WO2020090441A1 - 無線通信方法及び無線通信装置 - Google Patents

無線通信方法及び無線通信装置 Download PDF

Info

Publication number
WO2020090441A1
WO2020090441A1 PCT/JP2019/040465 JP2019040465W WO2020090441A1 WO 2020090441 A1 WO2020090441 A1 WO 2020090441A1 JP 2019040465 W JP2019040465 W JP 2019040465W WO 2020090441 A1 WO2020090441 A1 WO 2020090441A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wireless communication
logical channel
predetermined data
communication device
Prior art date
Application number
PCT/JP2019/040465
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020090441A1 publication Critical patent/WO2020090441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a wireless communication method and a wireless communication device used in a wireless communication system.
  • the MAC (Medium Access Control) layer selects data to be transmitted in order of priority based on at least the priority set for each of a plurality of logical channels. Logical channel prioritization processing is performed (see Non-Patent Document 1, for example).
  • the MAC layer multiplexes the data selected by the logical channel prioritization process into a data block to be transmitted.
  • the wireless communication method is a method used in a wireless communication device.
  • a MAC entity corresponding to a MAC layer performs a logical channel prioritization process of selecting data to be transmitted in the priority order based on at least a priority set for each of a plurality of logical channels. And that the MAC entity multiplexes the data selected by the logical channel prioritization process into a data block to be transmitted, and the MAC entity responds to the occurrence of predetermined data by the logical channel. Performing an interrupt process to multiplex the predetermined data into the data block without applying a prioritization process to the predetermined data.
  • the wireless communication device has a MAC entity corresponding to the MAC layer.
  • the MAC entity includes a priority assigning unit that performs a logical channel prioritizing process that selects data to be transmitted in the priority order based on at least a priority assigned to each of a plurality of logical channels; Data selected by the grading process, a multiplexing unit that multiplexes the data blocks to be transmitted, and according to the occurrence of predetermined data, without applying the logical channel prioritizing process to the predetermined data, And a MAC control unit that performs an interrupt process for multiplexing the predetermined data in the data block.
  • FIG. 6 is a diagram illustrating an operation of a MAC entity according to an embodiment. It is a figure which shows SR and BSR which concerns on one Embodiment.
  • the present disclosure enables transmission of data whose delay is not allowed with ultra-low delay.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment.
  • This wireless communication system complies with the 5th Generation System (5GS) of the 3GPP standard.
  • 5GS 5th Generation System
  • LTE Long Term Evolution
  • the 5GS 1 includes a user apparatus (UE: User Equipment) 100, a 5G wireless access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network). ) 20 and.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5GC 5G Core Network
  • the UE 100 is a movable wireless communication device.
  • the UE 100 may be any device as long as it is a device used by a user, but for example, the UE 100 includes a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, a communication module (a communication card or a A chipset), a sensor or a device provided in the sensor, a vehicle or a device provided in the vehicle (Vehicle UE), a flying object or a device provided in the flying object (Aerial UE).
  • the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
  • the gNBs 200 are mutually connected via an Xn interface which is an interface between base stations.
  • the gNB 200 manages one or a plurality of cells.
  • the gNB 200 performs wireless communication with the UE 100 that has established a connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a wireless communication area.
  • the “cell” is also used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • gNB can also connect to EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations can also connect to 5GC.
  • the LTE base station and the gNB can also be connected via an inter-base station interface.
  • the 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300.
  • the AMF performs various mobility controls for the UE 100.
  • the AMF manages the mobility of the UE 100 by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF controls data transfer.
  • the AMF and UPF are connected to the gNB 200 via the NG interface which is an interface between the base station and the core network.
  • FIG. 2 is a diagram showing the configuration of the UE 100 (user device).
  • the UE 100 includes a reception unit 110, a transmission unit 120, and a control unit 130.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 130.
  • the transmission unit 120 performs various types of transmission under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits the radio signal from the antenna.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor performs modulation / demodulation and coding / decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various kinds of processing.
  • FIG. 3 is a diagram showing the configuration of the gNB 200 (base station).
  • the gNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various types of transmission under the control of the control unit 230.
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from the antenna.
  • the receiving unit 220 performs various types of reception under the control of the control unit 230.
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts a radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal to the control unit 230.
  • the control unit 230 performs various controls in the gNB 200.
  • the control unit 230 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and coding / decoding of baseband signals.
  • the CPU executes programs stored in the memory to perform various kinds of processing.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • the backhaul communication unit 240 is connected to the AMF / UPF 300 via a base station-core network interface.
  • the gNB may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and both units may be connected by an F1 interface.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a wireless interface of a user plane that handles data.
  • the radio interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. It has an SDAP (Service Data Adaptation Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • PHY layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted via the physical channel between the PHY layer of the UE 100 and the PHY layer of the gNB 200.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control information are transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the gNB 200.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the transport format (transport block size, modulation / coding method (MCS)) of the uplink and downlink and the resource block allocated to the UE 100.
  • MCS modulation / coding method
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted via the logical channel between the RLC layer of the UE 100 and the RLC layer of the gNB 200.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the SDAP layer maps the IP flow, which is the unit in which the core network performs QoS control, and the radio bearer, which is the unit in which AS (Access Stratum) performs QoS control.
