WO2019185014A1 - 通信方法、通信装置和系统 - Google Patents

通信方法、通信装置和系统 Download PDF

Info

Publication number
WO2019185014A1
WO2019185014A1 PCT/CN2019/080399 CN2019080399W WO2019185014A1 WO 2019185014 A1 WO2019185014 A1 WO 2019185014A1 CN 2019080399 W CN2019080399 W CN 2019080399W WO 2019185014 A1 WO2019185014 A1 WO 2019185014A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
uplink
service data
uplink grant
uplink authorization
Prior art date
Application number
PCT/CN2019/080399
Other languages
English (en)
French (fr)
Inventor
娄崇
刘星
范强
郭菁睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19777674.3A priority Critical patent/EP3764721A4/en
Publication of WO2019185014A1 publication Critical patent/WO2019185014A1/zh
Priority to US17/034,639 priority patent/US11457468B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods, communication devices and systems.
  • LTE Long Term Evolution
  • NR new radio access technology
  • the network device can configure one or more logical channels (LCHs) for the terminal devices.
  • LCHs logical channels
  • Each logical channel can correspond to a quality of service (QoS) requirement of a service.
  • QoS quality of service
  • a terminal device may need both an Internet service and a voice service (for example, Voice over LTE, VoLTE), and thus may be configured with two different logical channels to receive or transmit data of different services.
  • a terminal device can perform resource mapping according to a sequence of receiving an uplink grant (UL grant).
  • the network device may indicate the authorized physical uplink resource (hereinafter referred to as the uplink authorization resource) to the terminal device by using the downlink control information, and each uplink authorization may correspond to one uplink authorization resource.
  • the terminal device may determine the sequence of resource mapping according to the sequence of receiving the uplink grant, and map the data in the logical channel to the corresponding uplink grant resource for sending.
  • the present application provides a communication method, communication apparatus, and system to reduce transmission delay.
  • a communication method comprising:
  • the terminal device receives the uplink authorization
  • the network device sends an uplink grant, where the uplink grant indicates the location of the uplink grant resource in the time domain.
  • the uplink authorization is not limited to indicating the location of the uplink grant resource in the time domain, but also indicates the location of the uplink grant resource in the frequency domain, and the information such as the resource size and coding and modulation scheme (MCS). . This application does not limit this.
  • the terminal device can select the appropriate first uplink grant resource to send the first service data according to the location of the uplink grant resource in the time domain, and is not dependent on the uplink scheduling arrival.
  • Time to determine the resource used to transmit the first service data, but considering the time domain location of the resource, that is, considering the transmission time of the first service data, thereby being able to select an appropriate one for the first service data sensitive to the delay Resources are transmitted to help reduce transmission delay.
  • the technical solution is not only applicable to dynamically scheduled uplink grant resources, but also applicable to pre-configured uplink grant resources.
  • the determining, by the location of the uplink authorization resource in the time domain, the first uplink authorization resource used for transmitting the first service data include:
  • the terminal device can select the first uplink grant resource according to the delay requirement of the first service data, and the determined first uplink grant resource can ensure that the transmission delay of the first service data meets the delay requirement.
  • the method further comprises:
  • the network device sends the indication information of the delay threshold.
  • the first uplink authorization resource is a resource in which the time domain location is the highest among the plurality of uplink authorization resources.
  • the terminal device can use the uplink authorization resource with the time domain location at the forefront to transmit the first service data, that is, the first service data is sent first, thereby facilitating the transmission delay of the first service data to be minimized.
  • the determining, by the location of the uplink authorization resource in the time domain, the first uplink authorization resource used for transmitting the first service data include:
  • the resource with the smallest remaining time is also the resource at the top of the time domain, that is, the first service data is sent first, thereby facilitating the transmission delay of the first service data to a minimum.
  • the determining, by the location of the uplink authorization resource in the time domain, the first uplink authorization resource used for transmitting the first service data include:
  • the first uplink grant resource is a resource in which the time domain location of the multiple candidate uplink grant resources is at the top.
  • the delay requirement and the transmission delay of the first service data can be simultaneously achieved.
  • the number of bits that the first uplink grant resource can transmit is greater than or equal to a size of the first service data
  • the transmitting, by using the first uplink authorization resource, the first service data includes:
  • All data of the first service data is transmitted by using the first uplink grant resource.
  • the entire data cannot be recovered due to the failure of the data transmission of one or more resources, and the retransmission is required to be solved, thereby causing a certain transmission delay.
  • the transmission delay is further reduced by transmitting the first service data by selecting an uplink grant resource whose number of bits that can be transmitted is greater than or equal to the size of the first service data.
  • the number of bits that the first uplink authorization resource can transmit is smaller than the size of the first service data, and the first service data supports segment transmission, as well as
  • the transmitting, by using the first uplink authorization resource, the first service data includes:
  • the method further comprises:
  • the remaining data of the first service data is data that is not sent by the first uplink authorization resource, and the second uplink authorization resource is a second remaining of the plurality of uplink authorization resources except the first uplink authorized resource.
  • the resource with the smallest time; or the second uplink authorization resource is the resource that the uplink authorization first arrives in the multiple uplink authorization resources except the first uplink authorization resource, where the second remaining time is the uplink authorization
  • the first service data may also be transmitted by using one or more uplink grant resources.
  • a communication method including:
  • the terminal device receives the uplink authorization
  • the network device sends an uplink grant, where the uplink grant indicates a size of the uplink grant resource.
  • the terminal device determines the number of bits that can be transmitted according to the size of the uplink authorization resource, and determines the resource that can transmit the number of bits that is greater than or equal to the size of the first service data as the first uplink authorization resource, and uses the first uplink authorization resource to Transmit the first service data. Therefore, the terminal device can use the sufficient resources to send all the data in the first service data, so that the transmission delay that may be caused by the segment transmission can be avoided, and the transmission delay is reduced.
  • the method further includes:
  • the terminal device receives the first indication information, where the first indication information indicates whether the first service data supports segment transmission.
  • the network device sends first indication information, where the first indication information indicates whether the first service data supports segment transmission.
  • the first indication information is carried in a logical channel configuration information element of the first service data, where the first indication information is carried by a segmentation segmentation field.
  • the first service data satisfies one or more of the following:
  • the priority bit rate PBR of the first service data is infinite; or
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first service data is high priority data.
  • the priority field of the first service data is carried in a logical channel configuration information element, the priority field indicating a priority of the first service data Value.
  • the high priority field of the first service data is carried in a logical channel configuration information element, where the high priority field indicates that the first service data is High priority data.
  • the priority bit rate PBR field of the first service data is carried in a logical channel configuration information element, and the PBR field indicates a PBR of the first logical channel. For infinity.
  • the uplink authorization resource is a dynamically scheduled resource, or the uplink authorization resource is a pre-configured resource.
  • the present application provides a communication device having a function of implementing the behavior of a terminal device in the above method aspect, comprising a unit or a means for performing the steps or functions described in the above method aspect.
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the application provides a communication device comprising at least one processor and a memory, the at least one processor for performing the method provided by the first aspect or the second aspect above.
  • the application provides a communication device comprising at least one processor and an interface circuit, the at least one processor for performing the method provided by the first aspect or the second aspect above.
  • the present application provides a program for performing the method of the first aspect or the second aspect above when executed by a processor.
  • the application provides a program product, such as a computer readable storage medium, comprising the program of the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication system suitable for use in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a protocol stack in LTE
  • 3 is a schematic diagram of multiplexing multiple logical channels into the same transport channel
  • FIG. 4 is a schematic diagram of multiplexing multiple logical channels into the same transport channel
  • FIG. 5 shows the time when three uplink grants are received and the positions of the three uplink grant resources indicated by the three uplink grants in the time domain
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of determining, by a terminal device, a first uplink grant resource based on a first remaining time of an uplink grant resource;
  • 9 is another schematic diagram of determining, by a terminal device, a first uplink grant resource based on a first remaining time of an uplink grant resource;
  • FIG. 10 is still another schematic flowchart of a communication method according to an embodiment of the present application.
  • 11 is a schematic diagram of determining, by a terminal device, a first uplink grant resource based on a second remaining time of an uplink grant resource;
  • FIG. 12 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication apparatus according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as, but not limited to, a Narrow Band-Internet of Things (NB-IoT), and a Global System of Mobile communication (GSM) system.
  • Code Division Multiple Access (CDMA) system Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (Long Term Evolution) , LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Global Interconnected Microwave Access ( Worldwide Interoperability for Microwave Access, WiMAX) communication system, future 5th Generation (5G) system or new radio access technology (NR).
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Long Term Evolution Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for use in a communication method of an embodiment of the present application.
  • the communication system 100 can include at least one network device (eg, the network device 102 shown in the figure) and at least one terminal device (eg, the terminal device 104 shown in the figure), and the network device 102 can Communicating with the terminal device 104.
  • the communication system 100 may further include more network devices and/or more terminal devices, which is not limited in this application.
  • the network device may be any device with a wireless transceiver function, including but not limited to: an evolved Node B (eNB), a Radio Network Controller (RNC), and a Node B ( Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BaseBand Unit) , BBU), Access Point (AP) in wireless Fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP ), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in the 5G system, or, also It may be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU) or the like
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, in this architecture, higher layer signaling, such as RRC layer signaling, can also be considered to be sent by the DU.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • network device 102 can communicate with a plurality of terminal devices (e.g., including terminal device 104 shown in the figures).
  • the terminal device 104 can also communicate with a plurality of network devices (e.g., including the network device 102 shown in the figures), or the terminal device 104 can also communicate with one or more other terminal devices.
  • the scenario in which the network device 102 shown in FIG. 1 communicates with the terminal device 104 is only one possible scenario to which the communication method provided by the present application is applicable.
  • the communication method provided by the present application is also applicable to more scenarios. For example, a Coordination Multiple Point (CoMP) transmission scenario, a device to device (D2D) communication scenario, a V2X (Vehicle to Everything) communication scenario, and the like.
  • CoMP Coordination Multiple Point
  • D2D device to device
  • V2X Vehicle to Everything
  • the protocol stack structure in LTE is briefly described below with reference to FIG. 2 is a schematic structural diagram of a user plane protocol stack in LTE.
  • the Packet Data Convergence Protocol (PDCP) layer and the radio link control may be respectively configured from top to bottom.
  • Radio Link Control (RLC) layer, Media Access Control (MAC) layer and Physical (PHY) layer The data generated by the transmitting device at any protocol layer (for example, referred to as protocol layer A, it can be understood that protocol layer A can be any one of the PDCP layer, the RLC layer, the MAC layer, and the PHY layer) needs to pass through the lower layer.
  • the processing of the protocol layer is finally sent to the receiving device through the physical channel.
  • the data received by the receiving device on the physical channel also needs to be processed by the PHY layer and the protocol layer of the upper layer until the protocol layer A can acquire the data.
  • a radio resource control (RRC) layer and a non-access stratum (Non-Access Stratum) may be further included on the PDCP.
  • protocol stack in LTE is taken as an example, but this should not constitute any limitation on the present application, and the application does not exclude the protocol stack in LTE in future protocols.
  • a new protocol layer may be added to the PDCP layer, such as a Service Data Adaptation Protocol (SDAP) layer.
  • SDAP Service Data Adaptation Protocol
  • the terminal device may perform header compression on a protocol (Internet Protocol, IP) packet from an upper layer or a protocol data unit (PDU) (abbreviated as SDAP PDU) of an SDAP layer in an NR system at the PDCP layer.
  • PDU protocol data unit
  • the data packet may be further encrypted to generate a PDCP layer PDU (abbreviated as PDCP PDU) and then sent to the RLC layer.
  • the terminal device may divide or cascade the data packets from the PDCP layer at the RLC layer, generate an RLC PDU, and send the data packet to the MAC layer.
  • the RLC layer can serve the PDCP layer. In the NR system, it is also possible not to cascade the upper layer data packets.
  • the terminal device can determine the format transmitted by the air interface at the MAC layer, such as the size of the data block, the physical resource matching the size of the data block, and the MCS matching the physical resource.
  • the terminal device may generate a MAC PDU (ie, a transport block (TB)) that matches the size of the MCS and then send it to the physical layer.
  • the MAC layer can serve the RLC layer in the form of a logical channel.
  • the MAC layer may also generate MAC layer control information, such as a MAC control element (Control Element, CE), for reporting data buffer information, power headroom, etc., for base station scheduling. Therefore, the MAC PDU generated by the MAC layer may further include MAC layer control information, which is not limited in this application.
  • the terminal device may perform channel coding, rate matching, interleaving, scrambling, and modulation on the transport block (TB) from the MAC layer at the physical layer, and then transmit the modulated generated signal through the antenna.
  • the physical layer can provide services to the MAC layer in the form of a transport channel (TCH).
  • the above enumeration combines the protocol stack structure in LTE to simply describe the operation performed by the terminal device on the uplink data at each protocol layer, and the processing of the downlink data by the network device side is similar.
  • the processing of the downlink data by the terminal device and the processing of the uplink data by the network device are reversed from the above process, and are not described again.
  • the specific implementation process of each of the above processes may be the same as the prior art, and a detailed description of the specific process thereof is omitted here for the sake of brevity.
  • the network device may configure one or more logical channels for each terminal device, and each logical channel may correspond to a QoS requirement of one service.
  • a terminal device may require both an Internet service and a voice service, and thus may be configured with two or more different logical channels to receive or transmit data of different services.
  • data of different services may be separately processed and processed in the PDCP layer and the RLC layer, respectively, corresponding to one logical channel.
  • the MAC layer can also generate MAC layer control information and assign corresponding logical channels thereto.
  • the MAC entity can multiplex one or more logical channels into one transport channel, and the protocol data unit (protocol) from the RLC layer.
  • the data unit, PDU) (ie, RLC PDU) and/or MAC layer control information are mapped into PDUs (ie, MAC PDUs) of the same MAC layer. Therefore, through the above mapping, multiple logical channels can be multiplexed onto the same transport channel.
  • Figure 3 shows a schematic diagram of multiplexing multiple logical channels into the same transport channel. Specifically, FIG. 3 shows an example of multiplexing a plurality of logical channels into one transport channel in an uplink transmission.
  • the MAC entity may multiplex multiple logical channels including a common control channel (CCCH), a dedicated control channel (DCCH), and a dedicated traffic channel (DTCH).
  • CCCH common control channel
  • DCCH dedicated control channel
  • DTCH dedicated traffic channel
  • UL-SCH uplink shared channel
  • Figure 4 shows another schematic diagram of multiplexing multiple logical channels into the same transport channel.
  • FIG. 4 shows an example of multiplexing a plurality of logical channels into one transport channel in downlink transmission.
  • the MAC entity may multiplex multiple logical channels including CCCH, DCCH, DTCH, and broadcast control channel (BCCH) to a downlink shared channel (DL-SCH), or Multiple logical channels including a multicast traffic channel (MTCH) and a multicast control channel (MCCH) are multiplexed into a multicast channel (MCH).
  • CCCH CCCH
  • DCCH DCCH
  • DTCH broadcast control channel
  • BCCH broadcast control channel
  • DL-SCH downlink shared channel
  • MCH multicast traffic channel
  • MCCH multicast control channel
  • FIGS. 3 and 4 are merely for facilitating understanding that multiple logical channels multiplex the same transport channel, and should not be construed as limiting the application.
  • LCP logical channel prioritization
  • the MAC entity selects the appropriate logical channel for each uplink grant resource.
  • the physical resource can support multiple parameters such as a numerology, a transmission duration, and the like, and the MAC layer can determine the matched logical channel according to parameters such as a numerology, a transmission duration, and the like of each uplink authorized resource.
  • Numerology is a new concept introduced in NR. It can be understood as a set of parameters used by the communication system. For example, it can include subcarrier spacing (SCS), symbol length, and cyclic prefix (CP) length. Etc., a cell can support one or more nanology, and can be applied to the same or different time domain and/or frequency domain resources. It is to be understood that the specific content contained in the numerology listed herein is merely illustrative and should not be construed as limiting. For example, numerology may also include other granularity parameters that can be supported in the NR.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • An uplink grant resource may match one or more logical channels, and only one MAC PDU mapped to the uplink grant resource, but there may be multiple multiplexed logical channels, which requires assigning a priority to each logical channel (priority) ).
  • the MAC entity may map the data of each logical channel into the MAC PDU according to the order of priority of each logical channel from high to low.
  • the priority of each logical channel may be prioritized in a logical channel configuration (Logical ChannelConfig) information element (IE) in radio resource control (RRC) signaling (priority) ) field indication.
  • IE logical channel configuration
  • RRC radio resource control
  • this allocation method may make the high priority logical channel always occupy the allocated uplink grant resource, so that the low priority logical channel does not have sufficient resource bearer, that is, the data in the low priority logical channel is allocated. Less resources can't be transmitted in time, or low-priority logical channels are "starved.”
  • the concept of priority bit rate is proposed in LTE. That is, the data rate of each logical channel is configured before the resources are allocated to the logical channel, thereby providing a minimum data rate guarantee for each logical channel, reducing the situation where the low priority logical channel is "starved".
  • the priority bit rate for each logical channel may be indicated by a Priority Bit Rate (Prioritised Bit Rate) field in the logical channel configuration information element in RRC signaling.
  • Priority Bit Rate Priority Bit Rate
  • the MAC entity can implement MAC multiplexing using an algorithm similar to a token bucket.
  • the basic idea of the algorithm is to determine whether to transmit data of a logical channel based on whether there is a token in the token bucket and the number of tokens, and control the amount of data of the logical channel assembled in the MAC PDU.
  • the Bucket Size Duration determines the "depth" of the token bucket. Together with PBR, it determines the maximum capacity of the token bucket PBR ⁇ BSD.
  • the maximum capacity of the token bucket limits the total amount of data that can be pending on each logical channel, that is, the total amount of data buffered in the buffer.
  • the terminal device can maintain a variable Bj for each logical channel j indicating the number of tokens currently available in the token bucket, and each token corresponds to 1 byte of data.
  • a token can be understood as a right to map data of a logical channel to a transport channel.
  • the time unit T can be any value, which is not limited in this application.
  • the terminal device can perform LCP by following the steps below:
  • Step 1 For all logical channels with Bj>0, the packets are grouped in descending order of priority, and the radio resources allocated by each logical channel satisfy the requirements of PBR.
  • the PBR of a logical channel is configured to be infinity ("infinity"), the logical channel lower than its priority will be considered only when the resources of the logical channel are satisfied.
  • Step 2 Bj subtracts the size of all MAC SDUs multiplexed into the MAC PDU by the logical channel j in step 1.
  • Bj subtracts the size of all MAC SDUs multiplexed into the MAC PDU by the logical channel j in step 1.
  • Step 3 If the uplink resources are left after the first two steps are executed, the remaining resources are allocated to the respective logical channels in descending order of logical channel priority regardless of the size of Bj. Only when the data of all high-priority logical channels is transmitted and the uplink authorization resources are not exhausted, the low-priority logical channels can be served. That is, at this time, the UE maximizes the data transmission of the high priority logical channel.
  • the terminal equipment should also follow the following principles: (1) if the entire RLC SDU can be filled in the remaining resources, the SDU should not be segmented; (2) if the terminal device performs the RLC SDU in the logical channel For segmentation, the maximum segment should be filled as much as possible according to the size of the remaining resources; (3) the terminal device should maximize the transmission of data; (4) if a radio bearer is suspended, the radio bearer should not be transmitted. Logical channel data.
  • the terminal device will maximize the transmission of higher priority data.
  • Deterministic network Compared with the definition of common network, it requires extremely low packet loss rate for data streams, and has clear constraints on packet loss, jitter, and high reliability, and has controlled delay. Services requiring a deterministic network may include, for example, industrial controls, and audio/video services. Among them, the industrial control service has a small amount of data but a large number of data streams, which is sensitive to delay requirements; the audio/video services have high requirements for delay and jitter. For example, the required delay is between 1ms and 10ms, and the transmission reliability is 99.9999% or even 99.999999%.
