说明的是,第四信息可以为BSR或除该BSR外的其他MAC CE等。
可见,本申请实施例可以通过第四信息来告知网络设备上行资源所能承载的数据量与第一业务的数据量之间的差值、第一业务的数据的数据量或在第四信息发送时刻第一业务的数据中未传输的数据量,使得网络设备可以对上行资源的配置进行调整,从而有利于提高资源利用率,以及保证上行数据的传输稳定性。
在一些可能的实现中,若第二业务的数据将在第一业务的下一次周期传输之前超时,则第四信息还用于指示所需调度的第二业务的数据量。
可见,本申请实施例可以通过第四信息来告知网络设备第二业务的数据量,以便于网络设备可以为终端设备调度第二业务的数据的资源,保证第二业务的数据的传输,避免丢包。
在一些可能的实现中,该方法还包括如下步骤:
根据第四信息配置用于承载第二业务的数据的资源,配置用于传输第二业务的数据的资源包括以下之一项:
在为第一业务配置上行资源时增加用于承载第二业务的数据的资源、在为第一业务配置上行资源之外额外配置用于承载第二业务的数据的资源。
可见,本申请实施例可以通过第四信息为终端设备调度第二业务的数据的资源,保证第二业务的数据的传输,避免丢包。
在一些可能的实现中,额外配置用于承载第二业务的数据的资源,包括:
通过通知终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以继续监听PDCCH,以便获取用于承载第二业务的数据的资源;或者,
通过为第一业务配置的上行资源中最后一个资源所在的频域位置或时域位置来指示终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源;或者,
通过为第一业务调度上行资源中最后一个资源的DCI所在的频域位置或时域位置来指示终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源。
可见,本申请实施例可以通过多种方式实现额外配置用于承载第二业务的数据的资源。
在一些可能的实现中,资源配置信息包括:
在上行数据到达终端设备的接入层的时间之前所发送的以下信息:上行资源的资源数量、上行资源 中各个资源所能承载的数据量;
在上行数据到达终端设备的接入层的时间之后所发送的以下信息:上行资源中各个资源的时频域位置。
可见,本申请实施例可以在不同时序下发信息以实现配置上行资源,有利于提高上行资源配置的灵活性。
6、一种资源配置装置的示例性说明
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,终端设备或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能单元的划分。例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图14是本申请实施例的一种资源配置装置的功能单元组成框图。资源配置装置1400包括:接收单元1401和发送单元1402。
需要说明的是,接收单元1401可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
发送单元1402可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,接收单元1401和发送单元1402可以集成在一个单元中,也可以分离成两个单元。
例如,接收单元1401和发送单元1402可以集成在通信单元中,该通信单元可以是通信接口、收发器、收发电路等。
又例如,接收单元1401和发送单元1402可以集成在处理单元中,该处理单元可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。
在一些可能的实现中,资源配置装置1400还可以包括存储单元,用于存储资源配置装置1400所执行的计算机程序代码或者指令。该存储单元可以是存储器。
在一些可能的实现中,资源配置装置1400可以是芯片或者芯片模组。
具体实现时,接收单元1401和发送单元1402用于执行如上述方法实施例中的任一步骤。下面进行详细说明。
接收单元1401,用于接收第一信息,第一用于指示上行数据的数据分布特征;
发送单元1402,用于根据上行数据的数据分布特征,发送资源配置信息,资源配置信息用于指示上行资源。
可见,本申请实施例可以根据上行数据的数据分布特征来指示(配置/分配/调度等)用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。
需要说明的是,图14所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再具体赘述。
在一些可能的实现中,在接收第一信息方面,接收单元1401用于:
接收来自终端设备的第一信息;或者,接收来自应用服务器的第一信息。
在一些可能的实现中,上行数据的数据分布特征包括以下至少之一项:
上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、重要数据包在上行数据中的位置分布、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间、上行数据到达终端设备的接入层的时间的抖动范围。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行免调度 资源。
在一些可能的实现中,资源配置信息包括以下至少之一项:
上行免调度资源的周期、上行免调度资源的时频域位置、上行免调度资源的配置次数、上行免调度资源的资源数量、上行免调度资源所能承载的数据量。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行动态调度度资源。
在一些可能的实现中,资源配置信息包括以下至少之一项:
上行动态调度资源的监听时机、上行动态调度资源的调度次数、上行动态调度资源的资源数量、上行动态调度资源所能承载的数据量。
在一些可能的实现中,资源配置装置1400还包括调整单元,
接收单元1401,还用于接收第二信息,第二信息用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值;
调整单元,用于根据上行资源所承载的数据量与上行数据的数据量之间的差值,对上行资源的配置进行调整。
需要说明的是,调整单元可以集成在处理单元中。