  • SDAP may be omitted.
  • FIG. 5 is a diagram showing a configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signal).
  • the protocol stack of the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the gNB 200.
  • the RRC layer controls logical channels, transport channels and physical channels according to establishment, re-establishment and release of radio bearers.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC connected mode.
  • RRC connection no connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC idle mode.
  • the NAS layer which is located above the RRC layer, performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF 300.
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • FIG. 6 is a diagram showing an assumed scenario according to one embodiment.
  • the industrial network 30 has a 5GS 1 and a plurality of industrial devices 31. At least a part of the industrial network 30 may be provided in the factory.
  • the industrial equipment 31 is a programmable logic controller (PLC), a servo controller, a servo motor, an encoder, a sensor, or the like.
  • PLC programmable logic controller
  • the industrial equipment 31 is connected to the UE 100 or UPF shown in FIG. 1 via a gateway device (having a protocol conversion function) or the like.
  • the UE 100 or UPF may have a protocol conversion function.
  • the industrial network 30 may be applied with TSN (Time Sensitive Networking), which is a standard for industrial Ethernet (registered trademark) configured by the IEEE 802.1 series.
  • TSN is positioned above the PHY layer and the MAC layer of Ethernet (registered trademark).
  • the data generated by the industrial device 31 is transmitted by wire communication using TSN, the transmitted data is received by the UE 100, and the received data is transmitted by wireless communication to the gNB 200.
  • FIG. 7 is a figure which shows the structure of the MAC entity 150 of UE100 which concerns on one Embodiment.
  • the MAC entity 150 is an entity corresponding to the MAC layer of 5GS. In the following, uplink transmission will be mainly described.
  • the MAC entity 150 includes a priority assigning unit 150A that performs a logical channel prioritization process (Logical Channel Priority), a multiplexing unit 150B that performs a multiplexing process, and an HARQ that performs HARQ. It has a unit 150C and a MAC control unit 150D that controls each of these processes (Control).
  • a priority assigning unit 150A that performs a logical channel prioritization process (Logical Channel Priority)
  • a multiplexing unit 150B that performs a multiplexing process
  • HARQ that performs HARQ. It has a unit 150C and a MAC control unit 150D that controls each of these processes (Control).
  • the prioritizing unit 150A selects data to be transmitted in order of priority based on at least the priorities set for each of the plurality of logical channels.
  • Logical channels input to the prioritization unit 150A include CCCH (Common Control Channel), multiple DCCHs (Dedicated Control Channel), and multiple DTCHs (Dedicated Traffic Channel).
  • CCCH Common Control Channel
  • DCCHs Dedicated Control Channel
  • DTCHs Dedicated Traffic Channel
  • CCCH is a logical channel for transmitting control information common to UEs that do not have an RRC connection.
  • the DCCH is a logical channel for transmitting UE-specific (UE-specific) control information.
  • the DTCH is a logical channel for transmitting UE-dedicated (UE-specific) data.
  • the logical channel prioritization process performed on a plurality of DTCHs will be mainly described.
  • the prioritization unit 150A maps each logical channel to a transport channel, specifically, to a data block (TB: Transport Block) transmitted by the PHY layer, so as to map the priority of each logical channel and the radio bearer.
  • the transmission priority of transmission data is determined in consideration of the transmission bit rate (Priority Bit Rate: PBR) that must be transmitted within a certain period in consideration of QoS.
  • PBR Primary Bit Rate
  • the priority assigning unit 150A maps data having a high transmission priority at the time when the UE 100 receives the uplink grant (that is, the uplink radio resource allocation) from the gNB 200 to the transport channel.
  • the MAC control unit 150D acquires information such as a logical channel number corresponding to each radio bearer, a priority of each logical channel, and PBR from the RRC layer when connecting to the gNB 200.
  • the multiplexing unit 150B multiplexes the data selected by the logical channel prioritizing process of the prioritizing unit 150A into a data block (transport channel) to be transmitted. Specifically, the data block is generated by sequentially storing the data output from the priority assigning unit 150A in the data block.
  • the data block is sometimes called a MAC PDU (Protocol Data Unit) or a transport block.
  • HARQ section 150C transmits a data block while applying HARQ to the data block output from multiplexing section 150B.
  • the MAC control unit 150D performs interrupt processing for multiplexing predetermined data into data blocks without applying logical channel prioritization processing to predetermined data in response to generation of predetermined data.
  • the predetermined data is data in which delay is not allowed.
  • the delay due to the logical channel prioritization process can be suppressed, so that data that cannot be delayed can be transmitted with an ultra-low delay.
  • the predetermined data may be data associated with a higher priority than any other data transmitted by the UE 100.
  • a dedicated radio bearer may be set for the predetermined data.
  • a radio bearer is mapped one-to-one with a logical channel.
  • the radio bearer dedicated to the predetermined data may be a radio bearer directly indicated to be super-priority at the time of setting the RRC from the gNB 200 to the UE 100, or may be a value indicating super-priority. It may be an associated radio bearer.
  • this “value” may be an identifier indicating super priority or highest priority, or may be a numerical value having a special meaning such as 0 or 8.
  • the predetermined data may be data generated by the industrial device 31 as shown in FIG.