  • IEEE Institute of Electrical and Electronics Engineers
  • URLLC can be understood as a type of business that requires a deterministic network.
  • the URLLC service is generally an emergency service and requires high transmission reliability and transmission delay. Generally, the delay is from 1ms to 50ms, and the transmission reliability is from 99.9% to 99.9999%.
  • the service transmitted by using the deterministic network is referred to as an emergency service or a deterministic service. It should be understood that the specific content of the deterministic service of the present application is not limited.
  • the terminal device may notify the network device to request the physical uplink resource by using a scheduling request (SR) and a buffer status report (BSR).
  • the network device may schedule one or more physical uplink resources for the terminal device, where the one or more physical uplink resources may indicate a modulation coding scheme (MCS) and resource allocation by using an uplink grant (UL grant).
  • MCS modulation coding scheme
  • UL grant uplink grant
  • the terminal device may receive the RRC signaling of the network device, where the RRC signaling may include information such as a period of the semi-static uplink authorization resource, and the terminal device may activate the semi-static after receiving the physical layer signaling including the uplink authorization.
  • the uplink grants the resource, so that the terminal device does not need to request the uplink device to allocate the uplink grant resource every time the uplink data is sent.
  • the uplink grant may be physical layer signaling, for example, downlink control information.
  • the MAC entity may determine the order of resource mapping according to the order in which the uplink grants are received.
  • FIG. 5 shows the time when three uplink grants are received and the positions of the three uplink grant resources indicated by the three uplink grants in the time domain.
  • the three uplink authorization resources may be respectively recorded as resource #1, resource #2, and resource #3, and the starting positions of the three uplink authorization resources in the time domain may be respectively Referred to as with
  • the uplink grants corresponding to the three uplink grant resources may be respectively recorded as uplink grant #1, uplink grant #2, and uplink grant #3, and the arrival times of the three uplink grants (or, the three uplink grants are received) Time) distribution can be recorded as with
  • the order of the start times of the three uplink authorization resources in the time domain is: resource #3 is before resource #1, resource #1 is before resource #2, that is,
  • the time interval between the start position of the uplink grant resource in the time domain and the arrival time of the uplink grant may be represented by parameter K2.
  • K2 may represent the slot offset of the starting location of the uplink grant resource in the time domain compared to the receive time of the uplink grant.
  • the intervals corresponding to the three uplink grants may be respectively recorded as K2#1, K2#2, and K2#3, and the time interval K2 corresponding to the three uplink grants shown in the figure satisfies: K2#3 ⁇ K2#1, and K2#3 ⁇ K2#2.
  • the terminal device may perform grouping and resource mapping of the MAC layer according to the order in which the uplink grants arrive, or the MAC entity groups the uplink authorized resources indicated by the uplink grant after receiving an uplink grant. package.
  • the data of the emergency service is likely to be mapped to the MAC PDU corresponding to the resource #1. But in fact, the location of resource #1 in the time domain is behind resource #3, so it is impossible to send the data of the emergency service in time, which brings unnecessary delay and may not even be satisfied. The delay requirements of the business.
  • the uplink grants shown in the figure may be downlink control information for dynamic scheduling; they may also be downlink control information for activating pre-configured resources; or may be part of downlink control information for dynamic scheduling. Part of is the downlink control information used to activate the pre-configured resources. This application does not limit this. In view of this, the present application provides a communication method capable of reducing transmission delay.
  • uplink authorization may be understood as signaling for scheduling physical uplink resources, for example, downlink control information for uplink grant, or radio resources for semi-static configuration.
  • Radio resource control (RRC) signaling or downlink control information for activating an uplink grant resource in a semi-static configuration manner.
  • Uplink Authorization Resource can be understood as a resource indicated by an uplink grant. In the LTE or NR protocol, both the "uplink grant” and the “uplink grant resource” may correspond to a UL grant, which can be understood by those skilled in the art.
  • pre-definition may be implemented by pre-storing corresponding codes, tables, or other manners that can be used to indicate related information in a device (for example, including a terminal device and a network device).
  • a device for example, including a terminal device and a network device.
  • pre-definition can be defined in the protocol.
  • the “storage” involved in the embodiment of the present application may be stored in one or more memories.
  • the one or more memories may be separate arrangements or integrated in an encoder or decoder, processor, or communication device.
  • the one or more memories may also be partially provided separately, and some of them may be integrated in a decoder, a processor, or a communication device.
  • the type of the memory may be any form of storage medium, which is not limited herein.
  • the “protocol” may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols used in a communication system in the future, which is not limited in this application.
  • first, second, etc. are merely for facilitating the differentiation of different objects, and should not be construed as limiting the application.
  • “and/or” describes the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, A and B exist simultaneously, and B exists separately. These three situations.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • At least one means one or more; “at least one of A and B", similar to "A and/or B", describing the association of associated objects, indicating that there may be three relationships, for example, A and B. At least one of them may indicate that A exists separately, and A and B exist simultaneously, and B cases exist separately.
  • the communication method provided by the present application is applicable to a wireless communication system, such as the wireless communication system 100 shown in FIG.
  • a wireless communication connection between two communication devices in a wireless communication system and one of the two communication devices may correspond to the terminal device 104 shown in FIG. 1, for example, may be the terminal device 104 in FIG. It may also be a chip disposed in the terminal device 104; the other of the two communication devices may correspond to the network device 102 shown in FIG. 1, for example, may be the network device 102 in FIG. It can be a chip that is configured in the network device 102.
  • the uplink grant resource indicated by the uplink grant received by the terminal device is a resource that matches the logical channel carrying the first service data.
  • the terminal device may determine, according to a method of the prior art, a resource that matches a logical channel carrying the first service data, for example, according to some information of a logical channel carrying the first service data, such as a transmission duration, in a numerology
  • the parameters such as the subcarrier spacing match the corresponding uplink grant resources, and then the first uplink grant resource is further determined based on the method provided by the present application.
  • the specific method for the terminal device to determine the resource that matches the logical channel can be the same as the prior art, and is not described here for brevity.
  • FIG. 6 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 200 shown in FIG. 6 can include steps 210 through 260. The communication method will be described in detail below with reference to FIG.
  • step 210 the terminal device receives the uplink grant.
  • the uplink authorization may be understood as signaling sent by the network device to the terminal device, where the signaling may be used to indicate resources that the network device schedules for the terminal device.
  • the uplink grant may indicate a resource location of the uplink grant resource, such as a time domain location and a frequency domain location of the uplink grant resource; the uplink grant may also indicate a size of the uplink grant resource; the uplink grant may also indicate an uplink grant resource.
  • Matching modulation and coding scheme MCS that is to say, when data is transmitted by using the uplink grant resource, the MCS matching the uplink grant resource needs to be used to encode and modulate the data.
  • the uplink grant may be carried in the downlink control information.
  • the downlink control information may be sent by the network device based on the scheduling request of the terminal device.
  • the resource allocation in the downlink control information may indicate a resource location of the uplink grant resource, and the MCS field of the downlink control information may indicate an MCS that matches the uplink grant resource.
  • the downlink control information may be DCI (downlink control information, DCI) in the LTE or NR protocol, or may be other signaling that can be used to carry downlink control information transmitted in the physical downlink control channel.
  • DCI downlink control information
  • the physical downlink control channel mentioned herein may be a PDCCH (physical downlink control channel) defined in the LTE or NR protocol, an enhanced physical downlink control channel (EPDCCH), and an evolution with the network. And other downlink channels defined as having the above functions.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the upstream grant resource can be dynamically scheduled.
  • the uplink grant may be carried in RRC signaling.
  • the RRC signaling may indicate an uplink grant resource pre-configured for use by the terminal device.
  • the configured location (ConfigureGrantConfig) information element (IE) in the RRC signaling may carry a starting location, a resource size, and a period of the uplink grant resource, so that the terminal device determines the time domain location of the uplink grant resource and Frequency domain location.
  • the RRC signaling may also indicate an MCS that matches the uplink grant resource. This configuration can be called preconfigured grant type 1 (configured grant type 1). In this configuration mode, the uplink grant may be RRC signaling.
  • the uplink grant may be downlink control information.
  • the network device may first indicate, by using the RRC signaling, the period of the uplink authorization resource that is pre-configured to the terminal, and when the terminal device receives the downlink control information, may be based on the starting location of the uplink authorized resource carried in the downlink control information, The resource size and information such as the MCS matching the uplink grant, after which the terminal device activates and starts using the pre-configured uplink grant resource.
  • This configuration can be called preconfigured grant type 2 (configured grant type 2).
  • the uplink grant may be downlink control information.
  • the uplink grant resource may be pre-configured, for example, a semi-persistent scheduling (SPS) resource or a grant free resource.
  • SPS semi-persistent scheduling
  • the terminal device may receive one or more uplink grants, and each uplink grant may be used to indicate an uplink grant resource. That is, the network device can schedule one or more uplink grant resources for the terminal device. If the terminal device receives multiple uplink grants, the multiple uplink grant resources corresponding to the multiple uplink grants do not overlap, that is, the locations of the multiple uplink grant resources in the time domain are different from each other. of.
  • step 220 the terminal device determines, according to the location of the uplink grant resource indicated by the uplink grant in the time domain, the first uplink grant resource for transmitting the first service data.
  • the first service data may be data transmitted by the deterministic network described above, for example, data of a URLLC service.
  • the resource determined by the terminal device for transmitting the first service data is recorded as the first uplink transmission resource.
  • the first service data meets one or more of the following:
  • the priority bit rate of the first service data is infinite
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first service data is high priority data.
  • the data carried in the logical channel when the data carried in a certain logical channel satisfies any one of A to C, the data carried in the logical channel can be regarded as the first service data.
  • service data that is not sensitive to delay may be distinguished by an indication field in a logical channel configuration information element of a logical channel carrying the first service data.
  • the priority field of the first service data is carried in the logical channel configuration information element, and the priority field may indicate a value of the priority of the first service data.
  • the size of the priority value can be used to determine the level of priority. For example, the higher the value, the lower the priority; the smaller the value, the higher the priority.
  • the terminal device and the network device can pre-negotiate or pre-configure the priority threshold. When the value of the priority indicated in the priority field is less than or equal to the threshold, the data carried in the logical channel is considered to be the first service data.
  • the threshold may be predefined, for example, a protocol definition. This application does not limit the value of the threshold.
  • the high priority field of the first service data is carried in the logical channel configuration information element (LCH IE), and the priority field may indicate that the first service data is high priority data.
  • LCH IE logical channel configuration information element
  • the high priority field can be understood as a switch for indicating whether the data priority carried by the logical channel is high. For example, if the high priority field is set to “0”, the data carried in the logical channel is considered to be low priority data; when the high priority field is set to “1”, the data carried in the logical channel is considered to be high priority. data. Or, if the high priority field is set to "FALSE", the data carried in the logical channel is considered to be low priority data; when the low priority field is set to "TRUE”, the data carried in the logical channel is considered to be high priority. data.
  • the high priority field may be a different field than the priority field described above.
  • the correspondence between the value of the priority field listed above and the priority level, and the correspondence between the value of the high priority field and the priority level are merely exemplary descriptions, and the present application should not be limited. .
  • the higher the priority value, the higher the priority; or, the high priority field may be set to “0” or “FALSE” for the high priority data.
  • the priority bit rate field of the first service data is infinite.
  • PBR infinity
  • the foregoing describes a plurality of different manners for indicating the first service data.
  • the MAC entity reads any one of the above enumerated fields, it can determine that the data carried in the logical channel is the first service data, and needs to be prioritized. Processing, for which the first uplink authorization resource is determined.
  • the priority processing may be as follows: the logical channel carrying the first service data is preferentially subjected to LCP processing, and a suitable physical uplink resource (for example, a first uplink authorization resource) is selected, and the packet is grouped based on the resource. For example, the first service data is grouped according to the MCS of the first uplink authorization resource. Moreover, when the first service data is grouped, the normal service data may be temporarily ignored, and after all the data of the first service data is preferentially sent out, the normal service data is subjected to LCP processing.
  • the specific process of the LCP can be referred to the foregoing, and is not described here for brevity.
  • the terminal device may determine, according to the starting position of the multiple uplink authorization resources indicated by the multiple uplink authorizations in the time domain, by using any one of the following methods:
  • the first remaining time of the uplink authorized resource is greater than or equal to the pre-configured delay threshold.
  • the first remaining time of the uplink authorized resource is determined by the terminal device according to the initial location of the uplink authorized resource in the time domain.
  • the resource is determined as the first uplink authorized resource.
  • the first remaining time is a time interval between an end position of the uplink authorized resource in the time domain and a timeout time of correctly receiving the first service data.
  • Manner 2 The terminal device determines, according to the initial location of the uplink authorization resource indicated by the uplink authorization, the resource with the time domain location in the multiple uplink authorization resources as the first uplink authorization resource.
  • the third device determines the first remaining time of the uplink authorized resource according to the end position of the uplink authorized resource in the time domain, and sets the first remaining time of the uplink authorized resource to be greater than or equal to the pre-configured delay threshold.
  • the resource capable of transmitting the number of bits greater than or equal to the size of the first service data is determined as the first uplink grant resource.
  • the fourth device determines the first remaining time of the uplink authorization resource according to the end position of the uplink authorization resource indicated by the uplink authorization, and sets the first remaining time of the uplink authorization resource to be greater than or equal to the pre-configured delay threshold.
  • the resource whose top time domain location is at the top is determined as the first uplink authorization resource.
  • step 230 the terminal device sends the first service data by using the first uplink authorization resource.
  • the number of bits that the first uplink authorization resource can transmit may be greater than or equal to the size of the first service data, or may be smaller than the size of the first service data. If the number of the first uplink authorization resources is greater than or equal to the size of the first service data, the step 230 may include: the terminal device may use the first uplink authorization resource to send all the data of the first service data; If the number of bits that can be transmitted by the uplink authorization resource is smaller than the size of the first service data, the step 230 may include: the terminal device may use the first uplink authorization resource to send part of the data of the first service data. For the purpose of distinguishing and explaining, part of the data of the first service data sent by the first uplink authorization resource is recorded as the first part of data. That is, the terminal device may use the first uplink authorization resource to send all data of the first service data, or the first part of data.
  • the method 200 further includes: the terminal device receiving the first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the network device sends first indication information, where the first indication information indicates whether the first service data supports segment transmission.
  • the first indication information may be indicated by a segmentation field in the logical channel configuration information element. For example, if the field indicates "TRUE”, it means that segmentation transmission is not supported; if the field indicates "FALSE”, it means that segmentation transmission is supported.
  • the terminal device may use the first uplink authorization resource to send the first All the data of the service data; if the number of bits that the first uplink authorization resource can transmit is smaller than the size of the first service data, and the first service data does not support the segment transmission, the terminal device may temporarily not send the first service. Data, waiting for the next scheduled uplink grant resource; if the number of bits that the first uplink grant resource can transmit is smaller than the size of the first service data, and the first service data can support the segment transmission, the terminal device can utilize the first The uplink authorization resource transmits the first part of the first service data.
  • the method 200 further includes:
  • Step 250 The terminal device determines a second uplink authorization resource.
  • Step 260 The terminal device uses the second uplink grant resource to transmit part or all of the remaining data of the first service data.
  • the terminal device may determine the second uplink authorization resource from the resources other than the first uplink authorization resource among the multiple uplink authorization resources.
  • the second uplink authorization resource may be a resource in which the time domain location is the top of the plurality of uplink authorization resources except the first uplink authorization resource.
  • the second uplink authorization resource may be the resource that the uplink authorization first arrives among the multiple uplink authorization resources except the first uplink authorization resource.
  • the remaining data of the first service data that is, the data of the first service data except the first part of the data.
  • the remaining data can be recorded as the second part of the data.
  • the bit data that can be transmitted by the second uplink authorization resource may be greater than or equal to the second part of the first service data, and may be smaller than the second part of the first service data. Therefore, in step 260, the terminal device may Part or all of the second portion of data of the first service data is transmitted using the second uplink grant resource. It can be understood that the first partial data and the second partial data may constitute all of the first service data, and may also be part of the first service data.
  • the terminal device can select the appropriate first uplink grant resource to send the first service data according to the location of the uplink grant resource in the time domain, and is not dependent on the uplink scheduling arrival.
  • Time to determine the resource used to transmit the first service data but considering the time domain location of the resource, that is, considering the transmission time of the first service data, thereby being able to allocate suitable resources for the first service data sensitive to delay.
  • To transmit it is beneficial to reduce the transmission delay.
  • the technical solution is not only applicable to dynamically scheduled uplink grant resources, but also applicable to pre-configured uplink grant resources.
  • step 220 of the method 200 will be described in detail with reference to FIGS. 7 through 11.
  • FIG. 7 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 specifically illustrates the first mode, the third mode, and the fourth mode of the step 220 in the above method flow.
  • the step 220 may further include steps 2201 to 2208. The details will be described below with reference to FIG. 7.
  • step 2201 the terminal device determines an end location of the uplink grant resource on the time domain.
  • the uplink authorization sent by the network device to the terminal device may be one or more, that is, the terminal device may determine the first uplink authorization resource from one or more uplink authorization resources.
  • the uplink authorization resource may be dynamically scheduled or pre-configured.
  • the terminal device may receive one or more uplink grants sent by the network device, and each uplink grant may indicate a time domain location and a resource size of an uplink grant resource.
  • the parameter K2 the start symbol position S and the resource length L may be indicated in each uplink grant.
  • the parameter K2 may indicate a slot offset of a slot where the uplink grant resource is in the time domain and a slot offset of the slot that receives the uplink grant, and the start symbol location S may indicate an uplink grant resource.
  • the resource length L may indicate the number of symbols occupied by the uplink grant resource, where the start symbol position of the time slot in which the uplink grant resource is located, that is, the number of symbols offset from the first symbol of the start time slot of the uplink grant resource.
  • the starting time slot of the uplink grant resource can be understood as the time slot in which the starting location of the uplink grant resource in the time domain is located. Therefore, the terminal device can determine the end position of each uplink authorized resource in the time domain according to the time of receiving each uplink grant and the parameter K2, the start symbol position S and the resource length L indicated therein, for example, the end position.
  • t 2 N * K 2 + S + L, N represents the number of symbols included in one slot.
  • the end location of the uplink authorization resource may be determined by a starting position t b , a resource length L, and a period P of a group of uplink authorization resources to which the uplink authorization resource belongs.
  • the end position t 2 t b +n*P+L, where n may represent the number of cycles, the value of which may be determined by the terminal device; P may represent the number of symbols included in one cycle of the uplink grant resource.
  • the uplink authorization resource is configured based on the pre-configured uplink authorization type 1
  • the uplink authorization may be RRC signaling, and the starting position t b and the resource length L of the group of uplink authorization resources to which the uplink authorization resource belongs And the information such as the period P may be indicated in the RRC signaling;
  • the uplink authorization resource is configured based on the pre-configured uplink authorization type 2
  • the uplink authorization may be downlink control information, and the uplink authorization resource to which the uplink authorization resource belongs
  • the time when the uplink grant is received can be understood as the location of the downlink control information for carrying the uplink grant in the time domain, or the downlink is carried.
  • the time may be notified to the terminal device by the network device through other downlink control signaling, or may be pre-configured, and the terminal device may listen at a specific location.
  • the network device may send RRC signaling to the terminal device.
  • the RRC signaling may indicate a starting location, a size, and a period of one or more sets of uplink grant resources scheduled to the terminal device. That is to say, multiple uplink authorization resources are periodically arranged in the time domain, and the terminal device can determine the next uplink authorization in the same group of uplink authorization resources according to the starting position and size of the uplink authorization resources in the time domain. The end position of the resource in the time domain, or the end position of the latest uplink authorization resource in the same group of uplink authorization resources in the time domain.
