WO2020199901A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2020199901A1
WO2020199901A1 PCT/CN2020/079357 CN2020079357W WO2020199901A1 WO 2020199901 A1 WO2020199901 A1 WO 2020199901A1 CN 2020079357 W CN2020079357 W CN 2020079357W WO 2020199901 A1 WO2020199901 A1 WO 2020199901A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink resource
terminal
resource
mac pdu
uplink
Prior art date
Application number
PCT/CN2020/079357
Other languages
English (en)
French (fr)
Inventor
范强
娄崇
黄曲芳
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112021019408A priority Critical patent/BR112021019408A2/pt
Priority to EP20782911.0A priority patent/EP3952549A4/en
Priority to KR1020217032874A priority patent/KR20210134398A/ko
Priority to JP2021557706A priority patent/JP2022527921A/ja
Publication of WO2020199901A1 publication Critical patent/WO2020199901A1/zh
Priority to US17/489,611 priority patent/US20220022211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • a fifth-generation (5 th generation, 5G) new radio new radio (new radio, NR)
  • new radio new radio
  • DG dynamic grant
  • DCI downlink control information
  • CG configured grant
  • RRC Radio Resource Control
  • the time-frequency location of CG resources, modulation and coding scheme (modulation and coding scheme, MCS), etc. can be passed by the network equipment through RRC
  • the signaling is provided to the terminal, and can also be provided to the terminal by the network device through DCI.
  • the CG and/or DG mechanism can be used to configure multiple blocks of uplink resources for the terminal. Multiple blocks of uplink resources may or may not overlap in the time domain. When multiple blocks of uplink resources configured for the terminal overlap in the time domain , The terminal needs to choose which uplink resource to transmit signals on based on certain criteria. Take the terminal being configured with two uplink resources that overlap in the time domain as an example. In a criterion, the terminal can choose to transmit signals on the uplink resource with the higher priority among the two uplink resources. Based on this criterion, the network device is in priority. Signals cannot be received on lower-level uplink resources.
  • the terminal may have formed a media access control (MAC) layer protocol data unit (PDU) for uplink resources with lower priority. ) Or does not form a MAC PDU, or the terminal may have data stored in the corresponding cache or no data stored in the corresponding cache for the uplink resources with lower priority.
  • MAC media access control
  • the network device defaults to the terminal in a processing method The skip mechanism is enabled. No matter whether the terminal groups packets for uplink resources with a lower priority or whether there is data buffering for uplink resources with a lower priority, the network device does not schedule the reload of uplink resources with a lower priority. Transmission, at this time, it may cause the MAC PDU group for the lower priority uplink resource to be lost.
  • Another processing method is to reduce the loss of data packets, regardless of whether the terminal is targeting the lower priority uplink resource group packet or whether it is targeting the priority Lower uplink resources have data buffers, and network devices schedule a block of retransmission resources for uplink resources with lower priority, which may cause a waste of scheduling resources. Obviously, neither of these two processing methods are suitable for this scenario.
  • the embodiments of the present application provide a communication method and device, in order to reasonably schedule the retransmission of the uplink resources in a scenario where uplink resources overlap in the time domain.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal, or may also be applied to a chip inside the terminal.
  • the terminal determines that the priority of the first uplink resource is higher than the priority of the second uplink resource, the first uplink resource and the second uplink resource overlap in the time domain, and the terminal determines that the first uplink resource is used in the overlapping part.
  • the resource sends a signal, it indicates to the network device whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the embodiments of the present application provide a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • the network device determines whether the uplink resource constitutes a MAC PDU for the media access control layer protocol data unit or whether there is data stored in the corresponding buffer for the uplink resource according to the instructions of the terminal; when the network device determines to constitute the MAC PDU for the uplink resource
  • the network device schedules the retransmission of the uplink resource; or, when the network device determines that no MAC PDU is formed for the uplink resource or no data is stored in the corresponding buffer for the uplink resource , The network device does not schedule retransmission of uplink resources.
  • the present application provides a communication device, including: including units or means for performing each step of the first aspect or the second aspect.
  • the present application provides a communication device including at least one processor and a memory, and the at least one processor is configured to execute the method provided in the above first aspect or the second aspect.
  • the present application provides a communication device including at least one processor and an interface circuit, and the at least one processor is configured to execute the method provided in the first or second aspect above.
  • the present application provides a communication program, which is used to execute the method of the first aspect or the second aspect when executed by a processor.
  • a seventh aspect provides a program product, such as a computer-readable storage medium, including the program of the sixth aspect.
  • the terminal when the terminal determines to use the uplink resource with higher priority to send the signal in the overlapping part, it can indicate to the network device whether to form a MAC PDU for the uplink resource with lower priority or for the uplink resource with lower priority Whether there is data stored in the corresponding buffer, so that the network device can determine whether the terminal constitutes a MAC PDU for the uplink resource with lower priority or whether there is data stored in the corresponding uplink resource for the lower priority uplink resource according to the instructions of the terminal In the buffer, the retransmission of the uplink resource with a lower priority can be reasonably scheduled.
  • the signal may include data and/or control signaling.
  • the HARQ process associated with the first uplink resource and the HARQ process associated with the second uplink resource are different.
  • the terminal composes the first MAC PDU for the first uplink resource, and the terminal determines to use the first uplink resource to send the first MAC PDU in the overlapping part.
  • the terminal indicates to the network device whether the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource, including: the terminal sends instruction information to the network device, and the network device Receive instructions from the terminal.
  • the indication information is used to indicate whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the indication information is carried in the MAC CE, and the MAC CE is carried in the first MAC PDU.
  • the indication information is located in the MAC subheader of the MAC CE.
  • the indication information includes LCID.
  • the indication information is located in the load of the MAC CE.
  • MAC CE also includes one or more of the following information:
  • the SR information associated with the highest priority LCH in the second MAC PDU, and the second MAC PDU is a MAC PDU formed for the second uplink resource.
  • the indication information includes the bits of the MAC subheader of the first MAC PDU.
  • the indication information is carried in UCI.
  • the terminal determining that the priority of the first uplink resource is higher than the priority of the second uplink resource includes: the MAC entity of the terminal determines that the priority of the first uplink resource is higher than the priority of the second uplink resource .
  • the terminal sends instruction information to the network device, including: the MAC entity of the terminal instructs the physical layer PHY entity to send UCI to the network device.
  • the terminal determining that the priority of the first uplink resource is higher than the priority of the second uplink resource includes: the PHY entity of the terminal determines that the priority of the first uplink resource is higher than the priority of the second uplink resource .
  • the terminal sends instruction information to the network device, including: the PHY entity of the terminal sends UCI to the network device.
  • UCI also includes one or more of the following information:
  • the SR information associated with the highest priority LCH in the second MAC PDU, and the second MAC PDU is a MAC PDU formed for the second uplink resource.
  • the information transmitted on the first uplink resource is used to indicate whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource; or, the first MAC The transmission mode of the PDU is used to indicate whether the second uplink resource forms a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the embodiments of the present application provide another communication method.
  • the method may be applied to a terminal, or may also be applied to a chip inside the terminal.
  • the terminal determines that the priority of the first uplink resource is higher than the priority of the second uplink resource, the first uplink resource and the second uplink resource overlap in the time domain, and the terminal uses the first uplink resource in the overlapping part Send a signal to the network device, and send a data packet to the network device on the third uplink resource.
  • the data packet is a data packet generated for the second uplink resource.
  • the third uplink resource is an uplink resource that arrives after the second uplink resource.
  • the third uplink resource is associated with the same HARQ process as the second uplink resource, and the terminal does not generate a data packet for the third uplink resource.
  • the embodiments of the present application provide another communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • the network device receives the signal sent by the terminal using the first uplink resource, the first uplink resource and the second uplink resource overlap in the time domain, and the priority of the first uplink resource is higher than the priority of the second uplink resource
  • the network device receives the data packet sent by the terminal on the third uplink resource, the data packet is a data packet generated for the second uplink resource, the third uplink resource is the uplink resource that arrives after the second uplink resource, and the third uplink resource
  • the same HARQ process is associated with the second uplink resource, and no data packet is generated for the third uplink resource.
  • the present application provides a communication device, including: a unit or means for performing each step of the eighth aspect or the ninth aspect.
  • the present application provides a communication device including at least one processor and a memory, and the at least one processor is configured to execute the method provided in the eighth or ninth aspect above.
  • the present application provides a communication device including at least one processor and an interface circuit, and the at least one processor is configured to execute the method provided in the eighth or ninth aspect above.
  • this application provides a communication program, which is used to execute the method of the eighth or ninth aspect above when executed by a processor.
  • a fourteenth aspect provides a program product, such as a computer-readable storage medium, including the program of the thirteenth aspect.
  • the terminal when the terminal determines that the uplink resource with higher priority is used to transmit the signal in the overlapping part, it can use the resource arriving in the next cycle to compare the uplink resource with lower priority.
  • the MAC PDU grouped by the resource can be transmitted to reduce data packet loss.
  • the third uplink resource and the second uplink resource are resources that arrive at different periods of the configured authorized resource.
  • the first uplink resource and the second uplink resource are associated with different HARQ processes.
  • FIG. 1 is a schematic diagram of a communication system applicable to the embodiments of this application;
  • Figure 2 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another network architecture provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of an uplink resource configuration provided by an embodiment of this application.
  • FIG. 5 is an implementation flowchart of a communication method provided by an embodiment of this application.
  • Fig. 6a is an overlapping part provided by an embodiment of this application.
  • Figure 6b is another overlapping part provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a MAC subheader of a MAC CE provided by an embodiment of this application.
  • FIG. 8a is a schematic diagram of an indication method provided by an embodiment of this application.
  • FIG. 8b is a schematic diagram of yet another indication method provided by an embodiment of this application.
  • Figure 9a is a schematic diagram of a MAC subheader of a MAC PDU provided by an embodiment of the application.
  • FIG. 9b is a schematic diagram of the MAC subheader of another MAC PDU provided by an embodiment of this application.
  • FIG. 9c is a schematic diagram of another MAC subheader of a MAC PDU provided by an embodiment of this application.
  • FIG. 10a is a schematic diagram of yet another indication method provided by an embodiment of this application.
  • FIG. 10b is a schematic diagram of another indication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of another indication manner provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another indication manner provided by an embodiment of the application.
  • FIG. 13 is an implementation flowchart of another communication method provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of another indication manner provided by an embodiment of the application.
  • 15 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 16 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 17 is a schematic diagram of a terminal structure according to an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • Terminals also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals are devices that provide users with voice and/or data connectivity.
  • handheld devices with wireless connectivity vehicle-mounted devices, etc.
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • a network device is a device in a wireless network.
  • a network device may be a radio access network (RAN) node (or device) that connects a terminal to the wireless network, and may also be called a base station.
  • RAN nodes are: continuously evolving node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB) , Base band unit (BBU), or wireless fidelity (wireless fidelity, Wifi) access point (AP), etc.
  • gNB continuously evolving node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • HNB Base Station
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node separates the protocol layer of the eNB in the long term evolution (LTE) system.
  • LTE long term evolution
  • Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are left.
  • the CU centrally controls the DU.
  • a network device may be a core network (CN) device that provides service support for the terminal.
  • CN core network
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity may be responsible for terminal access management and mobility management
  • the SMF entity may be responsible for session management, such as user session establishment, etc.
  • the UPF entity may be a functional entity of the user plane, mainly responsible for connecting to external The internet.
  • Either a RAN device or a CN device can be used as the network device to execute the method executed by the network device in the embodiment of the present application.
  • Uplink resource scheduling mechanism Two uplink resource scheduling mechanisms are introduced below.
  • One is dynamic scheduling.
  • DCI downlink control information
  • CG configured grant
  • the two types of configuration grants are defined as configured grant type 1 (configured grant type 1) and configured grant type 2 (configured grant type 2).
  • the scheduled uplink resources can be divided into two categories.
  • the uplink resources scheduled through dynamic scheduling are called DG resources or called DG type resources or called DG, which will be authorized by configuration
  • the uplink resources scheduled in the manner of CG are called CG resources or called CG type resources or called CG. This application does not limit the names of uplink resources.
  • the time-frequency resource location of authorization type 1 configures the time-frequency resource location of authorization type 1, the period of CG resources, the number of hybrid automatic repeat request (HARQ) processes that use CG resources, modulation and coding scheme (MCS) and other parameters , Provided by the network equipment to the terminal through radio resource control (RRC) signaling, and stored by the terminal as a configured uplink grant, and the terminal can use the configuration grant for uplink data transmission; configure the authorization type Parameters such as the period of the CG resource of 2 and the number of HARQ processes using the CG resource are provided to the terminal by the network device through RRC signaling, and the time-frequency resource location and MCS of authorization type 2 are configured by the network device to the terminal through DCI.
  • RRC radio resource control
  • the configuration authorization type 2 can be activated or deactivated by the physical layer (PHY) or layer 1 (L1) signaling.
  • PHY physical layer
  • L1 layer 1
  • the resource skip mechanism means that after the terminal is configured with uplink resources, if the terminal does not have suitable data to be transmitted for the uplink resource, the terminal will skip the uplink resource, that is, the terminal will not target the uplink resource Generate MAC PDU.
  • CG is used to configure uplink resources for the terminal
  • the terminal when the terminal is configured with a CG resource, if the terminal does not have suitable uplink data to be transmitted for the CG resource, the terminal will skip the CG resource, that is, the terminal will not generate MAC for the CG resource PDU.
  • the terminal can configure the skip mechanism for uplink dynamic transmission.
  • the parameter skipUplinkTxDynamic carried in RRC signaling can be used to indicate whether to configure the skip mechanism for uplink dynamic transmission.
  • the transport block refers to the transport block formed by the MAC PDU at the physical layer, and a TB may include multiple bits.
  • Carrier which may refer to radio waves used to modulate the signal to be sent, for example, sine waves.
  • the bandwidth part refers to the resources configured for the terminal within the carrier bandwidth in order to adapt the terminal’s bandwidth capability, for example, a group of continuous or discontinuous RBs on the carrier bandwidth, in a carrier
  • Multiple BWPs can be configured, for example, one carrier can be configured with 4 BWPs.
  • FIG. 1 is a schematic diagram of a communication system applicable to the embodiments of this application.
  • the terminal 130 can access a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, such as communicating with other terminals.
  • the wireless network includes a RAN110 and a CN120.
  • the RAN110 is used to connect the terminal 130 to the wireless network
  • the CN120 is used to manage the terminal and provide a gateway for communication with the external network.
  • the number of devices in the communication system shown in FIG. 1 is only for illustration, and the embodiments of the present application are not limited thereto. In actual applications, the communication system may also include more terminals 130, more RANs 110, and Can include other devices.
  • This application does not limit the type of the communication system shown in FIG. 1, for example, it may be an LTE system, or an NR system, and of course, it may also be a future communication system.
  • CN120 may include multiple CN devices.
  • CN120 may include an AMF entity, a UPF entity, or an SMF entity, etc.
  • the CN120 may include a mobility management entity (mobility management entity, MME) and a serving gateway (serving gateway, S-GW), etc.
  • MME mobility management entity
  • S-GW serving gateway
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated into the baseband device, or partially remote. Partly integrated in the baseband device.
  • the RAN equipment eNB
  • the RAN equipment includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, such as a remote radio unit (RRU) arranged remotely relative to the BBU.
  • RRU remote radio unit
  • the control plane protocol layer structure may include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the RAN equipment can be implemented by one node to implement the functions of the RRC, PDCP, RLC, and MAC protocol layers; or multiple nodes can implement the functions of these protocol layers; for example, in an evolution structure, the RAN equipment can include a centralized unit (centralized unit). unit, CU) and distributed unit (distributed unit, DU), multiple DUs can be centrally controlled by one CU. As shown in Figure 2, CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay, and functions that need to meet the delay requirement for processing time are set in the DU, and functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • control plane (CP) and the user plane (UP) of the CU can also be separated and divided into different entities for implementation. They are the control plane CU entity (CU-CP). Entity) and user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU can directly pass the protocol layer encapsulation and transparently transmit to the terminal or CU without analyzing the signaling. If the following embodiments involve the transmission of such signaling between the DU and the terminal, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal, or converted from received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency loading.
  • the CU can be divided into network equipment on the RAN side.
  • the CU can also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in terminals or network devices according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the RAN 110 can use the CG and/or DG mechanism to configure multiple uplink resources for the terminal 130.
  • the multiple uplink resources may or may not overlap in the time domain.
  • the terminal 130 selects which block of uplink resources to transmit signals on based on certain criteria. An example will be explained below.
  • FIG. 4 is a schematic diagram of an uplink resource configuration provided by an embodiment of this application.
  • the terminal 130 is configured with two uplink resources that overlap in the time domain as an example.
  • the two uplink resources that overlap in the time domain are the first uplink resource and the second uplink resource respectively.
  • the first uplink resource Both the second uplink resource and the second uplink resource can be CG resources or DG resources.
  • the first uplink resource is a CG resource and the second uplink resource is a DG resource in Figure 4 as an example.
  • the terminal has overlapped multiple uplink resources. Part of it is only transmitted on one uplink resource. Therefore, the terminal 130 chooses to transmit signals on CG resources or DG resources based on certain criteria.
  • the terminal 130 can choose to give priority to CG resources and DG resources. Signals are transmitted on higher-level resources. Assuming that the priority of DG resources in FIG. 4 is higher than that of CG resources, terminal 130 can choose to transmit signals on DG resources.
  • the terminal 130 processes uplink resources, it is the terminal 130 itself
  • the implementation behavior of the terminal that is, the timing of the terminal processing the uplink resources is different in the implementation. For example, when the terminal 130 determines to transmit a signal on the DG resource, the terminal 130 may have the following situations when processing the CG resource:
  • the terminal 130 has formed a MAC PDU for the CG resource or the terminal 130 has stored the data packet formed for the CG resource in the buffer of the corresponding HARQ process, but has not sent the MAC PDU or the all the data through the CG resource.
  • the data package For example, the MAC entity of the terminal 130 has not obtained the information of the DG resource, so the MAC PDU is formed for the CG resource. After the MAC entity forms the MAC PDU, it can be submitted to the PHY entity, and the PHY entity can store the MAC PDU in the corresponding buffer At this time, the data in the buffer is the data packet composed of CG resources.
  • the PHY entity determines that the priority of the DG resource is higher, it will give up transmitting signals on the CG resource, that is, in this case, the terminal 130 Although the MAC PDU has been composed for the CG resource or the data corresponding to the CG resource has been stored in the corresponding buffer, the MAC PDU or the data corresponding to the CG resource has not been sent through the CG resource.
  • the terminal 130 does not compose a MAC PDU for the CG resource or does not store the data packet composed for the CG resource in the corresponding buffer.
  • the CG resource is skipped, and the MAC PDU is not generated according to the CG resource.
  • the MAC entity of the terminal 130 determines that a higher priority DG resource needs to transmit data subsequently, the MAC entity of the terminal 130 ignores the CG resource and does not form a MAC PDU for the CG resource.
  • the MAC entity of the terminal 130 composes a MAC PDU for the CG resource. After the MAC entity composes the MAC PDU, because the DG resource has a higher priority, the MAC PDU is not submitted to the PHY entity. At this time, there is no data composed of the CG resource. The package is stored in the corresponding cache.
  • the RAN110 defaults to the terminal 130 enabling the skip mechanism.
  • the terminal 130 may not skip the CG resource, but compose a MAC PDU for the CG resource or have stored the data corresponding to the CG resource in the corresponding buffer. In this case, if the RAN 110 does not schedule the retransmission of the CG resource, data loss may be caused, thereby affecting user experience.
  • the RAN110 is configured to always schedule the retransmission of the CG resource, but in practice, the terminal 130 may not constitute a MAC PDU for the CG resource or the data for the CG resource may not be stored in the corresponding buffer. In this case, if the RAN 110 schedules the retransmission of the CG resource, it will increase signaling overhead and waste retransmission resources.
  • an embodiment of the present application provides a communication method.
  • this method for a scenario where uplink resources overlap in the time domain, when the terminal determines that the uplink resources with higher priority are used to transmit signals in the overlapped portion, Indicate to the network device whether the uplink resources with lower priority constitute MAC PDUs or whether there is data stored in the corresponding buffer for the uplink resources with lower priority. In this way, the network device can determine the priority of the terminal according to the instructions of the terminal.