  • the data generated by the industrial device 31 is processed and transmitted by the user plane protocol stack shown in FIG. 4 as upper layer data of the UE 100.
  • the predetermined data may be data generated by the industrial device 31 as shown in FIG. 6 and data to which TSN is applied. For example, in the user plane protocol, an operation of analyzing the TSN information part (TSN header) and determining whether the packet is a TSN applicable packet may be performed.
  • TSN header TSN information part
  • the predetermined data may be data belonging to a specific logical channel included in a plurality of logical channels.
  • the predetermined data may be data belonging to a specific DTCH included in the plurality of DTCHs shown in FIG. 7.
  • the MAC control unit 150D may perform the interrupt processing in response to the data belonging to the specific logical channel being input to the MAC entity 150.
  • the interrupt process may be regarded as a transparent mode (TM: Transparent Mode) of the logical channel prioritization process.
  • TM Transparent Mode
  • the MAC control unit 150D stops the logical channel prioritization process and transfers the predetermined data to the multiplexing unit 150B via the prioritization unit 150A.
  • the MAC control unit 150D may input the predetermined data to the multiplexing unit 150B while bypassing the priority assigning unit 150A. In this case, it may be regarded as a bypass mode of the logical channel prioritization process.
  • the predetermined data may be data belonging to a specific logical channel different from the existing logical channel.
  • the specific logical channel is a logical channel to which the logical channel prioritization process is not applied.
  • a new logical channel may be defined separately from DTCH, and the interrupt processing may be applied to the data belonging to the new logical channel.
  • the new logical channel may be a logical channel that is input to the multiplexing unit 150B without passing through the priority assigning unit 150A.
  • the new logical channel may be a DTCH for TSN (TSN-DTCH).
  • TSN-DTCH may be associated with a TSN bearer that is a new bearer for TSN.
  • TSN bearer may be automatically applied with the LCP TM mode or bypass mode.
  • FIG. 8 is a diagram showing an operation of the MAC entity 150 according to the embodiment.
  • step S1 the MAC control unit 150D confirms whether or not predetermined data has been input to the MAC entity 150.
  • the prioritizing unit 150A performs a logical channel prioritizing process in step S2.
  • the data after the logical channel prioritization processing is multiplexed into the data block by the multiplexing unit 150B (step S3).
  • the MAC control unit 150D multiplexes the predetermined data into the data block without performing the logical channel prioritization process in step S3.
  • the multiplexing unit 150B is controlled so as to be converted.
  • FIG. 9 is a diagram showing an SR and a BSR according to an embodiment.
  • the MAC entity 150 of the UE 100 has a function of notifying the data amount of the transmission buffer corresponding to each logical channel by BSR.
  • the gNB 200 allocates the uplink radio resource to the UE 100 based on the BSR.
  • the MAC entity 150 allocates each logical channel to a logical channel group (LCG: Logical Channel Group), and notifies the gNB 200 of a transmission buffer amount for each LCG as a MAC layer message.
  • LCG Logical Channel Group
  • BSR BSR triggered and notified.
  • the BSR may be triggered and notified when the periodic timer expires.
  • the MAC entity 150 instructs the PHY layer to transmit the SR.
  • the MAC entity 150 transmits the BSR after the radio resource is allocated.
  • the PHY layer When the PHY layer is instructed to transmit the SR by the MAC entity 150, the PHY layer transmits the SR using the physical uplink control channel (PUCCH). If the physical uplink control channel PUCCH for SR transmission is not allocated, the PHY layer requests resource allocation using the physical random access channel (PRACH).
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may transmit an SR that can identify the occurrence of the predetermined data when the predetermined data occurs.
  • an SR having a new format different from the normal SR used when data other than the predetermined data is generated is defined, and the generation of the predetermined data is notified to the gNB 200 by the new SR.
  • the gNB 200 can allocate the radio resource with the highest priority.
  • a PUCCH resource dedicated to the new SR may be set in the new SR.
  • the new SR may be defined as an SR for TSN (TSN-SR).
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may transmit a BSR capable of identifying that the predetermined data has occurred, in response to the generation of the predetermined data.
  • a BSR having a new format different from the normal BSR used when data other than the predetermined data is generated is defined, and the generation of the predetermined data is notified to the gNB 200 by the new BSR.
  • the SR for transmitting this new BSR may be the above new SR.
  • the new BSR may be defined as a BSR for TSN (TSN-BSR).
  • the existing BSR may include an identifier indicating a super-priority LCH (LCG).
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may simultaneously transmit (trigger) a normal BSR when transmitting (triggering) such a newly defined BSR. These two BSRs may be multiplexed in the same MAC PDU (that is, transmitted at the same time).
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 immediately transmits SR and / or BSR in response to the generation of predetermined data.
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may invalidate the timer for prohibiting the current SR transmission until a certain time has elapsed since the previous SR transmission. That is, the MAC entity 150 (MAC control unit 150D) of the UE 100 may be able to transmit the SR of this time even before a certain period of time has elapsed since the transmission of the previous SR when predetermined data occurs.
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may invalidate the timer for prohibiting the transmission (trigger) of the SR for transmitting the normal BSR (Regular BSR).
  • a timer can be set for each logical channel by RRC, and is sometimes called a logicalChannelSR-DelayTimer.