  • the specific methods listed above for determining the end position of the uplink grant resource in the time domain are merely exemplary and should not be construed as limiting the application.
  • the specific method for the terminal device to determine the end position of the uplink authorization resource in the time domain is not limited.
  • the network device may also directly indicate the end position of the scheduled physical uplink resource in the time domain.
  • step 2202 the terminal device determines a first remaining time of the uplink grant resource.
  • the first remaining time is a time interval between an end position of the uplink authorized resource in the time domain and a timeout time of the first service data.
  • the first remaining time is the time interval between the end position of the uplink authorized resource in the time domain and the timeout time set by the timer.
  • the timer may be started by any protocol layer, such as a PDCP entity or a SDAP entity, when the first service data is received, and the duration set by the timer may be used to determine the latest time when the first service data is received.
  • ACK acknowledgement
  • the multiple uplink grant resources may correspond to multiple first remaining times.
  • the first remaining time of the latest one of the uplink grant resources of each of the multiple sets of uplink grant resources It may also be different.
  • step 2203 the terminal device determines, according to the first remaining time of the uplink grant resource, the first uplink grant resource for transmitting the first service data.
  • the terminal device may determine the first uplink grant resource from one or more uplink grant resources scheduled by the network device according to the pre-configured delay threshold and the first remaining time of the uplink grant resource. Specifically, the terminal device may select, by using one or more uplink grant resources scheduled by the network device, an uplink grant resource whose first remaining time is greater than or equal to a delay threshold. For the sake of distinction and description, the condition that the first remaining time is greater than or equal to the delay threshold can be recorded as condition one.
  • the terminal device may determine the uplink authorization resource as the first uplink authorization resource; if the first remaining time is greater than or equal to the delay threshold If the number of the uplink authorization resources is multiple, the terminal device may select one of the uplink authorization resources, for example, the largest resource as the first uplink authorization resource, or the first resource in the time domain as the first resource. If the number of uplink authorization resources whose first remaining time is greater than or equal to the delay threshold is zero, the terminal device may temporarily not group the first service data, waiting for the next scheduled resource to arrive, to see if The uplink authorization resource with the first remaining time greater than or equal to the delay threshold can be found to transmit the first service data.
  • the delay threshold can be understood as a time period allowed for air interface processing, or an allowed delay.
  • the latency threshold can be understood as the minimum time interval allowed for data to be sent out to be correctly received. During this time period, the data can be demodulated, decoded, or retransmitted until it is properly acquired. Therefore, as long as the first remaining time of the uplink authorized resource is greater than or equal to the delay threshold, the transmission delay brought by the uplink authorization resource can meet the delay requirement of the service.
  • the delay threshold may be predefined, such as a protocol definition, or may be instructed by the network device to the terminal device in advance.
  • the method further includes: Step 2204: The terminal device receives the indication information of the delay threshold.
  • the network device sends indication information of the delay threshold, where the indication information is used to indicate the size of the delay threshold.
  • the indication information may be information of a specific value of the delay threshold, or may be an indication cell having a correspondence with a delay threshold value.
  • the delay threshold may be configured by an access network device.
  • the indication information of the delay threshold may be carried in, for example, RRC signaling.
  • the delay threshold field is added to the logical channel configuration information element of the RRC signaling, or the delay threshold field is added in the MAC configuration of the RRC signaling, or is added in the RLC configuration or the RLC bearer configuration of the RRC signaling. Delay threshold field.
  • the delay threshold may be configured by a core network device.
  • the indication information of the delay threshold may be delivered to the access network device through a next generation (NG) interface, and the access network device may indicate to the terminal device by, for example, RRC signaling.
  • NG next generation
  • step 2204 is not necessarily performed after step 2203, and step 2204 may be performed before step 2203. This can be performed before step 2201, which is not limited in this application.
  • the terminal device may determine a first uplink grant resource for transmitting the first service data, and the first uplink grant resource determined thereby is determined according to the manner described above.
  • FIG. 8 is a schematic diagram of determining, by a terminal device, a first uplink grant resource based on a first remaining time of an uplink grant resource. As shown in FIG. 8, it is assumed that the network device schedules three uplink grant resources for the terminal device, which are resource #1, resource #2, and resource #3 shown in the figure.
  • T C may represent the timeout period of correctly receiving the first service data determined by the timer duration
  • T A can be understood as the latest transmission end time of the first service data that satisfies the delay requirement of the first service data, and the transmission end time of the first service data can satisfy the delay requirement before T A .
  • the value of T A can be determined by a timeout period and a delay threshold.
  • the first remaining time of resource #1, resource #2, and resource #3 (for example, denoted as ⁇ t1) can be expressed as: as well as If the terminal device determines the first uplink grant resource based on the manner described above, the resource #3 in the figure may satisfy the condition one, that is, ⁇ t1#3>T 0 , and T 0 represents the delay threshold. Therefore, the terminal device can determine the resource #3 as the first uplink grant resource.
  • FIG. 9 is another schematic diagram of determining, by the terminal device, a first uplink grant resource based on a first remaining time of an uplink grant resource.
  • the end positions of resource #1, resource #2, and resource #3 in the time domain may correspond to with
  • T C may represent the timeout period of correctly receiving the first service data determined by the timer duration
  • T A can be understood as the latest transmission end time of the first service data that satisfies the delay requirement of the first service data, and the transmission end time of the first service data can satisfy the delay requirement before T A .
  • the first remaining time of resource #1, resource #2, and resource #3 (for example, denoted as ⁇ t1) can be expressed as: as well as If the terminal device determines the first uplink grant resource based on the manner described above, both the resource #3 and the resource #1 in the figure can satisfy the condition one, that is, ⁇ t1#1>T 0 , ⁇ t1#3>T 0 , T 0 (ie, T C -T A ) represents the delay threshold. Therefore, the terminal device can determine the resource #3 or the resource #1 as the first uplink authorization resource.
  • the terminal device may determine the first uplink grant resource that satisfies the condition one according to the first remaining time of each uplink grant resource and the difference between the timeout period T C and the delay threshold, without determining the location of the T A.
  • the terminal device determines the first uplink authorization resource based on the condition 1, it is desirable that the transmission delay of the first service data can meet the delay requirement of the service, that is, the receiving end (for example, the network) before the timeout period.
  • the device can correctly receive the first service data. If the number of bits that the terminal device can transmit in the first uplink grant resource determined by the terminal device in step 2203 (for example, the resource #3 in FIG. 9) is smaller than the size of the first service data, the terminal device may use the first service data. For the segment transmission, the terminal device needs to further determine the second uplink authorization resource that satisfies the above condition one.
  • one or more uplink authorization resources selected by the terminal device for transmitting the first service data need to satisfy the condition one.
  • the terminal device may determine the resource #3 as the first uplink grant resource and determine the resource #1 as the second uplink grant resource.
  • the specific manner in which the terminal device determines the first uplink authorization resource is not limited to the first method.
  • the terminal device may not perform step 2203 but directly perform the steps. 2205.
  • the terminal device determines, according to the first remaining time of the uplink authorization resource, an uplink authorization resource for transmitting the candidate of the first service data. Therefore, the candidate uplink grant resource may include multiple uplink grant resources that satisfy condition one. Thereafter, the terminal device may further determine the first uplink grant resource based on one or both of the following conditions:
  • Condition 2 The number of bits that the first uplink authorization resource can transmit is greater than or equal to the size of the first service data
  • the first uplink authorization resource is a resource with a time domain location in a plurality of uplink authorization resources.
  • the first uplink grant resource that satisfies the condition 1 and the condition 2 may be determined according to the manner 3 described in the foregoing, and the first uplink grant resource that satisfies the condition 1 and the condition 3 may be determined according to the manner 4 described above. .
  • the following is a detailed description in conjunction with Condition 2 and Condition 3. It should be noted that, in the following example, it is assumed that the uplink authorization resources that satisfy the condition one determined by the terminal device in step 2203 are multiple.
  • the method further includes: Step 2206: The terminal device determines, by the candidate uplink grant resource, the first uplink grant resource, where the number of bits that the first uplink grant resource can transmit is greater than or equal to the size of the first service data.
  • the first service data when it is transmitted in segments, it needs to be transmitted through two or more uplink grant resources (for example, the first uplink grant resource and the second uplink grant resource may be included). Then, the data carried in the first uplink grant resource and the data carried in the second uplink grant resource need to be completely decoded and demodulated before the first service data can be recovered. If the data carried in any one of the two uplink authorization resources is not successfully decoded or demodulated, the first service data cannot be recovered, and the data needs to be resolved by retransmission, which may bring certain Transmission delay.
  • the first uplink grant resource and the second uplink grant resource may be included. Then, the data carried in the first uplink grant resource and the data carried in the second uplink grant resource need to be completely decoded and demodulated before the first service data can be recovered. If the data carried in any one of the two uplink authorization resources is not successfully decoded or demodulated, the first service data cannot be recovered, and the data needs to be resolved by retransmission, which may bring
  • the terminal device may directly select the resource that satisfies the condition 2 from the uplink authorization resources that satisfy the condition 1 candidate, regardless of whether the first service data supports the segment transmission.
  • the first uplink authorization resource may directly select the resource that satisfies the condition 2 from the uplink authorization resources that satisfy the condition 1 candidate, regardless of whether the first service data supports the segment transmission.
  • the terminal device may also determine whether the first uplink authorization resource needs to satisfy condition 2 based on whether the first service data supports the feature of the segment transmission.
  • both resource #1 and resource #3 can be understood as candidate uplink grant resources as described in step 2205.
  • the terminal device may further determine the first uplink grant resource from the second condition. It is assumed that the resource #1 is large, the number of bits that can be transmitted is greater than or equal to the size of the first service data; and the resource #3 is smaller, and the number of bits that can be transmitted is smaller than the size of the first service data, the terminal device can further allocate resources. #1 is determined as the first uplink authorized resource.
  • the first service data may be configured to support segmentation or not to support segmentation.
  • the method further includes: Step 2207: The terminal device receives the first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the network device sends first indication information indicating whether the first service data supports segment transmission.
  • step 2207 and the step 240 in the above method 200 may be the same steps, which are shown here for ease of understanding. Since the step 240 has been described in detail above, for brevity, no further details are provided herein.
  • the terminal device may also determine, according to the indication of whether the segment is supported in step 2207, whether the resource of condition 2 needs to be satisfied as the first uplink authorization resource.
  • the uplink authorization resource that satisfies the condition 1 and the condition 2 may be one, and the terminal device may directly determine the uplink authorization resource as the first uplink authorization resource; and the uplink authorization resource that satisfies the condition 1 and the condition 2 may also be multiple.
  • the terminal device may determine any one of the multiple uplink authorization resources that meet the condition 1 and the condition 2 as the first uplink authorization resource, or further select the uplink authorization resource that meets the condition 3 as the first uplink authorization resource. This application does not limit this.
  • the method further includes: Step 2208: The terminal device determines, by the candidate uplink grant resource, the first uplink grant resource, where the first uplink grant resource is the resource with the time domain location in the candidate uplink grant resource.
  • the terminal device may select, as the first uplink authorization resource, the resource with the highest position in the time domain from the multiple uplink authorization resources that satisfy the condition one, which can ensure the The first business data is sent first.
  • the first uplink authorization resource is determined to ensure that the transmission delay of the first service data meets the requirement, and the transmission delay of the first service data is minimized.
  • both resource #1 and resource #3 can be understood as candidate uplink grant resources as described in step 2205.
  • the terminal device may further determine the first uplink authorization resource from the third condition. Assume that the order of resources #1, resource #2, and resource #3 in the time domain is satisfied. Then, the terminal device may further determine the resource #3 as the first uplink authorization resource.
  • Condition 2 and Condition 3 can be used in combination with Condition 1 at the same time, or can be used in combination with Condition 1 alone, which is not limited in this application. That is to say, the first uplink authorized resource may only satisfy the condition one, or may only satisfy the condition one and the second condition, or may only satisfy the condition one and the third condition, and may also satisfy the condition one, the second condition and the third condition, thereby determining When the first uplink grant resource is used to transmit the first service data, the transmission delay may also be minimal.
  • the uplink authorization resource that meets the condition 2 may be multiple, and the terminal device may further select the resource that meets the condition 3 as the first uplink authorization resource from the uplink authorization resource that meets the condition 2.
  • Condition 1, Condition 2, and Condition 3 are used in combination.
  • the uplink authorization resource that satisfies the above condition 2 may be one, and the one resource may also satisfy the condition three.
  • the first uplink authorization resource thus determined can satisfy both condition one, condition two and condition three.
  • the transmission delay caused by the first uplink grant resource when transmitting the first service data may also be minimal.
  • the uplink authorization resource that satisfies the foregoing condition 2 may be one, and the resource does not satisfy the condition three. In this case, the condition 1 and the condition 2 may be used in combination.
  • the uplink grant resource that satisfies the foregoing condition 3 does not necessarily satisfy the condition 2, or the uplink grant resource that satisfies the condition 1 satisfies the condition 2, and in this case, the condition 1 and the condition 3 are used in combination.
  • the first uplink grant resource may be pre-agreed by the terminal device and the network device based on which one or more of the foregoing condition one, the second condition, and the third condition, and the terminal device and the network device technology are identical to the same one or more.
  • the first uplink authorization resource is determined by using the first uplink authorization resource, and the first service data is transmitted by using the first uplink authorization resource.
  • FIG. 7 is only a flowchart for ease of understanding, and the size of the sequence number of each step in the figure does not mean the order of execution sequence, and the terminal device also determines the first uplink authorization resource based on different conditions. It is not necessary to perform every step in the figure, or it is also possible to perform other steps. For example, the terminal device may perform one of steps 2203 and 2205. Therefore, the steps illustrated in the figures should not be construed as limiting the application. In a specific implementation process, the terminal device can implement the corresponding steps according to the inherent logic between the steps.
  • the terminal device may transmit the first service data by using an uplink grant resource that meets the delay requirement of the first service data.
  • the first uplink grant resource is selected to transmit the first service data by comparing the size of the resource and the location in the time domain, thereby further reducing the transmission delay.
  • FIG. 10 is still another schematic flowchart of a communication method according to an embodiment of the present application.
  • Figure 10 specifically illustrates the second way of step 220 in the above method flow.
  • the step 220 may further include steps 220 to 2210 to 2212. The details will be described below with reference to FIG.
  • step 2210 the terminal device determines a starting location of the uplink grant resource in the time domain.
  • the terminal device may receive one or more uplink authorizations sent by the network device.
  • Each uplink grant may indicate the time domain location and resource size of an uplink grant resource.
  • the starting position of the uplink grant resource may be determined according to the parameter K2 and the start symbol position S indicated in the uplink grant.
  • the starting location of the uplink grant resource may be determined by a starting position t b and a period P of a group of uplink grant resources to which the uplink grant resource belongs.
  • the uplink authorization resource is configured based on the pre-configured authorization type 1
  • the uplink authorization may be RRC signaling
  • the starting position t b and the period P of the group of uplink authorization resources to which the uplink authorization resource belongs may be In the RRC signaling
  • the uplink authorization may be downlink control information
  • the network device may have multiple uplink authorization resources for the terminal device, and the terminal device may determine the first uplink authorization resource according to the starting position of the multiple uplink authorization resources in the time domain.
  • the terminal device can directly compare the starting position of each uplink authorized resource in the time domain, and directly determine the first resource as the first uplink authorized resource.
  • the terminal device may determine the first uplink authorization resource according to the second remaining time of each uplink grant resource.
  • the method further includes: Step 2211: The terminal device determines a second remaining time of the uplink authorization resource.
  • the second remaining time is a time interval between a starting position of the uplink authorized resource in the time domain and a starting time of performing LCP on the first service data.
  • the time for performing the LCP on the logical channel where the first service data is located may be indicated by the network device or predefined. This application does not limit this.
  • the method further includes: Step 2212, the terminal device determines, according to the second remaining time of the uplink grant resource, the first uplink grant resource, where the first uplink grant resource is the second remaining resource of the plurality of uplink grant resources .
  • the time of the LCP for the first service data is fixed. Therefore, the higher the uplink authorization resource is in the time domain, the smaller the time interval from the LCP start time, and thus the determined first uplink authorization resource is multiple.
  • the process of determining, by the terminal device, the first uplink grant resource based on the second remaining time of the uplink grant resource is described below with reference to FIG.
  • the network device schedules three uplink grant resources for the terminal device, which are resource #1, resource #2, and resource #3 shown in the figure.
  • the start time of resource #1, resource #2, and resource #3 in the time domain may correspond to with
  • T L may represent the start time of the LCP for the first service data
  • the second remaining time of each resource may be the time interval between the start time of each resource in the time domain and the start time of the LCP.
  • the first remaining time of resource #1, resource #2, and resource #3 (for example, denoted as ⁇ t2) can be expressed as: as well as Among them, ⁇ t2#3 ⁇ t2#1 ⁇ t2#2. If the terminal device determines the first uplink grant resource based on the start time of each resource in the time domain, the resource #3 in the figure is the resource with the smallest remaining time, and the terminal device may determine the resource #3 as the first uplink grant resource. .
  • the terminal device can transmit the first service data by using the resource with the time domain location at the forefront, that is, the first service data is sent first, so that the transmission delay can be minimized.
  • FIG. 12 is a schematic flowchart of a communication method 300 according to another embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 300 shown in FIG. 12 can include steps 310 through 350. The communication method will be described in detail below with reference to FIG.
  • step 310 the terminal device receives the uplink grant.
  • step 310 is the same as the specific process of step 210 in the method 200, and is not described herein again for the sake of brevity.
  • step 320 the terminal device determines, from the uplink grant resource indicated by the uplink grant, the first uplink grant resource, where the number of bits that the first uplink grant resource can transmit is greater than or equal to the size of the first service data.
  • the method 300 further includes: Step 330, the terminal device determines a size of the first service data.
  • the terminal device may determine, according to the PBR field, the priority field, or the high priority field in the logical channel configuration information element, that the first service data is data of an emergency service.
  • the condition that the first service data is satisfied has been described in detail in the method 200. For brevity, details are not described herein again.
  • the terminal device may further determine the size of the first service data. As described above, if the first service data is transmitted in segments, the data carried in a certain resource may not be successfully decoded or demodulated, so that the first service data cannot be correctly recovered, and the retransmission is required to be solved. This may result in a certain transmission delay. Therefore, the terminal device may determine, according to the size of the first service data, a resource that can transmit the number of bits that is greater than or equal to the size of the first service data, and determine the resource as the first uplink authorization resource.
  • the first service data may be configured to support segment transmission or not to support segment transmission.
  • the method further includes: Step 340: The terminal device receives the first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the network device sends first indication information indicating whether the first service data supports segment transmission.
  • step 340 is the same as the specific process of step 240 in the above method 200, and is not described herein again for brevity.
  • the terminal device transmits the first service data by using the first uplink grant resource.
  • the terminal device may use the first uplink grant resource to transmit all the first service data in step 350, because the number of bits that the terminal device can transmit in the first uplink grant resource determined by the terminal device is greater than or equal to the size of the first service data. data.
  • the terminal device may further implement the condition one, the second condition or the condition in the foregoing.
  • the third is used to determine the first uplink authorization resource.
  • the terminal device may further determine the first remaining time of the resource that can transmit the number of bits greater than or equal to the size of the first service data, and set the first remaining time to be greater than Or the resource equal to the delay threshold is determined as the first uplink authorization resource; if the terminal device determines the first uplink authorization resource in combination with the condition 2, the terminal device may further further, the terminal device may transmit the number of bits that are greater than or equal to the first service data.
  • the resource with the highest time domain location in the size of the resource is determined as the first uplink authorization resource; if the number of bits that can be transmitted is greater than or equal to the size of the first service data and the first remaining time is greater than or equal to the delay threshold, the resource is more Then, the condition 3 is further combined, and the resource with the time domain location in the plurality of resources is determined as the first uplink authorization resource. Since the specific methods used in conjunction with the conditions of FIG. 7 are described in detail above, for brevity, details are not described herein again.