  • the network device determines to constitute the MAC PDU for the lower-priority uplink resources according to the instructions of the terminal, then The network device can schedule resources to transmit or retransmit the MAC PDU.
  • the network device can schedule the resource to perform the data For transmission or retransmission, if the network device determines according to the instructions of the terminal that no MAC PDU is formed for uplink resources with a lower priority or no data is stored in the corresponding buffer for uplink resources with a lower priority, the network device does not need to schedule resource pairs
  • the data buffered in the HARQ process associated with the uplink resource with the lower priority is transmitted or retransmitted.
  • the method provided in the embodiments of this application can be applied to NR system, LTE system, LTE vehicle to everything (V2X) system, NR vehicle network system, next-generation wireless local area network system, or integrated access backhaul (IAB) ) System, this application does not limit this.
  • FIG. 5 is an implementation flowchart of a communication method provided by an embodiment of this application. As shown in Figure 5, the method includes:
  • Step 101 The terminal determines that among the first uplink resource and the second uplink resource that have overlapping parts in the time domain, the priority of the first uplink resource is higher than the priority of the second uplink resource.
  • the first uplink resource and the second uplink resource may or may not overlap in the frequency domain; the first uplink resource and the second uplink resource may be resources on different BWPs on the same carrier, or may be Resources on the same BWP on the same carrier.
  • the first uplink resource may be a DG resource or a CG resource, and the second uplink resource may also be a DG resource or a CG resource.
  • the first uplink resource and the second uplink resource may both be CG resources, or both may be DG resources, or one may be CG resources and the other may be DG resources.
  • the overlapping part may include all or part of the resources of the first uplink resource and/or the second uplink resource in the time domain.
  • the overlapping part in Figure 6a includes part of the resources of the first uplink resource or the second uplink resource in the time domain, as shown in Figure 6b.
  • the overlapping part includes all the resources of the first uplink resource in the time domain, or includes part of the resources of the second uplink resource in the time domain.
  • the MAC entity or the PHY entity of the terminal may determine that the priority of the first uplink resource is higher than the priority of the second uplink resource.
  • the MAC entity of the terminal may, but is not limited to, use any one of the following three methods or a combination of any methods to determine The priority of the first uplink resource is higher than the priority of the second uplink resource.
  • the MAC entity of the terminal can determine the priority of the first uplink resource and the second uplink resource according to their scheduling/arrival time. When it is determined that the scheduling/arrival time of the first uplink resource is later than the second uplink resource scheduling/ At the time of arrival, it can be determined that the priority of the first uplink resource is higher than the priority of the second uplink resource.
  • Method 2 The MAC entity of the terminal can determine the priority of the first uplink resource and the second uplink resource according to the priority indicated by the priority indicator in the scheduling command or configuration command of the first uplink resource.
  • the scheduling command of the first uplink resource Or when the priority indicated by the priority indicator in the configuration command is higher than the priority indicated by the priority indicator in the scheduling command of the second uplink resource or the priority indicator in the configuration command, it can be determined that the priority of the first uplink resource is higher than that of the second uplink resource. Priority of uplink resources.
  • the MAC entity of the terminal determines that the priority indicated by the priority indicator in the configuration command of the CG resource is higher than the priority in the scheduling command of the DG resource
  • the priority indicates the priority
  • Method 3 The MAC entity of the terminal can determine the priority of the two according to the highest priority of the logical channel (LCH) to which the data that can be transmitted on the first uplink resource and the second uplink resource belong.
  • LCH logical channel
  • the highest priority of the LCH to which the data transmitted on the first uplink resource belongs is higher than the highest priority of the LCH to which the data that can be transmitted on the second uplink resource belongs, it can be determined that the priority of the first uplink resource is higher than the priority of the second uplink resource level.
  • the PHY entity of the terminal can use any one of the above methods 1 to 3 or a combination of any methods to determine it.
  • the following method 4 can also be used to determine, of course, any combination of methods 1 to 4 can also be used to determine.
  • the PHY entity of the terminal may determine the priority of the first uplink resource and the second uplink resource according to the priority indication information sent by the MAC entity. For example, when the MAC entity determines that the priority of the first uplink resource is higher than the priority of the second uplink resource, it may send priority indication information to the PHY entity, where the priority indication information is used to indicate the priority of the first uplink resource The priority is higher than the priority of the second uplink resource. At this time, the PHY entity may determine according to the priority indication information that the priority of the first uplink resource is higher than the priority of the second uplink resource.
  • the MAC entity of the terminal when the MAC entity of the terminal submits a MAC PDU to the PHY entity or instructs the PHY to perform data transmission, it indicates the priority information of the MAC PDU or the priority information of the uplink transmission resources corresponding to the MAC PDU, and the PHY entity compares the instructions indicated by the MAC entity The priority information of the MAC PDU or the priority information of the uplink transmission resource determines which uplink transmission resource has a higher priority.
  • the terminal in the embodiment of the present application is the terminal 130 in FIG. 1
  • the network device is the RAN 110 in FIG. 1.
  • Step 102 When the terminal determines that the first uplink resource is used to send a signal in the overlapping portion, it indicates to the network device whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the signal in this application may include data and/or control signaling.
  • whether the second uplink resource forms a MAC PDU includes forming a MAC PDU for the second uplink resource or not forming a MAC PDU for the second uplink resource.
  • the MAC PDU composed of the second uplink resource can be understood as the MAC PDU generated for the second uplink resource, or it can be understood as the MAC PDU generated according to the second uplink resource, and can also be understood as the MAC PDU corresponding to the second uplink resource.
  • MAC PDU can also be understood as a MAC PDU associated with the second uplink resource, and can also be understood as a MAC PDU to be transmitted on the second uplink resource.
  • the understanding that the second uplink resource does not constitute a MAC PDU is similar.
  • whether there is data stored in the corresponding buffer for the second uplink resource includes whether there is data stored in the corresponding buffer for the second uplink resource or there is no data stored in the corresponding buffer for the second uplink resource.
  • there is data stored in the corresponding cache which can be understood as having data corresponding to the second uplink resource stored in the corresponding cache, and for the second uplink resource, there is no data stored in the corresponding cache. Similar to it.
  • the data corresponding to the second uplink resource is delivered by the MAC entity of the terminal to the PHY entity of the terminal as an example, there is data storage for the second uplink resource In the corresponding buffer, it can be understood that the MAC PDU composed of the second uplink resource is delivered by the MAC entity of the terminal to the PHY entity of the terminal and the corresponding data is stored in the corresponding HARQ process, or it can also be understood as the second uplink resource.
  • the MAC PDU composed of uplink resources is delivered by the MAC entity of the terminal to the PHY entity of the terminal and the corresponding data is stored in the buffer of the corresponding HARQ process, or it is understood that the terminal is stored in the corresponding HARQ before acquiring the second uplink resource. Data in the cache of the process.
  • the above method may also include the terminal acquiring the first uplink resource and the second uplink resource.
  • the acquisition method is the same as that described in 3) above, that is, the DG resource can be acquired through the downlink control information.
  • step 102 corresponds to the following multiple implementation solutions:
  • Solution 1 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device to form a MAC PDU for the second uplink resource. Exemplarily, when the terminal determines to use the first uplink resource to send a signal in the overlapping part, and the terminal determines to form a MAC PDU for the second uplink resource, it indicates to the network device to form a MAC PDU for the second uplink resource. For solution 1, the terminal only indicates to the network device when it composes a MAC PDU for the second uplink resource. For this solution, the network device can default to the fact that the terminal does not constitute a MAC PDU for the second uplink resource without receiving the terminal's instruction. MAC PDU.
  • Solution 2 When the terminal determines that the first uplink resource is used to send a signal in the overlapping part, it indicates to the network device to form a MAC PDU for the second uplink resource or not form a MAC PDU for the second uplink resource. Exemplarily, when the terminal determines to use the first uplink resource to send a signal in the overlapping part, and the terminal determines to form a MAC PDU for the second uplink resource, it indicates to the network device to form a MAC PDU for the second uplink resource; or the terminal determines to form a MAC PDU in the overlapping part When the first uplink resource is used to send a signal, and the terminal determines that no MAC PDU is formed for the second uplink resource, it indicates to the network device that no MAC PDU is formed for the second uplink resource.
  • the terminal not only indicates to the network device when forming a MAC PDU for the second uplink resource, but also indicates to the network device when the terminal does not form a MAC PDU for the second uplink resource.
  • the network device can indicate different instructions according to the terminal Determine whether the terminal composes a MAC PDU for the second uplink resource.
  • Solution 3 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device that no MAC PDU is formed for the second uplink resource. Exemplarily, when the terminal determines that the first uplink resource is used to send a signal in the overlapping portion, and the terminal determines that the MAC PDU is not formed for the second uplink resource, it indicates to the network device that no MAC PDU is formed for the second uplink resource. For scheme 3, the terminal only indicates to the network device when it does not form a MAC PDU for the second uplink resource. For this scheme, the network device can default to the configuration of the terminal for the second uplink resource without receiving the terminal indication MAC PDU.
  • Solution 4 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource. Exemplarily, when the terminal determines that the first uplink resource is used to send a signal in the overlapping portion, and the terminal determines that there is data stored in the corresponding buffer for the second uplink resource, it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource. In the cache. For solution 4, the terminal only indicates to the network device when there is data stored in the corresponding buffer for the second uplink resource. For this solution, the network device can default to the terminal for the first 2. No data in the uplink resource is stored in the corresponding buffer.
  • Solution 5 When the terminal determines that the first uplink resource is used to send the signal in the overlapping part, it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource. Exemplarily, when the terminal determines that the first uplink resource is used to send a signal in the overlapping portion, and the terminal determines that there is data stored in the corresponding buffer for the second uplink resource, it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal determines that the first uplink resource is used to send a signal in the overlapping part, and the terminal determines that no data is stored in the corresponding buffer for the second uplink resource, it indicates to the network device that no data is stored in the corresponding buffer for the second uplink resource. In the cache.
  • the terminal not only indicates to the network device when there is data stored in the corresponding buffer for the second uplink resource, but also indicates to the network device when no data is stored in the corresponding buffer for the second uplink resource.
  • the network device may determine whether the terminal has data stored in the corresponding buffer for the second uplink resource according to different instructions of the terminal.
  • Solution 6 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device that no data is stored in the corresponding buffer for the second uplink resource. Exemplarily, when the terminal determines that the first uplink resource is used to send a signal in the overlapping portion, and the terminal determines that no data is stored in the corresponding buffer for the second uplink resource, it indicates to the network device that no data is stored in the corresponding buffer for the second uplink resource. In the cache. For solution 6, the terminal only indicates to the network device when there is no data stored in the corresponding buffer for the second uplink resource. For this solution, the network device can default to the terminal for the first Second, the uplink resource has data stored in the corresponding buffer.
  • Solution 7 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device to form a MAC PDU for the second uplink resource or to store data in the corresponding buffer for the second uplink resource.
  • the terminal determines to use the first uplink resource to send a signal in the overlapping part and the terminal determines to form a MAC PDU for the second uplink resource, it indicates to the network device to form a MAC PDU for the second uplink resource; or the terminal determines to form a MAC PDU in the overlapping part
  • the first uplink resource is used to send the signal, and the terminal determines that there is data stored in the corresponding buffer for the second uplink resource, it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal only indicates to the network device when it composes a MAC PDU for the second uplink resource or when there is data stored in the corresponding buffer for the second uplink resource.
  • the network device In this case, the default is that the terminal does not form a MAC PDU for the second uplink resource or that no data is stored in the corresponding buffer for the second uplink resource.
  • Solution 8 When the terminal determines that the first uplink resource is used to send a signal in the overlapping part, it indicates to the network device that a MAC PDU is formed for the second uplink resource, or that there is data stored in the corresponding buffer for the second uplink resource, or the second uplink resource is not used. To form a MAC PDU or for the second uplink resource, no data is stored in the corresponding buffer.
  • the terminal determines to use the first uplink resource to send a signal in the overlapping part, and the terminal determines to form a MAC PDU for the second uplink resource, it indicates to the network device to form a MAC PDU for the second uplink resource; or the terminal determines to form a MAC PDU in the overlapping part
  • the terminal determines that there is data stored in the corresponding buffer for the second uplink resource
  • it indicates to the network device that there is data stored in the corresponding buffer for the second uplink resource
  • the terminal determines that there is data in the overlap
  • part of the first uplink resource is used to send a signal
  • the terminal determines that no MAC PDU is formed for the second uplink resource, it indicates to the network device that no MAC PDU is formed for the second uplink resource; or the terminal determines to use the first uplink resource to send in the overlapping part Signal, and when the terminal determines that no data is stored in the corresponding buffer for the second uplink
  • the terminal not only indicates to the network device when it composes a MAC PDU for the second uplink resource or when there is data stored in the corresponding buffer for the second uplink resource, but also the terminal does not compose a MAC PDU for the second uplink resource or for the second uplink resource.
  • the second uplink resource has no data stored in the corresponding buffer, it also indicates to the network device.
  • the network device can determine whether the terminal composes a MAC PDU for the second uplink resource or whether there is data stored in the second uplink resource according to different instructions from the terminal.
  • the corresponding cache can determine whether the terminal composes a MAC PDU for the second uplink resource or whether there is data stored in the second uplink resource according to different instructions from the terminal. The corresponding cache.
  • Solution 9 When the terminal determines to use the first uplink resource to send a signal in the overlapping part, it indicates to the network device that no MAC PDU is formed for the second uplink resource or that no data is stored in the corresponding buffer for the second uplink resource.
  • the terminal determines to use the first uplink resource to send a signal in the overlapping part, and the terminal determines that no MAC PDU is formed for the second uplink resource, it indicates to the network device that no MAC PDU is formed for the second uplink resource; or, the terminal determines that When the overlapping part uses the first uplink resource to send a signal, and the terminal determines that no data is stored in the corresponding buffer for the second uplink resource, it indicates to the network device that no data is stored in the corresponding buffer for the second uplink resource.
  • the terminal only indicates to the network device when no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • the network device does not receive the terminal indication In the case of, it may default that the terminal composes a MAC PDU for the second uplink resource or has data stored in the corresponding buffer for the second uplink resource.
  • the terminal determines that before using the first uplink resource to send a signal in the overlapping part, it can form a first MAC PDU for the first uplink resource. Based on this realization, after the terminal composes the first MAC PDU for the first uplink resource, it can also use the first uplink resource to send the first MAC PDU in the overlapping part. It should be noted that, in addition to using the first uplink resource to send the first MAC PDU in the overlapping part, the terminal may also send the first MAC PDU on resources other than the overlapping part included in the first uplink resource.
  • the terminal may also send the first MAC on the first part of the resources included in the first uplink resource except the overlapping part.
  • PDU that is, the terminal can send the first MAC PDU on the entire first uplink resource.
  • the MAC PDU formed for the second uplink resource is described as the second MAC PDU in the following.
  • the HARQ process associated with the first uplink resource and the HARQ process associated with the second uplink resource are different.
  • invalid scheduling of network equipment can be reduced.
  • the first uplink resource and the second uplink resource generated by the terminal may be associated with the same HARQ process.
  • the terminal composes the first MAC PDU and the second uplink resource respectively for the first uplink resource and the second uplink resource.
  • the MAC entity of the terminal submits the first MAC PDU and the second MAC PDU to the PHY entity of the terminal.
  • the first MAC PDU and the second MAC PDU need to be cached in the same HARQ process ( buffer).
  • the network device may schedule resources to transmit or retransmit the second MAC PDU.
  • the first MAC PDU and the second MAC PDU It is necessary to wait for transmission in the buffer of the same HARQ process, which may cause the second MAC PDU to be covered by the first MAC PDU. If the second MAC PDU is covered by the first MAC PDU, the scheduling of the network device is invalid.
  • Step 103 The network device determines whether to form a second MAC PDU for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource according to the instruction of the terminal.
  • Step 104a When the network device determines that a second MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource, the network device schedules the retransmission of the second uplink resource. Exemplarily, if the network device determines to form a MAC PDU for the second uplink resource according to the instructions of the terminal, the network device can schedule resources to transmit or retransmit the MAC PDU. If the network device determines that the MAC PDU is targeted for the second uplink resource according to the instructions of the terminal If data is stored in the corresponding buffer, the network device can schedule resources to transmit or retransmit the data.
  • Step 104b When the network device determines that no second MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource, the network device does not schedule the retransmission of the second uplink resource. Exemplarily, if the network device determines that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource according to the instructions of the terminal, the network device does not need to schedule a block of resources for the second uplink resource. Associate the data buffered in the HARQ process for transmission or retransmission.
  • the terminal when the terminal determines that the uplink resource with a higher priority is used in the overlapped part to send a signal, it can indicate to the network device that it is directed to the uplink with a lower priority.
  • the resource constitutes MAC PDU or whether there is data stored in the corresponding buffer for the lower priority uplink resource, so that the network equipment can form the MAC PDU for the lower priority uplink resource at the terminal or for the lower priority uplink
  • scheduling resource transmission or retransmission of MAC PDU or data composed of lower priority uplink resources can reduce data loss and ensure user experience.
  • the network When the terminal does not form a MAC PDU for the lower priority uplink resource or there is no data stored in the corresponding buffer for the lower priority uplink resource, the device does not need to schedule resources to be associated with the lower priority uplink resource
  • the data buffered in the HARQ process is transmitted or retransmitted, thereby saving signaling overhead and saving retransmission resources.
  • the terminal may use an explicit indication or an implicit indication to indicate to the network device whether the second uplink resource forms a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • an explicit indication or an implicit indication to indicate to the network device whether the second uplink resource forms a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal uses an explicit indication method to indicate to the network device whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal may send indication information to the network device, and the indication information is used to indicate to the network device whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the indication information sent by the terminal to the network device can be carried in different information, for example, it can be carried in a media access control element (MAC control element, MAC CE), for example, it can also carry Any MAC subheader included in the first MAC PDU, for example, may also be carried in uplink control information (UCI).
  • MAC control element MAC CE
  • UCI uplink control information
  • the indication information is carried on the MAC CE, and the MAC CE may be carried in the first MAC PDU. Of course, the MAC CE may also be carried in other MAC PDUs, which is not limited in this application.
  • the network device can reasonably schedule the retransmission of the second uplink resource through the indication information carried in the MAC CE carried in the received first MAC PDU, and the indication information indicates that the second uplink resource
  • the network device schedules resource transmission or retransmissions the MAC PDU or data composed of the second uplink resource, thereby reducing data loss.
  • the network device may not schedule the resource to transmit or retransmit the data buffered in the HARQ process associated with the second uplink resource , Thereby saving signaling overhead and retransmission resources, thereby improving resource utilization.
  • the number of second uplink resources is multiple, that is, there are multiple uplink resources that overlap with the first uplink resource.
  • multiple The indication information corresponding to each second uplink resource in the second uplink resource may be carried on the same MAC CE or different MAC CEs. For example, take 3 uplink resources overlapping as an example.
  • the 3 uplink resources are uplink resource A, uplink resource B, and uplink resource C.
  • the priority of uplink resource A is higher than the priority of uplink resource B and uplink resource C.
  • the terminal can send MAC PDU1 first.
  • the terminal can generate indication information 1 for uplink resource B.
  • the indication information 1 is used to indicate that MAC PDU2 is generated for uplink resource B or the MAC PDU2 generated for uplink resource B is stored in the corresponding HARQ buffer, and the terminal can target uplink resource C Generate indication information 2.
  • the indication information 2 is used to indicate that MAC PDU3 is generated for uplink resource C or the MAC PDU3 generated for uplink resource C is stored in the corresponding HARQ buffer.
  • the terminal can separately target uplink resource B and uplink resource C generates the corresponding MAC CE.
  • the terminal can generate MAC CE1 for uplink resource B, carry indication information 1 through MAC CE1, and generate MAC CE2 for uplink resource C, and carry indication information 2 through MAC CE2.
  • the terminal It is also possible to generate a MAC CE3 for the uplink resource B and the uplink resource C, and carry the indication information 1 and the indication information 2 through the MAC CE3.
  • the MAC CE carrying the indication information may only include the MAC subheader, or may include the MAC subheader and the payload.
  • the indication information when the MAC CE carrying the indication information only includes a MAC subheader, the indication information is located in the MAC subheader of the MAC CE.