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may be capable of transmitting the SR this time even when the logicalChannelSR-DelayTimer is operating when the predetermined data occurs.
  • the MAC entity 150 (MAC control unit 150D) of the UE 100 may invalidate the process of transmitting the BSR based on the trigger condition using the LCG group priority. For example, the MAC entity 150 (MAC control unit 150D) of the UE 100 transmits the BSR based on the trigger condition that does not use the group priority when the predetermined data occurs. That is, the MAC entity 150 (MAC control unit 150D) of the UE 100 triggers the BSR without performing the BSR trigger determination based on the LCG group priority. The MAC entity 150 (MAC control unit 150D) of the UE 100 may transmit (trigger) a BSR when new data arrives in a logical channel or super-priority bearer that does not belong to the LCG.
  • the operation in the UE 100 has been mainly described, but the configuration and operation according to the above-described embodiment may be applied to an IAB node, which is a type of wireless relay station.
  • the IAB node may perform the operation of the UE 100 described in the above embodiment.
  • the IAB node has a terminal function (MT function) for communicating with the parent node, and the configuration and operation according to the above-described embodiment are applied to this terminal function (MT function). You may.
  • MT function terminal function
  • a program that causes a computer to execute each process performed by the UE 100 or the gNB 200 may be provided.
  • the program may be recorded in a computer-readable medium.
  • a computer readable medium can be used to install the program on a computer.
  • the computer-readable medium in which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the gNB 200 may be integrated, and at least a part of the UE 100 or the gNB 200 may be configured as a semiconductor integrated circuit (chip set, SoC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信方法は、MACレイヤに対応するMACエンティティが、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを前記優先度順に選択する論理チャネル優先度付け処理を行うことと、前記MACエンティティが、前記論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化することと、前記MACエンティティが、所定のデータの発生に応じて、前記論理チャネル優先度付け処理を前記所定のデータに適用することなく、前記所定のデータを前記データブロックに多重化させる割り込み処理を行うことと、を含む。

Description

無線通信方法及び無線通信装置
 本発明は、無線通信システムに用いる無線通信方法及び無線通信装置に関する。
 3GPP(3rd Generation Partnership Project)規格に基づく無線通信システムにおいて、MAC(Medium Access Control)レイヤは、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを優先度順に選択する論理チャネル優先度付け処理を行う(例えば、非特許文献1参照)。MACレイヤは、論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化する。
3GPP技術仕様書 「TS38.300 V15.3.0」 2018年9月、インターネット<URL: http://www.3gpp.org/ftp//Specs/archive/38_series/38.300/38300-f30.zip>
 第1の態様に係る無線通信方法は、無線通信装置において用いる方法である。前記無線通信方法は、MACレイヤに対応するMACエンティティが、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを前記優先度順に選択する論理チャネル優先度付け処理を行うことと、前記MACエンティティが、前記論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化することと、前記MACエンティティが、所定のデータの発生に応じて、前記論理チャネル優先度付け処理を前記所定のデータに適用することなく、前記所定のデータを前記データブロックに多重化させる割り込み処理を行うことと、を含む。