在一些可能的实现中,在根据上行资源所承载的数据量与上行数据的数据量之间的差值对上行资源的配置进行调整方面,调整单元用于:
若上行资源所承载的数据量与上行数据的数据量之间的差值大于零,则通过发送单元1402发送资源调整信息,资源调整信息用于指示减少上行资源中的资源。
在一些可能的实现中,资源调整信息用于指示以下至少之一项:收回上行资源中的第K个资源、减小上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
在一些可能的实现中,发送单元1402还用于:
若第二信息还用于请求对上行资源进行调整,则发送资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
在一些可能的实现中,资源配置装置1400还包括调整单元,
接收单元1401:还用于接收第三信息,第三信息用于指示上行数据的数据量;或者,第三信息用于指示在第三信息的发送时刻上行数据中未传输的数据量;
调整单元,用于根据第三信息和上行资源所能承载的数据量,对上行资源的配置进行调整。
在一些可能的实现中,发送单元1402还用于:
若第三信息还用于请求对上行资源进行调整,则发送资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
在一些可能的实现中,上行数据包括第一业务的数据和第二业务的数据,第一业务的数据传输优先级高于第二业务的数据传输优先级,上行资源用于承载第一业务的数据。
在一些可能的实现中,接收单元1401还用于:
接收第四信息;第四信息用于指示上行资源所能承载的数据量与第一业务的数据量之间的差值;或者,第四信息用于指示第一业务的数据的数据量;或者,第四信息用于指示在第四信息发送时刻第一业务的数据中未传输的数据量。
在一些可能的实现中,若第二业务的数据将在第一业务的下一次周期传输之前超时,则第四信息还用于指示所需调度的第二业务的数据量。
在一些可能的实现中,资源配置装置1400还包括配置单元,
配置单元,用于根据第四信息配置用于承载第二业务的数据的资源,配置用于传输第二业务的数据的资源包括以下之一项:
在为第一业务配置上行资源时增加用于承载第二业务的数据的资源、在为第一业务配置上行资源之外额外配置用于承载第二业务的数据的资源。
需要说明的是,配置单元可以集成在处理单元中。
在一些可能的实现中,额外配置用于承载第二业务的数据的资源,包括:
通过通知终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以继续监听PDCCH,以便获取用于承载第二业务的数据的资源;或者,
通过为第一业务配置的上行资源中最后一个资源所在的频域位置或时域位置来指示终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源;或者,
通过为第一业务调度上行资源中最后一个资源的DCI所在的频域位置或时域位置来指示终端设备在传输完第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载第二业务的数据的资源。
在一些可能的实现中,资源配置信息包括:在上行数据到达终端设备的接入层的时间之前所发送的以下信息:上行资源的资源数量、上行资源中各个资源所能承载的数据量;在上行数据到达终端设备的接入层的时间之后所发送的以下信息:上行资源中各个资源的时频域位置。
7、又一种资源配置装置的示例性说明
在采用集成的单元的情况下,图15是本申请实施例的又一种资源配置装置的功能单元组成框图。资源配置装置1500包括:发送单元1501和接收单元1502。
需要说明的是,发送单元1501可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
接收单元1502可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,发送单元1501和接收单元1502可以集成在一个单元中,也可以分离成两个单元。
例如,发送单元1501和接收单元1502可以集成在通信单元中,该通信单元可以是通信接口、收发器、收发电路等。
又例如,发送单元1501和接收单元1502可以集成在处理单元中,该处理单元可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。
在一些可能的实现中,资源配置装置1500还可以包括存储单元,用于存储资源配置装置1500所执行的计算机程序代码或者指令。该存储单元可以是存储器。
在一些可能的实现中,资源配置装置1500可以是芯片或者芯片模组。
具体实现时,发送单元1501和接收单元1502用于执行如上述方法实施例中的任一步骤。下面进行详细说明。
发送单元1501,用于发送第一信息,第一信息用于指示上行数据的数据分布特征;
接收单元1502,用于接收资源配置信息,资源配置信息用于指示上行资源,资源配置信息由上行数据的数据分布特征确定。
可见,本申请实施例可以根据上行数据的数据分布特征来指示(配置/分配/调度等)用于承载该上行数据的上行资源,使得所指示的上行资源能够满足该上行数据的传输,避免所配置的上行资源在传输上行数据时存在多余或不足,从而有利于提高资源利用率,以及保证上行数据传输的可靠性。
在一些可能的实现中,上行数据的数据分布特征包括以下至少之一项:
上行数据的周期、上行数据的平均数据量、上行数据的数据量范围、上行数据中的重要数据包所在的位置、上行数据中的重要数据包的数据量、上行数据到达终端设备的接入层的时间、上行数据到达终端设备的接入层的时间的抖动范围。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行免调度资源。
在一些可能的实现中,资源配置信息包括以下至少之一项:
上行免调度资源的周期、上行免调度资源的时频域位置、上行免调度资源的配置次数、上行免调度资源的资源数量、上行免调度资源所能承载的数据量。
在一些可能的实现中,资源配置信息用于指示上行资源,包括:资源配置信息用于指示上行动态调度资源。
在一些可能的实现中,资源配置信息包括以下至少之一项:
上行动态调度资源的监听时机、上行动态调度资源的调度次数、上行动态调度资源的资源数量、上行动态调度资源所能承载的数据量。
在一些可能的实现中,发送单元1501还用于:若终端设备的接入层知道上行数据的数据量,以及知道上行资源所能承载的数据量,则发送第二信息;第二信息用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值。