  • the indication information may be a logical channel identification (LCID) included in the MAC subheader of the MAC CE, LCID includes 6 bits, 6 bits can indicate the value of 0-63, the current 6 bits included in LCID indicate 0-32 and 52-63 have been used, so this application can use the 6 included in the LCID
  • the bit indicates any value in 33-51, indicating whether the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the 6-bit indication 33 included in the LCID when the 6-bit indication 33 included in the LCID can be used, that is, when the 6-bit value of the LCID is 100001, it indicates that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding second uplink resource. In the cache.
  • the 6-bit indication 33 included in the LCID when the 6-bit indication 33 included in the LCID can be used, that is, when the 6-bit value of the LCID is 100001, it indicates that a MAC PDU is formed for the second uplink resource or there is data stored in the second uplink resource.
  • the 6 bits included in the LCID can be used to indicate 34, that is, when the 6 bits of the LCID have a value of 100010, it indicates that no MAC PDU is formed for the second uplink resource or for the second uplink resource No data is stored in the corresponding cache.
  • the indication information when the MAC CE carrying the indication information includes a MAC subheader and a payload (payload), the indication information may be located in the MAC subheader of the MAC CE or the load of the MAC CE.
  • the indication information when the indication information is located in the load of the MAC CE, the indication information may be bits in the load of the MAC CE.
  • the indication information when the number of second uplink resources is one, the indication information may be a bit in the load of the MAC CE, and the value of this bit is 0 or 1 to indicate that the second uplink resource Whether the resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource. For example, when the value of this bit is 1, it can indicate that a MAC PDU is constituted for the second uplink resource or for the second uplink resource There is data stored in the corresponding buffer.
  • this bit When the value of this bit is 0, it can indicate that no MAC PDU is formed for the second uplink resource or that no data is stored in the corresponding buffer for the second uplink resource. For example, when When the value of this bit is 0, it can indicate that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource. When the value of this bit is 1, it can indicate that it is for the second uplink resource. The second uplink resource does not form a MAC PDU or there is no data stored in the corresponding buffer for the second uplink resource.
  • the indication information may be all
  • the multiple bits in the load of the MAC CE indicate whether the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource through the value of the multiple bits.
  • the indication information may be 3 bits in the load of the MAC CE, They are bit A, bit B, and bit C.
  • the value of bit A can indicate whether a MAC PDU is formed for the second uplink resource A or whether there is data stored in the corresponding buffer for the second uplink resource A.
  • the value of bit B can be used to indicate whether the second uplink resource B constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource B
  • the value of bit C can be used to indicate whether the second uplink resource Whether C constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource C.
  • the terminal sends a MAC carrying indication information to the network device when it composes a MAC PDU for the second uplink resource or when there is data stored in the corresponding buffer for the second uplink resource CE, when no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource, the terminal does not send a MAC CE carrying indication information to the network device.
  • the network device can determine whether the terminal constitutes a MAC PDU for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource according to whether the terminal sends the MAC CE carrying the indication information, so as to reasonably schedule the reconfiguration of the second uplink resource. pass.
  • the terminal when the terminal composes a MAC PDU for the second uplink resource or has data stored in the corresponding buffer for the second uplink resource, or the terminal is targeting the second uplink resource
  • the MAC CE carrying the indication information is sent to the network device, and the LCID or MAC CE in the MAC subheader of the MAC CE
  • the bits in the load indicate whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the network device can determine whether the terminal constitutes a MAC PDU for the second uplink resource or whether there is a MAC PDU for the second uplink resource according to the LCID in the MAC subheader of the MAC CE or the value/state of the bit in the load of the MAC CE sent by the terminal.
  • the data is stored in the corresponding buffer, and the retransmission of the second uplink resource is reasonably scheduled.
  • the MAC CE carrying the indication information may also include one or more of the following information:
  • the identification information of the HARQ process associated with the second uplink resource may include the ID of the HARQ process.
  • the identification information of the HARQ process may include multiple second uplink resources. The ID of the HARQ process associated with each second uplink resource in the uplink resource or the corresponding index value after all HARQ processes in the multiple second uplink resources are sorted from small to large or from large to small.
  • the HARQ process associated with each second uplink resource may include the ID of the HARQ process, or the corresponding index value of all HARQ processes of the HARQ process in the multiple second uplink resources sorted from small to large or from large to small.
  • the 3 uplink resources are uplink resource A, uplink resource B, and uplink resource C.
  • the priority of uplink resource A is higher than the priority of uplink resource B and uplink resource C.
  • the uplink resource A is the first uplink resource in the application
  • the uplink resource B and the uplink resource C are the second uplink resources in the application, which is equivalent to the number of second uplink resources.
  • the IDs of the HARQ processes associated with uplink resource B and uplink resource C are 6 and 8, respectively, and the corresponding index values of the HARQ processes associated with uplink resource B and uplink resource C are sorted from small to large, respectively, 1, 2.
  • the MAC CE generated by uplink resource B includes the index value 1 corresponding to the HARQ process associated with uplink resource B.
  • the terminal may also include the index value 2 corresponding to the HARQ process associated with uplink resource C in the MAC CE generated for uplink resource C.
  • the terminal may also include the index value 1 corresponding to the HARQ process associated with the uplink resource B and the index value 2 corresponding to the HARQ process associated with the uplink resource C in the MAC CE generated for the uplink resource B and the uplink resource C.
  • the location information of the second uplink resource may include the time point of the start time of the second uplink resource, such as system frame number (SFN) and/or time slot (slot) and/or symbol (symbol) value, that is, It may include SFN, time slot or symbol, or SFN and time slot, or SFN and symbol, or SFN, time slot and symbol.
  • SFN system frame number
  • slot time slot
  • symbol symbol
  • the location information of the second uplink resource may include multiple The time point of the start time of each second uplink resource in the second uplink resource, or the corresponding index value after the start time of each second uplink resource in the plurality of second uplink resources is sorted in time order .
  • the location information of each second uplink resource includes the The time point of the start time of the second uplink resource, or the time point of the start time of the second uplink resource, is the index value corresponding to the start time of the plurality of second uplink resources sorted in time order.
  • Item 3 is the identification or priority of the logical channel (logical channel, LCH) with the highest priority in the second MAC PDU.
  • the SR information may include SR configuration ID and other information.
  • the priority of the MAC CE carrying the indication information can be predefined, or the priority of the MAC CE can be configured through RRC signaling/SIB signaling.
  • the priority of the MAC CE may be predefined to be higher than the priority of any LCH data, but lower than the priority of the existing MAC CE.
  • the priority of the MAC CE may be configured to be higher than the priority of some/all existing MAC CEs through RRC signaling/SIB signaling.
  • the priority of the MAC CE may be pre-defined or configured through RRC signaling/SIB signaling to be higher than the priority of partial LCH data.
  • FIG. 8a to FIG. 8b are schematic diagrams of the indication mode provided in the embodiment of this application.
  • the terminal is configured with two uplink resources that overlap in the time domain as an example.
  • the two uplink resources that overlap in the time domain are uplink resource 1 and uplink resource 2, respectively.
  • Both 1 and uplink resource 2 can be CG resources or DG resources. Assuming that the priority of uplink resource 2 is higher than that of uplink resource 1, uplink resource 1 is used for new transmission or retransmission, and uplink resource 2 is used for new transmission.
  • the start time of uplink resource 2 is later than the start time of uplink resource 1 as an example.
  • the start time of uplink resource 2 can also be the same as or earlier than the start time of uplink resource 1.
  • the start time of resource 1. The following describes the two scenarios shown in FIG. 8a and FIG. 8b respectively.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal when it is determined that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal forms a MAC PDU for uplink resource 1, or the terminal targets uplink resource 1.
  • the data corresponding to the MAC PDU composed of resource 1 is stored in the corresponding HARQ process or the data corresponding to the MAC PDU composed of the terminal for uplink resource 1 is stored in the buffer of the corresponding HARQ process, and the HARQ process associated with uplink resource 1 If the HARQ process associated with uplink resource 2 is different, the terminal can trigger the generation of MAC CE, and the MAC CE carries indication information.
  • the indication information is used to indicate that a MAC PDU is formed for uplink resource 1 or that there is data stored in the corresponding uplink resource 1.
  • the terminal can carry the MAC CE carrying the indication information in the MAC PDU generated for the uplink resource 2 and send it to the network device.
  • the MAC entity of the terminal when the MAC entity of the terminal is processing uplink resource 2, if it is determined that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal composes a MAC PDU for uplink resource 1, and the uplink
  • the MAC entity of the terminal can reconstruct some/all MAC CEs (such as BSR MAC CE) in the MAC PDU corresponding to uplink resource 1 to target uplink resource 2.
  • some/all MAC CEs such as BSR MAC CE
  • the terminal can send the MAC CE in the MAC PDU corresponding to uplink resource 1 to the network device through the MAC PDU corresponding to uplink resource 2.
  • the terminal does not need to send instructions to the network device, and the network device does not need to Scheduling the retransmission of uplink resource 1 can save signaling overhead.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal is processing uplink resource 2, if it is determined that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal does not form a MAC PDU for uplink resource 1 or the terminal forms a MAC PDU for uplink resource 1
  • the terminal can trigger the generation of MAC CE, through which MAC CE bears indication information, which is used to indicate that no MAC PDU is formed for uplink resource 1 or that no data is stored in the corresponding buffer for uplink resource 1, and the terminal can carry the MAC CE carrying the indication information in the corresponding buffer for uplink resource 1. 2
  • the generated MAC PDU is sent to the network device.
  • the content carried in the MAC CE generated for uplink resource 1 in FIG. 8a and FIG. 8b and the priority configuration of the MAC CE can be referred to the description in the above-mentioned explicit indication method 1, which will not be repeated here.
  • uplink resource 1 is actively ignored by the MAC entity of the terminal, for example, when the MAC entity processes uplink resource 1, it is known that there is uplink resource 2 and can transmit priority. If the data is high, the data stored in the buffer of the HARQ process associated with uplink resource 1 can be actively cleared.
  • the second way of explicit indication is that the bits of any MAC subheader of the first MAC PDU are used as indication information.
  • the R bit (reserved bit) in any MAC subheader of the first MAC PDU can be used as the indication information, which can be understood as setting the R bit in any MAC subheader of the first MAC PDU to use
  • the R bit in the first MAC subheader included in the first MAC PDU may be set as an indication bit. Refer to Figure 9a, which is a schematic diagram of a possible first MAC sub-header.
  • the value of the R bit in Figure 9a may be used to indicate whether the second uplink resource forms a MAC PDU or is targeted at 0 or 1. Whether the second uplink resource has data stored in the corresponding buffer.
  • Figure 9b which is another possible schematic diagram of the first MAC subheader. This application may use the value of the R bit in Figure 9b to indicate whether the second uplink resource forms a MAC PDU or is Whether the second uplink resource has data stored in the corresponding buffer.
  • FIG. 9c which is a schematic diagram of another possible first MAC subheader. The present application may use the value of the first R bit or the second R bit in FIG.
  • the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the value of the R bit when the value of the R bit is 1, it can indicate that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource.
  • the value of the R bit when the value of the R bit is 0, it can be Indicates that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • the value of the R bit is 0, it may indicate that a MAC PDU or the second uplink resource is formed There is data stored in the corresponding buffer for the second uplink resource.
  • the value of the R bit when the value of the R bit is 1, it can indicate that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • the network device can judge whether the terminal constitutes a MAC PDU for the second uplink resource or whether there is data for the second uplink resource through the indication bit included in the MAC subheader in the first MAC PDU sent by the terminal Stored in the corresponding buffer, and then can reasonably schedule the retransmission of the second uplink resource.
  • the terminal is configured with two uplink resources that overlap in the time domain as an example.
  • the two uplink resources that overlap in the time domain are uplink resource 1 and uplink resource 2, respectively.
  • Both 1 and uplink resource 2 can be CG resources or DG resources. Assuming that the priority of uplink resource 2 is higher than that of uplink resource 1, uplink resource 1 is used for new transmission or retransmission, and uplink resource 2 is used for new transmission.
  • the start time of uplink resource 2 is later than the start time of uplink resource 1 as an example.
  • the start time of uplink resource 2 can also be the same as or earlier than the start time of uplink resource 1.
  • the start time of resource 1. The following describes the two scenarios shown in FIG. 10a and FIG. 10b respectively.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal determines that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal forms a MAC PDU for uplink resource 1 or the terminal forms a MAC PDU for uplink resource 1
  • the data is stored in the corresponding HARQ process or the data corresponding to the MAC PDU formed by the terminal for uplink resource 1 is stored in the buffer of the corresponding HARQ process, and the HARQ process associated with uplink resource 1 and the HARQ associated with uplink resource 2
  • the terminal can set the R bit in any MAC subheader included in the MAC PDU generated for uplink resource 2 to 1 or 0, which is used to indicate that a MAC PDU is formed for uplink resource 1 or that there is a MAC PDU for uplink resource 1.
  • the data is stored in the corresponding buffer.
  • the network device After receiving the MAC PDU generated for uplink resource 2 sent by the terminal, the network device can decide to schedule the uplink resource 1 according to the value of the R bit included in the MAC subheader in the MAC PDU. pass.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal is processing uplink resource 2, if it is determined that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal does not form a MAC PDU for uplink resource 1 or the terminal forms a MAC PDU for uplink resource 1
  • the terminal can transfer the MAC generated for uplink resource 2
  • the R bit in any MAC subheader included in the PDU is set to 0 or 1, which is used to indicate that no MAC PDU is formed for uplink resource 1 or that there is no data stored in the corresponding buffer for uplink resource 1, and the network device receives the terminal transmission After the MAC PDU is generated for the uplink resource 2, it may be decided not to schedule the retransmission of the
  • the third way of explicit indication is to carry the indication information in uplink control information (UCI).
  • UCI uplink control information
  • the terminal when the terminal composes a MAC PDU for the second uplink resource or has data stored in the corresponding buffer for the second uplink resource, it sends UCI to the network device, and the terminal is in When the second uplink resource does not constitute a MAC PDU or there is no data stored in the corresponding buffer for the second uplink resource, UCI is not sent to the network device, and the network device can determine whether the terminal is targeting the second uplink resource according to whether the terminal sends UCI Form a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource, and then reasonably schedule the retransmission of the second uplink resource.
  • the terminal when the terminal composes a MAC PDU for the second uplink resource or has data stored in the corresponding buffer for the second uplink resource, or when the terminal is targeting the second uplink resource,
  • the UCI is sent to the network device, and the UCI includes instructions for indicating whether the second uplink resource forms a MAC PDU or for the second uplink resource.
  • the uplink resource has an indicator bit for storing data in the corresponding buffer, and the value of the indicator bit indicates whether the second uplink resource forms a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the network device can determine whether the terminal composes a MAC PDU for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource according to the value/state of the indicator bit in the UCI, and then reasonably schedule the second uplink resource. 2. Retransmission of uplink resources.
  • the UCI may include one or more of the following information in addition to the indication bit:
  • Item 1 the identification information of the HARQ process associated with the second uplink resource.
  • the location information of the second uplink resource may include the time point of the start time of the second uplink resource, such as SFN and/or slot and/or symbol value.
  • Item 3 the identification or priority of the highest priority LCH in the second MAC PDU.
  • the SR information may include SR configuration ID and other information.
  • the terminal can send UCI to the network device in the following two ways:
  • Manner 1 The MAC entity of the terminal instructs the PHY entity to send UCI to the network device.
  • Manner 2 The PHY entity of the terminal sends UCI to the network device.
  • UCI parameters such as parameters such as the location or format of the time-frequency resource for sending the UCI
  • the UCI time-frequency resource location can be configured by RRC signaling;
  • the UCI time-frequency resource location may be indicated by RRC signaling configuration and/or DCI.
  • the time-frequency resource position of UCI may be indicated in the DCI allocated to the first uplink resource; or the time-frequency resource position set may be configured through RRC signaling, and the first uplink resource may be allocated
  • the DCI indicates a time-frequency resource location in the time-frequency resource location set, which is used as the time-frequency resource location of UCI.
  • the time-frequency resource position of UCI can be indicated in the DCI for allocating the second uplink resource; or the time-frequency resource position set can be configured through RRC signaling, and the second uplink resource is allocated
  • the DCI of the resource indicates a time-frequency resource position in the time-frequency resource position set as the time-frequency resource position of UCI.
  • the network device can determine whether the terminal is directed to the second uplink resource by whether the UCI signaling is received at the location related to the uplink resource, or the value/state of the indicator bit in the received UCI signaling Form a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource, and then reasonably schedule the retransmission of the second uplink resource.
  • the terminal determines the corresponding If the first uplink resource is a CG resource, the RRC signaling that configures the CG determines the UCI time-frequency resource location and other parameters, and sends the UCI to the network device on the corresponding resource; if the first uplink resource is DG resources, and the UCI time-frequency resource location and other parameters are indicated by the DCI that allocates the first uplink resource, then the location of the time-frequency resource for sending UCI is determined according to the indication information in the DCI.
  • the UCI parameter is associated with the second uplink resource as an example.
  • the terminal composes a MAC PDU for the second uplink resource or has data stored in the corresponding buffer for the second uplink resource
  • the terminal determines the corresponding If the second uplink resource is a CG resource, the RRC signaling that configures the CG determines the UCI time-frequency resource location and other parameters, and sends the UCI to the network device on the corresponding resource; if the second uplink resource is DG resources, and UCI time-frequency resource location and other parameters are indicated by the DCI that allocates the second uplink resource, then the time-frequency resource location for sending UCI etc. is determined according to the indication information in the DCI.
  • the time domain/frequency domain resource location for sending UCI can be calculated by the terminal according to the time domain/frequency domain resource location of the first uplink resource or the second uplink resource and a certain method, for example, the time domain for sending UCI
  • the location can have a fixed time interval with the time domain location of the first uplink resource
  • the time domain location for sending UCI can also be a fixed time interval with the time domain location of the second uplink resource
  • the frequency domain location for sending UCI can be the same as that of the first uplink resource.
  • the frequency domain position has a fixed function relationship
  • the frequency domain position of sending UCI may also have a fixed function relationship with the frequency domain position of the second uplink resource.
  • FIG. 11 is a schematic diagram of an indication mode provided in an embodiment of this application.
  • the two uplink resources that overlap in the time domain are uplink resource 1 and uplink resource 2, where uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • the priority of uplink resource 2 is higher than the priority of uplink resource 1
  • uplink resource 1 is used for new transmission or retransmission
  • uplink resource 2 is used for new transmission or retransmission.
  • the start time of uplink resource 2 is later than the start time of uplink resource 1 as an example.
  • the start time of uplink resource 2 can also be the same as or earlier than the start time of uplink resource 1. Starting moment. The following describes the scenario shown in FIG. 11.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal determines that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal forms a MAC PDU for uplink resource 1 or the terminal forms a MAC PDU for uplink resource 1
  • the data is stored in the corresponding HARQ process or the data corresponding to the MAC PDU formed by the terminal for uplink resource 1 is stored in the buffer of the corresponding HARQ process, and the HARQ process associated with uplink resource 1 and the HARQ associated with uplink resource 2 If the process is different, the terminal can send UCI carrying indication information to the network device.
  • the terminal when the terminal does not form a MAC PDU for uplink resource 1 or has no data stored in the corresponding buffer for uplink resource 1, it does not send UCI to the network device , the network device can determine whether the terminal composes a MAC PDU for the uplink resource 1 or whether there is data stored in the corresponding buffer for the uplink resource 1 according to whether the terminal sends UCI, and then reasonably schedule the retransmission of the uplink resource 1.
  • the MAC entity may instruct the PHY entity to send UCI.
  • the above-mentioned explicit indication mode three can also be used in the scenario of uplink resource preemption between different terminals.
  • the following describes in detail the problems existing in the scenario of preempting uplink resources between terminals, and how to solve the problem using the above-mentioned explicit indication method 3 provided in the embodiment of the present application.
  • the uplink resource can be CG resource or DG resource. If the network device detects that terminal 2 is more urgent or If high-priority uplink data needs to be transmitted, the network device can instruct terminal 1 not to perform uplink transmission on uplink resource 1 through indication signaling, and notify terminal 2 to use uplink resource 1 for uplink transmission. This can be understood as the uplink of terminal 1 Resource 1 is preempted by terminal 2. In this process, the terminal 1 processes the uplink resource 1 in the following three situations:
  • the uplink resource 1 is prepared to skip.
  • the terminal 1 before processing the uplink resource 1, the terminal 1 receives the instruction signaling sent by the network device to instruct the terminal 1 not to perform uplink transmission on the uplink resource 1. In this case, the MAC entity of the terminal 1 can ignore the uplink resource 1.
  • the terminal 1 composes a MAC PDU for the uplink resource 1 and delivers it to the PHY entity, and the PHY entity abandons the transmission of the uplink resource 1 after receiving the indication signaling sent by the network device.
  • the network equipment cannot receive signals on the uplink resource 1.
  • the network device defaults to the terminal 1 to enable the skip mechanism.
  • the network device does not receive a signal on the uplink resource 1, it is considered that the terminal 1 does not have a suitable uplink resource 1.
  • Signal transmission, so the retransmission of the uplink resource 1 will not be scheduled.