  • the terminal device can use the sufficient resources to transmit all the data in the first service data, thereby avoiding the transmission delay that may be caused by the segmentation transmission, and is beneficial to reducing the transmission delay.
  • the terminal device may also transmit the first service data with other devices (for example, other network devices or terminal devices, etc.) while receiving the scheduling resources of the network device. This application does not limit this.
  • the size of the sequence number of each process does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • Embodiments of the present application also provide an apparatus for implementing any of the above methods.
  • an apparatus is provided that includes means (or means) for implementing the various steps performed by a terminal device in any of the above methods.
  • another apparatus is provided, including means (or means) for implementing the various steps performed by the network device in any of the above methods.
  • FIG. 13 is a schematic block diagram of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 may include a receiving unit 410, a determining unit 420, and a transmitting unit 430.
  • the communication device 400 may be a terminal device in the above method 200 or a chip configured in the terminal device.
  • the receiving unit 410 can be configured to receive an uplink grant.
  • the determining unit 420 is configured to determine, according to the location of the uplink grant resource indicated by the uplink grant in the time domain, a first uplink grant resource for transmitting the first service data.
  • the sending unit 430 is configured to transmit the first service data by using the uplink grant resource.
  • the determining unit 420 is configured to determine, according to the location of the uplink authorization resource in the time domain, the first remaining time of the uplink authorization resource, where the first remaining time is the end of the uplink authorization resource in the time domain.
  • the receiving unit 410 is further configured to receive indication information of a delay threshold.
  • the first uplink authorization resource is a resource with a time domain location in a plurality of uplink authorization resources.
  • the determining unit 420 is configured to determine, according to the location of the multiple uplink grant resources in the time domain, the second remaining time of the multiple uplink grant resources, where the second remaining time is the uplink grant.
  • the determining unit 420 is configured to determine, according to the location of the multiple uplink authorization resources, the first remaining time of the multiple uplink authorization resources, where the first remaining time is the uplink authorization resource.
  • the number of the first uplink authorization resource that can be transmitted is greater than or equal to the size of the first service data, and the sending unit 430 is specifically configured to use the first uplink authorization resource to transmit all the data of the first service data.
  • the number of bits that the first uplink authorization resource can transmit is smaller than the size of the first service data, and the first service data supports the segment transmission, and the sending unit 430 is specifically configured to: use the first uplink authorization resource to transmit the first service data. Part of the data.
  • the sending unit 430 is further configured to transmit part or all of the remaining data of the first service data by using the second uplink grant resource;
  • the remaining data of the first service data is data that is not sent by the first uplink authorization resource
  • the second uplink authorization resource is the resource with the smallest remaining time of the plurality of uplink authorization resources except the first uplink authorization resource; or,
  • the second uplink authorization resource is the resource that the uplink authorization first arrives in addition to the first uplink authorization resource, where the second remaining time is the starting position of the uplink authorized resource in the time domain and the first service.
  • the receiving unit 410 is further configured to receive first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the first service data satisfies one or more of the following:
  • the priority bit rate PBR of the first service data is infinite; or,
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first business data is high priority data.
  • the priority field of the first service data is carried in a logical channel configuration information element, and the priority field indicates a value of the priority of the first service data.
  • the high priority field of the first service data is carried in the logical channel configuration information element, and the high priority field indicates that the first service data is high priority data.
  • the priority bit rate PBR field of the first service data is carried in a logical channel configuration information element, and the PBR field indicates that the PBR of the first logical channel is infinite.
  • the uplink authorization resource is a dynamically scheduled resource, or the uplink authorization resource is a semi-statically scheduled resource.
  • the communication device 400 can correspond to a terminal device in the communication method 200 according to an embodiment of the present invention, which can include a unit for performing the method performed by the terminal device of the communication method 200 of FIG.
  • each unit in the communication device 400 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 200 of FIG.
  • the specific process of performing the above-mentioned corresponding steps in each unit refer to the description of the method embodiment in the foregoing with reference to FIG. 6 to FIG. 11 , and for brevity, no further details are provided herein.
  • the communication device 400 may be a terminal device in the above method 300 or a chip configured in the terminal device.
  • the receiving unit 410 can be configured to receive an uplink grant.
  • the determining unit 420 is configured to determine, by using an uplink grant resource indicated by the uplink grant, a first uplink grant resource, where the number of bits that the first uplink grant resource can transmit is greater than or equal to a size of the first service data.
  • the sending unit 430 is configured to transmit the first service data by using the first uplink authorization resource.
  • the receiving unit 410 is further configured to receive first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the first service data meets one or more of the following:
  • the priority bit rate PBR of the first service data is infinite; or,
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first business data is high priority data.
  • the priority field of the first service data is carried in a logical channel configuration information element, and the priority field indicates a value of the priority of the first service data.
  • the high priority field of the first service data is carried in the logical channel configuration information element, and the high priority field indicates that the first service data is high priority data.
  • the uplink authorization resource is a dynamically scheduled resource, or the uplink authorization resource is a semi-statically scheduled resource.
  • the communication device 400 can correspond to a terminal device in the communication method 300 according to an embodiment of the present invention, which can include a unit for performing the method performed by the terminal device of the communication method 300 of FIG. Moreover, each unit in the communication device 400 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 300 in FIG. For the specific process of performing the above-mentioned corresponding steps in each unit, refer to the description of the method embodiment in the foregoing with reference to FIG. 12, and for brevity, details are not described herein again.
  • FIG. 14 is a schematic block diagram of a communication device 500 provided by an embodiment of the present application. As shown in FIG. 14, the communication device 500 can include a transmitting unit 510.
  • the communication device 500 may be a network device in the above method 200 or a chip configured in the network device.
  • the sending unit 510 is configured to send an uplink grant, where the uplink grant is used to indicate an uplink grant resource.
  • the sending unit 510 is further configured to send the indication information of the delay threshold.
  • the sending unit 510 is further configured to send first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the first service data meets one or more of the following:
  • the priority bit rate PBR of the first service data is infinite; or,
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first business data is high priority data.
  • the priority field of the first service data is carried in a logical channel configuration information element, and the priority field indicates a value of the priority of the first service data.
  • the high priority field of the first service data is carried in the logical channel configuration information element, and the high priority field indicates that the first service data is high priority data.
  • the priority bit rate PBR field of the first service data is carried in a logical channel configuration information element, and the PBR field indicates that the PBR of the first logical channel is infinite.
  • the uplink authorization resource is a dynamically scheduled resource, or the uplink authorization resource is a semi-statically scheduled resource.
  • the communication device 500 can correspond to a network device in the communication method 200 in accordance with an embodiment of the present invention, which can include a unit for performing the method performed by the network device of the communication method 200 of FIG.
  • each unit in the communication device 500 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 200 of FIG.
  • the specific process of performing the above-mentioned corresponding steps in each unit refer to the description of the method embodiment in the foregoing with reference to FIG. 6 to FIG. 11 , and for brevity, no further details are provided herein.
  • the communication device 500 can be a network device in the method 300 above, or a chip configured in the network device.
  • the sending unit 510 can be configured to send an uplink grant.
  • the sending unit 510 is further configured to send first indication information, where the first indication information indicates whether the first service data supports the segment transmission.
  • the first service data meets one or more of the following:
  • the priority bit rate PBR of the first service data is infinite; or,
  • the value of the priority of the first service data is less than or equal to a preset threshold
  • the first business data is high priority data.
  • the priority field of the first service data is carried in a logical channel configuration information element, and the priority field indicates a value of the priority of the first service data.
  • the high priority field of the first service data is carried in the logical channel configuration information element, and the high priority field indicates that the first service data is high priority data.
  • the priority bit rate PBR field of the first service data is carried in a logical channel configuration information element, and the PBR field indicates that the PBR of the first logical channel is infinite.
  • the uplink authorization resource is a dynamically scheduled resource, or the uplink authorization resource is a semi-statically scheduled resource.
  • the communication device 500 can correspond to a network device in the communication method 300 in accordance with an embodiment of the present invention, which can include a unit for performing the method performed by the network device of the communication method 300 of FIG. Moreover, each unit in the communication device 500 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of the communication method 200 in FIG. For the specific process of performing the above-mentioned corresponding steps in each unit, refer to the description of the method embodiment in the foregoing with reference to FIG. 12, and for brevity, details are not described herein again.
  • each unit in the device may all be implemented by software in the form of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • each unit may be a separately set processing element, or may be integrated in one chip of the device, or may be stored in a memory in the form of a program, which is called by a processing element of the device and executes the unit.
  • All or part of these units can be integrated or implemented independently.
  • the processing elements described herein can in turn be a processor and can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or by software in the form of a processing component call.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or A plurality of digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs Application Specific Integrated Circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above unit for transmitting is an interface circuit of the device for transmitting signals to other devices.
  • the transmitting unit is an interface circuit for transmitting signals to other chips or devices.
  • FIG. 15 is a schematic structural diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 can be the terminal device in the above embodiment, and can be used to implement the operation of the terminal device in the above embodiment.
  • the terminal device 600 may include an antenna 610, a radio frequency portion 620, and a signal processing portion 630.
  • Antenna 610 is coupled to radio frequency portion 620.
  • the radio frequency portion 620 receives the information sent by the network device through the antenna 610, and sends the information sent by the network device to the signal processing portion 630 for processing.
  • the signal processing part 630 processes the information of the terminal and sends it to the radio frequency part 620.
  • the radio frequency part 620 processes the information of the terminal and sends it to the network device via the antenna 610.
  • the signal processing portion 630 may include a modem subsystem for implementing processing of each communication protocol layer of data; and may further include a central processing subsystem for implementing processing on the terminal operating system and the application layer; Other subsystems, such as a multimedia subsystem, a peripheral subsystem, etc., wherein the multimedia subsystem is used to implement control of the terminal camera, screen display, etc., and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately set chip. Alternatively, the above device for the terminal device may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 631, including, for example, a master CPU and other integrated circuits. Additionally, the modem subsystem can also include a storage component 632 and an interface circuit 633.
  • the storage element 632 is used to store data and programs, but the program for executing the method performed by the terminal device in the above method may not be stored in the storage element 632, but stored in a memory other than the modem subsystem.
  • the modem subsystem is used for loading when in use.
  • Interface circuit 633 is used to communicate with other subsystems.
  • the above apparatus for a terminal device may be located in a modem subsystem, which may be implemented by a chip, the chip including at least one processing element and an interface circuit, wherein the processing element is configured to perform any of the above terminal device executions
  • the interface circuit is used to communicate with other devices.
  • the means for the terminal device to implement the various steps in the above method may be implemented in the form of a processing component scheduler, for example, the device for the terminal device includes a processing component and a storage component, and the processing component invokes a program stored by the storage component to The method performed by the terminal device in the above method embodiment is performed.
  • the storage element can be a storage element on which the processing element is on the same chip, ie an on-chip storage element.
  • the program for performing the method performed by the terminal device in the above method may be on a different storage element than the processing element, ie, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to invoke and execute the method performed by the terminal device in the above method embodiment.
  • the unit that implements each step in the above method may be configured as one or more processing elements, and the processing elements are disposed on a modem subsystem, where the processing elements may be integrated circuits.
  • the processing elements may be integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • FPGA field programmable gate array
  • the units in which the terminal devices implement the various steps in the above methods may be integrated and implemented in the form of a system-on-a-chip (SOC) for implementing the above method.
  • SOC system-on-a-chip
  • At least one processing element and a storage element may be integrated in the chip, and the method executed by the above terminal may be implemented by a processing program in which the processing element calls the storage element; or, at least one integrated circuit may be integrated in the chip for implementing the above terminal device
  • the method of execution; or, in combination with the above implementation manner, the functions of some units are implemented by the processing component calling program, and the functions of some units are realized by the form of an integrated circuit.
  • the above device for the terminal can include at least one processing element and interface circuit, wherein at least one processing element is used to execute the method performed by any of the terminals provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal in a manner of calling the program stored by the storage element; or in a second manner: by combining the logic of the hardware in the processor element with the instruction
  • the method performs some or all of the steps performed by the terminal; of course, some or all of the steps performed by the terminal may also be performed in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processors, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs. Or, one or more microprocessors DSP, or one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 16 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 can be the network device in the above embodiment, and can be used to implement the operation of the network device in the foregoing embodiment.
  • the network device 700 can include an antenna 701, a radio frequency device 702, and a baseband device 703.
  • the antenna 701 is connected to the radio frequency device 702.
  • the radio frequency device 702 receives the information sent by the terminal device through the antenna 701, and transmits the information sent by the terminal device to the baseband device 703 for processing.
  • the baseband device 703 processes the information of the terminal device and sends the information to the radio device 702.
  • the radio device 702 processes the information of the terminal device and sends the information to the terminal device via the antenna 701.
  • Baseband device 703 may include one or more processing elements 7031, including, for example, a host CPU and other integrated circuits.
  • the baseband device 703 may further include a storage element 7032 for storing programs and data, and an interface 7033 for interacting with the radio frequency device 702, such as a common public radio interface. , CPRI).
  • the above device for the network device may be located in the baseband device 703.
  • the above device for the network device may be a chip on the baseband device 703, the chip including at least one processing element and interface circuit, wherein the processing element is used to execute the above network
  • the unit of the network device implementing the various steps in the above method may be implemented in the form of a processing component scheduler, for example, the apparatus for the network device includes a processing component and a storage component, and the processing component invokes a program stored by the storage component to The method performed by the network device in the above method embodiment is performed.
  • the storage element may be a storage element on which the processing element is on the same chip, that is, an on-chip storage element, or a storage element on a different chip than the processing element, that is, an off-chip storage element.
  • the unit of the network device implementing the various steps in the above method may be configured as one or more processing elements, and the processing elements are disposed on the baseband device, where the processing element may be an integrated circuit, for example: Or a plurality of ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated to form a chip.
  • the units of the network device implementing the various steps in the above methods may be integrated together in the form of a system-on-chip SOC, for example, the baseband device includes the SOC chip for implementing the above method.
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing component and a storage component may be integrated in the chip, and the method executed by the above network device may be implemented in the form of a stored procedure in which the processing component invokes the storage component; or, at least one integrated circuit may be integrated in the chip to implement the above network.
  • the method performed by the device; or, in combination with the above implementation manner, the functions of some units are implemented by the processing component calling program, and the functions of some units are implemented by the form of an integrated circuit.
  • the above device for the network device can include at least one processing element and interface circuit, wherein at least one processing element is used to perform the method performed by any of the network devices provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the network device in a first manner: by calling a program stored by the storage element; or in a second manner: by combining the instructions through hardware integrated logic in the processor element
  • the method performs some or all of the steps performed by the network device; of course, some or all of the steps performed by the above network device may also be performed in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processors, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more microprocessors.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the application further provides a computer program product, comprising: computer program code, when the computer program code is run on a computer, causing the computer to execute the embodiment shown in FIG. 2 The method in .
  • the application further provides a computer readable medium storing program code, when the program code is run on a computer, causing the computer to execute the embodiment shown in FIG. 2 The method in .