 第2の態様に係る無線通信装置は、MACレイヤに対応するMACエンティティを有する。前記MACエンティティは、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを前記優先度順に選択する論理チャネル優先度付け処理を行う優先度付け部と、前記論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化する多重化部と、所定のデータの発生に応じて、前記論理チャネル優先度付け処理を前記所定のデータに適用することなく、前記所定のデータを前記データブロックに多重化させる割り込み処理を行うMAC制御部とを備える。
一実施形態に係る無線通信システムの構成を示す図である。 一実施形態に係るユーザ装置の構成を示す図である。 一実施形態に係る基地局の構成を示す図である。 一実施形態に係るユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 一実施形態に係る制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 一実施形態に係る想定シナリオを示す図である。 一実施形態に係るMACエンティティの構成を示す図である。 一実施形態に係るMACエンティティの動作を示す図である。 一実施形態に係るSR及びBSRを示す図である。
 近年、3GPP規格に基づく無線通信システムを産業用ネットワークに導入し、産業用ネットワークの少なくとも一部を無線化することが検討されている。
 しかしながら、産業用ネットワークは厳密なリアルタイム動作が要求されるため、MACレイヤの処理に起因する遅延が許容されない懸念がある。
 そこで、本開示は、遅延が許容されないデータを超低遅延で送信可能とする。
 図面を参照しながら、一実施形態に係る無線通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (無線通信システムの構成)
 まず、一実施形態に係る無線通信システムの構成について説明する。図1は、一実施形態に係る無線通信システムの構成を示す図である。この無線通信システムは、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、無線通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。
 図1に示すように、5GS1は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、UE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 図3は、gNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間はF1インターフェイスで接続されてもよい。
 図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式
(MCS))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図5に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッドモードである。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドルモードである。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (産業用ネットワーク)
 次に、一実施形態に係る産業用ネットワークについて説明する。一実施形態において、5GS1を産業用ネットワークに導入し、産業用ネットワークの少なくとも一部を無線化するシナリオを想定する。
 図6は、一実施形態に係る想定シナリオを示す図である。
 図6に示すように、産業用ネットワーク30は、5GS1と複数の産業用機器31とを有する。産業用ネットワーク30の少なくとも一部は、工場内に設けられてもよい。産業用機器31は、プログラマブルロジックコントローラ(PLC)、サーボコントローラ、サーボモータ、エンコーダ、又はセンサ等である。産業用機器31は、ゲートウェイ装置(プロトコル変換機能を有する)等を介して、図1に示したUE100又はUPF等に接続される。UE100又はUPFがプロトコル変換機能を有していてもよい。
 産業用ネットワーク30には、IEEE 802.1シリーズで構成される産業用イーサネット(登録商標)の規格であるTSN(Time Sensitive Networking)が適用されうる。TSNは、イーサネット(登録商標)のPHYレイヤ及びMACレイヤの上位のレイヤに位置付けられる。例えば、産業用機器31により生成されたデータはTSNを用いて有線通信により送信され、送信されたデータをUE100が受信し、受信されたデータを無線通信によりgNB200に送信する。
 (MACエンティティ)
 次に、一実施形態に係るMACエンティティについて説明する。図7は、一実施形態に係るUE100のMACエンティティ150の構成を示す図である。MACエンティティ150は、5GSのMACレイヤに対応するエンティティである。以下において、上りリンク送信について主として説明する。
 図7に示すように、MACエンティティ150は、論理チャネル優先度付け処理(Logical Channel Prioritization)を行う優先度付け部150Aと、多重化処理(Multiplexing)を行う多重化部150Bと、HARQを行うHARQ部150Cと、これら各処理の制御(Control)を行うMAC制御部150Dとを有する。
 優先度付け部150Aは、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを優先度順に選択する。
 優先度付け部150Aに入力される論理チャネルは、CCCH(Common Control Channel)と、複数のDCCH(Dedicated Control Channel)と、複数のDTCH(Dedicated Traffic Channel)とを含む。
 CCCHは、RRC接続を有しないUE共通の制御情報を伝送するための論理チャネルである。DCCHは、UE専用(UE個別)の制御情報を伝送するための論理チャネルである。DTCHは、UE専用(UE個別)のデータを伝送するための論理チャネルである。以下において、複数のDTCHに対して行う論理チャネル優先度付け処理について主として説明する。
 優先度付け部150Aは、各論理チャネルをトランスポートチャネル、具体的には、PHYレイヤが送信するデータブロック(TB:Transport Block)にマッピングするために、各論理チャネルの優先度、及び無線ベアラのQoSを考慮した一定期間内に送信しなければならない送信ビットレート(Prioritized Bit Rate:PBR)を考慮して、送信データの送信優先順位を決定する。
 優先度付け部150Aは、UE100がgNB200から上りリンクグラント(すなわち、上りリンク無線リソース割当)を受信した時点での送信優先順位の高いデータからトランスポートチャネルにマッピングを行う。なお、MAC制御部150Dは、gNB200との接続時に、RRCレイヤから、各無線ベアラに対応する論理チャネル番号、各論理チャネルの優先度、及びPBR等の情報を取得する。
 多重化部150Bは、優先度付け部150Aの論理チャネル優先度付け処理により選択されたデータを、送信するデータブロック(トランスポートチャネル)に多重化する。具体的には、優先度付け部150Aから出力するデータをデータブロックに順次格納することにより、データブロックを生成する。データブロックは、MAC PDU(Protocol Data Unit)又はトランスポートブロックと呼ばれることがある。