  • the terminal 1 may not skip the uplink resource 1, but has formed a data packet for the uplink resource 1 but the uplink resource 1 is preempted by the terminal 2. Therefore, a data packet composed of uplink resource 1 cannot be sent.
  • the network device does not schedule the retransmission of the uplink resource 1, data loss may be caused, and user experience may be affected.
  • the network device is configured to always schedule the retransmission of the uplink resource 1.
  • the terminal 1 may skip the uplink resource 1 or ignore the uplink resource 1, that is, the terminal may not A MAC PDU is formed for uplink resource 1 or the data for uplink resource 1 is not stored in the corresponding buffer. In this case, if the network device schedules the retransmission of the uplink resource 1, signaling overhead will increase and retransmission will be wasted Resources.
  • the method of explicit indication method 3 in this application can be used to solve the problem.
  • the terminal 1 can indicate whether to form a MAC PDU for the uplink resource 1 or whether there is data stored in the corresponding buffer for the uplink resource 1 by sending UCI to the network device.
  • terminal 1 receives preemption indication signaling from the network device, and terminal 1 composes a MAC PDU for uplink resource 1 or has data stored in the corresponding buffer for uplink resource 1, it sends the network device Send UCI.
  • the preemption indication signaling in this application is used to instruct the terminal 1 not to perform uplink transmission on the uplink resource 1. It can be understood that the preemption indication signaling is used to indicate that the uplink resource 1 is preempted.
  • terminal 1 When terminal 1 receives preemption indication signaling from a network device, and terminal 1 does not form a MAC PDU for uplink resource 1 or has no data stored in the corresponding buffer for uplink resource 1, it does not send UCI to the network device, then the network The device can determine whether the terminal 1 forms a MAC PDU for the uplink resource 1 or whether there is data stored in the corresponding buffer for the uplink resource 1 according to whether the terminal 1 sends UCI, and then reasonably schedules the retransmission of the uplink resource 1. In another possible implementation manner, when the terminal 1 forms a MAC PDU for the uplink resource 1 or has data stored in the corresponding buffer for the uplink resource 1, or, the terminal 1 does not form a MAC PDU for the uplink resource 1 or for the uplink resource 1.
  • UCI When resource 1 has no data stored in the corresponding buffer, UCI is sent to the network device, and the UCI includes a command to indicate whether to form a MAC PDU for uplink resource 1 or whether there is data stored in the corresponding buffer for uplink resource 1
  • the indicator bit the value of the indicator bit indicates whether a MAC PDU is formed for the uplink resource 1 or whether there is data stored in the corresponding buffer for the uplink resource 1. For example, taking the indicator bit as one bit as an example, when the value of this bit is 1, it can be used to indicate that a MAC PDU is formed for uplink resource 1 or that there is data stored in the corresponding buffer for uplink resource 1.
  • the network device can determine whether terminal 1 constitutes a MAC PDU for uplink resource 1 or whether there is data stored in the corresponding buffer for uplink resource 1 according to the value/state of the indicator bit in UCI, and then reasonably schedule uplink resources 1 retransmission.
  • the data for uplink resource 1 is stored in the corresponding buffer, which can be understood as the data corresponding to the MAC PDU composed of uplink resource 1 is stored in the corresponding HARQ process or the data corresponding to the MAC PDU composed of uplink resource 1 is stored in In the buffer of the corresponding HARQ process.
  • the terminal 1 can send UCI to the network device in the following two ways:
  • Manner 1 The PHY entity of the terminal 1 notifies the MAC entity of the terminal 1 of the preemption indication signaling sent by the network device, and then the MAC entity of the terminal 1 instructs the PHY entity to send UCI to the network device.
  • UCI parameters such as parameters such as the location or format of the time-frequency resource for sending the UCI
  • the UCI parameter as the time-frequency resource location for sending the UCI as an example, when the uplink resource 1 is a CG resource, the UCI time-frequency resource location can be configured by RRC signaling; when the uplink resource 1 is DG, UCI The location of the time-frequency resource may be indicated by RRC signaling configuration and/or DCI.
  • the time-frequency resource location of UCI can be indicated by the DCI of allocating uplink resource 1, or the time-frequency resource location of UCI can be indicated in the preemption indication signaling sent by the network device; or when the uplink resource 1 is a DG resource, this can be configured through RRC A collection of UCI time-frequency resource optional positions, and a specific time-frequency resource position is indicated from the set of UCI time-frequency resource optional positions by allocating the DCI of uplink resource 1, or preemption indication signaling sent by a network device.
  • the time domain/frequency domain resource location for sending UCI may be calculated by the terminal according to the time domain/frequency domain location of the first uplink resource and a certain method, for example, the time domain location and the first uplink resource location for sending UCI.
  • the time domain position of an uplink resource may have a fixed time interval
  • the frequency domain position of sending UCI may have a fixed function relationship with the frequency domain position of the first uplink resource
  • the frequency domain position of sending UCI may also be the frequency domain of the second uplink resource.
  • the position has a fixed functional relationship.
  • uplink resource 1 if the uplink resource 1 is preempted by the terminal 2, data transmission may not be performed in the preempted resource portion, or the power may be reduced for data transmission.
  • uplink resource 1 is actively ignored by the MAC entity, for example, the MAC entity receives an indication from the PHY entity before processing uplink resource 1 that uplink resource 1 is preempted by terminal 2, then it can actively clear the HARQ process associated with uplink resource 1 The data.
  • the terminal uses an implicit indication method to indicate to the network device whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal may use the information transmitted on the first uplink resource to indicate to the network device whether to form a MAC PDU for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource; or, The terminal may use the first MAC PDU transmission mode to indicate to the network device whether the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the information transmitted on the first uplink resource may include, for example, a demodulation reference signal (DMRS), that is, the DMRS transmitted on the first uplink resource may indicate whether the second uplink resource is composed MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • DMRS demodulation reference signal
  • the network device can configure two types of DMRS for the terminal through RRC signaling, or predefine two types of DMRS for the terminal, for example, the two types of DMRS are DMRS type 1 and DMRS type 2, and each type of DMRS may contain at least one DMRS .
  • the terminal When the terminal transmits DMRS included in DMRS type 1 on the first uplink resource, it indicates that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource. When the terminal transmits on the first uplink resource When DMRS included in DMRS type 2, it indicates that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • the transmission mode of the first MAC PDU may include, for example, the modulation mode or scrambling mode used to transmit the first MAC PDU, that is, the modulation mode or scrambling mode of the first MAC PDU may be used to indicate the first MAC PDU.
  • the network device can configure two types of radio network temporary identifier (RNTI) for the terminal through RRC signaling, or predefine two types of RNTI for the terminal, for example, the two types of RNTI are RNTI type 1 and RNTI type. 2.
  • Each type of RNTI can contain at least one RNTI.
  • the terminal uses the RNTI included in RNTI type 1 to scramble the first uplink resource, it indicates that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource.
  • RNTI type 2 including When the RNTI scrambles the first uplink resource, it indicates that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • the network device can configure two types of modulation and coding schemes (MCS) for the terminal through RRC signaling, or predefine two types of MCS for the terminal, for example, the two types of MCS are MCS type 1 and MCS type 2 respectively.
  • Each type of MCS can contain at least one MCS.
  • the terminal uses the MCS included in MCS type 1 to modulate the first uplink resource, it indicates that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource.
  • the terminal uses the MCS included in MCS type 2
  • the MCS modulates the first uplink resource it indicates that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource.
  • FIG. 12 is a schematic diagram of the indication mode provided in this embodiment of the application.
  • the terminal is configured with two uplink resources that overlap in the time domain as an example.
  • the two uplink resources that overlap in the time domain are uplink resource 1 and uplink resource 2, where uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • uplink resource 1 and uplink resource Resource 2 can be either CG resource or DG resource.
  • the start time of uplink resource 2 is later than the start time of uplink resource 1 as an example.
  • the start time of uplink resource 2 can also be the same as or earlier than the start time of uplink resource 1. Starting moment.
  • the implicit indication method will be described below for the scenario shown in FIG. 12.
  • the MAC entity of the terminal executes the method provided in this application as an example for schematic illustration.
  • the MAC entity of the terminal determines that the priority of uplink resource 2 is higher than the priority of uplink resource 1, and the terminal forms a MAC PDU for uplink resource 1 or the terminal forms a MAC PDU for uplink resource 1
  • the data is stored in the corresponding HARQ process or the data corresponding to the MAC PDU formed by the terminal for uplink resource 1 is stored in the buffer of the corresponding HARQ process, and the HARQ process associated with uplink resource 1 and the HARQ associated with uplink resource 2 If the process is different, the MAC entity of the terminal instructs the PHY entity to perform uplink transmission of uplink resource 2 through DMRS type 1.
  • the terminal uses DMRS type 2 to perform uplink transmission of uplink resource 2.
  • the network equipment can determine whether the terminal forms a MAC PDU for uplink resource 1 or whether there is data stored in the corresponding buffer for uplink resource 1 according to the type of DMRS transmitted on uplink resource 2, and then reasonably schedule uplink resource 1 Retransmission.
  • the method may also be executed by the PHY entity of the terminal.
  • the PHY entity of the terminal determines that the priority of the uplink resource 2 is higher than the priority of the uplink resource 1, the uplink transmission of the uplink resource 1 is performed through DMRS type 1.
  • an embodiment of the present application provides another communication method.
  • the terminal determines When the overlapped part uses higher priority uplink resources to send signals, the resources arriving in the next cycle can be used to transmit the MAC PDU grouped by the lower priority uplink resources, which can reduce data packet loss, and this method is not required
  • the terminal informs the network equipment to schedule new resources, which can save signaling overhead.
  • FIG. 13 is an implementation flowchart of another communication method provided by an embodiment of this application. Referring to Figure 13, the method includes:
  • Step 201 The terminal determines that among the first uplink resource and the second uplink resource that have overlapping parts in the time domain, the priority of the first uplink resource is higher than the priority of the second uplink resource.
  • Step 202 The terminal uses the first uplink resource to send a signal to the network device in the overlapping part.
  • Step 203 The terminal sends a data packet generated for the second uplink resource to the network device on the third uplink resource.
  • the third uplink resource is an uplink resource that arrives after the second uplink resource, the third uplink resource is associated with the same HARQ process as the second uplink resource, and the terminal does not generate a data packet for the third uplink resource.
  • the third uplink resource and the second uplink resource are resources that arrive at different periods of the configured authorized resource.
  • the first uplink resource and the second uplink resource are associated with different HARQ processes.
  • FIG. 14 is a schematic diagram of data transmission provided in an embodiment of this application.
  • Figure 14 assumes that the terminal is configured with two uplink resources that overlap in the time domain as an example.
  • the two uplink resources that overlap in the time domain are uplink resource 1 and uplink resource 2, where uplink resource 2 can be CG resource or DG resource.
  • Uplink resource 1 is a CG resource.
  • the priority of uplink resource 2 is higher than that of uplink resource 1
  • uplink resource 1 is used for new transmission
  • uplink resource 2 is used for new transmission or retransmission, as shown in Figure 14.
  • the start time of uplink resource 2 is later than the start time of uplink resource 1.
  • the start time of uplink resource 2 can also be the same as or earlier than the start time of uplink resource 1. The beginning moment.
  • the terminal can use uplink resource 2 to send data packets to the network device in the overlapping part, and when the next CG resource associated with the uplink resource 1 to the same HARQ process (denoted as uplink resource 3) arrives, if the terminal targets the uplink resource 3 There is no suitable data transmission, and the uplink resource 3 is prepared to skip. At this time, the terminal can use the uplink resource 3 to send the data packet generated for the uplink resource 1 to the network device.
  • the terminal and the network device include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application may divide the terminal and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • embodiments of the present application also provide a device for implementing any of the above methods.
  • a device is provided that includes units (or means for implementing each step performed by the terminal in any of the above methods).
  • another device is also provided, including a unit (or means) for implementing each step performed by the network device in any of the above methods.
  • an embodiment of the present application provides a communication device 100.
  • the communication device 100 can be applied to a terminal.
  • FIG. 15 is a schematic structural diagram of a communication device 100 provided by an embodiment of the application.
  • the communication device 100 includes a processing unit 110.
  • the communication device 100 may further include a sending unit 120 and a receiving unit 130.
  • the processing unit 110 may be configured to determine that the priority of the first uplink resource is higher than the priority of the second uplink resource, and the first uplink resource is compared with the second uplink resource. 2.
  • the uplink resource has an overlapping part in the time domain, and it is determined that when the overlapping part uses the first uplink resource to send a signal, indicate to the network device whether the second uplink resource constitutes a media access control layer protocol data unit MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the processing unit 110 may be configured to determine that the priority of the first uplink resource is higher than the priority of the second uplink resource, and the first uplink resource is different from the second uplink resource. 2.
  • the uplink resource has an overlapping part in the time domain; the sending unit 120 may be configured to use the first uplink resource to send a signal to a network device in the overlapping part, and send a data packet to the network device on a third uplink resource,
  • the data packet is a data packet generated for the second uplink resource
  • the third uplink resource is an uplink resource that arrives after the second uplink resource
  • the third uplink resource is the same as the second uplink resource
  • the same hybrid automatic repeat request HARQ process is associated, and the terminal does not generate a data packet for the third uplink resource.
  • an embodiment of the present application further provides a communication device 200.
  • the communication device 200 can be applied to network equipment.
  • FIG. 16 is a schematic structural diagram of a communication device 200 provided by an embodiment of this application. Referring to FIG. 16, the communication device 200 includes a processing unit 210. In an implementation, the communication device 200 may further include a receiving unit 220.
  • the processing unit 210 may be configured to determine whether the second uplink resource constitutes a MAC PDU for the second uplink resource or for the second Whether the uplink resource has data stored in the corresponding buffer; when it is determined that a MAC PDU is formed for the second uplink resource or that there is data stored in the corresponding buffer for the second uplink resource, the scheduling of the second uplink resource Retransmission; or, when it is determined that no MAC PDU is formed for the second uplink resource or no data is stored in the corresponding buffer for the second uplink resource, the retransmission of the second uplink resource is not scheduled.
  • the receiving unit 130 may be configured to receive a signal sent by the terminal using a first uplink resource, where the first uplink resource and the second uplink resource overlap in the time domain.
  • the priority of the first uplink resource is higher than the priority of the second uplink resource; the data packet sent by the terminal on the third uplink resource is received, and the data packet is for the second uplink resource
  • the third uplink resource is an uplink resource that arrives after the second uplink resource, and the third uplink resource is associated with the same hybrid automatic repeat request HARQ process with the second uplink resource, and , No data packet is generated for the third uplink resource.
  • the receiving unit 220 is configured to receive indication information from the terminal, and the indication information is used to indicate whether a MAC PDU is formed for the second uplink resource or whether there is a MAC PDU for the second uplink resource.
  • the data is stored in the corresponding cache.
  • the processing unit 110 is further configured to determine to form a first MAC PDU for the first uplink resource before the overlapping part uses the first uplink resource to send a signal; the processing unit 110 is specifically configured to determine to use the first uplink resource to send the first MAC PDU in the overlapping part.
  • the sending unit 120 is configured to send indication information to the network device, where the indication information is used to indicate whether to form a MAC PDU for the second uplink resource or for the second uplink resource Whether there is data stored in the corresponding cache.
  • the indication information is carried in a media access control element MAC CE, and the MAC CE is carried in the first MAC PDU.
  • the indication information is located in the MAC subheader of the MAC CE.
  • the indication information includes a logical channel identifier LCID.
  • the indication information is located in the load of the MAC CE.
  • the MAC CE includes one or more of the following information:
  • the indication information includes bits of the MAC subheader of the first MAC PDU.
  • the indication information is carried in the uplink control information UCI.
  • the UCI includes one or more of the following information:
  • the information transmitted on the first uplink resource is used to indicate whether a MAC PDU is formed for the second uplink resource or whether there is data stored in the corresponding buffer for the second uplink resource ;or,
  • the transmission mode of the first MAC PDU is used to indicate whether the second uplink resource constitutes a MAC PDU or whether there is data stored in the corresponding buffer for the second uplink resource.
  • the HARQ process associated with the first uplink resource and the HARQ process associated with the second uplink resource are different.
  • the third uplink resource and the second uplink resource are resources that arrive at different periods of the configured authorized resource.
  • the first uplink resource and the second uplink resource are associated with different HARQ processes.
  • each unit in the device can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal exchanges information with the terminal through the interface protocol with the network device, for example, sending instruction information or the first MAC PDU; the terminal and the network device are connected wirelessly, and the terminal exchanges information with the network device through the wireless interface, such as sending instruction information Or the first MAC PDU.
  • FIG. 17 is a schematic structural diagram of a terminal provided by an embodiment of the application. It may be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes: an antenna 1701, a radio frequency part 1702, and a signal processing part 1703.
  • the antenna 1701 is connected to the radio frequency part 1702.
  • the radio frequency part 1702 receives the information sent by the network device through the antenna 1701, and sends the information sent by the network device to the signal processing part 1703 for processing.
  • the signal processing part 1703 processes the terminal information and sends it to the radio frequency part 1702
  • the radio frequency part 1702 processes the terminal information and sends it to the network device via the antenna 1701.
  • the signal processing part 1703 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal operating system and application layer; in addition, it may also include Other subsystems, such as multimedia subsystem, peripheral subsystem, etc., where the multimedia subsystem is used to control the terminal camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 17031, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 17032 and an interface circuit 17033.
  • the storage element 17032 is used to store data and programs, but the program used to execute the method executed by the terminal in the above method may not be stored in the storage element 17032, but is stored in a memory outside the modem subsystem. When the modem subsystem is loaded and used.
  • the interface circuit 17033 is used to communicate with other subsystems.
  • the above device for the terminal may be located in the modem subsystem, the modem subsystem may be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute any of the methods executed by the above terminal In each step, the interface circuit is used to communicate with other devices.
  • the unit for the terminal to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • a device applied to the terminal includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above The method executed by the terminal in the method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit applied to the terminal for implementing each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the modem subsystem, where the processing elements may be Integrated circuits, for example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal that implement the steps in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and a storage element can be integrated in the chip, and the above terminal execution method can be realized by the processing element calling the stored program of the storage element; or, at least one integrated circuit can be integrated in the chip for realizing the above terminal execution Or, can be combined with the above implementations, the functions of some units are implemented in the form of processing element calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus applied to a terminal may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the terminal provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal are executed in a manner; of course, part or all of the steps executed by the terminal may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of this application. Used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1801, a radio frequency device 1802, and a baseband device 1803.
  • the antenna 1801 is connected to the radio frequency device 1802.
  • the radio frequency device 1802 receives the information sent by the terminal through the antenna 1801, and sends the information sent by the terminal to the baseband device 1803 for processing.
  • the baseband device 1803 processes the terminal information and sends it to the radio frequency device 1802, and the radio frequency device 1802 processes the terminal information and sends it to the terminal via the antenna 1801.
  • the baseband device 1803 may include one or more processing elements 18031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1803 may also include a storage element 18032 and an interface circuit 18033.
  • the storage element 18032 is used to store programs and data; the interface circuit 18033 is used to exchange information with the radio frequency device 1802.
  • the interface circuit is, for example, a common public wireless interface (common public radio interface, CPRI).
  • the above device applied to the network device may be located in the baseband device 1803.
  • the above device applied to the network device may be a chip on the baseband device 1803.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • a device applied to the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit applied to the network equipment to implement each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device, where the processing elements may be integrated circuits For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus applied to a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device can be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 19 is a schematic structural diagram of another network device provided in an embodiment of this application. It may be the network device in the above embodiment, and is used to implement the operation of the network device in the above embodiment.
  • the network device includes: a processor 1910, a memory 1920, and an interface 1930, and the processor 1910, the memory 1920 and the interface 1930 are signal-connected.
  • the above reference time determining device is located in the network device, and the functions of each unit can be implemented by the processor 1910 calling a program stored in the memory 1920. That is, the above reference time determining device includes a memory and a processor, and the memory is used to store a program, and the program is called by the processor to execute the method in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the functions of the above units can be realized by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种通信方法和装置,以期针对上行资源在时域上重叠的场景,合理调度上行资源的重传。该方法包括:终端确定在时域上有重叠部分的第一上行资源与第二上行资源中,第一上行资源的优先级高于第二上行资源的优先级,终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。采用该方法,网络设备可根据终端的指示,确定终端针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,进而可合理调度针对该优先级较低的上行资源所组成MAC PDU的重传。