在一些可能的实现中,发送单元1501还用于:
若终端设备的接入层不知道上行数据的数据量,以及知道上行资源所能承载的数据量,则在等到终端设备的接入层知道上行数据的数据量之后,发送第二信息;第二信息用于指示上行资源所能承载的数据量与上行数据的数据量之间的差值。
在一些可能的实现中,接收单元1502还用于:
若上行资源所承载的数据量与上行数据的数据量之间的差值大于零,则接收资源调整信息,资源调整信息用于指示减少上行资源中的资源。
在一些可能的实现中,资源调整信息用于指示以下至少之一项:收回上行资源中的第K个资源、减小上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
在一些可能的实现中,接收单元1502还用于:
若第二信息还用于请求对上行资源进行调整,则接收资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
在一些可能的实现中,发送单元1501还用于:
若终端设备的接入层知道上行数据的数据量,以及不知道上行资源所能承载的数据量,则发送第三信息;第三信息用于指示上行数据的数据量;或者,第三信息用于指示在第三信息发送时刻上行数据中未传输的数据量。
在一些可能的实现中,发送单元1501还用于:
若终端设备的接入层不知道上行数据的数据量,以及不知道上行资源所能承载的数据量,则在等到终端设备的接入层知道上行数据的数据量之后,向网络设备发送第三信息;第三信息用于指示上行数据的数据量;或者,第三信息用于指示在第三信息发送时刻上行数据中未传输的数据量。
在一些可能的实现中,接收单元1502还用于:
若第三信息还用于请求对上行资源进行调整,则接收资源调整请求反馈信息,资源调整请求反馈信息用于指示同意、部分同意或拒绝上行资源的调整请求。
在一些可能的实现中,上行数据包括第一业务的数据和第二业务的数据,第一业务的传输优先级高于第二业务的传输优先级,上行数据用于承载第一业务的数据。
在一些可能的实现中,发送单元1501还用于:
发送第四信息;第四信息用于指示上行资源所能承载的数据量与第一业务的数据量之间的差值;或者,第四信息用于指示第一业务的数据的数据量;或者,第四信息用于指示在第四信息发送时刻第一业务的数据中未传输的数据量。
在一些可能的实现中,若第二业务的数据将在第一业务的下一次周期传输之前超时,则第四信息还用于指示所需调度的第二业务的数据量。
在一些可能的实现中,资源配置信息包括:在上行数据到达终端设备的接入层的时间之前所发送的以下信息:上行资源的资源数量、上行资源中各个资源所能承载的数据量;在上行数据到达终端设备的接入层的时间之后所发送的以下信息:上行资源中各个资源的时频域位置。
8、一种网络设备的示例性说明
请参阅图16,图16是本申请实施例的一种网络设备的结构示意图。其中,网络设备1600包括处理器1610、存储器1620以及用于连接处理器1610和存储器1620的通信总线。
存储器1620包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1620用于存储网络设备1600所执行的程序代码和所传输的数据。
网络设备1600还可以包括通信接口,其用于接收和发送数据。
处理器1610可以是一个或多个CPU,在处理器1610是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备1600中的处理器1610用于执行存储器1620中存储的计算机程序或指令1621,执行以下操作:接收第一信息,第一信息用于指示上行数据的数据分布特征;根据上行数据的数据分布特征,发送资源配置信息,资源配置信息用于指示上行资源。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,网络设备1600可以用于执行本申请上述方法实施例,对此不再赘述。
9、一种终端设备的示例性说明
请参阅图17,图17是本申请实施例的一种终端设备的结构示意图。其中,终端设备1700包括处理器1710、存储器1720以及用于连接处理器1710和存储器1720的通信总线。
存储器1720包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1720用于存储终端设备1700所执行的程序代码和所传输的数据。
终端设备1700还可以包括通信接口,其用于接收和发送数据。
处理器1710可以是一个或多个CPU,在处理器1710是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
终端设备1700中的处理器1710用于执行存储器1720中存储的计算机程序或指令1721,执行以下操作:发送第一信息,第一信息用于指示上行数据的数据分布特征;接收资源配置信息,资源配置信息用于指示上行资源,资源配置信息由上行数据的数据分布特征确定。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,终端设备1700可以用于执行本申请上述方法实施例,对此不再赘述。
10、其他示例性说明
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。本领域技术人员应该知悉,本申请实施例所描述的方法、步骤或者相关模块/单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式来实现,也可以是由处理器执行计算机程序指令的方式来实现。其中,该计算机程序产品包括至少一个计算机程序指令,计算机程序指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。该计算机程序指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机程序指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(如SSD)等。上述实施例中描述的各个装置或产品包含的各个模块/单元,其可以是软件模块/单元,可以是硬件模块/单元,也可以一部分是软件模块/单元,而另一部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置或产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现;或者,其包含的一部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,而另一部分(如果有)的部分模块/单元可以采用电路等硬件方式实现。对于应用于或集成于芯片模组的各个装置或产品,或者应用于或集成于终端设备的各个装置或产品,同理可知。以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围。凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (78)