  • the application further provides a system including the foregoing network device and terminal device.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、通信装置和系统,能够减小紧急业务的传输时延。该方法包括:接收上行授权;根据该上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源;利用该第一上行授权资源传输第一业务数据。

Description

通信方法、通信装置和系统
本申请要求于2018年3月30日提交中国专利局、申请号为201810291743.7、申请名称为“通信方法、通信装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、通信装置和系统。
背景技术
在某些通信系统中,例如,长期演进(Long Term Evolution,LTE)以及第五代(5th generation,5G)通信系统的新空口接入技术(new radio access technology,NR),由于多种业务的需求,网络设备可以为终端设备配置一个或多个逻辑信道(logical channel,LCH)。每个逻辑信道可对应一种业务的服务质量(quality of service,QoS)要求。例如,终端设备可能同时需要上网业务以及语音业务(例如,Voice over LTE,VoLTE),因此可能被配置两个不同的逻辑信道,以接收或发送不同业务的数据。
目前,已知一种方法,终端设备可以根据接收到上行授权(uplink grant,UL grant)的先后顺序来进行资源映射。具体地,网络设备可通过下行控制信息向终端设备指示被授权的物理上行资源(以下简称,上行授权资源),每个上行授权可对应一个上行授权资源。终端设备可根据接收到上行授权的先后顺序确定资源映射的先后顺序,并以此将逻辑信道中的数据映射到相应的上行授权资源中发送。
然而,有一些时延敏感的业务,例如,超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)、工业互联网、确定性网络(deterministic network,DetNet)等,对时延的要求较高。上述方法并未充分地考虑到这些业务的时延敏感特性。若采用上述方法来处理这些业务,可能会有较大的传输时延。
发明内容
有鉴于此,本申请提供一种通信方法、通信装置和系统,以期减小传输时延。
第一方面,提供了一种通信方法,包括:
终端设备接收上行授权;
根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源;
利用所述第一上行授权资源传输所述第一业务数据。
相应地,网络设备发送上行授权,所述上行授权指示上行授权资源在时域上的位置。
应理解,上行授权并不仅限于指示上行授权资源在时域上的位置,还可用于指示上行授权资源在频域上的位置,以及资源大小、编码调制方式(coding and modulation scheme, MCS)等信息。本申请对此不做限定。
基于上述技术方案,终端设备能够根据上行授权资源在时域上的位置,选择合适的第一上行授权资源来发送第一业务数据,相比于现有技术而言,不依赖于上行调度的到达时间来确定用来传输第一业务数据的资源,而是考虑到了资源的时域位置,也就是考虑到了第一业务数据的发送时间,从而能够为对时延敏感的第一业务数据选择合适的资源来传输,有利于减小传输时延。并且,该技术方案并不仅仅适用于动态调度的上行授权资源,还可适用于预配置的上行授权资源。
结合第一方面,在第一方面的某些实现方式中,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
根据所述上行授权指示的上行授权资源在时域上的结束位置确定所述上行授权资源的第一剩余时间,所述第一剩余时间为上行授权资源在时域上的结束位置与所述第一业务数据的超时时间的时间间隔;
从所述上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源的第一剩余时间大于或等于预先配置的时延门限。
因此,终端设备能够根据第一业务数据的时延需求选择第一上行授权资源,由此确定的第一上行授权资源能够保证第一业务数据的传输时延满足时延需求。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
接收所述时延门限的指示信息。
相应地,网络设备发送所述时延门限的指示信息。
结合第一方面,在第一方面的某些实现方式中,所述第一上行授权资源为多个上行授权资源中时域位置处于最前面的资源。
因此,终端设备能够将时域位置处于最前面的上行授权资源用来传输第一业务数据,也就是将第一业务数据最先发送,从而有利于第一业务数据的传输时延达到最小。
结合第一方面,在第一方面的某些实现方式中,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
根据多个上行授权指示的所述多个上行授权资源在时域上的起始位置,确定所述多个上行授权资源的第二剩余时间,所述第二剩余时间为上行授权资源在时域上的起始位置与对所述第一业务数据所在的逻辑信道进行逻辑信道优先级化LCP的起始时间的时间间隔;
从所述多个上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源为所述多个上行授权资源中第二剩余时间最小的资源。
其中,第二剩余时间最小的资源也就是时域上处于最前面的资源,即,将第一业务数据最先发送,从而有利于第一业务数据的传输时延达到最小。
结合第一方面,在第一方面的某些实现方式中,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
根据多个上行授权指示的多个上行授权资源在时域上的结束位置确定所述多个上行授权资源的第一剩余时间,所述第一剩余时间为上行授权资源在时域上的结束位置与正确接收到所述第一业务数据的超时时间的时间间隔;
从所述多个上行授权资源中确定多个候选的上行授权资源,所述候选的上行授权资源的第一剩余时间大于或等于预先配置的时延门限;
从所述多个候选的上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源是所述多个候选的上行授权资源中时域位置处于最前面的资源。
因此,利用该第一上行授权资源传输第一业务数据,可以同时达到满足第一业务数据的时延需求和传输时延最小的效果。
结合第一方面,在第一方面的某些实现方式中,所述第一上行授权资源能够传输的比特数大于或等于所述第一业务数据的大小,以及
所述利用所述第一上行授权资源传输所述第一业务数据,包括:
利用所述第一上行授权资源传输所述第一业务数据的全部数据。
由于分段传输过程中,可能会由于某一个或多个资源承载的数据传输失败而导致整个数据无法恢复,需要重传来解决,由此带来一定的传输时延。通过选择能够传输的比特数大于或等于第一业务数据的大小的上行授权资源来传输第一业务数据,可进一步减小传输时延。
结合第一方面,在第一方面的某些实现方式中,所述第一上行授权资源能够传输的比特数小于所述第一业务数据的大小,且所述第一业务数据支持分段传输,以及
所述利用所述第一上行授权资源传输所述第一业务数据,包括:
利用所述第一上行授权资源传输所述第一业务数据的部分数据。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
利用第二上行授权资源传输第一业务数据的剩余数据中的部分或全部;
所述第一业务数据的剩余数据是未通过所述第一上行授权资源发送的数据,所述第二上行授权资源为多个上行授权资源中除所述第一上行授权资源之外第二剩余时间最小的资源;或者,所述第二上行授权资源为所述多个上行授权资源中除所述第一上行授权资源之外上行授权最先到达的资源,其中,第二剩余时间为上行授权资源在时域上的起始位置与对所述第一业务数据进行LCP的起始时间的时间间隔。
即,在第一业务数据支持分段传输的情况下,也可利用一个或多个上行授权资源来传输第一业务数据。
第二方面,提供了一种通信方法,包括:
终端设备接收上行授权;
从所述上行授权指示的上行授权资源中确定第一上行授权资源,所述第一上行授权资源能够传输的比特数大于或等于所述第一业务数据的大小;
利用所述第一上行授权资源传输所述第一业务数据。
对应地,网络设备发送上行授权,所述上行授权指示上行授权资源的大小。
终端设备可根据上行授权资源的大小确定能够传输的比特数,进而将能够传输的比特数大于或等于第一业务数据的大小的资源确定为第一上行授权资源,利用该第一上行授权资源来传输第一业务数据。由此,终端设备可利用足够的资源将第一业务数据中的全部数据发送出去,从而可以避免因分段传输可能带来的传输时延,有利于减小传输时延。
结合第一方面或第二方面,在某些实现方式中,所述方法还包括:
终端设备接收第一指示信息,所述第一指示信息指示所述第一业务数据是否支持分段传输。
与此对应地,网络设备发送第一指示信息,所述第一指示信息指示所述第一业务数据 是否支持分段传输。
结合第一方面或第二方面,在某些实现方式中,所述第一指示信息携带在所述第一业务数据的逻辑信道配置信息元素中,所述第一指示信息由分段segmentation字段承载。
结合第一方面或第二方面,在某些实现方式中,所述第一业务数据满足以下一项或多项:
所述第一业务数据的优先比特率PBR为无穷大;或,
所述第一业务数据的优先级的值小于或等于预设门限;或,
所述第一业务数据为高优先级数据。
结合第一方面或第二方面,在某些实现方式中,所述第一业务数据的优先级字段携带在逻辑信道配置信息元素中,所述优先级字段指示所述第一业务数据的优先级的值。
结合第一方面或第二方面,在某些实现方式中,所述第一业务数据的高优先级字段携带在逻辑信道配置信息元素中,所述高优先级字段指示所述第一业务数据为高优先级数据。
结合第一方面或第二方面,在某些实现方式中,所述第一业务数据的优先比特率PBR字段携带在逻辑信道配置信息元素中,所述PBR字段指示所述第一逻辑信道的PBR为无穷大。
通过以上任意一种方式可以指示逻辑信道中承载的业务数据是否为紧急业务的数据。
结合第一方面或第二方面,在某些实现方式中,所述上行授权资源为动态调度的资源,或者,所述上行授权资源为预配置的资源。
第三方面,本申请提供一种通信装置,具有实现上述方法方面中终端设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的单元或部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第四方面,本申请提供一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第五方面,本申请提供一种通信装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面或第二方面提供的方法。
第六方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第一方面或第二方面提供的方法。
第七方面,本申请提供一种程序产品,例如计算机可读存储介质,包括第六方面的程序。
附图说明
图1是适用于本申请实施例的通信系统的示意图;
图2是LTE中协议栈的结构示意图;
图3是将多个逻辑信道复用到同一个传输信道的示意图;
图4是将多个逻辑信道复用到同一个传输信道的示意图;
图5示出了接收到三个上行授权的时间和该三个上行授权所指示的三个上行授权资源在时域上的位置;
图6是本申请实施例提供的通信方法的示意性流程图;
图7是本申请实施例提供的通信方法的另一示意性流程图;
图8是终端设备基于上行授权资源的第一剩余时间确定第一上行授权资源的示意图;
图9是终端设备基于上行授权资源的第一剩余时间确定第一上行授权资源的另一示意图;
图10是本申请实施例的通信方法的又一示意性流程图;
图11是终端设备基于上行授权资源的第二剩余时间确定第一上行授权资源的示意图;
图12是本申请另一实施例提供的通信方法的示意性流程图;
图13是本申请实施例提供的通信装置的示意性框图;
图14是本申请另一实施例提供的通信装置的示意性框图;
图15是本申请实施例提供的终端设备的结构示意图;
图16是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如但不限于,窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新一代无线接入技术(new radio access technology,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100可包括至少一个网络设备(例如,图中示出的网络设备102)和至少一个终端设备(例如,图中示出的终端设备104),网络设备102可与终端设备104通信。可选地,该通信系统100还可包括更多的网络设备和/或更多的终端设备,本申请对此不做限定。
其中,网络设备可以是任意一种具有无线收发功能的设备,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板) 天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在通信系统100中,网络设备102可以与多个终端设备(例如包括图中所示的终端设备104)通信。终端设备104也可以与多个网络设备(例如包括图中所示的网络设备102)通信,或者,终端设备104也可以与一个或多个其他终端设备通信。图1中所示的网络设备102与终端设备104通信的场景仅为本申请所提供的通信方法所适用的一种可能的场景,本申请所提供的通信方法还可适用于更多的场景,例如,多点协作(Coordination Multiple Point,CoMP)传输场景、设备到设备(device to device,D2D)通信场景、V2X(Vehicle to Everything)通信场景等。图1中仅为便于理解而示例,并未予以画出。
为便于理解本申请实施例,下面结合图2简单说明LTE中的协议栈结构。图2是LTE中用户面协议栈的结构示意图。如图所示,在当前的LTE的用户面协议栈结构中,可以包括4个协议层,自上而下分别可以为分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层、媒体接入控制(Media Access Control,MAC)层和物理(Physical,PHY)层。发送端设备在任意一个协议层(例如,记作协议层A,可以理解,协议层A可以为PDCP层、RLC层、MAC层和PHY层中任意一个协议层)生成的数据都需要经过其下层的协议层的处理,最终通过物理信道发送给接收端设备。相对应地,接收端设备在物理信道上接收到的数据也需要通过PHY层及其上层的协议层的处理,一直到协议层A,才可以获取该数据。
应理解,图中仅为示例,不应对本申请构成任何限定。例如,在LTE的控制面协议栈中,在PDCP以上还可包括无线资源控制(radio resource control,RRC)层、非接入层 (Non-Access Stratum)。
还应理解,上文仅为便于理解,以LTE中的协议栈为例进行了说明,但这不应对本申请构成任何限定,本申请并不排除在未来的协议中将LTE中的协议栈中的一个或多个层合并、或者新增一个或多个协议层的可能。例如,在NR协议中的用户面协议栈中,可能在PDCP层上增加新的协议层,如业务数据自适应协议(Service Data Adaptation Protocol,SDAP)层。
下面结合图2中所示的协议栈,以上行传输为例,简单说明终端设备对在各协议层对数据的处理。
首先,终端设备可在PDCP层对来自上层的网际协议(Internet Protocol,IP)数据包或者NR系统中的SDAP层的协议数据单元(protocol data unit,PDU)(简称,SDAP PDU)进行包头压缩,以减少无线接口上传输的比特数,并可进一步对数据包进行加密,生成PDCP层的PDU(简称,PDCP PDU)后发送至RLC层。
此后,终端设备可在RLC层将来自PDCP层的数据包进行分割或级联,生成RLC PDU后发送至MAC层。RLC层可为PDCP层提供服务。在NR系统中,也可以不对上层的数据包进行级联。
此后,终端设备可在MAC层确定空中接口发送的格式,如数据块的大小、与数据块的大小相匹配的物理资源以及物理资源相匹配的MCS等。终端设备可根据MCS生成与之大小匹配的MAC PDU(即,传输块(transport block,TB))后发送至物理层。MAC层可以逻辑信道的形式为RLC层提供服务。此外,MAC层也可以生成MAC层控制信息,例如MAC控制元素(Control Element,CE),用于上报数据缓存区信息,功率余量等,用于基站调度。因此,MAC层生成的MAC PDU还可包括MAC层控制信息,本申请对此不做限定。
此后,终端设备可在物理层对来自MAC层的传输块(transport block,TB)进行信道编码、速率匹配、交织、加扰和调制等处理,然后通过天线将调制生成的信号发射出去。物理层可以传输信道(transport channel,TCH)的形式向MAC层提供服务。
应理解,上述列举结合LTE中的协议栈结构对终端设备在各协议层对上行数据执行的操作作了简单的说明,网络设备侧对下行数据的处理与之类似。此外,终端设备对下行数据的处理,和网络设备对上行数据的处理与上述过程相反,不再赘述。以上各个过程具体的实现过程可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
为了满足终端设备多种业务的需求,网络设备可以为每个终端设备配置一个或多个逻辑信道,每个逻辑信道可对应一种业务的QoS要求。例如,终端设备可能同时需要上网业务以及语音业务,因此可能被配置两个或更多个不同的逻辑信道,以接收或发送不同业务的数据。
以上行数据发送过程为例,不同业务的数据可分别在PDCP层和RLC层建立单独的实体(entity)并进行处理,分别对应一个逻辑信道。如前所述,MAC层也可以生成MAC层控制信息,为之分配对应的逻辑信道,MAC实体可将一个或多个逻辑信道复用到一个传输信道,将来自RLC层的协议数据单元(protocol data unit,PDU)(即,RLC PDU)和/或MAC层控制信息映射到同一个MAC层的PDU(即,MAC PDU)中。因此通过上述映射,可将多个逻辑信道复用到同一个传输信道上。
图3示出了将多个逻辑信道复用到同一个传输信道的示意图。具体地,图3示出了上行传输中将多个逻辑信道复用到一个传输信道的示例。如图中所示,MAC实体可将包括公共控制信道(common control channel,CCCH)、专用控制信道(dedicated control channel,DCCH)以及专用业务信道(dedicated traffic channel,DTCH)的多个逻辑信道复用到上行共享信道(uplink share channel,UL-SCH)。
图4示出了将多个逻辑信道复用到同一传输信道的另一示意图。具体地,图4示出了下行传输中将多个逻辑信道复用到一个传输信道的示例。如图中所示,MAC实体可将包括CCCH、DCCH、DTCH以及广播控制信道(broadcast control channel,BCCH)的多个逻辑信道复用到下行共享信道(downlink share channel,DL-SCH),也可将包括多播时间信道(multicast traffic channel,MTCH)和多播控制信道(multicast control channel,MCCH)的多个逻辑信道复用到多播信道(multicast channel,MCH)。
应理解,图3和图4中仅为便于理解多个逻辑信道复用同一传输信道而给出的示例,不应对本申请构成任何限定。
为便于理解本申请实施例,下面先对本申请中涉及的几个术语做简单说明。
1、逻辑信道优先级化(logical channel prioritization,LCP):MAC实体将一个或多个逻辑信道的数据放在同一个MAC PDU中,需要进行LCP处理,以将一个或多个逻辑信道的数据复用到同一个MAC PDU中。
当有新传的数据时,MAC实体会为每个上行授权资源选择合适的逻辑信道。由于在NR中,物理资源可以支持多个配置参数(numerology)、传输持续时间等参数,MAC层可根据每个上行授权资源的numerology、传输持续时间等参数确定所匹配的逻辑信道。
其中,numerology是在NR中新引入的一个概念,具体可理解为通信系统所用的一套参数,例如可包括子载波间隔(subcarrier spacing,SCS)、符号长度、循环前缀(cyclic prefix,CP)长度等,一个小区可以支持一种或者多种numerology,可以适用于相同或者不同的时域和/或频域资源。应理解,这里所列举的numerology所包含的具体内容仅为示例性说明,不应对本申请构成任何限定。例如,numerology还可包括NR中所能支持的其他粒度的参数。
一个上行授权资源可能匹配一个或多个逻辑信道,映射到该上行授权资源的MAC PDU只有一个,但复用的逻辑信道可能有多个,这就要求为每个逻辑信道分配一个优先级(priority)。MAC实体可按照各逻辑信道的优先级由高到低的顺序,将各逻辑信道的数据映射到MAC PDU中。
在一种可能的设计中,每个逻辑信道的优先级可由无线资源控制(radio resource control,RRC)信令中的逻辑信道配置(LogicalChannelConfig)信息元素(information element,IE)中的优先级(priority)字段指示。该优先级字段中的值越小,则所对应的逻辑信道的优先级越高。
然而,这种分配方式可能使得高优先级的逻辑信道始终占据着分配的上行授权资源,从而导致低优先级的逻辑信道没有足够的资源承载,即,低优先级的逻辑信道中的数据因分配不到资源而不能及时传输,或者说,低优先级的逻辑信道被“饿死”。
为了减少上述低优先级的逻辑信道被“饿死”的情况发生,LTE中提出了优先比特率的概念。即,在给逻辑信道分配资源之前,配置好各个逻辑信道的数据速率,从而为每个逻 辑信道提供了最小的数据速率保证,减少了低优先级的逻辑信道被“饿死”的情况。
在一种可能的设计中,每个逻辑信道的优先比特率可由RRC信令中的逻辑信道配置信息元素中的优先比特率(PrioritisedBitRate)字段指示。
MAC实体可采用类似于令牌桶(token bucket)的算法实现MAC复用。该算法的基本思想是基于令牌桶内是否有令牌以及令牌的多少来确定是否发送某逻辑信道的数据,并控制组装在MAC PDU中的该逻辑信道的数据量。
桶深(Bucket Size Duration,BSD)决定了令牌桶的“深度”。它与PBR共同决定了令牌桶的最大容量PBR×BSD。令牌桶的最大容量限制了每个逻辑信道可以挂起(pending)的数据总量,即,缓存在buffer中的数据总量。
终端设备可以为每个逻辑信道j维护一个变量Bj,该变量指示了令牌桶里当前可用的令牌数,且每个token对应1字节(byte)的数据。这里,token可理解为将逻辑信道的数据映射到传输信道中的权限。Bj在逻辑信道建立时初始化为0,且每个时间单位T,增加PBR×T。举例来说,如果某逻辑信道的PrioritisedBitRate字段指示的PBR为kBps8,则PBR为8千字节每秒(kbytes per second,kBps),即每个时间单位T可以往令牌桶内注入8kBps×1ms=8Byte的token)。Bj的值不能超过桶的最大容量PBR×BSD(以BSD=500ms为例,最大容量为8kBps×500ms=4kByte)。其中,时间单位T可以为任意值,本申请对此不做限定。
终端设备可按照以下步骤进行LCP:
步骤1:对于所有Bj>0的逻辑信道,按照优先级递减顺序组包,每个逻辑信道分配的无线资源满足PBR的要求。当某个逻辑信道的PBR配置成无穷大(“infinity”)时,只有当这个逻辑信道的资源得到满足后,才会考虑比它优先级低的逻辑信道。
步骤2:Bj减去逻辑信道j在步骤1里复用到MAC PDU的所有MAC SDUs的大小。一种可能的实现方式是:对于逻辑信道j,每传输一个RLC SDU,先比较Bj是否大于0。如果Bj大于0,则往MAC PDU中添加该SDU。然后将Bj减去该SDU的大小Tsdu,并确定是否满足PBR的要求。如此反复,直到Bj小于0或满足逻辑信道j的PBR要求,则接着处理下一逻辑信道)
步骤3:如果前两步执行完还剩有上行资源的话,则不管Bj的大小,把剩余的资源按照逻辑信道优先级由高到低的顺序分配给各个逻辑信道。只有当所有高优先级的逻辑信道的数据都发送完毕且上行授权资源还未耗尽的情况下,低优先级的逻辑信道才能得到服务。即此时UE最大化高优先级的逻辑信道的数据传输。
与此同时,终端设备还应遵循如下原则:(1)如果整个RLC SDU能够填入剩余的资源中,则不应对该SDU进行分段;(2)如果终端设备对逻辑信道中的RLC SDU进行分段,则应根据剩余资源的大小,尽量填入最大分段;(3)终端设备应最大化数据的传输;(4)如果某个无线承载被挂起,则不应传输该无线承载对应逻辑信道的数据。