Description

一种通信方法和装置
本申请要求在2019年03月29日提交中国专利局、申请号为201910251765.5、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法和装置。
背景技术
在第五代(5 th generation,5G)新无线(new radio,NR)中,有两种上行资源调度机制。一种是动态授权(dynamic grant,DG),网络设备每次调度上行DG时,都通过下行控制信息(downlink control information,DCI)向终端指示被调度的上行传输资源的时频位置等信息。另一种是配置授权(configured grant,CG),网络设备采用CG为终端配置CG资源时,部分参数,例如CG资源的周期、使用CG资源的混合自动重传请求(hybrid automatic repeat request,HARQ)进程数目等参数,由网络设备通过无线资源控制(radio resource control,RRC)信令提供给终端,CG资源的时频位置、调制编码策略(modulation and coding scheme,MCS)等可以由网络设备通过RRC信令提供给终端,也可以由网络设备通过DCI提供给终端。
在NR中,可以采用CG和/或DG机制为终端配置多块上行资源,多块上行资源在时域上可以重叠也可以不重叠,当为终端配置的多块上行资源在时域上重叠时,终端需要基于一定的准则选择在哪一块上行资源上传输信号。以终端被配置两块在时域上有重叠的上行资源为例,一种准则中,终端可以选择在两块上行资源中优先级较高的上行资源上传输信号,基于该准则网络设备在优先级较低的上行资源上接收不到信号,在该过程中,终端可能已针对优先级较低的上行资源组成媒体接入控制(media access control,MAC)层协议数据单元(protocol data unit,PDU)或未组成MAC PDU,或终端可能针对优先级较低的上行资源有数据存储在对应的缓存中或没有数据存储在对应的缓存中,目前针对该场景,一种处理方式中网络设备默认终端启用了跳过(skip)机制,无论终端是否针对优先级较低的上行资源组包或是否针对优先级较低的上行资源有数据缓存,网络设备均不调度优先级较低的上行资源的重传,此时可能造成针对优先级较低的上行资源所组MAC PDU丢失,另一种处理方式中为减少数据包丢失,无论终端是否针对优先级较低的上行资源组包或是否针对优先级较低的上行资源有数据缓存,网络设备均为优先级较低的上行资源调度一块重传资源,此时可能造成调度资源的浪费。显然,这两种处理方式均不适用于该场景。
发明内容
本申请实施例提供一种通信方法和装置,以期针对上行资源在时域上重叠的场景,合理调度上行资源的重传。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端,或者也可以应用于终端内部的芯片。在该方法中,终端确定第一上行资源的优先级高于第二上行资源的 优先级,第一上行资源与第二上行资源在时域上有重叠部分,终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,网络设备根据终端的指示确定针对上行资源是否组成媒体接入控制层协议数据单元MAC PDU或针对上行资源是否有数据存储在对应的缓存中;当网络设备确定针对上行资源组成MAC PDU或针对上行资源有数据存储在对应的缓存中时,网络设备调度上行资源的重传;或,当网络设备确定针对上行资源未组成MAC PDU或针对上行资源没有数据存储在对应的缓存中时,网络设备不调度上行资源的重传。
第三方面,本申请提供一种通信装置,包括:包括用于执行以上第一方面或第二方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第五方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第六方面,本申请提供一种通信程序,该程序在被处理器执行时用于执行以上第一方面或第二方面的方法。
第七方面,提供一种程序产品,例如计算机可读存储介质,包括第六方面的程序。
可见,在以上各个方面,终端确定在重叠部分采用优先级较高的上行资源发送信号时,可以向网络设备指示针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,这样,网络设备便可根据终端的指示,确定终端针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,进而可合理调度该优先级较低的上行资源的重传。
在以上各个方面,信号可以包括数据和/或控制信令。
在一种可能的设计中,第一上行资源关联的HARQ进程和第二上行资源关联的HARQ进程不同。
在一种可能的设计中,终端针对第一上行资源组成第一MAC PDU,终端确定在重叠部分采用第一上行资源发送第一MAC PDU。
在一种可能的设计中,终端向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,包括:终端向网络设备发送指示信息,网络设备接收来自终端的指示信息。
本申请实施例中,指示信息用于指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
在一种可能的设计中,指示信息承载于MAC CE,MAC CE携带在第一MAC PDU中。
在一种可能的设计中,指示信息位于MAC CE的MAC子头。
在一种可能的设计中,指示信息包括LCID。
在一种可能的设计中,指示信息位于MAC CE的负载。
在一种可能的设计中,MAC CE还包括如下信息中的一项或多项:
第二上行资源关联的混合自动重传请求HARQ进程的标识信息;
第二上行资源的位置信息;
第二MAC PDU中最高优先级的逻辑信道LCH的标识或优先级;或,
第二MAC PDU中最高优先级的LCH关联的SR信息,第二MAC PDU为针对第二上行资源组成的MAC PDU。
在一种可能的设计中,指示信息包括第一MAC PDU的MAC子头的比特位。
在一种可能的设计中,指示信息承载于UCI。
在一种可能的设计中,终端确定第一上行资源的优先级高于第二上行资源的优先级,包括:终端的MAC实体确定第一上行资源的优先级高于第二上行资源的优先级。基于该设计,终端向网络设备发送指示信息,包括:终端的MAC实体指示物理层PHY实体向网络设备发送UCI。
在一种可能的设计中,终端确定第一上行资源的优先级高于第二上行资源的优先级,包括:终端的PHY实体确定第一上行资源的优先级高于第二上行资源的优先级。基于该设计,终端向网络设备发送指示信息,包括:终端的PHY实体向网络设备发送UCI。
在一种可能的设计中,UCI中还包括如下信息中的一项或多项:
第二上行资源关联的HARQ进程的标识信息;
第二上行资源的位置信息;
第二MAC PDU中最高优先级的逻辑信道LCH的标识或优先级;
第二MAC PDU中最高优先级的LCH关联的SR信息,第二MAC PDU为针对第二上行资源组成的MAC PDU。
在一种可能的设计中,在第一上行资源上传输的信息用于指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中;或,第一MAC PDU的传输方式用于指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
第八方面,本申请实施例提供另一种通信方法,该方法可以应用于终端,或者也可以应用于终端内部的芯片。在该方法中,终端确定第一上行资源的优先级高于第二上行资源的优先级,第一上行资源与第二上行资源在时域上有重叠部分,终端在重叠部分采用第一上行资源向网络设备发送信号,并在第三上行资源上向网络设备发送数据包,数据包为针对第二上行资源生成的数据包,第三上行资源为在第二上行资源之后到达的上行资源,第三上行资源与第二上行资源关联相同的HARQ进程,且,终端针对第三上行资源未生成数据包。
第九方面,本申请实施例提供另一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。在该方法中,网络设备接收终端采用第一上行资源发送的信号,第一上行资源与第二上行资源在时域上有重叠部分,第一上行资源的优先级高于第二上行资源的优先级,网络设备接收终端在第三上行资源上发送的数据包,数据包为针对第二上行资源生成的数据包,第三上行资源为在第二上行资源之后到达的上行资源,第三上行资源与第二上行资源关联相同的HARQ进程,且,针对第三上行资源未生成数据包。
第十方面,本申请提供一种通信装置,包括:包括用于执行以上第八方面或第九方面各个步骤的单元或手段(means)。
第十一方面,本申请提供一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器用于执行以上第八方面或第九方面提供的方法。
第十二方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第八方面或第九方面提供的方法。
第十三方面,本申请提供一种通信程序,该程序在被处理器执行时用于执行以上第八方面或第九方面的方法。
第十四方面,提供一种程序产品,例如计算机可读存储介质,包括第十三方面的程序。
可见,在以上各个方面,针对上行资源在时域上重叠的场景,终端确定在重叠部分采用优先级较高的上行资源发送信号时,可以利用下个周期到达的资源对优先级较低的上行资源所组的MAC PDU进行传输,可以减少数据包丢失,且采用该方法,无需终端通知网络设备调度新的资源,可节省信令开销。
在一种可能的设计中,第三上行资源和第二上行资源为配置授权资源不同周期到达的资源。
在一种可能的设计中,第一上行资源与第二上行资源关联不同的HARQ进程。
附图说明
图1为本申请实施例可应用的一种通信系统的示意图;
图2为本申请实施例提供的一种网络架构的示意图;
图3为本申请实施例提供的另一种网络架构的示意图;
图4为本申请实施例提供的一种上行资源的配置示意图;
图5为本申请实施例提供的一种通信方法的实施流程图;
图6a为本申请实施例提供的一种重叠部分;
图6b为本申请实施例提供的另一种重叠部分;
图7为本申请实施例提供的一种MAC CE的MAC子头的示意图;
图8a为本申请实施例提供的一种指示方式示意图;
图8b为本申请实施例提供的又一种指示方式示意图;
图9a为本申请实施例提供的一种MAC PDU的MAC子头的示意图;
图9b为本申请实施例提供的另一种MAC PDU的MAC子头的示意图;
图9c为本申请实施例提供的又一种MAC PDU的MAC子头的示意图;
图10a为本申请实施例提供的又一种指示方式示意图;
图10b为本申请实施例提供的又一种指示方式示意图;
图11为本申请实施例提供的又一种指示方式示意图;
图12为本申请实施例提供的又一种指示方式示意图;
图13为本申请实施例提供的另一种通信方法的实施流程图;
图14为本申请实施例提供的又一种指示方式示意图;
图15为本申请实施例提供的一种通信装置结构示意图;
图16为本申请实施例提供的另一种通信装置结构示意图;
图17为本申请实施例提供的一种终端结构示意图;
图18为本申请实施例提供的一种网络设备的结构示意图;
图19为本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)网络设备,是无线网络中的设备,例如网络设备可以为将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。又例如网络设备可以是为终端提供业务支持的核心网(core network,CN)设备,常见的核心网设备包括接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。
无论是RAN设备还是CN设备均可以作为所述网络设备,执行本申请实施例中网络设备执行的方法。
3)上行资源调度机制,下面介绍两种上行资源调度机制。一种是动态调度,网络设备每次调度上行动态授权(dynamic grant,DG)时,都通过下行控制信息(downlink control information,DCI)指示被调度的上行传输资源的时频位置等信息。另一种是配置授权(configured grant,CG),目前对该两类配置授权分别定义为配置授权类型1(configured grant type 1)和配置授权类型2(configured grant type 2)。
基于以上两种上行资源调度方式,可以将调度的上行资源分为两大类,将通过动态调度的方式调度的上行资源称为DG资源或称为DG类型资源或称为DG,将通过配置授权的方式调度的上行资源称为CG资源或称为CG类型资源或称为CG,本申请对上行资源的名称不做限定。
其中,配置授权类型1的时频资源位置、CG资源的周期、使用CG资源的混合自动 重传请求(hybrid automatic repeat request,HARQ)进程数目、调制编码策略(modulation and coding scheme,MCS)等参数,由网络设备通过无线资源控制(radio resource control,RRC)信令提供给终端,并由终端存储为配置上行授权(configured uplink grant),进而终端可使用该配置授权进行上行数据传输;配置授权类型2的CG资源的周期、使用CG资源的HARQ进程数目等参数,由网络设备通过RRC信令提供给终端,配置授权类型2的时频资源位置、MCS等由网络设备通过DCI提供给终端,并由终端存储为配置上行授权,即配置授权类型2可以由物理层(physical layer,PHY)或层1(L1)信令控制激活或去激活,当网络设备通过DCI激活配置授权类型2时,时频资源位置由网络设备通过DCI提供给终端,并由终端存储为配置上行授权,进而终端可使用该配置授权进行上行数据传输。
4)资源跳过(skip)机制,是指当终端被配置上行资源后,若针对该上行资源终端无合适的待传输数据,则终端skip该上行资源,也就是,终端不会针对该上行资源生成MAC PDU。
若采用CG为终端配置上行资源,当终端被配置一个CG资源时,若针对该CG资源终端没有合适的待传输上行数据,则终端会skip该CG资源,即终端不会针对该CG资源生成MAC PDU。
若采用动态调度为终端配置上行资源,终端可以配置上行动态传输的skip机制,例如,可以通过RRC信令携带的参数skipUplinkTxDynamic来指示是否配置上行动态传输的skip机制。当配置了上行动态传输的skip机制时,若终端被配置一个DG资源,且针对该DG资源终端没有合适的待传输上行数据,则终端会skip该DG资源,即终端不会针对该DG资源生成MAC PDU。
5)传输块(transport block,TB),是指MAC PDU在物理层形成的传输块,一个TB中可以包括多个比特。
6)载波,可以是指用于调制待发送信号的无线电波,例如,正弦波。
7)带宽部分(band width part,BWP),是指为适配终端的带宽能力,在载波带宽内为终端配置的资源,例如,载波带宽上一组连续的或不连续的RB,一个载波中可配置多个BWP,例如一个载波可以配置4个BWP。
8)“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面结合说明书附图对本申请的技术方案作进一步地详细描述。
请参考图1,其为本申请实施例可应用的一种通信系统的示意图。如图1所示,终端130可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端通信。该无线网络包括RAN110和CN120,其中RAN110用于将终端130接入到无线网络,CN120用于对终端进行管理并提供与外网通信 的网关。应理解,图1所示的通信系统中各个设备的数量仅作为示意,本申请实施例并不限于此,实际应用中在通信系统中还可以包括更多的终端130、更多的RAN110,还可以包括其它设备。
本申请对图1所示的通信系统的类型不做限定,例如可以是LTE系统,也可以是NR系统,当然也可以是未来的通信系统。
CN120中可以包括多个CN设备,当图1所示的通信系统为NR系统时,CN120中可以包括AMF实体、UPF实体、或SMF实体等,当图1所示的通信系统为LTE系统时,CN120中可以包括移动性管理实体(mobility management entity,MME)和服务网关(serving gateway,S-GW)等。
请参考图2,其为本申请实施例提供的一种网络架构的示意图。如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,相对于图2所示的网络架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终 端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
在以上实施例中可以将CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
以图1所示的通信系统为例,RAN110可以采用CG和/或DG机制为终端130配置多块上行资源,多块上行资源在时域上可以重叠也可以不重叠,当为终端130配置的多块上行资源在时域上重叠时,终端130基于一定的准则选择在哪一块上行资源上传输信号。下面以一个例子进行说明。
请参考图4,其为本申请实施例提供的一种上行资源配置示意图。图4中以为终端130配置了两块在时域上重叠的上行资源为例示意,两块在时域上重叠的上行资源分别为第1上行资源和第2上行资源,其中,第1上行资源和第2上行资源均可以为CG资源或DG资源,假设图4中以第1上行资源为CG资源、第2上行资源为DG资源为例示意,终端在有交叠的多块上行资源的重叠部分只在一块上行资源上传输,因此,终端130基于一定的准则选择在CG资源还是在DG资源上传输信号,一种基于优先级的准则中,终端130可以选择在CG资源和DG资源中优先级较高的资源上传输信号,假设图4中DG资源的优先级高于CG资源的优先级,则终端130可以选择在DG资源上传输信号,终端130在何时处理上行资源是终端130自身的实现行为,也就是说终端处理上行资源的时机在实现中是有不同情形的。例如,在终端130确定在DG资源上传输信号的过程中,终端130在处理CG资源时,可以有如下情形:
第一种情形,终端130已针对CG资源组成MAC PDU或者终端130已将针对CG资源所组成的数据包存储在对应HARQ进程的缓存中,但未通过所述CG资源发送所述MAC PDU或所述数据包。例如,终端130的MAC实体未获得DG资源的信息,故针对CG资源组成MAC PDU,MAC实体组成MAC PDU之后,可将其递交至PHY实体,PHY实体可将该MAC PDU存储在相应的缓存中,此时缓存中的数据即为针对CG资源所组成的数据包,若PHY实体确定DG资源的优先级更高,则放弃在CG资源上传输信号,也就是,在这种情况中,终端130虽已针对CG资源组成MAC PDU或已将与CG资源对应的数据存储在对应的缓存中,但未通过该CG资源发送该MAC PDU或与CG资源对应的数据。
第二种情形,终端130未针对CG资源组成MAC PDU或者没有针对CG资源所组成的数据包存储在对应的缓存中。例如,当为终端130配置的CG资源到达时,针对该CG资源终端130没有合适的待传输数据,则skip该CG资源,不根据该CG资源生成MAC PDU。又例如,终端130的MAC实体确定后续有优先级更高的DG资源需要传输数据,则终端130的MAC实体忽略该CG资源,不针对该CG资源组成MAC PDU。再如,终端130的MAC实体针对CG资源组成MAC PDU,MAC实体组成MAC PDU之后,由于DG资源的优先级更高,没有将MAC PDU递交至PHY实体,此时没有针对CG资源所组成的数据包存储在对应的缓存中。
目前针对上述场景,一种处理方式中RAN110默认终端130启用了跳过(skip)机制,当RAN110在CG资源上接收不到信号时,认为终端130在该CG资源上没有合适的信号传输,故不会调度该CG资源的重传,而实际中,终端130可能并没有skip该CG资源,而是针对该CG资源组成MAC PDU或已将与该CG资源对应的数据存储在相应的缓存中,这种情况下,若RAN110不调度该CG资源的重传,可能会导致数据丢失,进而影响用户体验。另一种处理方式中,针对上述场景RAN110被配置为一直调度该CG资源的重传,而实际中,终端130可能未针对CG资源组成MAC PDU或者没有针对CG资源的数据存储在对应的缓存中,这种情况下,若RAN110调度该CG资源的重传,则会增加信令开销,且浪费重传资源。
鉴于上述存在的问题,本申请实施例提供一种通信方法,在该方法中,针对上行资源在时域上重叠的场景,终端确定在重叠部分采用优先级较高的上行资源发送信号时,可以向网络设备指示针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,这样,网络设备便可根据终端的指示,确定终端针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,若网络设备根据终端的指示确定针对优先级较低的上行资源组成MAC PDU,则网络设备可以调度资源对该MAC PDU进行传输或重传,若网络设备根据终端的指示确定针对优先级较低的上行资源有数据存储在对应的缓存中,则网络设备可以调度资源对该数据进行传输或重传,若网络设备根据终端的指示确定针对优先级较低的上行资源未组成MAC PDU或针对优先级较低的上行资源没有数据存储在对应的缓存中,则网络设备无需调度资源对该优先级较低的上行资源所关联HARQ进程中缓存的数据进行传输或重传。
本申请实施例提供的方法可以应用于NR系统、LTE系统、LTE车联网(vehicle to everything,V2X)系统、NR车联网系统、下一代无线局域网系统或统一接入回传(integrated access backhaul,IAB)系统,本申请对此不做限定。
请参考图5,其为本申请实施例提供的一种通信方法的实施流程图。参阅图5所示,该方法包括:
步骤101:终端确定在时域上有重叠部分的第一上行资源和第二上行资源中,第一上行资源的优先级高于第二上行资源的优先级。本申请实施例中,第一上行资源和第二上行资源在频域上可以重叠也可以不重叠;第一上行资源和第二上行资源可以是同一个载波上不同BWP上的资源,也可以是同一个载波上相同BWP上的资源。第一上行资源可以是DG资源或CG资源,第二上行资源也可以是DG资源或CG资源。且第一上行资源和第二上行资源可以都是CG资源,也可以都是DG资源,或者一个是CG资源,一个是DG资源。
其中,所述重叠部分可以包括第一上行资源和/或第二上行资源在时域上的全部或部分资源。参见图6a-图6b所示,为本申请实施例提供的两种重叠部分,图6a中所述重叠部分包括第一上行资源或第二上行资源在时域上的部分资源,图6b中所述重叠部分包括第一上行资源在时域上的全部资源,或者包括第二上行资源在时域上的部分资源。
本申请实施例中,可以由终端的MAC实体或PHY实体确定第一上行资源的优先级高于第二上行资源的优先级。
若由终端的MAC实体确定第一上行资源的优先级高于第二上行资源的优先级,则终 端的MAC实体可以但不限于采用如下三种方法中的任意一种方法或任意方法的组合确定第一上行资源的优先级高于第二上行资源的优先级。
方法1,终端的MAC实体可以根据第一上行资源与第二上行资源的调度/到达时刻来确定两者的优先级,当确定第一上行资源的调度/到达时刻晚于第二上行资源调度/到达时刻时,即可确定第一上行资源的优先级高于第二上行资源的优先级。
方法2,终端的MAC实体可以根据第一上行资源与第二上行资源的调度命令或配置命令中优先级指示所指示的优先级来确定两者的优先级,当确定第一上行资源的调度命令或配置命令中优先级指示所指示的优先级,高于第二上行资源的调度命令或配置命令中的优先级指示所指示的优先级时,可确定第一上行资源的优先级高于第二上行资源的优先级。例如,假设第一上行资源为CG资源,第二上行资源为DG资源,当终端的MAC实体确定CG资源的配置命令中优先级指示所指示的优先级,高于DG资源的调度命令中的优先级指示所指示的优先级时,可确定第一上行资源的优先级高于第二上行资源的优先级。
方法3,终端的MAC实体可以根据能够在第一上行资源与第二上行资源上进行传输的数据所属逻辑信道(logical channel,LCH)的最高优先级来确定两者的优先级,当确定能够在第一上行资源上传输的数据所属LCH最高优先级,高于能够在第二上行资源上传输的数据所属LCH最高优先级时,可确定第一上行资源的优先级高于第二上行资源的优先级。
若由终端的PHY实体确定第一上行资源的优先级高于第二上行资源的优先级,则终端的PHY实体除了可以采用上述方法1-方法3中任一方法或任意方法的组合来确定之外,还可以采用如下方法4确定,当然,也可以采用方法1-方法4任意组合的方法确定。
方法4,终端的PHY实体可以根据MAC实体发送的第一上行资源与第二上行资源的优先级指示信息确定两者的优先级。例如,当MAC实体确定出第一上行资源的优先级高于第二上行资源的优先级时,可以向PHY实体发送优先级指示信息,该优先级指示信息用于指示第一上行资源的优先级高于第二上行资源的优先级,此时,PHY实体可以根据该优先级指示信息确定第一上行资源的优先级高于第二上行资源的优先级。或者,终端的MAC实体向PHY实体递交MAC PDU或指示PHY进行数据传输时,指示该MAC PDU的优先级信息或该MAC PDU对应的上行传输资源的优先级信息,PHY实体通过比较MAC实体所指示的MAC PDU的优先级信息或上行传输资源的优先级信息,确定哪一个上行传输资源的优先级更高。
可以理解,若将本申请实施例提供的方法应用于图1所示的网络架构,则本申请实施例中的终端为图1中的终端130、网络设备为图1中的RAN110。
步骤102:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。其中,本申请中信号可以包括数据和/或控制信令。
本申请实施例中,针对第二上行资源是否组成MAC PDU,包括针对第二上行资源组成MAC PDU或针对第二上行资源未组成MAC PDU。其中,针对第二上行资源组成的MAC PDU,可以理解为针对第二上行资源生成的MAC PDU,也可以理解为根据第二上行资源生成的MAC PDU,也可以理解为与第二上行资源对应的MAC PDU,也可以理解为与第二上行资源关联的MAC PDU,也可以理解为准备在第二上行资源上传输的MAC PDU,针对第二上行资源未组成MAC PDU的理解与之类似。相应的,针对第二上行资源是否有 数据存储在对应的缓存中,包括针对第二上行资源有数据存储在对应的缓存中或针对第二上行资源没有数据存储在对应的缓存中。其中,针对第二上行资源有数据存储在对应的缓存中,可以理解为有与第二上行资源对应的数据存储在对应的缓存中,针对第二上行资源没有数据存储在对应的缓存中的理解与之类似。示例性地,以与第二上行资源对应的数据为,针对第二上行资源组成的MAC PDU由终端的MAC实体递交到终端的PHY实体后对应的数据为例,针对第二上行资源有数据存储在对应的缓存中,可以理解为针对第二上行资源组成的MAC PDU由终端的MAC实体递交到终端的PHY实体后对应的数据存储在对应的HARQ进程中,或者,也可以理解为针对第二上行资源组成的MAC PDU由终端的MAC实体递交到终端的PHY实体后对应的数据存储在对应的HARQ进程的缓存(buffer)中,或者理解为终端在获取第二上行资源前即存储在对应HARQ进程的缓存中的数据。
以上方法还可以包括终端获取第一上行资源和第二上行资源,其中第一上行资源为DG资源或CG资源时,其获取方式同以上3)的描述,即可以通过下行控制信息获取DG资源,通过RRC信令获取CG资源,或者通过RRC信号和下行控制信息获取CG资源。
本申请实施例中,步骤102对应有如下多种实现方案:
方案1:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源组成MAC PDU。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源组成MAC PDU时,向网络设备指示针对第二上行资源组成MAC PDU。对于方案1,终端只在针对第二上行资源组成MAC PDU时,才向网络设备指示,对于该方案,网络设备在未收到终端指示的情况下,可以默认为终端针对第二上行资源未组成MAC PDU。
方案2:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源组成MAC PDU或针对第二上行资源未组成MAC PDU。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源组成MAC PDU时,向网络设备指示针对第二上行资源组成MAC PDU;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源未组成MAC PDU时,向网络设备指示针对第二上行资源未组成MAC PDU。对于方案2,终端不仅在针对第二上行资源组成MAC PDU时,向网络设备指示,而且终端在针对第二上行资源未组成MAC PDU时,也向网络设备指示,网络设备可根据终端不同的指示确定终端针对第二上行资源是否组成MAC PDU。
方案3:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源未组成MAC PDU。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源未组成MAC PDU时,向网络设备指示针对第二上行资源未组成MAC PDU。对于方案3,终端只在针对第二上行资源未组成MAC PDU时,才向网络设备指示,对于该方案,网络设备在未收到终端指示的情况下,可以默认为终端针对第二上行资源组成MAC PDU。
方案4:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中。对于方案4,终端只在针对第二上行资源有数据存储在对应的缓存中时,才向网络设备指示,对于该方案,网络设备在未收到终 端指示的情况下,可以默认为终端针对第二上行资源没有数据存储在对应的缓存中。
方案5:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中或针对第二上行资源没有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源没有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源没有数据存储在对应的缓存中。对于方案5,终端不仅在针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示,而且终端在针对第二上行资源没有数据存储在对应的缓存中时,也向网络设备指示,网络设备可根据终端不同的指示确定终端针对第二上行资源是否有数据存储在对应的缓存中。
方案6:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源没有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源没有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源没有数据存储在对应的缓存中。对于方案6,终端只在针对第二上行资源没有数据存储在对应的缓存中时,才向网络设备指示,对于该方案,网络设备在未收到终端指示的情况下,可以默认为终端针对第二上行资源有数据存储在对应的缓存中。
方案7:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源组成MAC PDU时,向网络设备指示针对第二上行资源组成MAC PDU;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中。对于方案7,终端只在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,才向网络设备指示,对于该方案,网络设备在未收到终端指示的情况下,默认为终端针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。
方案8:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中或针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源组成MAC PDU时,向网络设备指示针对第二上行资源组成MAC PDU;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源有数据存储在对应的缓存中;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源未组成MAC PDU时,向网络设备指示针对第二上行资源未组成MAC PDU;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源没有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源没有数据存储在对应的缓存中。对于方案8,终端不仅在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,向网络设备指示,而且终端在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,也向网络设备指示,网络设备可根据终端不同的指示确定终端针 对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