 HARQ部150Cは、多重化部150Bが出力するデータブロックにHARQを適用しつつデータブロックを送信する。
 MAC制御部150Dは、所定のデータの発生に応じて、論理チャネル優先度付け処理を所定のデータに適用することなく、所定のデータをデータブロックに多重化させる割り込み処理を行う。ここで、所定のデータは、遅延が許容されないデータである。
 このような割り込み処理を行うことにより、論理チャネル優先度付け処理に起因する遅延を抑制できるため、遅延が許容されないデータを超低遅延で送信できる。
 所定のデータは、UE100が送信する他のどのデータよりも高い優先度が対応付けられたデータであってもよい。所定のデータに対して、当該所定のデータに専用の無線ベアラが設定されてもよい。通常、無線ベアラは論理チャネルと1対1でマッピングされる。所定のデータに専用の無線ベアラは、gNB200からUE100へのRRCの設定時に、超優先であることが直接的に示された無線ベアラであってもよいし、超優先であることを示す値が対応付けられた無線ベアラであってもよい。ここで、この”値”は、超優先や最高優先を示す識別子であってもよく、0や8など特別な意味を持つ数値であってもよい。
 所定のデータは、図6に示すような産業用機器31により生成されたデータであってもよい。産業用機器31により生成されたデータは、UE100の上位レイヤデータとして、図4に示したユーザプレーンのプロトコルスタックにより処理及び送信される。所定のデータは、図6に示すような産業用機器31により生成されたデータであって、且つTSNが適用されたデータであってもよい。例えば、ユーザプレーンプロトコルの中で、TSN情報部(TSNヘッダ)を分析し、TSN適用パケットか否かを判定するような動作が行われてもよい。
 所定のデータは、複数の論理チャネルに含まれる特定の論理チャネルに属するデータであってもよい。例えば、所定のデータは、図7に示す複数のDTCHに含まれる特定のDTCHに属するデータであってもよい。MAC制御部150Dは、特定の論理チャネルに属するデータがMACエンティティ150に入力されたことに応じて、上記割り込み処理を行ってもよい。
 なお、上記割り込み処理は、論理チャネル優先度付け処理の透過モード(TM:Transparent Mode)とみなしてもよい。MAC制御部150Dは、所定のデータを検知した際に、論理チャネル優先度付け処理を停止させつつ、所定のデータを、優先度付け部150Aを介して多重化部150Bに転送させる。
 MAC制御部150Dは、所定のデータを検知した際に、優先度付け部150Aを迂回(バイパス)させつつ所定のデータを多重化部150Bに入力してもよい。この場合、論理チャネル優先度付け処理のバイパスモードとみなしてもよい。
 或いは、所定のデータは、既存の論理チャネルとは別の特定の論理チャネルに属するデータであってもよい。特定の論理チャネルは、論理チャネル優先度付け処理が適用されない論理チャネルである。例えば、DTCHとは別に新たな論理チャネルを定義し、当該新たな論理チャネルに属するデータに対して上記割り込み処理が適用されてもよい。当該新たな論理チャネルは、優先度付け部150Aを介さずに多重化部150Bに入力される論理チャネルであってもよい。
 ここで、新たな論理チャネルは、TSN向けのDTCH(TSN-DTCH)であってもよい。TSN-DTCHは、TSN向けの新たなベアラであるTSNベアラと紐づいていてもよい。
 なお、この新たなベアラ(TSNベアラ)に紐づいた通常のDTCHは、LCPのTMモードやバイパスモードが自動適用されるとしてもよい。
 図8は、一実施形態に係るMACエンティティ150の動作を示す図である。
 図8に示すように、ステップS1において、MAC制御部150Dは、MACエンティティ150に所定のデータが入力されたか否かを確認する。
 MACエンティティ150に所定のデータが入力されていない場合(ステップS1:NO)、ステップS2において、優先度付け部150Aは、論理チャネル優先度付け処理を行う。この場合、論理チャネル優先度付け処理後のデータが多重化部150Bによりデータブロックに多重化される(ステップS3)。
 一方、MACエンティティ150に所定のデータが入力された場合(ステップS1:YES)、ステップS3において、MAC制御部150Dは、論理チャネル優先度付け処理を行うことなく、所定のデータをデータブロックに多重化するように多重化部150Bを制御する。
 (SR及びBSR)
 次に、一実施形態に係る割当要求(SR:Scheduling Request)及びバッファ状態報告(BSR)について説明する。図9は、一実施形態に係るSR及びBSRを示す図である。
 UE100のMACエンティティ150は、各論理チャネルに対応する送信バッファのデータ量をBSRにより通知する機能を有する。gNB200は、BSRに基づいてUE100に上りリンク無線リソースを割り当てる。BSRでは、MACエンティティ150は、各論理チャネルを論理チャネルグループ(LCG:Logical Channel Group)に割り当て、各LCGに対する送信バッファ量をMACレイヤのメッセージとしてgNB200に通知する。
 BSRがトリガされる条件として、いくつかの条件がある。例えば、送信可能なデータが発生し、更に、このデータが送信バッファにあるデータより論理チャネルの優先度が高い場合にBSRがトリガされ、BSRを通知する。また、定期的なタイマが満了した場合にBSRがトリガされ、BSRを通知してもよい。
 また、BSRがトリガされた場合にBSRを通知するための無線リソース(物理上りリンク共用チャネル:PUSCH)が割り当てられていない場合、MACエンティティ150は、PHYレイヤにSRを送信するように指示する。MACエンティティ150は、無線リソースが割り当てられてから、BSRを送信する。
 PHYレイヤは、MACエンティティ150からSRの送信を指示された場合、物理上りリンク制御チャネル(PUCCH)を使用してSRを送信する。なお、PHYレイヤは、SR送信のための物理上りリンク制御チャネルPUCCHを割り当てられていない場合、物理ランダムアクセスチャネル(PRACH)を使用してリソース割当を要求する。
 このような前提下において、UE100のMACエンティティ150(MAC制御部150D)は、所定のデータが発生した場合に、所定のデータが発生したことを識別可能なSRを送信してもよい。例えば、所定のデータ以外のデータ発生時に用いる通常のSRとは異なる新たなフォーマットを有するSRを定義し、この新たなSRにより、所定のデータの発生をgNB200に通知する。これにより、gNB200は、無線リソースを最優先で割り当てることができる。新たなSRには、新たなSRに専用のPUCCHリソースが設定されてもよい。また、新たなSRは、TSN向けのSR(TSN-SR)として定義されてもよい。