如果所有的逻辑信道的PBR都设置成0kBps,则会按照严格的优先级顺序来组包。此时终端设备会最大限度地满足更高优先级的数据的传输。
2、确定性网络(DetNet):相对于普通网络定义,对数据流要求极低的丢包率,对丢包、抖动、高可靠性有明确的约束,具有受控的时延。需要确定性网络的业务例如可以包括工业控制,和音频/视频业务。其中,工业控制业务的数据量小但数据流多,对时延 要求敏感;音频/视频业务对时延和抖动要求都很高。例如,要求时延在1ms至10ms,传输可靠性达到99.9999%,甚至99.999999%。在美国电机及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.1协议中对确定性网络做了明确的定义。
3、URLLC:可理解为需要确定性网络的一类业务。URLLC业务一般是紧急业务,对传输可靠性和传输时延要求很高。一般要求时延在1ms至50ms,传输可靠性在99.9%至99.9999%。
在本申请实施例中,为方便说明,将上述利用确定性网络传输的业务称为紧急业务,或者,确定性业务。应理解,本申请对于确定性业务的具体内容并不限定。
在当前技术中,终端设备在需要发送上行数据时,可以通过调度请求(scheduling request,SR)和缓存区状态报告(buffer status report,BSR)来通知网络设备,以请求物理上行资源。网络设备可以为终端设备调度一个或多个物理上行资源,该一个或多个物理上行资源可以通过上行授权(UL grant)来指示调制编码方式(modulation coding scheme,MCS)和资源分配(resource allocation)。或者,终端设备可以接收网络设备的RRC信令,该RRC信令中可包含半静态上行授权资源的周期等信息,当终端设备接收到包含上行授权的物理层信令后,可激活该半静态上行授权资源,从而终端设备不需要每次发送上行数据时都向网络设备请求分配上行授权资源。
在上述两种调度上行授权资源的方式中,上行授权都可以是物理层信令,例如,下行控制信息。MAC实体可根据接收到上行授权的先后顺序确定资源映射的先后顺序。
为便于说明,图5示出了接收到三个上行授权的时间和该三个上行授权所指示的三个上行授权资源在时域上的位置。如图所示,为便于区分和说明,可将该三个上行授权资源分别记作资源#1、资源#2和资源#3,该三个上行授权资源在时域上的起始位置可分别记作
Figure PCTCN2019080399-appb-000001
Figure PCTCN2019080399-appb-000002
与该三个上行授权资源对应的上行授权可分别记作上行授权#1、上行授权#2和上行授权#3,该三个上行授权的到达时间(或者说,接收到该三个上行授权的时间)分布可记作
Figure PCTCN2019080399-appb-000003
Figure PCTCN2019080399-appb-000004
若上行授权的到达顺序为:上行授权#1先于上行授权#2,上行授权#2先于上行授权3,即,
Figure PCTCN2019080399-appb-000005
而该三个上行授权资源在时域上的起始时刻的先后顺序为:资源#3处于资源#1之前,资源#1处于资源#2之前,即,
Figure PCTCN2019080399-appb-000006
上行授权资源在时域上的起始位置与上行授权的到达时间的时间间隔可以由参数K2表示。K2可表示上行授权资源在时域上的起始位置相比于该上行授权的接收时间的时隙偏移量。为便于区分,可将与该三个上行授权对应的间隔分别记作K2#1、K2#2和K2#3,则图中示出的与该三个上行授权的对应的时间间隔K2满足:K2#3<K2#1,且K2#3<K2#2。通常情况下,终端设备可按照上行授权到达的先后顺序进行MAC层的组包和资源映射,或者说,MAC实体按照在接到一个上行授权后就对该上行授权所指示的上行授权资源进行组包。此时,紧急业务的数据就很可能被映射到与资源#1对应的MAC PDU中。但事实上,资源#1在时域上的位置是处于在资源#3之后的,也就不能够将紧急业务的数据及时发送出去,带来了不必要的时延,甚至有可能不能够满足该业务的时延需求。
应理解,图中示出的上行授权可以都是用于动态调度的下行控制信息;也可以都是用于激活预配置的资源的下行控制信息;也可以部分是用于动态调度的下行控制信息,部分是用于激活预配置的资源的下行控制信息。本申请对此不做限定。有鉴于此,本申请提供 一种通信方法,能够减小传输时延。
下面结合附图详细说明本申请实施例。
需要说明的是,在本申请实施例中,“上行授权”可理解为用于调度物理上行资源的信令,例如,用于上行授权的下行控制信息,或者,用于半静态配置的无线资源控制(radio resource control,RRC)信令,或者,在半静态配置方式中用于激活上行授权资源的下行控制信息等。“上行授权资源”可理解为通过上行授权指示的资源。在LTE或NR协议中,“上行授权”和“上行授权资源”都可对应为UL grant,本领域的技术人员可理解其含义。
还需要说明的是,本申请实施例中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还需要说明的是,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,在下文示出的实施例中,第一、第二等仅为便于区分不同的对象,而不应对本申请构成任何限定。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,本申请提供的通信方法可适用于无线通信系统,例如,图1中所示的无线通信系统100。处于无线通信系统中的两个通信装置间具有无线通信连接,该两个通信装置中的一个通信装置可对应于图1中所示的终端设备104,例如,可以为图1中的终端设备104,也可以为配置于终端设备104中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的网络设备102,例如,可以为图1中的网络设备102,也可以为配置于网络设备102中的芯片。
以下,不失一般性,以终端设备与网络设备之间的交互过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备可以基于相同的方法与具有无线通信连接的一个或多个网络设备通信。本申请对此不做限定。
在下文示出的各实施例中,假设终端设备所接收到的上行授权所指示的上行授权资源是与承载第一业务数据的逻辑信道相匹配的资源。终端设备可基于现有技术的方法,将与承载第一业务数据的逻辑信道相匹配的资源确定出来,例如,根据承载第一业务数据的逻辑信道的一些信息,如传输持续时间、numerology中的子载波间隔等参数匹配相应的上行授权资源,然后进一步基于本申请所提供的方法确定第一上行授权资源。由于终端设备确 定与逻辑信道匹配的资源的具体方法可以和现有技术相同,为了简洁,这里不再赘述。
图6是从设备交互的角度示出的本申请实施例提供的通信方法200的示意性流程图。如图所示,图6中所示的方法200可以包括步骤210至步骤260。下面结合图6对该通信方法进行详细描述。
在步骤210中,终端设备接收上行授权。
具体地,上行授权可理解为网络设备发送给终端设备的信令,该信令可用于指示网络设备为终端设备调度的资源。例如,该上行授权可以指示上行授权资源的资源位置,如,上行授权资源的时域位置和频域位置;该上行授权还可指示上行授权资源的大小;该上行授权还可指示与上行授权资源匹配的调制编码方式(modulation and coding scheme,MCS)。也就是说,在利用该上行授权资源发送数据时,需要采用与该上行授权资源匹配的MCS来对数据进行编码和调制处理。
在一种可能的设计中,该上行授权可以携带在下行控制信息中。
如前所述,该下行控制信息可以是网络设备基于终端设备的调度请求而发送的。该下行控制信息中的资源分配(resource allocation)可指示上行授权资源的资源位置,该下行控制信息的MCS字段可指示与上行授权资源匹配的MCS。
其中,下行控制信息可以是LTE或NR协议中的DCI(downlink control information,DCI),或者,也可以为物理下行控制信道中传输的其他可用于承载下行控制信息的信令。
应理解,这里所说的物理下行控制信道可以是LTE或NR协议中定义的PDCCH(physical downlink control channel,物理下行控制信道)、增强物理下行控制信道(enhanced PDCCH,EPDCCH),以及随着网络演变而定义的具有上述功能的其他下行信道。
在这种设计中,该上行授权资源可以是动态调度的。
在另一种可能的设计中,该上行授权可以携带在RRC信令中。该RRC信令可指示预配置给终端设备使用的上行授权资源。该RRC信令中的预配置的授权配置(ConfiguredGrantConfig)信息元素(information element,IE)中可携带上行授权资源的起始位置、资源大小和周期,以便终端设备确定上行授权资源的时域位置和频域位置。该RRC信令还可指示与上行授权资源匹配的MCS。这种配置方式可称为预配置的授权类型1(configured grant type 1)。在这种配置方式中,上行授权可以为RRC信令。
在另一种可能的设计中,该上行授权可以是下行控制信息。网络设备可先通过RRC信令指示预配置给终端使用的上行授权资源的周期等信息,当终端设备接收到下行控制信息时,可根据该下行控制信息中携带的上行授权资源的起始位置、资源大小以及与上行授权匹配的MCS等信息,此后终端设备激活并开始使用所述预配置的上行授权资源。这种配置方式可称为预配置的授权类型2(configured grant type 2)。在这种配置方式中,上行授权可以为下行控制信息。
在这种设计中,该上行授权资源可以是预配置的,例如可以是半静态调度(semi-persistent scheduling,SPS)的资源或免授权(grant free)资源。
应理解,上文中列举的用于携带上行授权的信令以及通过信令指示上行授权资源的方式仅为示例性说明,而不应对本申请构成任何限定。本申请并不排除采用其他的信令来携带上行授权的可能,也不排除采用其他的方式或通过其他字段来指示上行授权资源的可能。
在本申请实施例中,该终端设备可以接收到一个或多个上行授权,每个上行授权可用于指示一个上行授权资源。也就是说,网络设备可以为终端设备调度一个或多个上行授权资源。若该终端设备接收到多个上行授权,则该多个上行授权所对应的多个上行授权资源时不重叠的,也就是说,该多个上行授权资源在时域上的位置是互不相同的。
在步骤220中,终端设备根据上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源。
具体地,第一业务数据可以为前文所述的确定性网络所传输的数据,例如,URLLC业务的数据。在本申请实施例中,为便于区分和说明,将终端设备确定的用于传输第一业务数据的资源记作第一上行传输资源。
可选地,该第一业务数据满足以下一项或多项:
A、第一业务数据的优先比特率为无穷大;
B、第一业务数据的优先级的值小于或等于预设门限;
C、第一业务数据为高优先级数据。
也就是说,当某一逻辑信道中承载的数据满足A至C中的任意一项时,就可认为该逻辑信道中承载的数据为第一业务数据。
在本申请实施例中,为了区别于普通的业务数据,例如对时延不敏感的业务数据,可通过在承载该第一业务数据的逻辑信道的逻辑信道配置信息元素中的指示字段来区分。
在一种可能的设计中,该第一业务数据的优先级字段携带在上述逻辑信道配置信息元素中,该优先级字段可指示该第一业务数据的优先级的值。
例如,优先级的值的大小可用于判断优先级的高低。如,值越大,优先级越低;值越小,优先级越高。终端设备和网络设备可预先协商或预先配置优先级的门限。当优先级字段中指示的优先级的值小于或等于该门限时,则认为该逻辑信道中承载的数据为第一业务数据。
其中,该门限可以为预先定义的,例如,协议定义。本申请对于门限的取值并不做限定。
在另一种可能的设计中,该第一业务数据的高优先级字段携带在上述逻辑信道配置信息元素(LCH IE)中,该优先级字段可指示该第一业务数据为高优先级数据。
其中,高优先级字段可理解为用于指示该逻辑信道承载的数据优先级是否为高的一个开关。例如,在高优先级字段置“0”,则认为该逻辑信道中承载的数据为低优先级数据;在高优先级字段置“1”,则认为该逻辑信道中承载的数据为高优先级数据。或者,在高优先级字段置“FALSE”,则认为该逻辑信道中承载的数据为低优先级数据;在低优先级字段置“TRUE”,则认为该逻辑信道中承载的数据为高优先级数据。高优先级字段可与上文所述的优先级字段为不同的字段。
应理解,以上列举的优先级字段的值的大小与优先级的高低的对应关系,以及高优先级字段的值与优先级的高低的对应关系仅为示例性说明,不应对本申请构成任何限定。例如,也可约定优先级的值越大,优先级越高;或者,也可约定高优先级字段置“0”或者“FALSE”对应高优先级数据。
在又一种可能的设计中,该第一业务数据的优先比特率字段为无穷大。
例如,在该逻辑信道配置信息元素的优先比特率字段中指示,PBR=infinity。
以上列举了多种不同的方式来指示第一业务数据,当MAC实体读取到上述列举的字段中的任意一项时便可确定该逻辑信道中承载的数据为第一业务数据,需要进行优先处理,为其确定第一上行授权资源。
这里所说的优先处理可以是:将承载该第一业务数据的逻辑信道优先进行LCP处理,为其选择合适的物理上行资源(例如,第一上行授权资源),并基于该资源进行组包,例如,根据第一上行授权资源的MCS对该第一业务数据进行组包。并且,在对该第一业务数据进行组包时,可暂时忽略普通业务数据,在优先将该第一业务数据的全部数据发送出去之后,再对普通业务数据做LCP处理。其中,LCP的具体过程可以参考上文中所述,为了简洁,这里不再赘述。
在本申请实施例中,为了降低传输第一业务数据的传输时延,终端设备可以根据多个上行授权指示的多个上行授权资源在时域上的起始位置,采用以下任意一种方式确定用于传输第一业务数据的第一上行授权资源:
方式一、终端设备根据上行授权指示的上行授权资源在时域上的起始位置,确定上行授权资源的第一剩余时间,将上行授权资源中第一剩余时间大于或等于预先配置的时延门限的资源确定为第一上行授权资源。其中,第一剩余时间为上行授权资源在时域上的结束位置与正确接收到第一业务数据的超时时间的时间间隔。
方式二、终端设备根据上行授权指示的上行授权资源在时域上的起始位置,将多个上行授权资源中时域位置处于最前面的资源确定为第一上行授权资源。
方式三、终端设备根据上行授权指示的上行授权资源在时域上的结束位置,确定上行授权资源的第一剩余时间,将上行授权资源中第一剩余时间大于或等于预先配置的时延门限且能够传输的比特数大于或等于第一业务数据的大小的资源确定为第一上行授权资源。
方式四、终端设备根据上行授权指示的上行授权资源在时域上的结束位置,确定上行授权资源的第一剩余时间,将上行授权资源中第一剩余时间大于或等于预先配置的时延门限且时域位置处于最前面的资源确定为第一上行授权资源。
后文中会结合附图详细说明以上四种方式,为了简洁,这里暂且省略对上述四种方式的具体描述。
在步骤230中,终端设备利用第一上行授权资源发送第一业务数据。
具体地,该第一上行授权资源能够传输的比特数可能大于或等于该第一业务数据的大小,也可能小于该第一业务数据的大小。若第一上行授权资源能够传输的比特数大于或等于该第一业务数据的大小,则步骤230可包括:该终端设备可利用第一上行授权资源发送该第一业务数据的全部数据;若第一上行授权资源能够传输的比特数小于第一业务数据的大小,则步骤230可包括:该终端设备可利用第一上行授权资源发送该第一业务数据的部分数据。为便于区分和说明,将第一上行授权资源发送的第一业务数据的部分数据记作第一部分数据。也就是说,终端设备可利用第一上行授权资源发送第一业务数据的全部数据,或,第一部分数据。
进一步可选地,在步骤230之前,该方法200还包括:终端设备接收第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
与此对应地,在步骤240中,网络设备发送第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
在一种可能的设计中,该第一指示信息可通过逻辑信道配置信息元素中的分段(segmentation)字段指示。例如,若该字段指示“TRUE”,则表示不支持分段传输;若该字段指示“FALSE”,则表示支持分段传输。
若该第一上行授权资源能够传输的比特数大于或等于该第一业务数据的大小,则不论该第一业务数据是否支持分段传输,终端设备可利用该第一上行授权资源发送该第一业务数据的全部数据;若该第一上行授权资源能传输的比特数小于该第一业务数据的大小,且该第一业务数据不支持分段传输,则终端设备可暂时不发送该第一业务数据,等待下一次调度的上行授权资源;若第一上行授权资源能够传输的比特数小于第一业务数据的大小,且该第一业务数据可支持分段传输,则终端设备可利用该第一上行授权资源传输该第一业务数据的第一部分数据。
在这种情况下,若网络设备为终端设备调度了多个上行授权资源,则可选地,该方法200还包括:
步骤250,终端设备确定第二上行授权资源;
步骤260,终端设备利用第二上行授权资源传输第一业务数据的剩余数据的部分或全部。
在步骤250中,终端设备可以从上述多个上行授权资源中除第一上行授权资源之外的资源中确定第二上行授权资源。可选地,该第二上行授权资源可以为多个上行授权资源中除所述第一上行授权资源之外时域位置处于最前面的资源。可选地,该第二上行授权资源可以为多个上行授权资源中除第一上行授权资源之外上行授权最先到达的资源。
其中,从多个上行授权资源中确定时域位置处于最前面的资源的具体方法会在后文中结合方法二详细说明,这里暂且省略对该具体方法的详细描述。
第一业务数据的剩余数据即第一业务数据中除去第一部分数据之外的数据。为便于区分和说明,可将该剩余数据记作第二部分数据。由于该第二上行授权资源能够传输的比特数据有可能大于或等于第一业务数据的第二部分数据,也有可能小于第一业务数据的第二部分数据,因此,在步骤260中,终端设备可利用第二上行授权资源传输第一业务数据的第二部分数据的部分或全部。可以理解,该第一部分数据和第二部分数据可能构成第一业务数据的全部,也可能是该第一业务数据中的部分数据。
基于上述技术方案,终端设备能够根据上行授权资源在时域上的位置,选择合适的第一上行授权资源来发送第一业务数据,相比于现有技术而言,不依赖于上行调度的到达时间来确定用来传输第一业务数据的资源,而是考虑到了资源的时域位置,也就是考虑到了第一业务数据的发送时间,从而能够为时延敏感的第一业务数据分配合适的资源来传输,有利于减小传输时延。并且,该技术方案并不仅仅适用于动态调度的上行授权资源,还可适用于预配置的上行授权资源。
下面,结合图7至图11对方法200中的步骤220进行详细说明。
图7是本申请实施例提供的通信方法的另一示意性流程图。图7具体示出了上文方法流程中步骤220的方式一、方式三和方式四。
如图中所示,该步骤220可进一步包括步骤2201至步骤2208。下面结合图7做详细说明。
在步骤2201中,终端设备确定上行授权资源在时域上的结束位置。
在本申请实施例中,网络设备向终端设备发送的上行授权可以是一个也可以多个,也就是说,终端设备可以从一个或多个上行授权资源中确定第一上行授权资源。如前文所述,该上行授权资源可以是动态调度的,也可以是预配置的。
若该上行授权资源是动态调度的,则终端设备可接收到网络设备发送的一个或多个上行授权,每个上行授权可指示一个上行授权资源的时域位置和资源大小。在一种可能的实现方式中,每一个上行授权中可指示参数K2、起始符号位置S和资源长度L。其中,参数K2可表示上行授权资源在时域上的起始位置所在的时隙(slot)与接收到该上行授权的时隙的时隙偏移量,起始符号位置S可表示上行授权资源在所述上行授权资源所在时隙的起始符号位置,即相对于上行授权资源的起始时隙的首个符号所偏移的符号数,资源长度L可表示上行授权资源占用的符号数。这里,上行授权资源的起始时隙可理解为上行授权资源在时域上的起始位置所在的时隙。因此,终端设备可根据接收到每一个上行授权的时间和其中所指示的参数K2、起始符号位置S和资源长度L,确定每一个上行授权资源在时域上的结束位置,例如,结束位置t 2=N*K2+S+L,N表示一个时隙中包含的符号数。在另一种可能的实现方式中,终端设备可根据上行授权中所指示的参数K2直接确定上行授权资源的结束位置,例如,t 2=K2。
若该上行授权资源是预配置的,该上行授权资源的结束位置可以由该上行授权资源所属的一组上行授权资源的起始位置t b、资源长度L以及周期P确定。例如,结束位置t 2=t b+n*P+L,其中,n可表示周期数,其取值可由终端设备确定;P可表示上行授权资源的一个周期所包含的符号数。
具体地,若该上行授权资源是基于预配置的上行授权类型1配置的,则上行授权可以是RRC信令,该上行授权资源所属的一组上行授权资源的起始位置t b、资源长度L以及周期P等信息可以在RRC信令中指示;若该上行授权资源是基于预配置的上行授权类型2配置的,则上行授权可以是下行控制信息,该上行授权资源所属的一组上行授权资源的起始位置可以进一步由下行控制信息中的K2和起始符号位置S来确定,例如,t b=N*K2+S。
需要说明的是,这里所说的接收到上行授权的时间,也就是上行授权到达的时间,可以理解为用于承载该上行授权的下行控制信息在时域上的位置,或者说,承载该下行控制信息的物理下行控制信道在时域上的位置。该时间是可由网络设备通过其他下行控制信令通知给终端设备的,或者,也可以是预配置的,终端设备可以在特定的位置监听。
若该上行授权资源是基于预配置的上行授权类型1配置的,则该网络设备可向终端设备发送RRC信令。在一种可能的实现方式中,RRC信令可指示调度给终端设备的一组或多组上行授权资源的起始位置、大小以及周期。也就是说,多个上行授权资源在时域上呈周期排布,终端设备可根据这一组上行授权资源在时域上的起始位置和大小,确定同一组上行授权资源中下一个上行授权资源在时域上的结束位置,或者说,同一组上行授权资源中最近的上行授权资源在时域上的结束位置。
应理解,以上列举的用于确定上行授权资源在时域上的结束位置的具体方法仅为示例性说明,不应对本申请构成任何限定。本申请对于终端设备确定上行授权资源在时域上的结束位置的具体方法不做限定。例如,网络设备也可直接指示所调度的物理上行资源在时域上的结束位置。
在步骤2202中,终端设备确定上行授权资源的第一剩余时间。
其中,第一剩余时间为上行授权资源在时域上的结束位置与第一业务数据的超时时间的时间间隔。或者说,第一剩余时间为上行授权资源在时域上的结束位置与定时器设置的超时时间的时间间隔。该定时器可以由任一协议层,例如PDCP实体或SDAP实体在接收到第一业务数据时开启,该定时器设置的时长可用于确定接收到第一业务数据的最晚时间。在一种可能的实现方式中,若终端设备在该定时器设置的时长范围内接收到针对第一业务数据的确认(acknowledge,ACK)消息,则认为该第一业务数据被正确接收到。
对于动态调度的上行授权资源来说,若网络设备为终端设备调度了多个上行授权资源,则该多个上行授权资源可对应多个第一剩余时间。对于预配置的上行授权资源来说,若网络设备为终端设备调度了多组不同周期的上行授权资源,则该多组上行授权资源中每组资源中最近的一个上行授权资源的第一剩余时间也有可能是各不相同的。
在步骤2203中,终端设备根据上行授权资源的第一剩余时间,确定用于传输第一业务数据的第一上行授权资源。
终端设备可以根据预先配置的时延门限,以及上行授权资源的第一剩余时间,从网络设备调度的一个或多个上行授权资源中确定第一上行授权资源。具体地,终端设备可以将网络设备调度的一个或多个上行授权资源中选择第一剩余时间大于或等于时延门限的上行授权资源。为便于区分和说明,可将第一剩余时间大于或等于时延门限这一条件记作条件一。
若第一剩余时间大于或等于时延门限的上行授权资源的数量仅为一个,则终端设备可将这个上行授权资源确定为第一上行授权资源;若第一剩余时间大于或等于时延门限的上行授权资源的数量为多个,则终端设备可自行选择一个作为第一上行授权资源,例如,将最大的资源作为第一上行授权资源,或者,将时域上处于最前面的资源作为第一上行授权资源等;若第一剩余时间大于或等于时延门限的上行授权资源的数量为零,则终端设备可暂时不对该第一业务数据进行组包,等待下一次调度的资源到来,看是否能找到第一剩余时间大于或等于时延门限的上行授权资源来传输第一业务数据。
其中,时延门限可理解为允许的用于空口处理的时间段,或者称,允许的延迟(allowed delay)。换句话说,时延门限可理解为数据从发送出去到被正确接收所允许的最小时间间隔。在此时间段内,数据可被解调、译码或者重传,直至被正确获取。因此,只要上行授权资源的第一剩余时间大于或等于该时延门限,其带来的传输时延是可以满足该业务的时延需求的。
在本申请实施例中,该时延门限可以是预先定义的,如协议定义,也可以是网络设备预先指示给终端设备的。可选地,该方法还包括:步骤2204,终端设备接收时延门限的指示信息。
与此相应地,在步骤2204中,网络设备发送时延门限的指示信息,该指示信息用于指示时延门限的大小。例如,该指示信息可以为该时延门限的具体数值的信息,也可以为一个与时延门限数值具有对应性的指示信元。
可选地,该时延门限可以由接入网设备配置。该时延门限的指示信息例如可携带在RRC信令中。例如,在RRC信令的逻辑信道配置信息元素中增加时延门限字段,或者,在RRC信令的MAC配置中增加时延门限字段,或者,在RRC信令的RLC配置或RLC承载配置中增加时延门限字段。
可选地,该时延门限可以由核心网设备配置。该时延门限的指示信息可通过下一代(next generation,NG)接口传递给接入网设备,接入网设备可通过例如RRC信令向终端设备指示。
应理解,图中示出的各步骤仅为示意,而不应对各步骤执行的先后顺序构成任何限定,例如,步骤2204并不一定在步骤2203之后执行,步骤2204可以在步骤2203之前执行,也可以在步骤2201之前执行,本申请对此并不限定。
基于上述步骤2201至步骤2204,终端设备可确定用于传输第一业务数据的第一上行授权资源,由此确定的第一上行授权资源是基于上文中所述的方式一确定。
为便于理解,下面结合图8和图9说明终端设备基于上行授权资源的第一剩余时间确定第一上行授权资源的过程。图8是终端设备基于上行授权资源的第一剩余时间确定第一上行授权资源的示意图。如图8所示,假设网络设备为终端设备调度了三个上行授权资源,分别为图中所示的资源#1、资源#2和资源#3。资源#1、资源#2和资源#3在时域上的结束位置可分别对应于
Figure PCTCN2019080399-appb-000007
Figure PCTCN2019080399-appb-000008
图中T C可代表定时器时长确定的正确接收到第一业务数据的超时时间,T C-T A可代表时延门限T 0,即,T 0=T C-T A。换句话说,T A可理解为满足第一业务数据的时延需求的、第一业务数据的最晚的传输结束时间,第一业务数据的传输结束时刻在T A之前才能满足时延需求。其中,T A的取值可以由超时时间和时延门限确定。
如图中所示,资源#1、资源#2和资源#3的第一剩余时间(例如记作△t1)可分别表示为:
Figure PCTCN2019080399-appb-000009
以及
Figure PCTCN2019080399-appb-000010
若终端设备基于上文所述的方式一确定第一上行授权资源,则图中资源#3可满足条件一,即,△t1#3>T 0,T 0表示时延门限。因此,终端设备可将资源#3确定为第一上行授权资源。
图9是终端设备基于上行授权资源的第一剩余时间确定第一上行授权资源的另一示意图。如图9所示,资源#1、资源#2和资源#3。资源#1、资源#2和资源#3在时域上的结束位置可分别对应于
Figure PCTCN2019080399-appb-000011
Figure PCTCN2019080399-appb-000012
图中T C可代表定时器时长确定的正确接收到第一业务数据的超时时间,T C-T A可代表时延门限T 0,即,T 0=T C-T A。换句话说,T A可理解为满足第一业务数据的时延需求的、第一业务数据的最晚的传输结束时间,第一业务数据的传输结束时刻在T A之前才能满足时延需求。如图中所示,资源#1、资源#2和资源#3的第一剩余时间(例如记作△t1)可分别表示为:
Figure PCTCN2019080399-appb-000013
以及
Figure PCTCN2019080399-appb-000014
若终端设备基于上文所述的方式一确定第一上行授权资源,则图中资源#3和资源#1均可满足条件一,即,△t1#1>T 0,△t1#3>T 0,T 0(即,T C-T A)表示时延门限。因此,终端设备可将资源#3或资源#1确定为第一上行授权资源。
需要说明的是,图中仅为便于理解,示出了T A的位置。在实现过程中,终端设备可以不用确定T A的位置,直接根据各上行授权资源的第一剩余时间以及超时时间T C和时延门限之差确定满足条件一的第一上行授权资源。
还需要说明的是,当终端设备基于条件一确定第一上行授权资源时,希望第一业务数据的传输时延能够满足该业务的时延需求,也就是在超时时间之前接收端(例如,网络设备)能够正确接收到该第一业务数据。若终端设备在步骤2203中确定的第一上行授权资源能够传输的比特数(例如,图9中的资源#3)小于该第一业务数据的大小,则该终端设备可以对该第一业务数据进行分段传输,终端设备需进一步确定满足上述条件一的第二上行授权资源。也就是说,为了满足业务的时延需求,终端设备所选择的用于传输第一业务 数据的一个或多个上行授权资源均需要满足条件一。如图9中所示,终端设备可以将资源#3确定为第一上行授权资源,并将资源#1确定为第二上行授权资源。
然而,应理解,终端设备确定第一上行授权资源的具体方式并不限于方式一。当终端设备在步骤2203中确定第一剩余时间大于或等于预设门限的上行授权资源的数量为多个时(例如图9中所示),终端设备也可以不执行步骤2203,而直接执行步骤2205,终端设备根据上行授权资源的第一剩余时间,确定用于传输第一业务数据的候选的上行授权资源。因此,候选的上行授权资源可包括多个满足条件一的上行授权资源。此后,终端设备可进一步基于以下条件中的一个或两个确定第一上行授权资源:
条件二、该第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小;
条件三、该第一上行授权资源为多个上行授权资源中时域位置处于最前面的资源。
具体地,满足条件一和条件二的第一上行授权资源可以是基于上文中所述的方式三确定,满足条件一和条件三的第一上行授权资源可以是基于上文中所述的方式四确定。下面结合条件二和条件三做详细说明。需要说明的是,以下示例中,假设终端设备在步骤2203中确定的满足条件一的上行授权资源为多个。
条件二、
可选地,该方法还包括:步骤2206,终端设备从候选的上行授权资源中确定第一上行授权资源,该第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小。
本领域的技术人员可理解,假设第一业务数据被分段传输时,需要通过两个或者更多个上行授权资源(例如可包括上述第一上行授权资源和第二上行授权资源)来传输。则,第一上行授权资源中承载的数据和第二上行授权资源中承载的数据需要被全部解码、解调后,才能够恢复出第一业务数据。而该两个上行授权资源中的任意一个资源中承载的数据若未能被成功解码或解调,就无法恢复出该第一业务数据,需要通过重传来解决,由此可能带来一定的传输时延。
因此,当满足上述条件一的上行授权资源为多个时,不管该第一业务数据是否支持分段传输,终端设备可直接从满足条件一的候选的上行授权资源中选择满足条件二的资源作为第一上行授权资源。
终端设备也可基于第一业务数据是否支持分段传输的特性确定第一上行授权资源是否需要满足条件二。
再看图9,资源#1和资源#3均可理解为步骤2205中所述的候选的上行授权资源。终端设备可进一步结合条件二来从中确定第一上行授权资源。假设资源#1较大,能够传输的比特数大于或等于第一业务数据的大小;而资源#3较小,能够传输的比特数小于该第一业务数据的大小,则终端设备可进一步将资源#1确定为第一上行授权资源。
在本申请实施例中,该第一业务数据可能被配置为可支持分段,或不支持分段。可选地,该方法还包括:步骤2207,终端设备接收第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
与此对应地,在步骤2207中,网络设备发送第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
应理解,步骤2207与上述方法200中的步骤240可以为相同的步骤,这里仅为便于理解而示出,由于上文中已经对步骤240做了详细说明,为了简洁,这里不再赘述。
终端设备也可以根据步骤2207中接收到的是否支持分段的指示,确定是否需要满足条件二的资源作为第一上行授权资源。
应理解,满足条件一和条件二的上行授权资源可能为一个,终端设备可直接将这一个上行授权资源确定为第一上行授权资源;满足条件一和条件二的上行授权资源也可能为多个,终端设备可将满足条件一和条件二的多个上行授权资源中的任意一个确定为第一上行授权资源,也可以进一步选择满足条件三的上行授权资源为第一上行授权资源。本申请对此不做限定。
条件三、
可选地,该方法还包括:步骤2208,终端设备从候选的上行授权资源中确定第一上行授权资源,该第一上行授权资源为候选的上行授权资源中时域位置处于最前面的资源。
当满足上述条件一的上行授权资源为多个时,终端设备也可以从满足条件一的多个上行授权资源中选择一个时域位置最靠前的资源作为第一上行授权资源,这可以保证该第一业务数据最先被发送出去。由此确定得到的第一上行授权资源,既能够保证第一业务数据的传输时延满足需求,还能够使得该第一业务数据的传输时延达到最小。
再看图9,资源#1和资源#3均可理解为步骤2205中所述的候选的上行授权资源。终端设备可进一步结合条件三来从中确定第一上行授权资源。假设资源#1、资源#2和资源#3在时域上的先后顺序满足
Figure PCTCN2019080399-appb-000015
则终端设备可进一步将资源#3确定为第一上行授权资源。
应理解,条件二和条件三可同时与条件一结合使用,也可单独与条件一结合使用,本申请对此不做限定。也就是说,第一上行授权资源可能仅满足条件一,也可能仅满足条件一和条件二,也可能仅满足条件一和条件三,还可能满足条件一、条件二和条件三,由此确定第一上行授权资源在用于传输第一业务数据时,所带来的传输时延也可能是最小的。例如,满足条件二的上行授权资源可能为多个,终端设备可进一步从满足条件二的上行授权资源中进一步选择满足条件三的资源为第一上行授权资源。这种情况下,将条件一、条件二和条件三结合使用。又例如,满足上述条件二的上行授权资源可能为一个,而这一个资源也可能同时满足条件三。由此确定得到的第一上行授权资源可同时满足条件一、条件二和条件三。该第一上行授权资源在用于传输第一业务数据时所带来的传输时延也可能是最小的。再例如,满足上述条件二的上行授权资源可能为一个,而此资源并不满足条件三,这种情况下,可将条件一和条件二结合使用。再例如,满足上述条件三的上行授权资源并不一定满足条件二,或者,满足条件一的上行授权资源均布满足条件二,这种情况下,将条件一和条件三结合使用。
还应理解,基于上述条件一、条件二和条件三中的哪一个或几个条件来确定第一上行授权资源可由终端设备和网络设备预先约定,终端设备和网络设备科技与相同的一个或多个条件确定第一上行授权资源,并利用该第一上行授权资源传输第一业务数据。
还应理解,图7仅为便于理解而示意的流程图,图中各步骤的序号的大小并不意味着执行顺序的先后,并且终端设备在基于不同的条件确定第一上行授权资源时,也并不需要执行图中的每一个步骤,或者,也有可能执行其它的步骤。例如,终端设备可执行步骤2203和步骤2205中的一个步骤。因此,图中示意的步骤不应对本申请构成任何限定。在具体实现过程中,终端设备可根据各步骤间的内在逻辑执行相应的步骤来实现。
基于上述技术方案,终端设备可利用满足第一业务数据的时延需求的上行授权资源传输第一业务数据。并进一步通过比较资源的大小、在时域上的位置等方式,选择出第一上行授权资源来传输第一业务数据,从而进一步地减小传输时延。
图10是本申请实施例的通信方法的又一示意性流程图。图10具体示出了上文方法流程中步骤220的方式二。
如图中所示,该步骤220可进一步包括步骤220至步骤2210至步骤2212。下面结合图10做详细说明。
在步骤2210中,终端设备确定上行授权资源在时域上的起始位置。
若该上行授权资源是动态调度的,则终端设备可接收到网络设备发送的一个或多个上行授权。每个上行授权可指示一个上行授权资源的时域位置和资源大小。在一种可能的实现方式中,可根据上行授权中指示的参数K2和起始符号位置S确定上行授权资源的起始位置。例如,该上行授权资源的起始位置t 1=N*K2+S,N表示一个时隙中包含的符号数。在另一种可能的实现方式中,终端设备可根据上行授权中所指示的参数K2直接确定上行授权资源的起始位置,例如,t 1=K2。
若该上行授权资源是预配置的,则该上行授权资源的起始位置可以由该上行授权资源所属的一组上行授权资源的起始位置t b和周期P确定。例如,该上行授权资源的起始位置t 1=t b+n*P,其中,n可表示周期数,其取值可由终端设备确定;P可表示上行授权资源的一个周期所包含的符号数。
具体地,若该上行授权资源是基于预配置的授权类型1配置的,则上行授权可以是RRC信令,该上行授权资源所属的一组上行授权资源的起始位置t b以及周期P可以在RRC信令中指示;若该上行授权是基于预配置的上行授权类型2配置的,则上行授权可以是下行控制信息,该上行授权资源所属的一组上行授权资源的起始位置t b可以进一步由下行控制信息中的K2和起始符号位置S来确定。例如,t b=N*K2+S。
在本申请实施例中,网络设备为终端设备调度的上行授权资源可以为多个,终端设备可根据多个上行授权资源在时域上的起始位置,确定第一上行授权资源。在一种可能的实现方式中,终端设备可直接比较各上行授权资源在时域上的起始位置,直接将处于最前面的资源确定为第一上行授权资源。在另一种可能的实现方式中,终端设备可根据各上行授权资源的第二剩余时间确定第一上行授权资源。
可选地,该方法还包括:步骤2211,终端设备确定上行授权资源的第二剩余时间。
其中,第二剩余时间为上行授权资源在时域上的起始位置与对第一业务数据进行LCP的起始时间的时间间隔。对第一业务数据所在的逻辑信道进行LCP的时间可以为网络设备指示或者预先定义的,本申请对此不做限定。
可选地,该方法还包括:步骤2212,终端设备根据上行授权资源的第二剩余时间确定第一上行授权资源,该第一上行授权资源是多个上行授权资源中第二剩余时间最小的资源。
由于对第一业务数据进行LCP的时间是一定的,因此上行授权资源在时域上越靠前,距离LCP起始时间的时间间隔就越小,由此确定的第一上行授权资源即为多个上行授权资源中时域位置处于最前面的资源。
为便于理解,下面结合图11说明终端设备基于上行授权资源的第二剩余时间确定第 一上行授权资源的过程。如图11所示,假设网络设备为终端设备调度了三个上行授权资源,分别为图中所示的资源#1、资源#2和资源#3。资源#1、资源#2和资源#3在时域上的起始时间可分别对应于
Figure PCTCN2019080399-appb-000016
Figure PCTCN2019080399-appb-000017
图中T L可代表对第一业务数据进行LCP的起始时间,则各资源的第二剩余时间可分别为各资源在时域上的起始时间与LCP的起始时间的时间间隔。
如图中所示,资源#1、资源#2和资源#3的第一剩余时间(例如记作△t2)可分别表示为:
Figure PCTCN2019080399-appb-000018
以及
Figure PCTCN2019080399-appb-000019
其中,△t2#3<△t2#1<△t2#2。若终端设备基于各资源在时域上的起始时间确定第一上行授权资源,则图中资源#3为第二剩余时间最小的资源,终端设备可将资源#3确定为第一上行授权资源。
基于上述技术方案,终端设备可利用时域位置处于最前面的资源传输第一业务数据,即,将第一业务数据最先发送,从而可以使传输时延达到最小。
图12是从设备交互的角度示出的本申请另一实施例提供的通信方法300的示意性流程图。如图所示,图12中所示的方法300可以包括步骤310至步骤350。下面结合图12对该通信方法进行详细描述。
在步骤310中,终端设备接收上行授权。
应理解,步骤310与方法200中的步骤210的具体过程相同,为了简洁,这里不再赘述。
在步骤320中,终端设备从上行授权指示的上行授权资源中确定第一上行授权资源,该第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小。
可选地,在终端设备确定第一上行授权之前,该方法300还包括:步骤330,终端设备确定第一业务数据的大小。
具体地,终端设备可基于逻辑信道配置信息元素中的PBR字段、优先级字段或高优先级字段确定该第一业务数据为紧急业务的数据。其中,第一业务数据满足的条件在方法200中已经做了详细说明,为了简洁,这里不再赘述。
终端设备在确定了第一业务数据之后,可进一步确定该第一业务数据的大小。如前所述,若将第一业务数据分段传输,则可能会因为某一个资源中承载的数据未能被成功解码或解调而导致第一业务数据无法正确恢复,需要通过重传来解决,由此可能带来一定的传输时延。因此,终端设备可根据第一业务数据的大小,从上行授权资源中确定能够传输的比特数大于或等于第一业务数据的大小的资源,而将此资源确定为第一上行授权资源。
在本申请实施例中,该第一业务数据可能被配置为可支持分段传输,或不支持分段传输。可选地,该方法还包括:步骤340,终端设备接收第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
与此对应地,在步骤340中,网络设备发送第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
应理解,步骤340与上述方法200中的步骤240的具体过程相同,为了简洁,这里不再赘述。在步骤350中,终端设备利用第一上行授权资源传输第一业务数据。
由于终端设备在步骤340中确定的第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小,终端设备在步骤350中可利用该第一上行授权资源传输第一业务数据的全部数据。
再进一步地,若终端设备在步骤340中确定的能够传输的比特数大于或等于第一业务数据的大小的资源的数量为多个,终端设备可进一步将上文中的条件一、条件二或条件三用来确定第一上行授权资源。例如,若终端设备结合条件一确定第一上行授权资源,则该终端设备可进一步确定能够传输的比特数大于或等于第一业务数据的大小的资源的第一剩余时间,将第一剩余时间大于或等于时延门限的资源确定为第一上行授权资源;若终端设备结合条件二确定第一上行授权资源,则终端设备可进一步将该多个能够传输的比特数大于或等于第一业务数据的大小的资源中时域位置处于最前面的资源确定为第一上行授权资源;若能够传输的比特数大于或等于第一业务数据的大小且第一剩余时间大于或等于时延门限的资源为多个,则可进一步结合条件三,将该多个资源中时域位置处于最前面的资源确定为第一上行授权资源。由于上文中结合图7各条件结合使用的具体方法做了详细说明,为了简洁,这里不再赘述。
基于上述技术方案,终端设备可利用足够的资源将第一业务数据中的全部数据发送出去,避免了分段传输可能带来的传输时延,有利于减小传输时延。
应理解,以上结合图6至图12对本申请实施例提供的通信方法做了详细说明,应理解,文中仅为便于理解,以终端设备和网络设备的交互为例详细说明了本申请实施例提供的方法,但这不应对本申请构成任何限定。终端设备也可以在接收到网络设备的调度资源的情况下,与其他设备(例如,其他网络设备或终端设备等)传输第一业务数据。本申请对此不做限定。
还应理解,在上述各本申请实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图6至图12对本申请实施例提供的通信方法做了详细说明。以下,结合附图对本申请实施例提供的通信装置做详细说明。
本申请实施例还提供用于实现以上任一种方法的装置。例如,提供一种装置,包括用以实现以上任一种方法中终端设备所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
图13是本申请实施例提供的通信装置400的示意性框图。如图13所示,该通信装置400可包括:接收单元410、确定单元420和发送单元430。
在一种可能的设计中,该通信装置400可以为上述方法200中的终端设备,或者配置于终端设备中的芯片。
具体地,该接收单元410可用于接收上行授权。
该确定单元420可用于根据该上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源。
该发送单元430可用于利用该上行授权资源传输第一业务数据。
可选地,该确定单元420具体用于,根据上行授权指示的上行授权资源在时域上的位置确定上行授权资源的第一剩余时间,第一剩余时间为上行授权资源在时域上的结束位置与第一业务数据的超时时间的时间间隔;
从上行授权资源中确定第一上行授权资源,第一上行授权资源的第一剩余时间大于或等于预先配置的时延门限。
可选地,该接收单元410还用于接收时延门限的指示信息。
可选地,该第一上行授权资源为多个上行授权资源中时域位置处于最前面的资源。
可选地,该确定单元420具体用于,根据多个上行授权指示的多个上行授权资源在时域上的位置,确定多个上行授权资源的第二剩余时间,第二剩余时间为上行授权资源在时域上的起始位置与对第一业务数据所在的逻辑信道进行逻辑信道优先级化LCP的起始时间的时间间隔;
从多个上行授权资源中确定第一上行授权资源,第一上行授权资源为多个上行授权资源中第二剩余时间最小的资源。
可选地,该确定单元420具体用于,根据多个上行授权指示的多个上行授权资源在时域上的位置确定多个上行授权资源的第一剩余时间,第一剩余时间为上行授权资源在时域上的起始位置与正确接收到第一业务数据的超时时间的时间间隔;
从多个上行授权资源中确定多个候选的上行授权资源,候选的上行授权资源的第一剩余时间大于或等于预先配置的时延门限;
从多个候选的上行授权资源中确定第一上行授权资源,第一上行授权资源是多个候选的上行授权资源中时域位置处于最前面的资源。
可选地,第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小,发送单元430具体用于,利用第一上行授权资源传输第一业务数据的全部数据。
可选地,第一上行授权资源能够传输的比特数小于第一业务数据的大小,且第一业务数据支持分段传输,发送单元430具体用于,利用第一上行授权资源传输第一业务数据的部分数据。
可选地,该发送单元430还用于利用第二上行授权资源传输第一业务数据的剩余数据中的部分或全部;
第一业务数据的剩余数据是未通过第一上行授权资源发送的数据,第二上行授权资源为多个上行授权资源中除第一上行授权资源之外第二剩余时间最小的资源;或者,第二上行授权资源为多个上行授权资源中除第一上行授权资源之外上行授权最先到达的资源,其中,第二剩余时间为上行授权资源在时域上的起始位置与对第一业务数据进行LCP的起始时间的时间间隔。
可选地,该接收单元410还用于接收第一指示信息,第一指示信息指示第一业务数据是否支持分段传输。
可选地,第一业务数据满足以下一项或多项:
第一业务数据的优先比特率PBR为无穷大;或,
第一业务数据的优先级的值小于或等于预设门限;或,
第一业务数据为高优先级数据。
可选地,第一业务数据的优先级字段携带在逻辑信道配置信息元素中,优先级字段指示第一业务数据的优先级的值。
可选地,第一业务数据的高优先级字段携带在逻辑信道配置信息元素中,高优先级字段指示第一业务数据为高优先级数据。
可选地,第一业务数据的优先比特率PBR字段携带在逻辑信道配置信息元素中,PBR字段指示第一逻辑信道的PBR为无穷大。
可选地,该上行授权资源为动态调度的资源,或者,该上行授权资源为半静态调度的资源。
应理解,通信装置400可对应于根据本发明实施例的通信方法200中的终端设备,该通信装置400可以包括用于执行图6中通信方法200的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图6中通信方法200的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图6至图11的方法实施例的描述,为了简洁,这里不再赘述。
在另一种可能的设计中,该通信装置400可以为上述方法300中的终端设备,或者配置于终端设备中的芯片。
具体地,该接收单元410可用于接收上行授权。
该确定单元420可用于从上行授权指示的上行授权资源中确定第一上行授权资源,该第一上行授权资源能够传输的比特数大于或等于第一业务数据的大小。
该发送单元430可用于利用该第一上行授权资源传输该第一业务数据。
可选地,该接收单元410还用于接收第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
可选地,该第一业务数据满足以下一项或多项:
第一业务数据的优先比特率PBR为无穷大;或,
第一业务数据的优先级的值小于或等于预设门限;或,
第一业务数据为高优先级数据。
可选地,第一业务数据的优先级字段携带在逻辑信道配置信息元素中,优先级字段指示第一业务数据的优先级的值。
可选地,第一业务数据的高优先级字段携带在逻辑信道配置信息元素中,高优先级字段指示第一业务数据为高优先级数据。
可选地,该上行授权资源为动态调度的资源,或者,该上行授权资源为半静态调度的资源。
应理解,通信装置400可对应于根据本发明实施例的通信方法300中的终端设备,该通信装置400可以包括用于执行图12中通信方法300的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图12中通信方法300的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图12的方法实施例的描述,为了简洁,这里不再赘述。
图14是本申请实施例提供的通信装置500的示意性框图。如图14所示,该通信装置500可包括:发送单元510。
在一种可能的设计中,该通信装置500可以为上述方法200中的网络设备,或者配置于网络设备中的芯片。
具体地,该发送单元510可用于发送上行授权,该上行授权用于指示上行授权资源。
可选地,该发送单元510还用于发送时延门限的指示信息。
可选地,该发送单元510还用于发送第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
可选地,该第一业务数据满足以下一项或多项:
第一业务数据的优先比特率PBR为无穷大;或,
第一业务数据的优先级的值小于或等于预设门限;或,
第一业务数据为高优先级数据。
可选地,第一业务数据的优先级字段携带在逻辑信道配置信息元素中,优先级字段指示第一业务数据的优先级的值。
可选地,第一业务数据的高优先级字段携带在逻辑信道配置信息元素中,高优先级字段指示第一业务数据为高优先级数据。
可选地,第一业务数据的优先比特率PBR字段携带在逻辑信道配置信息元素中,PBR字段指示第一逻辑信道的PBR为无穷大。
可选地,该上行授权资源为动态调度的资源,或者,该上行授权资源为半静态调度的资源。
应理解,通信装置500可对应于根据本发明实施例的通信方法200中的网络设备,该通信装置500可以包括用于执行图6中通信方法200的网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图6中通信方法200的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图6至图11的方法实施例的描述,为了简洁,这里不再赘述。
在另一种可能的设计中,该通信装置500可以为上述方法300中的网络设备,或者配置于网络设备中的芯片。
具体地,该发送单元510可用于发送上行授权。
可选地,该发送单元510还用于发送第一指示信息,该第一指示信息指示第一业务数据是否支持分段传输。
可选地,该第一业务数据满足以下一项或多项:
第一业务数据的优先比特率PBR为无穷大;或,
第一业务数据的优先级的值小于或等于预设门限;或,
第一业务数据为高优先级数据。
可选地,第一业务数据的优先级字段携带在逻辑信道配置信息元素中,优先级字段指示第一业务数据的优先级的值。
可选地,第一业务数据的高优先级字段携带在逻辑信道配置信息元素中,高优先级字段指示第一业务数据为高优先级数据。
可选地,第一业务数据的优先比特率PBR字段携带在逻辑信道配置信息元素中,PBR字段指示第一逻辑信道的PBR为无穷大。
可选地,该上行授权资源为动态调度的资源,或者,该上行授权资源为半静态调度的资源。
应理解,通信装置500可对应于根据本发明实施例的通信方法300中的网络设备,该通信装置500可以包括用于执行图12中通信方法300的网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图12中通信方法200的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图12的方法实施例的描述,为了简洁,这里不再赘述。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部 或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
图15是本申请实施例提供的终端设备600的结构示意图。该终端设备600可以为以上实施例中的终端设备,可用于实现以上实施例中终端设备的操作。如图15所示,该终端设备600可包括:天线610、射频部分620、信号处理部分630。天线610与射频部分620连接。在下行方向上,射频部分620通过天线610接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分630进行处理。在上行方向上,信号处理部分630对终端的信息进行处理,并发送给射频部分620,射频部分620对终端的信息进行处理后经过天线610发送给网络设备。
信号处理部分630可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统、周边子系统等,其中多媒体子系统用于实现对终端相机、屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选地,以上用于终端设备的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件631,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件632和接口电路633。存储元件632用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件632中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路633用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和 接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现成可编程门阵列(field programmable gate array,FPGA),或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理单元(central processing unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图16是本申请实施例提供的网络设备700的结构示意图。该网络设备700可以为以上实施例中的网络设备,可用于实现以上实施例中网络设备的操作。如图16所示,该网络设备700可包括:天线701、射频装置702和基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收终端设备发送的信息,将终端设备发送的信息发送给基带装置703进行处理。在下行方向上,基带装置703对终端设备的信息进行处理,并发送给射频装置702,射频装置702对终端设备的信息进行处理后经过天线701发送给终端设备。
基带装置703可以包括一个或多个处理元件7031,例如,包括一个主控CPU和其它 集成电路。此外,该基带装置703还可以包括存储元件7032和接口7033,存储元件7032用于存储程序和数据;接口7033用于与射频装置702交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置703,例如,以上用于网络设备的装置可以为基带装置703上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统SOC的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述网络设备和终端设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种通信方法,其特征在于,包括:
    接收上行授权;
    根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源;
    利用所述第一上行授权资源传输所述第一业务数据。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
    根据所述上行授权指示的上行授权资源在时域上的结束位置确定所述上行授权资源的第一剩余时间,所述第一剩余时间为上行授权资源在时域上的结束位置与所述第一业务数据的超时时间的时间间隔;
    从所述上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源的第一剩余时间大于或等于预先配置的时延门限。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收所述时延门限的指示信息。
  4. 根据权利要求1所述的方法,其特征在于,所述第一上行授权资源为多个上行授权资源中时域位置处于最前面的资源。
  5. 根据权利要求1或4所述的方法,其特征在于,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
    根据多个上行授权指示的所述多个上行授权资源在时域上的起始位置,确定所述多个上行授权资源的第二剩余时间,所述第二剩余时间为上行授权资源在时域上的起始位置与对所述第一业务数据所在的逻辑信道进行逻辑信道优先级化LCP的起始时间的时间间隔;
    从所述多个上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源为所述多个上行授权资源中第二剩余时间最小的资源。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述上行授权指示的上行授权资源在时域上的位置,确定用于传输第一业务数据的第一上行授权资源,包括:
    根据多个上行授权指示的多个上行授权资源在时域上的结束位置确定所述多个上行授权资源的第一剩余时间,所述第一剩余时间为上行授权资源在时域上的结束位置与正确接收到所述第一业务数据的超时时间的时间间隔;
    从所述多个上行授权资源中确定多个候选的上行授权资源,所述候选的上行授权资源的第一剩余时间大于或等于预先配置的时延门限;
    从所述多个候选的上行授权资源中确定所述第一上行授权资源,所述第一上行授权资源是所述多个候选的上行授权资源中时域位置处于最前面的资源。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一上行授权资源能够传输的比特数大于或等于所述第一业务数据的大小,以及
    所述利用所述第一上行授权资源传输所述第一业务数据,包括:
    利用所述第一上行授权资源传输所述第一业务数据的全部数据。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一上行授权资源能够传输的比特数小于所述第一业务数据的大小,且所述第一业务数据支持分段传输,以及
    所述利用所述第一上行授权资源传输所述第一业务数据,包括:
    利用所述第一上行授权资源传输所述第一业务数据的部分数据。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    利用第二上行授权资源传输第一业务数据的剩余数据中的部分或全部;
    所述第一业务数据的剩余数据是未通过所述第一上行授权资源发送的数据,所述第二上行授权资源为多个上行授权资源中除所述第一上行授权资源之外第二剩余时间最小的资源;或者,所述第二上行授权资源为所述多个上行授权资源中除所述第一上行授权资源之外上行授权最先到达的资源,其中,第二剩余时间为上行授权资源在时域上的起始位置与对所述第一业务数据进行LCP的起始时间的时间间隔。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息指示所述第一业务数据是否支持分段传输。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述上行授权资源为动态调度的资源,或者,所述上行授权资源为预配置的资源。
  12. 一种通信装置,包括用于执行如权利要求1至11中任一项所述方法的各个步骤的单元。
  13. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至11中任一项所述的方法。
  14. 一种可读存储介质,包括程序,所述程序被处理器执行时用于执行如权利要求1至11中任一项所述的方法。
PCT/CN2019/080399 2018-03-30 2019-03-29 通信方法、通信装置和系统 WO2019185014A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19777674.3A EP3764721A4 (en) 2018-03-30 2019-03-29 COMMUNICATION PROCESS, COMMUNICATION DEVICE, AND SYSTEM
US17/034,639 US11457468B2 (en) 2018-03-30 2020-09-28 Communication method, communications apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810291743.7 2018-03-30
CN201810291743.7A CN110324902B (zh) 2018-03-30 2018-03-30 通信方法、通信装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/034,639 Continuation US11457468B2 (en) 2018-03-30 2020-09-28 Communication method, communications apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019185014A1 true WO2019185014A1 (zh) 2019-10-03

Family

ID=68058567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080399 WO2019185014A1 (zh) 2018-03-30 2019-03-29 通信方法、通信装置和系统

Country Status (4)

Country Link
US (1) US11457468B2 (zh)
EP (1) EP3764721A4 (zh)
CN (1) CN110324902B (zh)
WO (1) WO2019185014A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087907A1 (zh) * 2019-11-07 2021-05-14 Oppo广东移动通信有限公司 通信方法及装置
WO2021134298A1 (zh) * 2019-12-30 2021-07-08 Oppo广东移动通信有限公司 一种资源指示方法及装置、通信设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019019004A2 (pt) 2017-03-17 2020-04-14 Ntt Docomo Inc terminal de usuário e método de radiocomunicação
WO2020146265A1 (en) * 2019-01-11 2020-07-16 Google Llc Method for uplink transmission in a 5g nr system
CN116208985A (zh) * 2019-12-13 2023-06-02 北京小米移动软件有限公司 数据处理方法及装置、通信设备及存储介质
CN115038126A (zh) * 2021-03-08 2022-09-09 华为技术有限公司 一种通信方法及设备
WO2024010334A1 (en) * 2022-07-05 2024-01-11 Samsung Electronics Co., Ltd. Method and apparatus for handling enhanced assistance information for scheduling in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970761A (zh) * 2011-09-01 2013-03-13 华为技术有限公司 数据发送方法和用户设备
CN102984802A (zh) * 2012-11-15 2013-03-20 北京创毅讯联科技股份有限公司 资源分配方法与装置
CN103298130A (zh) * 2012-02-27 2013-09-11 鼎桥通信技术有限公司 上行数据传输方法、终端及通信系统
US20170273113A1 (en) * 2015-09-25 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing ul grants including time domain configuration and related wireless terminals and network nodes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638815B2 (en) * 2010-01-08 2014-01-28 Blackberry Limited Method and apparatus for logical channel prioritization for uplink carrier aggregation
CN105407524B (zh) * 2015-10-30 2020-07-24 上海华为技术有限公司 Phr的发送方法和用户终端
US10237889B2 (en) * 2015-12-09 2019-03-19 Qualcomm Incorporated Conditional uplink grant
US10448423B2 (en) * 2017-03-22 2019-10-15 Ofinno, Llc Data multiplexing in a wireless device and wireless network
CN106961741B (zh) * 2017-05-04 2019-11-22 电信科学技术研究院 一种上行资源分配方法和装置
US10736116B2 (en) * 2017-06-15 2020-08-04 Samsung Electronics Co., Ltd. Method and apparatus for an uplink transmission based on a characteristic of physical resources
EP3646502A1 (en) * 2017-08-10 2020-05-06 Ofinno, LLC Uplink control information multiplexing
US20190052414A1 (en) * 2017-08-10 2019-02-14 Alireza Babaei Multiplexing mechanism for uplink control information
US11246154B2 (en) * 2017-09-07 2022-02-08 Comcast Cable Communications, Llc Configured grant and dynamic grant transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970761A (zh) * 2011-09-01 2013-03-13 华为技术有限公司 数据发送方法和用户设备
CN103298130A (zh) * 2012-02-27 2013-09-11 鼎桥通信技术有限公司 上行数据传输方法、终端及通信系统
CN102984802A (zh) * 2012-11-15 2013-03-20 北京创毅讯联科技股份有限公司 资源分配方法与装置
US20170273113A1 (en) * 2015-09-25 2017-09-21 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing ul grants including time domain configuration and related wireless terminals and network nodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Issues on LCP wiht Multiple Numerologies", 3GPP TSG-RAN WG2 #98 R2-1705624, 14 May 2017 (2017-05-14), XP051275947 *
See also references of EP3764721A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021087907A1 (zh) * 2019-11-07 2021-05-14 Oppo广东移动通信有限公司 通信方法及装置
US12058726B2 (en) 2019-11-07 2024-08-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method and apparatus
WO2021134298A1 (zh) * 2019-12-30 2021-07-08 Oppo广东移动通信有限公司 一种资源指示方法及装置、通信设备

Also Published As

Publication number Publication date
US11457468B2 (en) 2022-09-27
EP3764721A4 (en) 2021-02-24
CN110324902B (zh) 2023-06-27
US20210014887A1 (en) 2021-01-14
CN110324902A (zh) 2019-10-11
EP3764721A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US20230379925A1 (en) Methods, systems, and devices for transferring data with different reliabilities
US11800490B2 (en) Methods and apparatuses for autonomous resource selection in new radio vehicle to everything (NR V2X)
WO2019185014A1 (zh) 通信方法、通信装置和系统
TWI770060B (zh) 可撓無線電服務5g nr資料傳輸
US20240323922A1 (en) Systems and methods for sidelink communication
WO2018082501A1 (zh) 一种资源分配方法及终端
EP3206452A1 (en) Priority-optimized sidelink data transfer in the case of autonomous resource allocation in lte prose communication
WO2016165646A1 (zh) 用于无线通信的电子设备和方法
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
US11647417B2 (en) Method, apparatus, computer program product and computer program
US20100272045A1 (en) Method for allocating uplink resources to logical channels in a wireless communication system and related communication device
WO2019149248A1 (zh) 通信的方法和装置
EP3603175B1 (en) Apparatus and method for transmitting packet data units
US12041650B2 (en) Communication method and apparatus
US11991119B2 (en) Communications device, infrastructure equipment and methods
CN114073157A (zh) 信道接入优先级的选择
US10834780B2 (en) Radio terminal and base station
WO2021128350A1 (zh) 一种ue自动传输处理方法及其装置
WO2024168869A1 (en) Wireless communication method and related devices
WO2023138622A1 (zh) 资源配置方法与装置、网络设备和终端设备
WO2024140600A1 (zh) 通信方法、通信装置及通信系统
WO2020090441A1 (ja) 無線通信方法及び無線通信装置
CN116801253A (zh) 一种通信方法和装置
CN116939870A (zh) 一种通信方法及通信装置
CN118542046A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019777674

Country of ref document: EP

Effective date: 20201005