方案9:终端确定在重叠部分采用第一上行资源发送信号时,向网络设备指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。示例性地,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源未组成MAC PDU时,向网络设备指示针对第二上行资源未组成MAC PDU;或者,终端确定在重叠部分采用第一上行资源发送信号,且终端确定针对第二上行资源没有数据存储在对应的缓存中时,向网络设备指示针对第二上行资源没有数据存储在对应的缓存中。对于方案9,终端只在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,才向网络设备指示,对于该方案,网络设备在未收到终端指示的情况下,可以默认为终端针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中。
一种可能的实现中,终端确定在重叠部分采用第一上行资源发送信号之前,可以针对第一上行资源组成第一MAC PDU。基于该种实现,终端针对第一上行资源组成第一MAC PDU之后,还可以在重叠部分采用第一上行资源发送第一MAC PDU。需要说明的是,终端除可以在重叠部分采用第一上行资源发送第一MAC PDU之外,还可以在第一上行资源包括的除重叠部分之外的资源上发送第一MAC PDU。例如,以图6a为例,终端除可以在重叠部分采用第一上行资源发送第一MAC PDU之外,还可以在第一上行资源包括的除重叠部分之外的第一部分资源上发送第一MAC PDU,也就是,终端可以在整个第一上行资源上发送第一MAC PDU。
需要说明的是,本申请实施例中,为与针对第一上行资源组成的第一MAC PDU区分,下文中将针对第二上行资源组成的MAC PDU描述为第二MAC PDU。
一种可能的设计中,第一上行资源关联的HARQ进程和第二上行资源关联的HARQ进程不同。通过该设计的方法,可减少网络设备进行无效调度。例如,一些可能的场景中,终端生成的第一上行资源和第二上行资源可能关联相同的HARQ进程,这些场景下,当终端针对第一上行资源和第二上行资源分别组成第一MAC PDU和第二MAC PDU后,终端的MAC实体将第一MAC PDU与第二MAC PDU递交至终端的PHY实体,在终端的PHY层第一MAC PDU与第二MAC PDU需要在相同的HARQ进程的缓存(buffer)中等待发送,此时由于终端针对第二上行资源生成第二MAC PDU,网络设备可能会调度资源进行第二MAC PDU的传输或重传,但是,由于第一MAC PDU与第二MAC PDU需要在相同的HARQ进程的buffer中等待发送,可能会导致第二MAC PDU被第一MAC PDU覆盖,若第二MAC PDU被第一MAC PDU覆盖,则网络设备此次调度便为无效调度。采用该设计的方法,在第一上行资源关联的HARQ进程和第二上行资源关联的HARQ进程不同的情况下,执行本申请提供的方法,可以有效减少网络设备进行无效调度。
步骤103:网络设备根据终端的指示确定针对第二上行资源是否组成第二MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
步骤104a:当网络设备确定针对第二上行资源组成第二MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,网络设备调度第二上行资源的重传。示例性地,若网络设备根据终端的指示确定针对第二上行资源组成MAC PDU,则网络设备可以调度资源对该MAC PDU进行传输或重传,若网络设备根据终端的指示确定针对第二上行资源有数据存储在对应的缓存中,则网络设备可以调度资源对该数据进行传输或重传。
步骤104b:当网络设备确定针对第二上行资源未组成第二MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,网络设备不调度第二上行资源的重传。示例性地,若网络设备根据终端的指示确定针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中,则网络设备无需调度一块资源对该第二上行资源所关联HARQ进程中缓存的数据进行传输或重传。
针对上行资源在时域上重叠的场景,通过本申请实施例提供的上述方法,终端确定在重叠部分采用优先级较高的上行资源发送信号时,可以向网络设备指示针对优先级较低的上行资源是否组成MAC PDU或针对优先级较低的上行资源是否有数据存储在对应的缓存中,这样,网络设备可以在终端针对优先级较低的上行资源组成MAC PDU或针对优先级较低的上行资源有数据存储在对应的缓存中的情况下,调度资源传输或重传针对优先级较低的上行资源组成的MAC PDU或数据,进而可减少数据丢失,保证用户体验,且采用该方法,网络设备在终端针对优先级较低的上行资源未组成MAC PDU或针对优先级较低的上行资源没有数据存储在对应的缓存中的情况下,无需调度资源对该优先级较低的上行资源所关联HARQ进程中缓存的数据进行传输或重传,进而可节省信令开销,且节省重传资源。
本申请实施例中,终端可以采用显式指示方式或隐式指示方式,向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,本申请对于终端采用何种方式指示不做限定。下面详细描述终端如何采用显式指示方式或隐式指示方式向网络设备指示。
第一类,终端采用显式指示方式向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
在显式指示方式中,终端可以向网络设备发送指示信息,通过所述指示信息向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
对于显式指示方式,终端向网络设备发送的所述指示信息可以承载在不同的信息中,例如,可以承载在媒体接入控制元素(MAC control element,MAC CE)中,又例如,也可以承载在所述第一MAC PDU包括的任意MAC子头,又例如,也可以承载在上行控制信息(uplink control information,UCI)中。下面针对不同的显式指示方式进行详细说明。
显式指示方式一,将所述指示信息承载于MAC CE,所述MAC CE可以携带在第一MAC PDU中,当然所述MAC CE也可以携带在其它MAC PDU,本申请不做限定。采用方式一的指示方法,网络设备可以通过接收到的第一MAC PDU中携带的所述MAC CE中承载的所述指示信息,合理调度第二上行资源的重传,在指示信息指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,网络设备调度资源传输或重传针对第二上行资源组成的MAC PDU或数据,进而可减少数据丢失,在指示信息指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,网络设备可以不调度资源对第二上行资源所关联HARQ进程中缓存的数据进行传输或重传,进而可节省信令开销,且节省重传资源,从而可提高资源利用率。
需要说明的是,本申请实施例中仅以两块上行资源重叠为例进行说明,当有多块上行资源重叠时,也可以采用本申请提供的方法进行指示。
基于上述显式指示方式一,一种可能的实现方式中,第二上行资源的数量为多个,也 就是与第一上行资源重叠的上行资源的数量有多个,该种情况下,多个第二上行资源中的每个第二上行资源对应的指示信息,可以承载于相同的MAC CE或不同的MAC CE。举例说明,以3块上行资源重叠为例,3块上行资源分别为上行资源A、上行资源B以及上行资源C,其中,上行资源A的优先级高于上行资源B和上行资源C的优先级,假设终端针对上行资源A生成MAC PDU1或针对上行资源A生成的MAC PDU1存储在对应HARQ的缓存中,且,针对上行资源B生成MAC PDU2或针对上行资源B生成的MAC PDU2存储在对应HARQ的缓存中,且,针对上行资源C生成MAC PDU3或针对上行资源C生成的MAC PDU3存储在对应HARQ的缓存中,则终端可以优先发送MAC PDU1,基于该举例,若采用本申请提供的方案7,终端可以针对上行资源B生成指示信息1,该指示信息1用于指示针对上行资源B生成MAC PDU2或针对上行资源B生成的MAC PDU2存储在对应HARQ的缓存中,且,终端可以针对上行资源C生成指示信息2,该指示信息2用于指示针对上行资源C生成MAC PDU3或针对上行资源C生成的MAC PDU3存储在对应HARQ的缓存中,针对该举例,终端可以分别针对上行资源B和上行资源C生成与之对应的MAC CE,例如,终端可以针对上行资源B生成MAC CE1,通过MAC CE1承载指示信息1,并可以针对上行资源C生成MAC CE2,通过MAC CE2承载指示信息2,当然,终端也可以针对上行资源B和上行资源C生成一个MAC CE3,通过MAC CE3承载指示信息1和指示信息2。
基于上述显式指示方式一,承载所述指示信息的MAC CE可以只包括MAC子头,也可以包括MAC子头和负载(payload)。
一种可能的设计中,当承载所述指示信息的MAC CE只包括MAC子头时,所述指示信息位于所述MAC CE的MAC子头。参阅图7所示,当所述指示信息位于所述MAC CE的MAC子头时,所述指示信息可以是所述MAC CE的MAC子头中包括的逻辑信道标识(logical channel identification,LCID),LCID包括6个比特位,6个比特位可以指示0-63的值,目前LCID包括的6个比特位指示0-32以及52-63已被使用,故本申请可以采用该LCID包括的6个比特位指示33-51中任意值,指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。例如,可以采用LCID包括的6个比特位指示33时,也就是,LCID的6个比特位取值为100001时,指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中。又例如,可以采用LCID包括的6个比特位指示33时,也就是,LCID的6个比特位取值为100001时,指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,并可以采用LCID包括的6个比特位指示34时,也就是,LCID的6个比特位取值为100010时,指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。
另一种可能的设计中,当承载所述指示信息的MAC CE包括MAC子头和负载(payload)时,所述指示信息可以位于所述MAC CE的MAC子头或所述MAC CE的负载。
其中,当所述指示信息位于MAC CE的负载时,所述指示信息可以是所述MAC CE的负载中的比特位。示例性地,当第二上行资源的数量为一个时,所述指示信息可以是所述MAC CE的负载中的一个比特位,通过该比特位的取值为0或1来指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,例如,当该比特位的取值为1时,可以指示针对第二上行资源组成MAC PDU或针对第二上行资源有 数据存储在对应的缓存中,当该比特位的取值为0时,可以指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中,又例如,当该比特位的取值为0时,可以指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当该比特位的取值为1时,可以指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。示例性地,当第二上行资源的数量为多个,且将多个第二上行资源中的每个第二上行资源对应的指示信息承载于相同的MAC CE时,所述指示信息可以是所述MAC CE的负载中的多个比特位,通过多个比特位的取值来指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。例如,当第二上行资源的数量为3个,分别为第二上行资源A、第二上行资源B以及第二上行资源C,指示信息可以为所述MAC CE的负载中的3个比特位,分别为比特位A、比特位B以及比特位C,可以通过比特位A的取值指示针对第二上行资源A是否组成MAC PDU或针对第二上行资源A是否有数据存储在对应的缓存中,可以通过比特位B的取值指示针对第二上行资源B是否组成MAC PDU或针对第二上行资源B是否有数据存储在对应的缓存中,可以通过比特位C的取值指示针对第二上行资源C是否组成MAC PDU或针对第二上行资源C是否有数据存储在对应的缓存中。
基于显式指示方式一,一种可能的实现方式中,终端在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,向网络设备发送承载指示信息的MAC CE,终端在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,不向网络设备发送承载指示信息的MAC CE。网络设备可以根据终端是否发送承载指示信息的MAC CE,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而合理调度第二上行资源的重传。
基于显式指示方式一,另一种可能的实现方式中,终端在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,或者,终端在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,均向网络设备发送承载指示信息的MAC CE,并可通过该MAC CE的MAC子头中的LCID或MAC CE的负载中的比特位,指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。网络设备可以根据终端发送的MAC CE的MAC子头中的LCID或MAC CE的负载中的比特位的取值/状态,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而合理调度第二上行资源的重传。
本申请实施例中,承载指示信息的MAC CE还可以包括如下信息中的一项或多项:
第1项,第二上行资源关联的HARQ进程的标识信息。其中,所述HARQ进程的标识信息可以包括HARQ进程的ID。当第二上行资源的数量为多个,且将多个第二上行资源中的每个第二上行资源对应的指示信息承载于相同的MAC CE时,HARQ进程的标识信息可以包括多个第二上行资源中的每个第二上行资源关联的HARQ进程的ID或多个第二上行资源中的全部HARQ进程从小到大排序或从大到小排序后对应的索引值。当第二上行资源的数量为多个,且将多个第二上行资源中的每个第二上行资源对应的指示信息承载于不同的MAC CE时,每个第二上行资源关联的HARQ进程的标识信息可以包括该HARQ进程的ID,或该HARQ进程在多个第二上行资源中的全部HARQ进程从小到大排序或从大到小排序后对应的索引值。
举例说明,以3块上行资源重叠为例,3块上行资源分别为上行资源A、上行资源B以及上行资源C,其中,上行资源A的优先级高于上行资源B和上行资源C的优先级,可以理解为在该举例中上行资源A为本申请中的第一上行资源,上行资源B和上行资源C为本申请中的第二上行资源,相当于第二上行资源的数量为2,假设上行资源B和上行资源C关联的HARQ进程的ID分别为6、8,则上行资源B和上行资源C关联的HARQ进程从小到大排序后对应的索引值分别为1、2,终端可以在针对上行资源B生成的MAC CE中包括上行资源B关联的HARQ进程对应的索引值1,终端也可以在针对上行资源C生成的MAC CE中包括上行资源C关联的HARQ进程对应的索引值2,当然,终端也可以在针对上行资源B和上行资源C生成的MAC CE中,包括上行资源B关联的HARQ进程对应的索引值1以及上行资源C关联的HARQ进程对应的索引值2。
第2项,第二上行资源的位置信息。例如,所述位置信息可以包括第二上行资源的起始时刻的时间点,如系统帧号(system frame number,SFN)和/或时隙(slot)和/或符号(symbol)值等,即可以包括SFN,时隙或符号,或者包括SFN和时隙,或者包括SFN和符号,或者包括SFN,时隙和符号。当第二上行资源的数量为多个,且将多个第二上行资源中的每个第二上行资源对应的指示信息承载于相同的MAC CE时,第二上行资源的位置信息可以包括多个第二上行资源中的每个第二上行资源的起始时刻的时间点,或多个第二上行资源中的每个第二上行资源的起始时刻按时间的先后顺序排序后对应的索引值。当第二上行资源的数量为多个,且将多个第二上行资源中的每个第二上行资源对应的指示信息承载于不同的MAC CE时,每个第二上行资源的位置信息包括该第二上行资源的起始时刻的时间点,或该第二上行资源的起始时刻的时间点在多个第二上行资源的起始时刻按时间的先后顺序排序后对应的索引值。
第3项,第二MAC PDU中最高优先级的逻辑信道(logical channel,LCH)的标识或优先级。
第4项,第二MAC PDU中最高优先级的LCH关联的SR信息。例如所述SR信息可以包括SR配置ID等信息。
基于上述显式指示方式一,可以预定义承载指示信息的MAC CE的优先级,也可以通过RRC信令/SIB信令配置所述MAC CE的优先级。例如,可以预定义所述MAC CE的优先级高于任意LCH的数据的优先级,但低于现有MAC CE的优先级。又例如,可以通过RRC信令/SIB信令配置所述MAC CE的优先级高于部分/全部现有MAC CE的优先级。又例如,可以预定义或通过RRC信令/SIB信令配置所述MAC CE的优先级高于部分LCH的数据的优先级。
下面以一个例子对上述显式指示方式一进行说明,请参见图8a-图8b所示,为本申请实施例提供的指示方式示意图。图8a和图8b中以为终端配置了两块在时域上有重叠的上行资源为例示意,两块在时域上有重叠的上行资源分别为上行资源1和上行资源2,其中,上行资源1和上行资源2均可以为CG资源或DG资源,假设上行资源2的优先级高于上行资源1的优先级,上行资源1用于新传或者重传,上行资源2用于新传,图8a和图8b中以上行资源2的起始时刻晚于上行资源1的起始时刻为例示意,实际中上行资源2的起始时刻也可以与上行资源1的起始时刻相同或者早于上行资源1的起始时刻。以下分别针对图8a和图8b所示的两种场景进行说明。
图8a中以终端的MAC实体执行本申请提供的方法为例示意说明。一种可能的实现中, 终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程不同,则该终端可以触发生成MAC CE,通过该MAC CE承载指示信息,该指示信息用于指示针对上行资源1组成MAC PDU或针对上行资源1有数据存储在对应的缓存中,进而终端可将承载所述指示信息的MAC CE携带在针对上行资源2生成的MAC PDU中发送至网络设备。另一种可能的实现中,终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程相同,则该终端的MAC实体可以将上行资源1对应的MAC PDU中的部分/全部MAC CE(例如BSR MAC CE)重建到针对上行资源2生成的MAC PDU中,这样,终端可将上行资源1对应的MAC PDU中的MAC CE通过上行资源2对应的MAC PDU发送至网络设备,终端无需再向网络设备发送指示信息,网络设备也无需再调度上行资源1的重传,可节省信令开销。
图8b中以终端的MAC实体执行本申请提供的方法为例示意说明。终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1未组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据未存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据未存储在对应的HARQ进程的缓存(buffer)中,则该终端可以触发生成MAC CE,通过该MAC CE承载指示信息,该指示信息用于指示针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中,进而终端可将承载所述指示信息的MAC CE携带在针对上行资源2生成的MAC PDU中发送至网络设备。
其中,图8a和图8b中针对上行资源1生成的MAC CE中携带的内容,以及MAC CE的优先级配置可参见上述显式指示方式一中的描述,此处不再赘述。
需要说明的是,针对上述图8a和图8b的场景,如果上行资源1被终端的MAC实体主动忽略,如MAC实体在处理上行资源1时,已知后续有上行资源2且可以传输优先级更高的数据,则可以主动清空上行资源1关联的HARQ进程的缓存中存储的数据。
显式指示方式二,将第一MAC PDU的任意MAC子头的比特位作为指示信息。例如,可将第一MAC PDU的任意MAC子头中的R比特位(预留比特位)作为指示信息,可以理解为,将第一MAC PDU的任意MAC子头中的R比特位设置为用于指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中的指示位。示例性地,可以将第一MAC PDU包括的第一个MAC子头中的R比特位设置为指示位。参阅图9a所示,其为一种可能的第一个MAC子头示意图,本申请可采用图9a中R比特位的取值为0或1来指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。参阅图9b所示,其为另一种可能的第一MAC子头示意图,本申请可采用图9b中R比特位的取值为0或1来指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。参阅图9c所示,其为又一种可能的第一MAC子头示意图,本申请可采用图9c中第一个R比特位或第二个R比特位的取值为0或1来指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有 数据存储在对应的缓存中。例如,当R比特位的取值为1时,可以指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当R比特位的取值为0时,可以指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中,又例如,当R比特位的取值为0时,可以指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当R比特位的取值为1时,可以指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。
采用显式指示方式二的指示方法,网络设备可以通过终端发送的第一MAC PDU中MAC子头包括的指示位,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而可合理调度第二上行资源的重传。
下面以一个例子对上述显式指示方式二进行说明,请参见图10a-图10b所示,为本申请实施例提供的指示方式示意图。图10a和图10b中以为终端配置了两块在时域上有重叠的上行资源为例示意,两块在时域上有重叠的上行资源分别为上行资源1和上行资源2,其中,上行资源1和上行资源2均可以为CG资源或DG资源,假设上行资源2的优先级高于上行资源1的优先级,上行资源1用于新传或者重传,上行资源2用于新传,图10a和图10b中以上行资源2的起始时刻晚于上行资源1的起始时刻为例示意,实际中上行资源2的起始时刻也可以与上行资源1的起始时刻相同或者早于上行资源1的起始时刻。以下分别针对图10a和图10b所示的两种场景进行说明。
图10a中以终端的MAC实体执行本申请提供的方法为例示意说明。终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程不同,则该终端可以将针对上行资源2生成的MAC PDU包括的任意一个MAC子头中的R比特位设置为1或0,用于指示针对上行资源1组成MAC PDU或针对上行资源1有数据存储在对应的缓存中,网络设备接收到终端发送的针对上行资源2生成的MAC PDU后,可根据该MAC PDU中MAC子头包括的R比特位的取值,决策调度上行资源1的重传。
图10b中以终端的MAC实体执行本申请提供的方法为例示意说明。终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1未组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据未存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据未存储在对应的HARQ进程的缓存(buffer)中,则该终端可以将针对上行资源2生成的MAC PDU包括的任意一个MAC子头中的R比特位设置为0或1,用于指示针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中,网络设备接收到终端发送的针对上行资源2生成的MAC PDU后,可根据该MAC PDU中MAC子头包括的R比特位的取值,决策不调度上行资源1的重传。
显式指示方式三,将所述指示信息承载于上行控制信息(uplink control information,UCI)。
基于上述显式指示方式三,一种可能的实现方式中,终端在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,向网络设备发送UCI,终 端在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,不向网络设备发送UCI,则网络设备可根据终端是否发送UCI,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而合理调度第二上行资源的重传。
基于上述显式指示方式三,另一种可能的实现方式中,终端在针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中时,或者,终端在针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中时,均向网络设备发送UCI,并在UCI中包括用于指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中的指示位,通过该指示位的取值指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。例如,以该指示位为一个比特位为例,当该比特位的取值为1时,可以用于指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当该比特位的取值为0时,可以用于指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。基于该种实现,网络设备可根据UCI中指示位的取值/状态,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而合理调度第二上行资源的重传。
其中,基于上述显式指示方式三,所述UCI除可以包括所述指示位之外,还可以包括如下信息中的一项或多项:
第1项,第二上行资源关联的HARQ进程的标识信息。
第2项,第二上行资源的位置信息。例如,所述位置信息可以包括第二上行资源的起始时刻的时间点,如SFN和/或slot和/或symbol值等。
第3项,第二MAC PDU中最高优先级的LCH的标识或优先级。
第4项,第二MAC PDU中最高优先级的LCH关联的SR信息。例如所述SR信息可以包括SR配置ID等信息。
需要说明的是,关于上述第1项-第4项的详细内容,可参见显式指示方式一中的相关描述,此处不再赘述。
基于上述显式指示方式三,终端可采用如下两种方式向网络设备发送UCI:
方式1:终端的MAC实体指示PHY实体向网络设备发送UCI。
方式2:终端的PHY实体向网络设备发送UCI。
基于上述显式指示方式三,一种可能的实现方式中,UCI参数,例如发送该UCI的时频资源位置或格式等参数,可以与第一上行资源或第二上行资源关联。示例性地,以UCI参数为发送该UCI的时频资源位置为例,当第一上行资源或第二上行资源为CG资源时,UCI的时频资源位置可以由RRC信令配置;当第一上行资源或第二上行资源为DG资源时,UCI的时频资源位置可以由RRC信令配置和/或DCI进行指示。例如,当第一上行资源为DG资源时,可以在分配第一上行资源的DCI中指示UCI的时频资源位置;或者可以通过RRC信令配置时频资源位置集合,并在分配第一上行资源的DCI中指示时频资源位置集合中的一个时频资源位置,作为UCI的时频资源位置。又例如,当第二上行资源为DG资源时,可以在分配第二上行资源的DCI中指示UCI的时频资源位置;或者可以通过RRC信令配置时频资源位置集合,并在分配第二上行资源的DCI中指示时频资源位置集合中的一个时频资源位置,作为UCI的时频资源位置。基于该种实现方式,网络设备可以通过在与 上行资源相关的位置上是否接收到UCI信令,或者接收到的UCI信令中的指示位的取值/状态,判断终端针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中,进而合理调度第二上行资源的重传。例如,以UCI参数和第一上行资源相关联为例进行说明,当终端针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,终端根据第一上行资源确定相应的UCI参数,如第一上行资源为CG资源,则由配置该CG的RRC信令确定UCI的时频资源位置等参数,并在相应的资源上向网络设备发送UCI;如果第一上行资源为DG资源,且UCI时频资源位置等参数由分配第一上行资源的DCI指示,则根据DCI中指示信息确定发送UCI的时频资源位置等。又例如以UCI参数和第二上行资源相关联为例进行说明,当终端针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,终端根据第二上行资源确定相应的UCI参数,如第二上行资源为CG资源,则由配置该CG的RRC信令确定UCI的时频资源位置等参数,并在相应的资源上向网络设备发送UCI;如果第二上行资源为DG资源,且UCI时频资源位置等参数由分配第二上行资源的DCI指示,则根据DCI中指示信息确定发送UCI的时频资源位置等。在本实施例中,发送UCI的时域/频域资源位置,可以由终端根据第一上行资源或第二上行资源的时域/频域资源位置和一定方式推算得到,例如发送UCI的时域位置可以和第一上行资源的时域位置存在固定时间间隔,发送UCI的时域位置也可以第二上行资源的时域位置存在固定时间间隔,发送UCI的频域位置可以和第一上行资源的频域位置存在固定函数关系,发送UCI的频域位置也可以和第二上行资源的频域位置存在固定函数关系。
下面以一个例子对上述显式指示方式三进行说明,请参见图11所示,为本申请实施例提供的指示方式示意图。图11中以为终端配置了两块在时域上有重叠的上行资源为例示意,两块在时域上有重叠的上行资源分别为上行资源1和上行资源2,其中,上行资源1和上行资源2均可以为CG资源或DG资源,假设上行资源2的优先级高于上行资源1的优先级,上行资源1用于新传或者重传,上行资源2用于新传或者重传,图11中以上行资源2的起始时刻晚于上行资源1的起始时刻为例示意,实际中上行资源2的起始时刻也可以与上行资源1的起始时刻相同或者早于上行资源1的起始时刻。以下针对图11所示的场景进行说明。
图11中以终端的MAC实体执行本申请提供的方法为例示意说明。终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程不同,则该终端可以向网络设备发送承载指示信息的UCI,此外,终端在针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中时,不向网络设备发送UCI,则网络设备可根据终端是否发送UCI,判断终端针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中,进而合理调度上行资源1的重传。这里,可以是由MAC实体指示PHY实体发送UCI。
需要说明的是,上述显式指示方式三除可以用于同一终端的上行资源重叠的场景外,还可以用于不同终端之间的上行资源抢占场景。下面详细描述终端间的上行资源抢占场景中存在的问题,以及采用本申请实施例提供的上述显式指示方式三如何解决该问题。
以两个终端之间的上行资源抢占为例,假设网络设备为终端1配置了上行资源1,该上行资源可以是CG资源或DG资源,若此时网络设备检测到终端2有更紧急或更高优先级的上行数据需要传输,则网络设备可以通过指示信令指示终端1不在上行资源1上进行上行传输,并通知终端2使用上行资源1进行上行传输,此时可以理解为终端1的上行资源1被终端2抢占。在该过程中,终端1对于上行资源1的处理有如下三种情形:
第一种情形,针对上行资源1终端1没有合适的待传输数据,准备skip该上行资源1。
第二种情形,终端1在处理上行资源1之前收到了网络设备发送的指示信令,指示终端1不在上行资源1上进行上行传输,此时,终端1的MAC实体可忽略上行资源1。
第三种情形,终端1针对上行资源1组成MAC PDU并递交到PHY实体,PHY实体收到网络设备发送的所述指示信令后放弃上行资源1的传输。
针对上述三种情形,网络设备在上行资源1上均接收不到信号。目前针对上述场景,一种处理方式中网络设备默认终端1启用了跳过(skip)机制,当网络设备在上行资源1上接收不到信号时,认为终端1在该上行资源1上没有合适的信号传输,故不会调度该上行资源1的重传,而实际中,终端1可能并没有skip该上行资源1,而是针对该上行资源1已组成数据包但是上行资源1被终端2抢占,故无法发送针对上行资源1组成的数据包,这种情况下,若网络设备不调度该上行资源1的重传,可能会导致数据丢失,进而影响用户体验。另一种处理方式中,针对上述场景网络设备被配置为一直调度该上行资源1的重传,而实际中,终端1可能skip该上行资源1或忽略该上行资源1,也就是,终端可能未针对上行资源1组成MAC PDU或者没有针对上行资源1的数据存储在对应的缓存中,这种情况下,若网络设备调度该上行资源1的重传,则会增加信令开销,且浪费重传资源。
鉴于上述存在的问题,可采用本申请中显式指示方式三的方法解决。
基于上述显式指示方式三,终端1可通过向网络设备发送UCI,指示针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中。一种可能的实现方式中,当终端1接收到来自网络设备的抢占指示信令,且终端1针对上行资源1组成MAC PDU或针对上行资源1有数据存储在对应的缓存中时,向网络设备发送UCI。其中,本申请中抢占指示信令用于指示终端1不在上行资源1上进行上行传输,可以理解为,抢占指示信令用于指示上行资源1被抢占。当终端1接收到来自网络设备的抢占指示信令,且终端1在针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中时,不向网络设备发送UCI,则网络设备可根据终端1是否发送UCI,判断终端1针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中,进而合理调度上行资源1的重传。另一种可能的实现方式中,终端1在针对上行资源1组成MAC PDU或针对上行资源1有数据存储在对应的缓存中时,或者,终端1在针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中时,均向网络设备发送UCI,并在UCI中包括用于指示针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中的指示位,通过该指示位的取值指示针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中。例如,以该指示位为一个比特位为例,当该比特位的取值为1时,可以用于指示针对上行资源1组成MAC PDU或针对上行资源1有数据存储在对应的缓存中,当该比特位的取值为0时,可以用于指示针对上行资源1未组成MAC PDU或针对上行资源1没有数据存储在对应的缓存中。基于该种实现,网络设备可根据UCI中指示位的取值/状态,判断终端1针对上行资源1 是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中,进而合理调度上行资源1的重传。
其中,针对上行资源1有数据存储在对应的缓存中,可以理解为针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中。
基于上述举例,终端1可采用如下两种方式向网络设备发送UCI:
方式1:终端1的PHY实体将网络设备发送的抢占指示信令通知终端1的MAC实体,进而由终端1的MAC实体指示PHY实体向网络设备发送UCI。
方式2:终端1的PHY实体收到网络设备发送的抢占指示信令后,由终端1的PHY实体向网络设备发送UCI。
一种可能的实现方式中,UCI参数,例如发送该UCI的时频资源位置或格式等参数,可以与上行资源1关联。示例性地,以UCI参数为发送该UCI的时频资源位置为例,当上行资源1为CG资源时,UCI的时频资源位置可以由RRC信令配置;当上行资源1为DG时,UCI的时频资源位置可以由RRC信令配置和/或DCI进行指示。可以通过分配上行资源1的DCI指示UCI的时频资源位置,或者在网络设备发送的抢占指示信令中指示UCI的时频资源位置;或者当上行资源1是DG资源时,可以通过RRC配置该UCI时频资源可选位置的集合,并通过分配上行资源1的DCI,或者网络设备发送的抢占指示信令从UCI时频资源可选位置的集合中指示一个具体的时频资源位置。可选的,在本实施例中,发送UCI的时域/频域资源位置可以由终端根据第一上行资源的时域/频域位置和一定方式推算得到,例如发送UCI的时域位置和第一上行资源的时域位置可以存在固定时间间隔,发送UCI的频域位置可以和第一上行资源的频域位置存在固定函数关系,发送UCI的频域位置也可以和第二上行资源的频域位置存在固定函数关系。
上述举例中,上行资源1被终端2抢占,则在被抢占的资源部分可以不进行数据发送,或者降低功率进行数据发送。在该场景中,如果上行资源1被MAC实体主动忽略,如MAC实体在处理上行资源1之前就收到PHY实体指示上行资源1被终端2抢占,则可以主动清空上行资源1关联的HARQ进程中的数据。
第二类,终端采用隐式指示方式向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
在隐式指示方式中,终端可以采用在第一上行资源上传输的信息向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中;或者,终端可以采用第一MAC PDU的传输方式,向网络设备指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。
基于上述隐式指示方式,第一上行资源上传输的信息例如可以包括解调参考信号(demodulation reference signal,DMRS),即,可以通过第一上行资源上传输的DMRS指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。示例性地,网络设备可以通过RRC信令为终端配置两类DMRS,或者为终端预先定义两类DMRS,例如两类DMRS分别为DMRS类型1和DMRS类型2,每类DMRS中可以包含至少一个DMRS。当终端在第一上行资源上传输DMRS类型1包括的DMRS时,指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当终端在第一上行资源上传输DMRS类型2包括的DMRS时,指示针对第二上行资源未 组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。
基于上述隐式指示方式,第一MAC PDU的传输方式例如可以包括传输第一MAC PDU所采用的调制方式或加扰方式,即,可以通过第一MAC PDU的调制方式或加扰方式指示针对第二上行资源是否组成MAC PDU或针对第二上行资源是否有数据存储在对应的缓存中。示例性地,网络设备可以通过RRC信令为终端配置两类无线网络临时标识(radio network temporary identifier,RNTI),或者为终端预先定义两类RNTI,例如两类RNTI分别为RNTI类型1和RNTI类型2,每类RNTI中可以包含至少一个RNTI。当终端采用RNTI类型1包括的RNTI对第一上行资源进行加扰时,指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当终端采用RNTI类型2包括的RNTI对第一上行资源进行加扰时,指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。示例性地,网络设备可以通过RRC信令为终端配置两类调制编码策略(modulation and coding scheme,MCS),或者为终端预先定义两类MCS,例如两类MCS分别为MCS类型1和MCS类型2,每类MCS中可以包含至少一个MCS。当终端采用MCS类型1包括的MCS对第一上行资源进行调制时,指示针对第二上行资源组成MAC PDU或针对第二上行资源有数据存储在对应的缓存中,当终端采用MCS类型2包括的MCS对第一上行资源进行调制时,指示针对第二上行资源未组成MAC PDU或针对第二上行资源没有数据存储在对应的缓存中。
下面以一个例子对上述隐式指示方式进行说明,请参见图12所示,为本申请实施例提供的指示方式示意图。图12中以为终端配置了两块在时域上有重叠的上行资源为例示意,两块在时域上有重叠的上行资源分别为上行资源1和上行资源2,其中,上行资源1和上行资源2均可以为CG资源或DG资源,假设上行资源2的优先级高于上行资源1的优先级,上行资源1用于新传或者重传,上行资源2用于新传或者重传,图12中以上行资源2的起始时刻晚于上行资源1的起始时刻为例示意,实际中上行资源2的起始时刻也可以与上行资源1的起始时刻相同或者早于上行资源1的起始时刻。以下针对图12所示的场景对隐式指示方式进行说明。
图12中以终端的MAC实体执行本申请提供的方法为例示意说明。终端的MAC实体在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程不同,则该终端的MAC实体指示PHY实体通过DMRS类型1进行上行资源2的上行传输,其他情形下,终端使用DMRS类型2进行上行资源2的上行传输。基于该种实现,网络设备可根据上行资源2上传输的DMRS类型,判断终端针对上行资源1是否组成MAC PDU或针对上行资源1是否有数据存储在对应的缓存中,进而合理调度上行资源1的重传。
可选的,也可以由终端的PHY实体执行该方法,当终端的PHY实体确定上行资源2的优先级高于上行资源1的优先级时,通过DMRS类型1进行上行资源1的上行传输。
鉴于上行资源在时域上重叠的场景中无法合理调度上行资源的重传,本申请实施例提供另一种通信方法,在该方法中,针对上行资源在时域上重叠的场景,终端确定在重叠部 分采用优先级较高的上行资源发送信号时,可以利用下个周期到达的资源对优先级较低的上行资源所组的MAC PDU进行传输,可以减少数据包丢失,且采用该方法,无需终端通知网络设备调度新的资源,可节省信令开销。
请参考图13,其为本申请实施例提供的另一种通信方法的实施流程图。参阅图13所示,该方法包括:
步骤201:终端确定在时域上有重叠部分的第一上行资源和第二上行资源中,第一上行资源的优先级高于第二上行资源的优先级。
步骤202:终端在重叠部分采用第一上行资源向网络设备发送信号。
步骤203:终端在第三上行资源上向网络设备发送针对第二上行资源生成的数据包。其中,第三上行资源为在第二上行资源之后到达的上行资源,第三上行资源与第二上行资源关联相同的HARQ进程,且,终端针对第三上行资源未生成数据包。
一种可能的实现方式中,第三上行资源和第二上行资源为配置授权资源不同周期到达的资源。
一种可能的实现方式中,第一上行资源与第二上行资源关联不同的HARQ进程。
下面以一个例子对上述图13中的方法进行说明,请参见图14所示,为本申请实施例提供的数据传输示意图。图14中以为终端配置了两块在时域上有重叠的上行资源为例示意,两块在时域上有重叠的上行资源分别为上行资源1和上行资源2,其中,上行资源2可以为CG资源或DG资源,上行资源1为CG资源,假设上行资源2的优先级高于上行资源1的优先级,上行资源1用于新传,上行资源2用于新传或者重传,图14中以上行资源2的起始时刻晚于上行资源1的起始时刻为例示意,实际中上行资源2的起始时刻也可以与上行资源1的起始时刻相同或者早于上行资源1的起始时刻。以下针对图14所示的场景进行说明。
图14中终端在处理上行资源2的过程中,若确定上行资源2的优先级高于上行资源1的优先级,且终端针对上行资源1组成MAC PDU或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程中或终端针对上行资源1组成的MAC PDU对应的数据存储在对应的HARQ进程的缓存(buffer)中,且上行资源1关联的HARQ进程和上行资源2关联的HARQ进程不同,终端可以在重叠部分采用上行资源2向网络设备发送数据包,并在下一个与上行资源1关联到相同HARQ进程的CG资源(记为上行资源3)到达时,若终端针对该上行资源3没有合适的数据传输,准备skip该上行资源3,此时终端可采用上行资源3向网络设备发送针对上行资源1生成的数据包。
上述主要从终端和网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于相同的发明构思,本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
一种可能的实施方式中,本申请实施例提供一种通信装置100。该通信装置100可以应用于终端。图15所示为本申请实施例提供的一种通信装置100的结构示意图,参阅图15所示,该通信装置100包括处理单元110。在实施中,通信装置100还可包括发送单元120和接收单元130。
其中,当通信装置100用于执行图5所示的方法时,处理单元110可用于确定第一上行资源的优先级高于第二上行资源的优先级,所述第一上行资源与所述第二上行资源在时域上有重叠部分,并确定在所述重叠部分采用所述第一上行资源发送信号时,向网络设备指示针对所述第二上行资源是否组成媒体接入控制层协议数据单元MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中。
其中,当通信装置100用于执行图13所示的方法时,处理单元110可用于确定第一上行资源的优先级高于第二上行资源的优先级,所述第一上行资源与所述第二上行资源在时域上有重叠部分;发送单元120可用于在所述重叠部分采用所述第一上行资源向网络设备发送信号,并在第三上行资源上向所述网络设备发送数据包,所述数据包为针对所述第二上行资源生成的数据包,所述第三上行资源为在所述第二上行资源之后到达的上行资源,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程,且,所述终端针对所述第三上行资源未生成数据包。
另一种可能的实施方式中,本申请实施例还提供一种通信装置200。该通信装置200可以应用于网络设备。图16所示为本申请实施例提供的一种通信装置200的结构示意图,参阅图16所示,该通信装置200包括处理单元210。在实施中,通信装置200还可包括接收单元220。
其中,当通信装置100用于执行图5所示的方法时,处理单元210可用于根据终端的指示确定针对第二上行资源是否组成媒体接入控制层协议数据单元MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中;当确定针对所述第二上行资源组成MAC PDU或针对所述第二上行资源有数据存储在对应的缓存中时,调度所述第二上行资源的重传;或,当确定针对所述第二上行资源未组成MAC PDU或针对所述第二上行资源没有数据存储在对应的缓存中时,不调度所述第二上行资源的重传。
其中,当通信装置100用于执行图13所示的方法时,接收单元130可用于接收终端采用第一上行资源发送的信号,所述第一上行资源与第二上行资源在时域上有重叠部分,所述第一上行资源的优先级高于所述第二上行资源的优先级;接收所述终端在第三上行资源上发送的数据包,所述数据包为针对所述第二上行资源生成的数据包,所述第三上行资源为在所述第二上行资源之后到达的上行资源,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程,且,针对所述第三上行资源未生成数据包。
当通信装置100应用于终端,通信装置200应用于网络设备,且执行图5所示的方法时,还可执行如下操作:
一种可能的实施方式中,接收单元220用于接收来自所述终端的指示信息,所述指示信息用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有 数据存储在对应的缓存中。
一种可能的实施方式中,所述处理单元110还用于确定在所述重叠部分采用所述第一上行资源发送信号之前,针对所述第一上行资源组成第一MAC PDU;所述处理单元110具体用于确定在所述重叠部分采用所述第一上行资源发送所述第一MAC PDU。
一种可能的实施方式中,所述发送单元120用于向所述网络设备发送指示信息,所述指示信息用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中。
一种可能的实施方式中,所述指示信息承载于媒体接入控制元素MAC CE,所述MAC CE携带在所述第一MAC PDU中。
一种可能的实施方式中,所述指示信息位于所述MAC CE的MAC子头。
一种可能的实施方式中,所述指示信息包括逻辑信道标识LCID。
一种可能的实施方式中,所述指示信息位于所述MAC CE的负载。
一种可能的实施方式中,所述MAC CE包括如下信息中的一项或多项:
所述第二上行资源关联的混合自动重传请求HARQ进程的标识信息;
所述第二上行资源的位置信息;
第二MAC PDU中最高优先级的逻辑信道LCH的标识或优先级;或,
第二MAC PDU中最高优先级的LCH关联的SR信息,所述第二MAC PDU为针对所述第二上行资源组成的MAC PDU。
一种可能的实施方式中,所述指示信息包括所述第一MAC PDU的MAC子头的比特位。
一种可能的实施方式中,所述指示信息承载于上行控制信息UCI。
一种可能的实施方式中,所述UCI中包括如下信息中的一项或多项:
所述第二上行资源关联的HARQ进程的标识信息;
所述第二上行资源的位置信息;
第二MAC PDU中最高优先级的逻辑信道LCH的标识或优先级;
第二MAC PDU中最高优先级的LCH关联的SR信息,所述第二MAC PDU为针对所述第二上行资源组成的MAC PDU。
一种可能的实施方式中,在所述第一上行资源上传输的信息用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中;或,
所述第一MAC PDU的传输方式用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中。
一种可能的实施方式中,所述第一上行资源关联的HARQ进程和所述第二上行资源关联的HARQ进程不同。
当通信装置100应用于终端,通信装置200应用于网络设备,且执行图13所示的方法时,还可执行如下操作:
一种可能的实施方式中,所述第三上行资源和所述第二上行资源为配置授权资源不同周期到达的资源。
一种可能的实施方式中,所述第一上行资源与所述第二上行资源关联不同的HARQ进程。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
终端通过与网络设备之间的接口协议与终端交互信息,例如,发送指示信息或第一MAC PDU;终端与网络设备之间通过无线连接,终端通过无线接口与网络设备交互信息,例如发送指示信息或第一MAC PDU。
请参考图17,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图17所示,该终端包括:天线1701、射频部分1702、信号处理部分1703。天线1701与射频部分1702连接。在下行方向上,射频部分1702通过天线1701接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1703进行处理。在上行方向上,信号处理部分1703对终端的信息进行处理,并发送给射频部分1702,射频部分1702对终端的信息进行处理后经过天线1701发送给网络设备。
信号处理部分1703可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选地,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件17031,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件17032和接口电路17033。存储元件17032用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能 不存储于该存储元件17032中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路17033用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,应用于终端的装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图18,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图18所示,该网络设备包括:天线1801、射频装置1802、基带装置1803。天线1801与射频装置1802连接。在上行方向上,射频装置1802通过天线1801接收终端发送的信息,将终端发送的信息发送给基带装置1803进行处理。在下行方向上,基带装置1803对终端的信息进行处理,并发送给射频装置1802,射频装置1802对终端的信息进行处理后经过天线1801发送给终端。
基带装置1803可以包括一个或多个处理元件18031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1803还可以包括存储元件18032和接口电路18033,存储 元件18032用于存储程序和数据;接口电路18033用于与射频装置1802交互信息,该接口电路例如为通用公共无线接口(common public radio interface,CPRI)。以上应用于网络设备的装置可以位于基带装置1803,例如,以上应用于网络设备的装置可以为基带装置1803上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,应用于网络设备的装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图19,其为本申请实施例提供的另一种网络设备的结构示意图。其可以为以上实施例中的网络设备,用于实现以上实施例中网络设备的操作。
如图19所示,该网络设备包括:处理器1910,存储器1920,和接口1930,处理器1910、存储器1920和接口1930信号连接。
以上参考时间确定装置位于该网络设备中,且各个单元的功能可以通过处理器1910调用存储器1920中存储的程序来实现。即,以上参考时间确定装置包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上各个单元的功能可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或, 一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种通信方法,其特征在于,包括:
    终端采用第一上行资源向网络设备发送信号,其中所述第一上行资源的优先级高于第二上行资源的优先级,所述第一上行资源与所述第二上行资源在时域上有重叠部分,且所述终端针对所述第二上行资源生成了数据包;
    所述终端在第三上行资源上向网络设备发送所述数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述第三上行资源为所述第二上行资源之后到达的上行资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第三上行资源和所述第二上行资源为配置授权资源不同周期到达的资源。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述终端确定所述第一上行资源的优先级高于所述第二上行资源的优先级。
  6. 根据权利要求5所述的方法,其特征在于,所述终端确定所述第一上行资源的优先级高于所述第二上行资源的优先级,包括:
    根据能够在第一上行资源与第二上行资源上进行传输的数据所属的逻辑信道LCH的最高优先级,确定所述第一上行资源的优先级高于所述第二上行资源的优先级。
  7. 一种通信方法,其特征在于,包括:
    网络设备通过第一上行资源从终端接收信号,其中,所述第一上行资源的优先级高于第二上行资源的优先级,且所述第一上行资源与所述第二上行资源在时域上有重叠部分;
    所述网络设备通过第三上行资源从所述终端接收数据包,其中,所述数据包是针对所述第二上行资源生成的。
  8. 根据权利要求7所述的方法,其特征在于,所述第三上行资源为所述第二上行资源之后到达的上行资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第三上行资源和所述第二上行资源为配置授权资源不同周期到达的资源。
  11. 一种通信装置,其特征在于,包括:
    用于采用第一上行资源向网络设备发送信号的单元,其中所述第一上行资源的优先级高于第二上行资源的优先级,所述第一上行资源与所述第二上行资源在时域上有重叠部分,且针对所述第二上行资源生成了数据包;
    用于在第三上行资源上向网络设备发送所述数据包的单元。
  12. 根据权利要求11所述的装置,其特征在于,所述第三上行资源为所述第二上行资源之后到达的上行资源。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述第三上行资源和所述 第二上行资源为配置授权资源不同周期到达的资源。
  15. 根据权利要求11-14任一项所述的装置,其特征在于,还包括:
    用于确定所述第一上行资源的优先级高于所述第二上行资源的优先级的单元。
  16. 根据权利要求15所述的装置,其特征在于,所述用于确定所述第一上行资源的优先级高于所述第二上行资源的优先级的单元,用于:
    根据能够在第一上行资源与第二上行资源上进行传输的数据所属的逻辑信道LCH的最高优先级,确定所述第一上行资源的优先级高于所述第二上行资源的优先级。
  17. 一种通信装置,其特征在于,包括:
    用于通过第一上行资源从终端接收信号的单元,其中,所述第一上行资源的优先级高于第二上行资源的优先级,且所述第一上行资源与所述第二上行资源在时域上有重叠部分;
    用于通过第三上行资源从所述终端接收数据包的单元,其中,所述数据包是针对所述第二上行资源生成的。
  18. 根据权利要求17所述的装置,其特征在于,所述第三上行资源为所述第二上行资源之后到达的上行资源。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第三上行资源与所述第二上行资源关联相同的混合自动重传请求HARQ进程。
  20. 根据权利要求17-19任一项所述的装置,其特征在于,所述第三上行资源和所述第二上行资源为配置授权资源不同周期到达的资源。
  21. 一种通信方法,其特征在于,包括:
    终端确定第一上行资源的优先级高于第二上行资源的优先级,所述第一上行资源与所述第二上行资源在时域上有重叠部分;
    所述终端确定在所述重叠部分采用所述第一上行资源发送信号时,向网络设备指示针对所述第二上行资源是否组成媒体接入控制层协议数据单元MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中。
  22. 根据权利要求21所述的方法,其特征在于,还包括:
    所述终端针对所述第一上行资源组成第一MAC PDU;
    所述终端确定在所述重叠部分采用所述第一上行资源发送所述第一MAC PDU。
  23. 根据权利要求22所述的方法,其特征在于,所述向网络设备指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中,包括:
    所述终端向所述网络设备发送指示信息,所述指示信息用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中。
  24. 根据权利要求23所述的方法,其特征在于,所述指示信息承载于媒体接入控制元素MAC CE,所述MAC CE携带在所述第一MAC PDU中。
  25. 根据权利要求23所述的方法,其特征在于,所述指示信息承载于上行控制信息UCI。
  26. 根据权利要求22所述的方法,其特征在于,在所述第一上行资源上传输的信息用于指示针对所述第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中;或,
    所述第一MAC PDU的传输方式用于指示针对所述第二上行资源是否组成MAC PDU 或针对所述第二上行资源是否有数据存储在对应的缓存中。
  27. 根据权利要求21至26任一项所述的方法,其特征在于,所述第一上行资源关联的HARQ进程和所述第二上行资源关联的HARQ进程不同。
  28. 一种通信方法,其特征在于,包括:
    网络设备根据终端的指示确定针对上行资源是否组成媒体接入控制层协议数据单元MAC PDU或针对所述上行资源是否有数据存储在对应的缓存中;
    当所述网络设备确定针对所述上行资源组成MAC PDU或针对所述上行资源有数据存储在对应的缓存中时,所述网络设备调度所述上行资源的重传;或,
    当所述网络设备确定针对所述上行资源未组成MAC PDU或针对所述上行资源没有数据存储在对应的缓存中时,所述网络设备不调度所述上行资源的重传。
  29. 根据权利要求28所述的方法,其特征在于,还包括:
    所述网络设备接收来自所述终端的指示信息,所述指示信息用于指示针对所述上行资源是否组成MAC PDU或针对所述上行资源是否有数据存储在对应的缓存中。
  30. 根据权利要求28所述的方法,其特征在于,所述上行资源为第二上行资源,且:
    在第一上行资源上传输的信息用于指示针对第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中;或,
    第一MAC PDU的传输方式用于指示针对第二上行资源是否组成MAC PDU或针对所述第二上行资源是否有数据存储在对应的缓存中,所述第一MAC PDU为针对第一上行资源组成的MAC PDU,所述第一上行资源与所述第二上行资源在时域上有重叠部分。
  31. 一种通信装置,用于终端,其特征在于,包括:用于执行如权利要求21至27任一项中各步骤的单元或手段。
  32. 一种通信装置,用于网络设备,其特征在于,包括:用于执行如权利要求28至30任一项中各步骤的单元或手段。
  33. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于执行如权利要求1至6或21至27任一项所述的方法。
  34. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于执行如权利要求7至10或28至30任一项所述的方法。
  35. 一种通信装置,其特征在于,包括处理器,用于与存储器相连,读取并执行所述存储器中存储的程序,以实现如权利要求1至6或21至27任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器,用于与存储器相连,读取并执行所述存储器中存储的程序,以实现如权利要求7至10或28至30任一项所述的方法。
  37. 一种存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至10或21至30中任一项所述的方法被执行。
PCT/CN2020/079357 2019-03-29 2020-03-13 一种通信方法和装置 WO2020199901A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021019408A BR112021019408A2 (pt) 2019-03-29 2020-03-13 Método e aparelho de comunicação
EP20782911.0A EP3952549A4 (en) 2019-03-29 2020-03-13 COMMUNICATION METHOD AND DEVICE
KR1020217032874A KR20210134398A (ko) 2019-03-29 2020-03-13 통신 방법 및 장치
JP2021557706A JP2022527921A (ja) 2019-03-29 2020-03-13 通信方法および装置
US17/489,611 US20220022211A1 (en) 2019-03-29 2021-09-29 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910251765.5 2019-03-29
CN201910251765.5A CN111757507A (zh) 2019-03-29 2019-03-29 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/489,611 Continuation US20220022211A1 (en) 2019-03-29 2021-09-29 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199901A1 true WO2020199901A1 (zh) 2020-10-08

Family

ID=72664710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079357 WO2020199901A1 (zh) 2019-03-29 2020-03-13 一种通信方法和装置

Country Status (7)

Country Link
US (1) US20220022211A1 (zh)
EP (1) EP3952549A4 (zh)
JP (1) JP2022527921A (zh)
KR (1) KR20210134398A (zh)
CN (1) CN111757507A (zh)
BR (1) BR112021019408A2 (zh)
WO (1) WO2020199901A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220116987A1 (en) * 2020-10-13 2022-04-14 FG Innovation Company Limited Methods and apparatuses for handling uplink (re)transmission in unlicensed and controlled environment
WO2022151445A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种上行传输的方法和装置
CN116941301A (zh) * 2021-06-30 2023-10-24 Oppo广东移动通信有限公司 上行传输方法、终端和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728928A1 (en) * 2011-08-02 2014-05-07 Huawei Technologies Co., Ltd Method, base station and user equipment for transmitting scheduling information
WO2018126477A1 (zh) * 2017-01-09 2018-07-12 广东欧珀移动通信有限公司 复用上行授权资源的方法和设备
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN108738135A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 上行信息发送方法、接收方法和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885419A (zh) * 2018-01-12 2022-08-09 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
US11737081B2 (en) * 2018-05-11 2023-08-22 Electronics And Telecommunications Research Institute Method for transmitting and receiving signals for ultra reliable low latency communication
US11006397B2 (en) * 2018-06-08 2021-05-11 Apple Inc. Multiplexing physical uplink control channels in a slot for a new radio (NR) system
KR20210025524A (ko) * 2018-06-19 2021-03-09 아이디에이씨 홀딩스, 인크. 다양한 신뢰성으로 데이터를 전송하기 위한 방법, 시스템, 및 디바이스
CN114598360B (zh) * 2018-08-08 2024-04-05 中兴通讯股份有限公司 信息传输方法、监听方法、装置、基站、终端及存储介质
EP3874878A2 (en) * 2018-10-31 2021-09-08 Lenovo (Singapore) Pte. Ltd. Preempting an allocation of uplink resources
CN111372316A (zh) * 2018-12-25 2020-07-03 北京展讯高科通信技术有限公司 上行资源的发送方法及装置
AU2020207206A1 (en) * 2019-01-09 2021-07-29 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for enhanced control signaling of ultra-reliable transmissions
CN111294965A (zh) * 2019-01-11 2020-06-16 展讯通信(上海)有限公司 一种上行传输资源选择方法、终端和存储介质
WO2020165281A1 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Multiple grant handling in mixed services scenarios
WO2020164106A1 (en) * 2019-02-15 2020-08-20 Zte Corporation System and method for determining uplink transmission priority
JP2022521702A (ja) * 2019-02-15 2022-04-12 アップル インコーポレイテッド 新無線(nr)におけるue内多重化のためのシステム及び方法
CN113424476A (zh) * 2019-02-22 2021-09-21 联想(新加坡)私人有限公司 自主触发数据重传
CN111726204B (zh) * 2019-03-22 2023-07-28 北京三星通信技术研究有限公司 半静态调度数据的harq-ack反馈的方法、ue、基站、设备及介质
CN110535555B (zh) * 2019-03-28 2023-05-23 中兴通讯股份有限公司 一种确定传输优先级的方法、装置和计算机可读存储介质
WO2020197333A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
US20220183050A1 (en) * 2019-03-28 2022-06-09 JRD Communication (Shenzhen) Ltd. Transmission pre-emption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728928A1 (en) * 2011-08-02 2014-05-07 Huawei Technologies Co., Ltd Method, base station and user equipment for transmitting scheduling information
WO2018126477A1 (zh) * 2017-01-09 2018-07-12 广东欧珀移动通信有限公司 复用上行授权资源的方法和设备
CN108347779A (zh) * 2017-01-25 2018-07-31 维沃移动通信有限公司 上行数据发送方法、接收方法、用户终端和网络侧设备
CN108738135A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 上行信息发送方法、接收方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR Industrial Internet of Things (IoT); Release 16", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.825, no. V0.1.1, 8 March 2019 (2019-03-08), pages 1 - 32, XP051722742 *
See also references of EP3952549A4

Also Published As

Publication number Publication date
US20220022211A1 (en) 2022-01-20
KR20210134398A (ko) 2021-11-09
JP2022527921A (ja) 2022-06-07
BR112021019408A2 (pt) 2021-11-30
EP3952549A4 (en) 2022-06-08
CN111757507A (zh) 2020-10-09
EP3952549A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP7248661B2 (ja) 通信方法、通信装置、およびデバイス
JP5999269B2 (ja) マルチratシステムにおける無線通信
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2018028269A1 (zh) 一种资源调度方法和装置
JP5508288B2 (ja) トークンバケットの初期化、保持、および再構成のための方法および装置
US10484997B2 (en) Communication method, base station and user equipment
WO2019137342A1 (zh) 上行资源的使用方法及装置
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
WO2017124941A1 (zh) 传输数据的方法、用户设备和基站
WO2020199901A1 (zh) 一种通信方法和装置
WO2020221260A1 (zh) 一种通信方法及通信装置
KR20170045281A (ko) 다중 라디오 hetnet에서 베어러 분할을 위한 시스템, 방법, 및 장치
WO2021219098A1 (zh) 一种通信方法及装置
WO2019141239A1 (zh) 通信方法、装置和系统
WO2013060300A1 (zh) 数据分流传输方法、用户设备和基站
CN102739349B (zh) 一种用于帧确认的方法和装置
WO2020147053A1 (zh) 数据传输的方法和通信设备
TW201922021A (zh) 方法、設備、電腦程式產品及電腦程式
WO2010066171A1 (zh) 调度信息上报方法、装置及系统
US20210282002A1 (en) Ue limitations for duplication
WO2021128350A1 (zh) 一种ue自动传输处理方法及其装置
WO2021056589A1 (zh) 一种数据传输方法及装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2021179325A1 (zh) 一种数据处理的方法及装置
WO2021155604A1 (zh) 信息处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032874

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019408

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020782911

Country of ref document: EP

Effective date: 20211028

ENP Entry into the national phase

Ref document number: 112021019408

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210928