 また、UE100のMACエンティティ150(MAC制御部150D)は、所定のデータの発生に応じて、所定のデータが発生したことを識別可能なBSRを送信してもよい。例えば、所定のデータ以外のデータ発生時に用いる通常のBSRとは異なる新たなフォーマットを有するBSRを定義し、この新たなBSRにより、所定のデータの発生をgNB200に通知する。これにより、gNB200は、無線リソースを最優先で割り当てることができる。この新たなBSRを送信するためのSRは、上記新たなSRであってもよい。また、新たなBSRは、TSN向けのBSR(TSN-BSR)として定義されてもよい。或いは、既存のBSRに、超優先LCH(LCG)を示す識別子が含まれていてもよい。
 ここで、UE100のMACエンティティ150(MAC制御部150D)は、このような新たに定義されたBSRを送信(トリガ)する際に、通常のBSRを同時に送信(トリガ)してもよい。これら2つのBSRは同一のMAC PDUに多重化されてもよい(つまり、同時に送信する)。
 UE100のMACエンティティ150(MAC制御部150D)は、所定のデータの発生に応じて、SR及び/又はBSRを直ちに送信することが好ましい。
 例えば、UE100のMACエンティティ150(MAC制御部150D)は、前回のSRの送信から一定時間が経過するまで今回のSRの送信を禁止するためのタイマを無効化してもよい。すなわち、UE100のMACエンティティ150(MAC制御部150D)は、所定のデータが発生した場合、前回のSRの送信から一定時間が経過する前であっても今回のSRを送信可能としてもよい。
 また、UE100のMACエンティティ150(MAC制御部150D)は、通常のBSR(Regular BSR)を送信するためのSRを送信(トリガ)することを禁止するためのタイマを無効化してもよい。このようなタイマは、RRCにより論理チャネルごとに設定可能であり、logicalChannelSR-DelayTimerと呼ばれることがある。UE100のMACエンティティ150(MAC制御部150D)は、所定のデータが発生した場合、logicalChannelSR-DelayTimerが動作中であっても今回のSRを送信可能としてもよい。
 或いは、UE100のMACエンティティ150(MAC制御部150D)は、LCGのグループ優先度を用いるトリガ条件に基づいてBSRを送信する処理を無効化してもよい。例えば、UE100のMACエンティティ150(MAC制御部150D)は、所定のデータが発生した場合、グループ優先度を用いないトリガ条件に基づいてBSRを送信する。すなわち、UE100のMACエンティティ150(MAC制御部150D)は、LCGのグループ優先度に基づくBSRトリガ判断を行わずにBSRをトリガする。UE100のMACエンティティ150(MAC制御部150D)は、LCGに属さない論理チャネル又は超優先ベアラに新たなデータが来た場合に、BSRを送信(トリガ)してもよい。
 (その他の実施形態)
 上述した実施形態において、UE100におけるMACエンティティ150の動作として、上りリンクの動作を主として説明したが、上りリンクに限定されるものではなく、例えばサイドリンクに対して、上述した実施形態に係る構成及び動作を適用してもよい。
 また、上述した実施形態において、UE100における動作について主として説明したが、無線中継局の一種であるIABノードに対して、上述した実施形態に係る構成及び動作を適用してもよい。換言すれば、IABノードが、上述した実施形態で説明されたUE100の動作を行ってもよい。具体的には、IABノードは、親ノードと通信するための端末機能(MT機能)を有しており、この端末機能(MT機能)に対して、上述した実施形態に係る構成及び動作を適用してもよい。
 また、上述した実施形態において、5GS1を産業用ネットワーク30に適用する一例について説明したが、5GS1が産業用ネットワーク30に適用されない場合であっても、上述した実施形態に係る構成及び動作を実施可能である。
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、日本国特許出願第2018-205456号(2018年10月31日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。

Claims (11)

  1.  無線通信装置において用いる無線通信方法であって、
     MACレイヤに対応するMACエンティティが、複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを前記優先度順に選択する論理チャネル優先度付け処理を行うことと、
     前記MACエンティティが、前記論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化することと、
     前記MACエンティティが、所定のデータの発生に応じて、前記論理チャネル優先度付け処理を前記所定のデータに適用することなく、前記所定のデータを前記データブロックに多重化させる割り込み処理を行うことと、を含む
     無線通信方法。
  2.  前記所定のデータは、前記無線通信装置が送信する他のどのデータよりも高い優先度が対応付けられたデータである
     請求項1に記載の無線通信方法。
  3.  前記無線通信装置は、産業用機器を含む産業用ネットワークにおいて用いられ、
     前記所定のデータは、前記産業用機器により生成されたデータである
     請求項1に記載の無線通信方法。
  4.  前記所定のデータは、前記複数の論理チャネルに含まれる特定の論理チャネルに属するデータであり、
     前記割り込み処理を行うことは、前記特定の論理チャネルに属するデータが前記MACエンティティに入力されたことに応じて、前記割り込み処理を行うことを含む
     請求項1に記載の無線通信方法。
  5.  前記所定のデータは、前記複数の論理チャネルとは別の特定の論理チャネルに属するデータであり、
     前記特定の論理チャネルは、前記論理チャネル優先度付け処理が適用されない論理チャネルである
     請求項1に記載の無線通信方法。
  6.  前記無線通信装置に対する無線リソースの割り当てを要求する割当要求を前記無線通信装置から基地局に送信することをさらに含み、
     前記割当要求を送信することは、前記所定のデータが発生した場合に、前記所定のデータが発生したことを識別可能な割当要求を送信することを含む
     請求項1に記載の無線通信方法。
  7.  前記無線通信装置における未送信データの量を示すバッファ状態報告を前記無線通信装置から基地局に送信することをさらに含み、
     前記バッファ状態報告を送信することは、前記所定のデータの発生に応じて、前記所定のデータが発生したことを識別可能なバッファ状態報告を送信することを含む
     請求項1に記載の無線通信方法。
  8.  前記所定のデータの発生に応じて、前記無線通信装置に対する無線リソースの割り当てを要求する割当要求及び/又は前記無線通信装置における未送信データの量を示すバッファ状態報告を直ちに送信することをさらに含む
     請求項1に記載の無線通信方法。
  9.  前回の割当要求の送信から一定時間が経過するまで、今回の割当要求の送信を禁止することと、
     前記所定のデータが発生した場合、前記前回の割当要求の送信から一定時間が経過する前であっても前記今回の割当要求を送信することと、をさらに含む
     請求項8に記載の無線通信方法。
  10.  複数の論理チャネルグループのそれぞれのグループ優先度を用いるトリガ条件に基づいて、前記バッファ状態報告を前記無線通信装置から基地局に送信することと、