  1. 一种资源配置方法,其特征在于,应用于网络设备;所述方法包括:
    接收第一信息,所述第一信息用于指示上行数据的数据分布特征;
    根据所述上行数据的数据分布特征,发送资源配置信息,所述资源配置信息用于指示上行资源。
  2. 根据权利要求1所述的方法,其特征在于,所述接收第一信息,包括:
    接收来自终端设备的所述第一信息;或者,
    接收来自应用服务器的所述第一信息。
  3. 根据权利要求1所述的方法,其特征在于,所述上行数据的数据分布特征包括以下至少之一项:
    所述上行数据的周期、所述上行数据的平均数据量、所述上行数据的数据量范围、重要数据包在所述上行数据中的位置分布、所述上行数据中的重要数据包的数据量、所述上行数据到达所述终端设备的接入层的时间、所述上行数据到达所述终端设备的接入层的时间的抖动范围。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行免调度资源。
  5. 根据权利要求4所述的方法,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行免调度资源的周期、所述上行免调度资源的时频域位置、所述上行免调度资源的配置次数、所述上行免调度资源的资源数量、所述上行免调度资源所能承载的数据量。
  6. 根据权利要求1所述的方法,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行动态调度度资源。
  7. 根据权利要求6所述的方法,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行动态调度资源的监听时机、所述上行动态调度资源的调度次数、所述上行动态调度资源的资源数量、所述上行动态调度资源所能承载的数据量。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值;
    根据所述上行资源所承载的数据量与所述上行数据的数据量之间的差值,对所述上行资源的配置进行调整。
  9. 根据权利要求8所述的方法,其特征在于,所述根据上行资源所承载的数据量与所述上行数据的数据量之间的差值对所述上行资源的配置进行调整,包括:
    若所述上行资源所承载的数据量与所述上行数据的数据量之间的差值大于零,则发送资源调整信息,所述资源调整信息用于指示减少所述上行资源中的资源。
  10. 根据权利要求9所述的方法,其特征在于,所述资源调整信息用于指示以下至少之一项:
    收回所述上行资源中的第K个资源、减小所述上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二信息还用于请求对所述上行资源进行调整,则发送资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第三信息,所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息的发送时刻所述上行数据中未传输的数据量;
    根据所述第三信息和所述上行资源所能承载的数据量,对所述上行资源的配置进行调整。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    若所述第三信息还用于请求对所述上行资源进行调整,则发送资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  14. 根据权利要求1所述的方法,其特征在于,所述上行数据包括第一业务的数据和第二业务的数据,所述第一业务的数据传输优先级高于所述第二业务的数据传输优先级,所述上行资源用于承载所述第一业务的数据。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收第四信息;
    所述第四信息用于指示所述上行资源所能承载的数据量与所述第一业务的数据量之间的差值;或者,
    所述第四信息用于指示所述第一业务的数据的数据量;或者,
    所述第四信息用于指示在所述第四信息发送时刻所述第一业务的数据中未传输的数据量。
  16. 根据权利要求15所述的方法,其特征在于,若所述第二业务的数据将在所述第一业务的下一次周期传输之前超时,则所述第四信息还用于指示所需调度的所述第二业务的数据量。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第四信息配置用于承载所述第二业务的数据的资源,所述配置用于传输所述第二业务的数据的资源包括以下之一项:
    在为所述第一业务配置所述上行资源时增加用于承载所述第二业务的数据的资源、在为所述第一业务配置所述上行资源之外额外配置用于承载所述第二业务的数据的资源。
  18. 根据权利要求17所述的方法,其特征在于,所述额外配置用于承载所述第二业务的数据的资源,包括:
    通过通知所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以继续监听PDCCH,以便获取用于承载所述第二业务的数据的资源;或者,
    通过为所述第一业务配置的所述上行资源中最后一个资源所在的频域位置或时域位置来指示所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载所述第二业务的数据的资源;或者,
    通过为所述第一业务调度所述上行资源中最后一个资源的DCI所在的频域位置或时域位置来指示所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载所述第二业务的数据的资源。
  19. 根据权利要求3所述的方法,其特征在于,所述资源配置信息包括:
    在所述上行数据到达所述终端设备的接入层的时间之前所发送的以下信息:所述上行资源的资源数量、所述上行资源中各个资源所能承载的数据量;
    在所述上行数据到达所述终端设备的接入层的时间之后所发送的以下信息:所述上行资源中各个资源的时频域位置。
  20. 一种资源配置方法,其特征在于,应用于终端设备;所述方法包括:
    发送第一信息,所述第一信息用于指示上行数据的数据分布特征;
    接收资源配置信息,所述资源配置信息用于指示上行资源,所述资源配置信息由所述上行数据的数据分布特征确定。
  21. 根据权利要求20所述的方法,其特征在于,所述上行数据的数据分布特征包括以下至少之一项:
    所述上行数据的周期、所述上行数据的平均数据量、所述上行数据的数据量范围、所述上行数据中的重要数据包所在的位置、所述上行数据中的重要数据包的数据量、所述上行数据到达所述终端设备的接入层的时间、所述上行数据到达所述终端设备的接入层的时间的抖动范围。
  22. 根据权利要求20所述的方法,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行免调度资源。
  23. 根据权利要求22所述的方法,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行免调度资源的周期、所述上行免调度资源的时频域位置、所述上行免调度资源的配置次数、所述上行免调度资源的资源数量、所述上行免调度资源所能承载的数据量。
  24. 根据权利要求20所述的方法,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行动态调度资源。
  25. 根据权利要求24所述的方法,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行动态调度资源的监听时机、所述上行动态调度资源的调度次数、所述上行动态调度资源的资源数量、所述上行动态调度资源所能承载的数据量。
  26. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的接入层知道所述上行数据的数据量,以及知道所述上行资源所能承载的数据量,则发送第二信息;
    所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值。
  27. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的接入层不知道所述上行数据的数据量,以及知道所述上行资源所能承载的数据量,则在等到所述终端设备的接入层知道所述上行数据的数据量之后,发送第二信息;
    所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值。
  28. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    若所述上行资源所承载的数据量与所述上行数据的数据量之间的差值大于零,则接收资源调整信息,所述资源调整信息用于指示减少所述上行资源中的资源。
  29. 根据权利要求28所述的方法,其特征在于,所述资源调整信息用于指示以下至少之一项:
    收回所述上行资源中的第K个资源、减小所述上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
  30. 根据权利要求26-29任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二信息还用于请求对所述上行资源进行调整,则接收资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  31. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的接入层知道所述上行数据的数据量,以及不知道所述上行资源所能承载的数据量,则发送第三信息;
    所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息发送时刻所述上行数据中未传输的数据量。
  32. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的接入层不知道所述上行数据的数据量,以及不知道所述上行资源所能承载的数据量,则
    在等到所述终端设备的接入层知道所述上行数据的数据量之后,向所述网络设备发送第三信息;
    所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息发送时刻所述上行数据中未传输的数据量。
  33. 根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    若所述第三信息还用于请求对所述上行资源进行调整,则接收资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  34. 根据权利要求20所述的方法,其特征在于,所述上行数据包括第一业务的数据和第二业务的数据,所述第一业务的传输优先级高于所述第二业务的传输优先级,所述上行数据用于承载所述第一业务的数据。
  35. 根据权利要求34所述的方法,其特征在于,所述方法还包括:
    发送第四信息;
    所述第四信息用于指示所述上行资源所能承载的数据量与所述第一业务的数据量之间的差值;或者,
    所述第四信息用于指示所述第一业务的数据的数据量;或者,
    所述第四信息用于指示在所述第四信息发送时刻所述第一业务的数据中未传输的数据量。
  36. 根据权利要求35所述的方法,其特征在于,
    若所述第二业务的数据将在所述第一业务的下一次周期传输之前超时,则所述第四信息还用于指示所需调度的所述第二业务的数据量。
  37. 根据权利要求21所述的方法,其特征在于,所述资源配置信息包括:
    在所述上行数据到达所述终端设备的接入层的时间之前所发送的以下信息:所述上行资源的资源数量、所述上行资源中各个资源所能承载的数据量;
    在所述上行数据到达所述终端设备的接入层的时间之后所发送的以下信息:所述上行资源中各个资源的时频域位置。
  38. 一种资源配置装置,其特征在于,所述装置包括:
    接收单元,用于接收第一信息,所述第一用于指示上行数据的数据分布特征;
    发送单元,用于根据所述上行数据的数据分布特征,发送资源配置信息,所述资源配置信息用于指示上行资源。
  39. 根据权利要求38所述的装置,其特征在于,在所述接收第一信息方面,所述接收单元,用于:
    接收来自终端设备的所述第一信息;或者,
    接收来自应用服务器的所述第一信息。
  40. 根据权利要求38所述的装置,其特征在于,所述上行数据的数据分布特征包括以下至少之一项:
    所述上行数据的周期、所述上行数据的平均数据量、所述上行数据的数据量范围、重要数据包在所述上行数据中的位置分布、所述上行数据中的重要数据包的数据量、所述上行数据到达所述终端设备的接入层的时间、所述上行数据到达所述终端设备的接入层的时间的抖动范围。
  41. 根据权利要求38-40任一项所述的装置,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行免调度资源。
  42. 根据权利要求41所述的装置,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行免调度资源的周期、所述上行免调度资源的时频域位置、所述上行免调度资源的配置次数、所述上行免调度资源的资源数量、所述上行免调度资源所能承载的数据量。
  43. 根据权利要求38所述的装置,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行动态调度度资源。
  44. 根据权利要求43所述的装置,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行动态调度资源的监听时机、所述上行动态调度资源的调度次数、所述上行动态调度资源的资源数量、所述上行动态调度资源所能承载的数据量。
  45. 根据权利要求38所述的装置,其特征在于,所述装置还包括调整单元;
    所述接收单元,还用于接收第二信息,所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值;
    所述调整单元,用于根据所述上行资源所承载的数据量与所述上行数据的数据量之间的差值,对所述上行资源的配置进行调整。
  46. 根据权利要求45所述的装置,其特征在于,在所述根据上行资源所承载的数据量与所述上行数据的数据量之间的差值对所述上行资源的配置进行调整方面,所述调整单元用于:
    若所述上行资源所承载的数据量与所述上行数据的数据量之间的差值大于零,则发送资源调整信息,所述资源调整信息用于指示减少所述上行资源中的资源。
  47. 根据权利要求46所述的装置,其特征在于,所述资源调整信息用于指示以下至少之一项:
    收回所述上行资源中的第K个资源、减小所述上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
  48. 根据权利要求45-47任一项所述的装置,其特征在于,所述发送单元还用于:
    若所述第二信息还用于请求对所述上行资源进行调整,则发送资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  49. 根据权利要求38所述的装置,其特征在于,所述装置还包括调整单元;
    所述接收单元,还用于接收第三信息,所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息的发送时刻所述上行数据中未传输的数据量;
    所述调整单元,用于根据所述第三信息和所述上行资源所能承载的数据量,对所述上行资源的配置进行调整。
  50. 根据权利要求49所述的装置,其特征在于,所述发送单元还用于:
    若所述第三信息还用于请求对所述上行资源进行调整,则发送资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  51. 根据权利要求38所述的装置,其特征在于,所述上行数据包括第一业务的数据和第二业务的数据,所述第一业务的数据传输优先级高于所述第二业务的数据传输优先级,所述上行资源用于承载所述第一业务的数据。
  52. 根据权利要求51所述的装置,其特征在于,所述接收单元还用于:
    接收第四信息;
    所述第四信息用于指示所述上行资源所能承载的数据量与所述第一业务的数据量之间的差值;或者,
    所述第四信息用于指示所述第一业务的数据的数据量;或者,
    所述第四信息用于指示在所述第四信息发送时刻所述第一业务的数据中未传输的数据量。
  53. 根据权利要求52所述的装置,其特征在于,若所述第二业务的数据将在所述第一业务的下一次周期传输之前超时,则所述第四信息还用于指示所需调度的所述第二业务的数据量。
  54. 根据权利要求51-53任一项所述的装置,其特征在于,所述装置还包括配置单元;
    所述配置单元,用于根据所述第四信息配置用于承载所述第二业务的数据的资源,所述配置用于传输所述第二业务的数据的资源包括以下之一项:
    在为所述第一业务配置所述上行资源时增加用于承载所述第二业务的数据的资源、在为所述第一业务配置所述上行资源之外额外配置用于承载所述第二业务的数据的资源。
  55. 根据权利要求54所述的装置,其特征在于,所述额外配置用于承载所述第二业务的数据的资源,包括:
    通过通知所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以继续监听PDCCH,以便获取用于承载所述第二业务的数据的资源;或者,
    通过为所述第一业务配置的所述上行资源中最后一个资源所在的频域位置或时域位置来指示所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取 用于承载所述第二业务的数据的资源;或者,
    通过为所述第一业务调度所述上行资源中最后一个资源的DCI所在的频域位置或时域位置来指示所述终端设备在传输完所述第一业务的最后一个传输块后不要进入睡眠状态以进行监听PDCCH,以便获取用于承载所述第二业务的数据的资源。
  56. 根据权利要求40所述的装置,其特征在于,所述资源配置信息包括:
    在所述上行数据到达所述终端设备的接入层的时间之前所发送的以下信息:所述上行资源的资源数量、所述上行资源中各个资源所能承载的数据量;
    在所述上行数据到达所述终端设备的接入层的时间之后所发送的以下信息:所述上行资源中各个资源的时频域位置。
  57. 一种资源配置装置,其特征在于,所述装置包括:
    发送单元,用于发送第一信息,所述第一信息用于指示上行数据的数据分布特征;
    接收单元,用于接收资源配置信息,所述资源配置信息用于指示上行资源,所述资源配置信息由所述上行数据的数据分布特征确定。
  58. 根据权利要求57所述的装置,其特征在于,所述上行数据的数据分布特征包括以下至少之一项:
    所述上行数据的周期、所述上行数据的平均数据量、所述上行数据的数据量范围、所述上行数据中的重要数据包所在的位置、所述上行数据中的重要数据包的数据量、所述上行数据到达所述终端设备的接入层的时间、所述上行数据到达所述终端设备的接入层的时间的抖动范围。
  59. 根据权利要求57所述的装置,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行免调度资源。
  60. 根据权利要求59所述的装置,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行免调度资源的周期、所述上行免调度资源的时频域位置、所述上行免调度资源的配置次数、所述上行免调度资源的资源数量、所述上行免调度资源所能承载的数据量。
  61. 根据权利要求57所述的装置,其特征在于,所述资源配置信息用于指示上行资源,包括:
    所述资源配置信息用于指示上行动态调度资源。
  62. 根据权利要求61所述的装置,其特征在于,所述资源配置信息包括以下至少之一项:
    所述上行动态调度资源的监听时机、所述上行动态调度资源的调度次数、所述上行动态调度资源的资源数量、所述上行动态调度资源所能承载的数据量。
  63. 根据权利要求57所述的装置,其特征在于,所述发送单元还用于:
    若所述终端设备的接入层知道所述上行数据的数据量,以及知道所述上行资源所能承载的数据量,则发送第二信息;
    所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值。
  64. 根据权利要求57所述的装置,其特征在于,所述发送单元还用于:
    若所述终端设备的接入层不知道所述上行数据的数据量,以及知道所述上行资源所能承载的数据量,则在等到所述终端设备的接入层知道所述上行数据的数据量之后,发送第二信息;
    所述第二信息用于指示所述上行资源所能承载的数据量与所述上行数据的数据量之间的差值。
  65. 根据权利要求63或64所述的装置,其特征在于,所述接收单元还用于:
    若所述上行资源所承载的数据量与所述上行数据的数据量之间的差值大于零,则接收资源调整信息,所述资源调整信息用于指示减少所述上行资源中的资源。
  66. 根据权利要求65所述的装置,其特征在于,所述资源调整信息用于指示以下至少之一项:
    收回所述上行资源中的第K个资源、减小所述上行资源中的第S个资源所能承载的数据量,K为正整数,S为正整数。
  67. 根据权利要求63-66任一项所述的装置,其特征在于,所述接收单元还用于:
    若所述第二信息还用于请求对所述上行资源进行调整,则接收资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  68. 根据权利要求57所述的装置,其特征在于,所述发送单元还用于:
    若所述终端设备的接入层知道所述上行数据的数据量,以及不知道所述上行资源所能承载的数据量,则发送第三信息;
    所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息发送时刻所述上行数据中未传输的数据量。
  69. 根据权利要求57所述的装置,其特征在于,所述发送单元还用于:
    若所述终端设备的接入层不知道所述上行数据的数据量,以及不知道所述上行资源所能承载的数据 量,则
    在等到所述终端设备的接入层知道所述上行数据的数据量之后,向所述网络设备发送第三信息;
    所述第三信息用于指示所述上行数据的数据量;或者,所述第三信息用于指示在所述第三信息发送时刻所述上行数据中未传输的数据量。
  70. 根据权利要求68或69所述的装置,其特征在于,所述接收单元还用于:
    若所述第三信息还用于请求对所述上行资源进行调整,则接收资源调整请求反馈信息,所述资源调整请求反馈信息用于指示同意、部分同意或拒绝所述上行资源的调整请求。
  71. 根据权利要求57所述的装置,其特征在于,所述上行数据包括第一业务的数据和第二业务的数据,所述第一业务的传输优先级高于所述第二业务的传输优先级,所述上行数据用于承载所述第一业务的数据。
  72. 根据权利要求71所述的装置,其特征在于,所述发送单元还用于:
    发送第四信息;
    所述第四信息用于指示所述上行资源所能承载的数据量与所述第一业务的数据量之间的差值;或者,
    所述第四信息用于指示所述第一业务的数据的数据量;或者,
    所述第四信息用于指示在所述第四信息发送时刻所述第一业务的数据中未传输的数据量。
  73. 根据权利要求72所述的装置,其特征在于,
    若所述第二业务的数据将在所述第一业务的下一次周期传输之前超时,则所述第四信息还用于指示所需调度的所述第二业务的数据量。
  74. 根据权利要求58所述的装置,其特征在于,所述资源配置信息包括:
    在所述上行数据到达所述终端设备的接入层的时间之前所发送的以下信息:所述上行资源的资源数量、所述上行资源中各个资源所能承载的数据量;
    在所述上行数据到达所述终端设备的接入层的时间之后所发送的以下信息:所述上行资源中各个资源的时频域位置。
  75. 一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-19中任一项所述方法的步骤。
  76. 一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求20-37中任一项所述方法的步骤。
  77. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-19或20-37中任一项所述方法的步骤。
  78. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-19或20-37中任一项所述方法的步骤。
PCT/CN2023/072924 2022-01-21 2023-01-18 资源配置方法与装置、网络设备和终端设备 WO2023138622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210072519.5A CN116528378A (zh) 2022-01-21 2022-01-21 资源配置方法与装置、网络设备和终端设备
CN202210072519.5 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023138622A1 true WO2023138622A1 (zh) 2023-07-27

Family

ID=87347859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072924 WO2023138622A1 (zh) 2022-01-21 2023-01-18 资源配置方法与装置、网络设备和终端设备

Country Status (2)

Country Link
CN (1) CN116528378A (zh)
WO (1) WO2023138622A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996334A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 信息指示方法、终端设备及网络设备
WO2019157663A1 (zh) * 2018-02-13 2019-08-22 富士通株式会社 参考信号资源的发送位置的指示方法、装置及通信系统
CN110933742A (zh) * 2018-09-20 2020-03-27 华为技术有限公司 调度方法、设备与计算机可读存储介质
CN111148225A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 资源调度方法、装置及设备
JP2020162163A (ja) * 2020-06-22 2020-10-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. サービス伝送方法及び通信デバイス
CN113519188A (zh) * 2019-04-30 2021-10-19 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996334A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 信息指示方法、终端设备及网络设备
WO2019157663A1 (zh) * 2018-02-13 2019-08-22 富士通株式会社 参考信号资源的发送位置的指示方法、装置及通信系统
CN110933742A (zh) * 2018-09-20 2020-03-27 华为技术有限公司 调度方法、设备与计算机可读存储介质
CN111148225A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 资源调度方法、装置及设备
CN113519188A (zh) * 2019-04-30 2021-10-19 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
JP2020162163A (ja) * 2020-06-22 2020-10-01 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. サービス伝送方法及び通信デバイス

Also Published As

Publication number Publication date
CN116528378A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2018028269A1 (zh) 一种资源调度方法和装置
CN106992846B (zh) 一种数据发送方法、数据接收方法和装置
US11700543B2 (en) Method and apparatus for transmitting data and communication system
CN110267339B (zh) 一种功率配置方法、用户设备及基站
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
WO2018141244A1 (zh) 一种资源调度方法、装置及系统
WO2019185014A1 (zh) 通信方法、通信装置和系统
WO2020199901A1 (zh) 一种通信方法和装置
WO2013060300A1 (zh) 数据分流传输方法、用户设备和基站
WO2020114237A1 (zh) 数据传输方法与通信装置
CN105142220A (zh) 一种语音数据动态延迟调度方法及基站
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN111316755B (zh) 使能同时使用多种蜂窝网络技术
WO2020088400A1 (zh) 资源调度方法、装置及设备
WO2019047193A1 (zh) 信号传输方法、相关装置及系统
CN117561781A (zh) 无线通信方法、终端设备和网络设备
CN112806075B (zh) 一种通信方法及装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2017101121A1 (zh) 传输信令、传输数据和建立gtp隧道的方法及设备
JP2023505642A (ja) 情報伝送方法及び関連製品
WO2023138622A1 (zh) 资源配置方法与装置、网络设备和终端设备
WO2021244299A1 (zh) 通信方法及通信设备
WO2021155604A1 (zh) 信息处理方法及设备
WO2023208198A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742937

Country of ref document: EP

Kind code of ref document: A1