     前記所定のデータが発生した場合、前記グループ優先度を用いないトリガ条件に基づいて、前記バッファ状態報告を前記無線通信装置から基地局に送信することと、をさらに含む
     請求項8に記載の無線通信方法。
  11.  MACレイヤに対応するMACエンティティを有する無線通信装置であって、
     前記MACエンティティは、
     複数の論理チャネルのそれぞれに設定された優先度に少なくとも基づいて、送信するデータを前記優先度順に選択する論理チャネル優先度付け処理を行う優先度付け部と、
     前記論理チャネル優先度付け処理により選択されたデータを、送信するデータブロックに多重化する多重化部と、
     所定のデータの発生に応じて、前記論理チャネル優先度付け処理を前記所定のデータに適用することなく、前記所定のデータを前記データブロックに多重化させる割り込み処理を行うMAC制御部と、を備える
     無線通信装置。
PCT/JP2019/040465 2018-10-31 2019-10-15 無線通信方法及び無線通信装置 WO2020090441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205456 2018-10-31
JP2018-205456 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090441A1 true WO2020090441A1 (ja) 2020-05-07

Family

ID=70462247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040465 WO2020090441A1 (ja) 2018-10-31 2019-10-15 無線通信方法及び無線通信装置

Country Status (1)

Country Link
WO (1) WO2020090441A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP, NR; Medium Access Control(MAC) protocol specification (Release 15", 3GPP TS 38.321, 25 September 2018 (2018-09-25), pages 32 - 33, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/38_series/38.321/38321-f30.zip> [retrieved on 20191113] *
CMCC: "Discussion on L2 functions reuse in IIoT", 3GPP TSG RAN WG2 #103BIS R2-1815275, 28 September 2018 (2018-09-28), pages 2, XP051524630, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_103bis/Docs/R2-1815275.zip> [retrieved on 20191113] *
ERICSSON: "Intra-UE prioritization", 3GPP TSG RAN WG2 #103BIS R2-1814812, 27 September 2018 (2018-09-27), pages 2, XP051524195, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_103bis/Docs/R2-1814812.zip> [retrieved on 20191113] *
SONY: "UL Intra-UE Prioritization and multiplexing", 3GPP TSG RAN WG2 #103BIS R2-1814739, 27 September 2018 (2018-09-27), pages 1 - 2, XP051524128, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_103bis/Docs/R2-1814739.zip> [retrieved on 20191113] *

Similar Documents

Publication Publication Date Title
CA2985621C (en) Uplink data splitting
CN110856243B (zh) 无线电通信系统、基站、无线电终端及其方法
US20230308936A1 (en) Method and apparatus for transmitting data and communication system
CN110324902B (zh) 通信方法、通信装置和系统
RU2015122423A (ru) Способ передачи данных, базовая станция и пользовательское оборудование
JP2019092200A (ja) 基地局
CN107113821B (zh) 上行数据传输的方法和装置
WO2017183654A1 (ja) 無線端末及び基地局
US20230016369A1 (en) Communication control method and user equipment
WO2009039762A1 (fr) Méthode de mise en oeuvre d&#39;une combinaison de macro-diversités et système et appareil associés
KR20200080285A (ko) 방법, 장치, 컴퓨터 프로그램 제품 및 컴퓨터 프로그램
CN108307450A (zh) 一种数据传输方法、装置和系统
CN111448817A (zh) 提供ue能力以支持承载上的安全保护的系统和方法
US20180255610A1 (en) Radio terminal, processor, and network device
JP2024123178A (ja) ユーザ機器および基地局
EP3562235B1 (en) Service data transmission method and communication node
WO2017169064A1 (ja) 無線アクセスネットワークノード、無線端末、ネットワークノード、及びこれらの方法
JP6799610B2 (ja) 無線端末及び基地局
WO2014192629A1 (ja) ユーザ端末、基地局及びプロセッサ
JP7361201B2 (ja) 通信制御方法及び中継ユーザ装置
WO2020090441A1 (ja) 無線通信方法及び無線通信装置
EP3914009A1 (en) Buffer status report enhancement
US12133253B2 (en) User equipment and base station
WO2024029519A1 (ja) 通信制御方法
WO2023286696A1 (ja) 通信方法、ユーザ装置、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP