WO2023137876A1 - 一种用于合成新型氘代氰基类化合物的中间体的制备方法 - Google Patents

一种用于合成新型氘代氰基类化合物的中间体的制备方法 Download PDF

Info

Publication number
WO2023137876A1
WO2023137876A1 PCT/CN2022/084718 CN2022084718W WO2023137876A1 WO 2023137876 A1 WO2023137876 A1 WO 2023137876A1 CN 2022084718 W CN2022084718 W CN 2022084718W WO 2023137876 A1 WO2023137876 A1 WO 2023137876A1
Authority
WO
WIPO (PCT)
Prior art keywords
deuterated
solvent
pharmaceutical intermediate
methanol
borodeuteride
Prior art date
Application number
PCT/CN2022/084718
Other languages
English (en)
French (fr)
Inventor
黄才古
徐天祥
曾维霖
Original Assignee
广州谷森制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州谷森制药有限公司 filed Critical 广州谷森制药有限公司
Publication of WO2023137876A1 publication Critical patent/WO2023137876A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of drug synthesis, in particular to a method for synthesizing a deuterated pharmaceutical intermediate D.
  • coronavirus SARS-CoV-2 is a new strain of coronavirus that has never been found in humans before. It was first discovered and reported in 2019. It is still prevalent in many countries around the world and has not been well controlled in many countries and regions.
  • the new deuterated cyano compound is a small molecule 3CL protease inhibitor independently developed by Shanghai Gusen Pharmaceutical Co., Ltd. By inhibiting the main protease, it can prevent the virus from cutting the long protein chain into parts required for its self-replication.
  • Its structure is: In vitro experiments have confirmed that it has good anti-SARS-CoV-2 activity and can effectively inhibit the replication of the virus. On the basis of comparable antibacterial activity of the virus, this compound has achieved better pharmacokinetic characteristics than other oral anti-new crown drugs.
  • Shanghai Goosen Pharmaceutical Co., Ltd. is preparing to conduct clinical trials for the treatment of new crown virus patients. Once successful, the market prospect is very huge.
  • Shanghai Gusen Pharmaceutical Co., Ltd. has applied for an invention patent (application number CN202111234708X) for the above-mentioned novel deuterated cyano compounds.
  • the deuterated pharmaceutical intermediate D is the key intermediate for synthesizing the above-mentioned novel deuterated cyano compounds, and its preparation process will also have a great impact on the quality and cost of the final product.
  • the general formula compound of the deuterated pharmaceutical intermediate D is:
  • the present invention provides a preparation method of a deuterium-substituted pharmaceutical intermediate D.
  • the preparation process of the present invention is simple, low in cost, high in yield, high in deuterium abundance, and suitable for industrial production.
  • a kind of synthetic method of deuterated pharmaceutical intermediate D comprises the following steps:
  • compound B obtains intermediate D under Lewis acid and boron-deuterium reducing agent
  • the synthetic route is as follows:
  • R1 and R3 are alkyl groups, and R2 is a protecting group.
  • R 1 and R 3 are preferably any one of methyl, ethyl, and isopropyl;
  • R 2 is preferably any one of benzyloxycarbonyl, tert-butoxycarbonyl, fluorenylmethoxycarbonyl, trimethylsilylethoxycarbonyl, p-toluenesulfonyl, acetyl, benzoyl, benzyl, 4-methoxybenzyl, and trimethylsilylethoxy.
  • the reaction solvent is selected from deuterated solvents, non-deuterated solvents, or a combination of deuterated and non-deuterated solvents.
  • the non-deuterated solvent is at least one selected from esters, hydrocarbons, ethers, and benzene.
  • the non-deuterated solvent is at least one selected from esters, hydrocarbons, ethers, and benzene.
  • the present application finds that selecting a deuterated solvent can increase the deuterium abundance of the product.
  • the deuterated solvent is selected from at least one of heavy water, deuterated alcohols, deuterated esters, deuterated hydrocarbons, and deuterated ethers, preferably at least one of heavy water, deuterated methanol-d1, deuterated methanol-d4, deuterated ethanol-d1, deuterated ethanol-d6, deuterated isopropanol-d1 and deuterated isopropanol-d8.
  • the borodeuteride reducing agent is at least one selected from sodium borodeuteride (NaBD 4 ), lithium borodeuteride (LiBD 4 ), potassium borodeuteride (KBD 4 ), deuterated borane, sodium acetate borodeuteride [Na(AcO) 3 BD], and sodium cyanoborodeuteride (NaCNBD 3 ).
  • the Lewis acid is selected from at least one of anhydrous cobalt chloride, cobalt chloride hexahydrate, cobalt bromide, zinc chloride, nickel chloride, and aluminum trichloride.
  • Anhydrous cobalt chloride, cobalt bromide, zinc chloride, nickel chloride are preferred.
  • pretreatment of compound B and/or Lewis acid before the reaction can also increase deuterium abundance.
  • the preferred pretreatment method is washing with a deuterated solvent.
  • the deuterated solvent is selected from at least one of heavy water, deuterated alcohols, deuterated esters, deuterated hydrocarbons, deuterated ethers, preferably deuterated methanol-d1, deuterated methanol-d4, deuterated ethanol-d1, deuterated ethanol-d6, deuterated isopropanol-d1, deuterated isopropanol-d8, and heavy water. At least one.
  • reaction temperature of the present invention is -30-100°C.
  • the present invention optimizes the reaction conditions, improves the yield, purity and deuterium abundance of intermediate D
  • the optimal deuterium abundance can reach more than 99%.
  • the synthesis route of the present invention has mild conditions, convenient post-treatment, and is more suitable for industrial production.
  • Fig. 1 is the NMR spectrum figure of deuterated pharmaceutical intermediate D
  • Sodium borodeuteride in embodiment 1 is replaced by lithium borodeuteride (LiBD 4 ), potassium borodeuteride (KBD 4 ), deuterated borane, sodium borodeuteride acetate [Na(AcO) 3 BD], sodium cyanoborodeuteride (NaCNBD 3 ); and/or deuterated methanol-d1 is replaced by heavy water, deuterated methanol-d4, deuterated ethanol-d1, deuterated ethanol-d6, deuterated isopropanol-d1, deuterated isopropanol-d8; , nickel chloride, aluminum chloride; intermediate D can also be successfully prepared, with a purity of 98.2%-99.1%, a deuterium abundance of 98.9%-99.3%, and a yield of 85-90%.
  • Example 1 The deuterated methanol-d1 in Example 1 is replaced with non-deuterated solvent methanol, and the specific steps are as follows:
  • anhydrous cobalt chloride in embodiment 1 is replaced by cobalt chloride hexahydrate, and concrete steps are as follows:
  • Example 2 The anhydrous CoCl after the heavy water treatment in Example 1 is replaced by untreated anhydrous CoCl 2 , and the specific steps are as follows:
  • the present invention optimizes the reaction conditions (reaction solvent, raw material processing method, Lewis acid), and improves the yield and deuterium abundance of intermediate D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种采用硼氘还原剂制备氘代医药中间体D的方法,反应线路条件温和,收率和氘丰度高,后处理方便,更适合工业化生产。本发明可以高质量的制备得到氘代医药中间体D,收率可达到85%以上,并且产品氘丰度最优可达99%。

Description

一种用于合成新型氘代氰基类化合物的中间体的制备方法 技术领域
本发明属于药物合成领域,具体涉及一种氘代医药中间体D的合成方法。
背景技术
新型冠状病毒SARS-CoV-2是以前从未在人体中发现的冠状病毒新毒株,2019年首次被发现并报道,至今仍然在全球多个国家流行肆虐,并在很多国家区域并未得到很好的控制。
人感染了冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等。在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡,而且目前对于新型冠状病毒所致疾病没有特异治疗方法。
新型氘代氰基类化合物是由上海谷森医药有限公司独自研发的一种小分子3CL蛋白酶抑制剂,通过抑制主蛋白酶,可防止病毒将长蛋白链切割成其自我复制所需的部分,其结构为:
Figure PCTCN2022084718-appb-000001
体外实验证实,其具有较好的抗SARS-CoV-2活性,能有效抑制病毒的复制,该化合物在病毒抑菌活性相当的基础上,实现了比其他口服抗新冠药更优的药动学特征,目前,上海谷森医药有限公司已经准备进行临床试验用于治疗新冠病毒病患,一旦获得成功,市场前景非常巨大。而且,上海谷森医药有限公司针对上述新型氘代氰基类化合物申请了发明专利(申请号CN202111234708X)。
而氘代医药中间体D是合成上述新型氘代氰基类化合物的关键中间体,其制备工艺的优劣也将对终产品的质量及成本造成较大影响,氘代医药中间体D 的通式化合物为:
Figure PCTCN2022084718-appb-000002
尽管申请人在先专利CN202111234708X报道了相同氘代医药中间体及其合成路线,即以化合物B为起始原料,在硼氘化钠和氯化钴的存在下,先经中间体态C,然后环合得到D。路线如下所示:
Figure PCTCN2022084718-appb-000003
除此之外,申请人没有发现有其他文献报道以化合物B为起始原料制备中间体D。
但以上路线氘代产物与非氘代产物难以分离,导致氘丰度较低,收率低,成本高,不适合放大生产,因生产需要,需在此路线基础上进行优化。
发明内容
基于此,本发明提供了一种氘代医药中间体D的制备方法,本发明的制备工艺路线简单、成本低廉、收率高、氘丰度高、适合工业化生产。
具体技术方案如下:
一种氘代医药中间体D的合成方法,包括以下步骤:
在溶剂中,化合物B在路易斯酸和硼氘还原剂下得到中间体D;
合成路线如下:
Figure PCTCN2022084718-appb-000004
其中,R1和R3为烷基,R2为保护基团。
在一些实施例中,R 1、R 3优选为甲基、乙基、异丙基其中任意一种;R 2优选为苄氧羰基、叔丁氧羰基、芴甲氧基羰基、三甲基硅乙氧基羰基、对甲苯磺酰基、乙酰基、苯甲酰基、苄基、4-甲氧基苄基、三甲基硅基乙氧基中的任意一种。
在一些实施例中,反应溶剂选自氘代溶剂、非氘代溶剂或者氘代溶剂与非氘代溶剂的组合。
优选地,所述非氘代溶剂选自酯类、烃类、醚类、苯类中的至少一种。优选THF、2-甲基THF、乙酸乙酯、乙酸异丙酯、乙酸叔丁酯、甲苯、二甲苯中的至少一种。
此外,本申请发现选择氘代溶剂能够提高产物的氘丰度,在一些实施例中,所述氘代溶剂选自重水、氘代醇类、氘代酯类、氘代烃类、氘代醚类中的至少一种,优选重水、氘代甲醇-d1、氘代甲醇-d4、氘代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1和氘代异丙醇-d8中的至少一种。
在一些实施例中,所述硼氘还原剂选自硼氘化钠(NaBD 4)、硼氘化锂(LiBD 4)、硼氘化钾(KBD 4)、氘代硼烷、醋酸硼氘化钠[Na(AcO) 3BD]、氰基硼氘化钠(NaCNBD 3)中的至少一种。
在一些实施例中,所述的路易斯酸选自无水氯化钴、六水氯化钴、溴化钴、氯化锌、氯化镍、三氯化铝中的至少一种。优选无水氯化钴,溴化钴、氯化锌、氯化镍。
在一些实施例中,反应前对化合物B和/或路易斯酸进行预处理也能提高氘丰度,优选预处理方式为氘代溶剂洗涤,氘代溶剂选自重水、氘代醇类、氘代酯类、氘代烃类、氘代醚类中的至少一种,优选氘代甲醇-d1、氘代甲醇-d4、氘 代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1、氘代异丙醇-d8、重水中的至少一种。
在一些实施例中,本发明反应温度为-30-100℃。
本发明的氘代医药中间体D制备路线具有以下优点和有益效果:
(1)本发明对反应条件进行了优化,提高了中间体D的收率、纯度和氘丰
度,氘丰度最优可达99%以上。
(2)本发明合成路线条件温和,后处理方便,更适合工业化生产。
附图说明
图1为氘代医药中间体D的核磁氢谱图;
具体实施方式:
以下结合具体实施例对本发明的氘代医药中间体D的合成方法做进一步详细的说明。
以下详细的说明都仅是示例性和解释性的,而非限制性的。
以下实施例,除非另外指出,否则使用的所有溶剂和试剂都是商购得到并且以原样使用。
实施例1
Figure PCTCN2022084718-appb-000005
250ml单口瓶中加入原料B 10g(0.0318mol),用80ml DCM溶解,45℃浓缩除去DCM,再用50ml DCM浓缩一次,加入干燥的40ml氘代甲醇-d1,浓缩除去,再加入20ml氘代甲醇-d1,密封升温到45℃加热1小时,45℃浓缩除去溶剂,用油泵抽30min,用100ml氘代甲醇-d1溶解,加入到250ml三口瓶中,降温到0℃,加入0.2当量重水处理后的无水CoCl 2(0.00636mol),搅拌10分钟,分三批次加入2.7当量(0.0859mol)硼氘化钠,升温到40℃反应3小时。
降温到室温,加入100ml饱和氯化铵,搅拌20min,过滤,用10ml甲醇淋洗,母液45℃浓缩除去甲醇,用100*3ml DCM萃取三次,有机相合并用50*30mL饱和食盐水洗3次,有机相浓缩除去有机溶剂,经柱层析纯化(EA:PE=2:1--3:1)得到泡沫状固体D 7.8g,收率85.2%,纯度为98.9%,氘丰度99.1%。
LC-MS(ESI,m/z,C 13H 20D 2N 2O 5,189.17,[M+1]=M-100+1)
1H NMR(300MHz,CDCl 3)δ:6.16(s,1H),5.51(d,1H),4.30~4.32(m,1H),3.73(s,3H),2.42~2.48(m,2H),2.10~2.15(m,1H),1.83-1.81(m,2H),1.27(s,9H)。
实施例2
将实施例1中的硼氘化钠替换为硼氘化锂(LiBD 4)、硼氘化钾(KBD 4)、氘代硼烷、醋酸硼氘化钠[Na(AcO) 3BD]、氰基硼氘化钠(NaCNBD 3);和/或氘代甲醇-d1替换为重水、氘代甲醇-d4、氘代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1、氘代异丙醇-d8;和/或重水替换为氘代甲醇-d1、氘代甲醇-d4、氘代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1、氘代异丙醇-d8;和/或路易斯酸替换为溴化钴、氯化锌、氯化镍、氯化铝;亦能顺利制备得到中间体D,纯度98.2%-99.1%,氘丰度98.9%-99.3%,收率85-90%。
对比例1
将实施例1中的氘代甲醇-d1替换成非氘代溶剂甲醇,具体步骤如下:
250ml单口瓶中加入原料B 10g(0.0318mol),用80ml DCM溶解,45℃浓缩除去DCM,再用50ml DCM浓缩一次,加入干燥的40ml甲醇,浓缩除去,再加入20ml甲醇,密封升温到45℃加热1小时,45℃浓缩除去溶剂,用油泵抽30min,用100ml甲醇溶解,加入到250ml三口瓶中,降温到0℃,加入0.2当量重水处理后的无水CoCl 2(0.00636mol),搅拌10分钟,分三批次加入2.7当量(0.0859mol)硼氘化钠,升温到40℃反应3小时。
降温到室温,加入100ml饱和氯化铵,搅拌20min,过滤,用10ml甲醇淋洗,母液45℃浓缩除去甲醇,用100*3ml DCM萃取三次,有机相合并用50*30mL饱和食盐水洗3次,有机相浓缩除去有机溶剂,经柱层析纯化(EA:PE=2:1--3:1)得到泡沫状固体D 6.05g,收率66%,纯度为98.7%,氘丰度75%。
对比例2
将实施例1中的无水氯化钴替换为六水氯化钴,具体步骤如下:
250ml单口瓶中加入原料B 10g(0.0318mol),用80ml DCM溶解,45℃浓缩除去DCM,再用50ml DCM浓缩一次,加入干燥的40ml氘代甲醇-d1,浓缩除去,再加入20ml氘代甲醇-d1,密封升温到45℃加热1小时,45℃浓缩除去溶剂,用油泵抽30min,用100ml氘代甲醇-d1溶解,加入到250ml三口瓶中,降温到0℃,加入0.2当量重水处理后的六水氯化钴(0.00636mol),搅拌10分钟,分三批次加入2.7当量(0.0859mol)硼氘化钠,升温到40℃反应3小时。
降温到室温,加入100ml饱和氯化铵,搅拌20min,过滤,用10ml甲醇淋洗,母液45℃浓缩除去甲醇,用100*3ml DCM萃取三次,有机相合并用50*30mL饱和食盐水洗3次,有机相浓缩除去有机溶剂,经柱层析纯化(EA:PE=2:1--3:1)得到泡沫状固体D 6.4g,收率70%,纯度为98.5%,氘丰度88%。
对比例3
将实施例1中的重水处理后的无水CoCl 2替换为未经处理的无水CoCl 2,具体步骤如下:
250ml单口瓶中加入原料B 10g(0.0318mol),用80ml DCM溶解,45℃浓缩除去DCM,再用50ml DCM浓缩一次,加入干燥的40ml氘代甲醇-d1,浓缩除去,再加入20ml氘代甲醇-d1,密封升温到45℃加热1小时,45℃浓缩除去溶 剂,用油泵抽30min,用100ml氘代甲醇-d1溶解,加入到250ml三口瓶中,降温到0℃,加入0.2当量无水CoCl 2(0.00636mol),搅拌10分钟,分三批次加入2.7当量(0.0859mol)硼氘化钠,升温到40℃反应3小时。
降温到室温,加入100ml饱和氯化铵,搅拌20min,过滤,用10ml甲醇淋洗,母液45℃浓缩除去甲醇,用100*3ml DCM萃取三次,有机相合并用50*30mL饱和食盐水洗3次,有机相浓缩除去有机溶剂,经柱层析纯化(EA:PE=2:1--3:1)得到泡沫状固体D 7.4g,收率80.8%,纯度为98.1%,氘丰度83%。
综上,本发明对反应条件(反应溶剂、原料处理方式、路易斯酸)进行了优化,并提高了中间体D的收率和氘丰度。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氘代医药中间体D的合成方法,其特征在于,包括以下步骤:
    在溶剂中,化合物B在路易斯酸和硼氘还原剂存在下发生氘代还原反应得到中间体D;
    合成路线如下:
    Figure PCTCN2022084718-appb-100001
    其中,R1和R3为烷基,R2为保护基团。
  2. 根据权利要求1所述氘代医药中间体D的合成方法,其特征在于:R 1、R 3为甲基、乙基、异丙基其中任意一种;R 2为苄氧羰基、叔丁氧羰基、芴甲氧基羰基、三甲基硅乙氧基羰基、对甲苯磺酰基、乙酰基、苯甲酰基、苄基、4-甲氧基苄基、三甲基硅基乙氧基中的任意一种。
  3. 根据权利要求1-2任一项所述的氘代医药中间体D的合成方法,其特征在于:所述溶剂选自氘代溶剂、非氘代溶剂或者氘代溶剂与非氘代溶剂的组合。
  4. 根据权利要求3所述的氘代医药中间体D的合成方法,其特征在于:所述氘代溶剂选自重水、氘代醇类、氘代酯类、氘代烃类、氘代醚类中的至少一种,优选重水、氘代甲醇-d1、氘代甲醇-d4、氘代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1和氘代异丙醇-d8中的至少一种。
  5. 根据权利要求3所述的氘代医药中间体D的合成方法,其特征在于:所述非氘代溶剂选自酯类、烃类、醚类、苯类中的至少一种,优选THF、2-甲基THF、乙酸乙酯、乙酸异丙酯、乙酸叔丁酯、甲苯、二甲苯中的至少一种。
  6. 根据权利要求1-5任一项所述的氘代医药中间体D的合成方法,其特征在于:所述硼氘还原剂选自硼氘化钠(NaBD 4)、硼氘化锂(LiBD 4)、硼氘化 钾(KBD 4)、氘代硼烷、醋酸硼氘化钠[Na(AcO) 3BD]、氰基硼氘化钠(NaCNBD 3)中的至少一种。
  7. 根据权利要求1-6任一项所述的氘代医药中间体D的合成方法,其特征在于:所述的路易斯酸选自无水氯化钴、六水氯化钴、溴化钴、氯化锌、氯化镍、三氯化铝中的至少一种。
  8. 根据权利要求1-6任一项所述的氘代医药中间体D的合成方法,其特征在于:反应前需要对化合物B和/或路易斯酸进行预处理。
  9. 根据权利要求8所述的氘代医药中间体D的合成方法,其特征在于:预处理方式为氘代溶剂洗涤,氘代溶剂选自重水、氘代醇类、氘代酯类、氘代烃类、氘代醚类中的至少一种,优选氘代甲醇-d1、氘代甲醇-d4、氘代乙醇-d1、氘代乙醇-d6、氘代异丙醇-d1、氘代异丙醇-d8、重水中的至少一种。
  10. 根据权利要求1-9任一项所述的氘代医药中间体D的合成方法,其特征在于:反应温度为-30~100℃。
PCT/CN2022/084718 2022-01-20 2022-04-01 一种用于合成新型氘代氰基类化合物的中间体的制备方法 WO2023137876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210065127.6A CN114956934A (zh) 2022-01-20 2022-01-20 一种用于合成新型氘代氰基类化合物的中间体的制备方法
CN202210065127.6 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023137876A1 true WO2023137876A1 (zh) 2023-07-27

Family

ID=82974439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084718 WO2023137876A1 (zh) 2022-01-20 2022-04-01 一种用于合成新型氘代氰基类化合物的中间体的制备方法

Country Status (2)

Country Link
CN (1) CN114956934A (zh)
WO (1) WO2023137876A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322065A (zh) * 2022-09-01 2022-11-11 广州谷森制药有限公司 一种采用固载镍与有机碱组合催化工业化生产氘代医药中间体的方法
CN116332819A (zh) * 2022-09-23 2023-06-27 广州谷森制药有限公司 一种经济可行的工业化生产氘代药物关键中间体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838523A (zh) * 2011-06-23 2012-12-26 南开大学 抗肠病毒71(ev71)戊内酰胺类化合物及其制备方法和用途
CN110354248A (zh) * 2019-04-26 2019-10-22 南开大学 拟肽醛类化合物在制备治疗猪瘟病毒(asfv)感染疾病药物的应用
CN110818691A (zh) * 2018-08-09 2020-02-21 中国科学院上海药物研究所 酮酰胺类化合物及其制备方法、药物组合物和用途
KR20210158591A (ko) * 2020-06-24 2021-12-31 이연제약주식회사 신규한 카르바메이트 화합물
CN114957381A (zh) * 2021-10-22 2022-08-30 广州谷森制药有限公司 新型氘代氰基类化合物、其制备方法、组合物及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838523A (zh) * 2011-06-23 2012-12-26 南开大学 抗肠病毒71(ev71)戊内酰胺类化合物及其制备方法和用途
CN110818691A (zh) * 2018-08-09 2020-02-21 中国科学院上海药物研究所 酮酰胺类化合物及其制备方法、药物组合物和用途
CN110354248A (zh) * 2019-04-26 2019-10-22 南开大学 拟肽醛类化合物在制备治疗猪瘟病毒(asfv)感染疾病药物的应用
KR20210158591A (ko) * 2020-06-24 2021-12-31 이연제약주식회사 신규한 카르바메이트 화합물
CN114957381A (zh) * 2021-10-22 2022-08-30 广州谷森制药有限公司 新型氘代氰基类化合物、其制备方法、组合物及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAI WENHAO, JOCHMANS DIRK, XIE HANG, YANG HANG, LI JIAN, SU HAIXIA, CHANG DI, WANG JIANG, PENG JINGJING, ZHU LILI, NIAN YONG, HILG: "Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2", JOURNAL OF MEDICINAL CHEMISTRY, vol. 65, no. 4, 24 February 2022 (2022-02-24), US , pages 2794 - 2808, XP093007969, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.0c02258 *
JIANG WEN-FENG , LI WEN-BAO: "Application of Deuteration in Drug Research", OILU PHARMACEUTICAL, vol. 29, no. 11, 1 January 2010 (2010-01-01), pages 682 - 684, XP008173943, ISSN: 1672-7738 *

Also Published As

Publication number Publication date
CN114956934A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023137876A1 (zh) 一种用于合成新型氘代氰基类化合物的中间体的制备方法
CN111233930B (zh) 一种瑞德西韦的制备方法
JP7387683B2 (ja) 1-シアノ-2-(4-シクロプロピル-ベンジル)-4-(β-D-グルコピラノス-1-イル)-ベンゼン、L-プロリンおよび水からなる1:1:1共結晶の合成
WO2023137874A1 (zh) 一种氘代医药中间体的制备方法
WO2023201802A1 (zh) 一种恩赛特韦的合成方法
WO2022012630A1 (zh) C-核苷化合物的合成方法
CN113527303A (zh) 一种瑞德西韦母核中间体的制备工艺
Hu et al. A convenient and cost efficient route suitable for “one-pot” synthesis of molnupiravir
CN112321467A (zh) 一种(2s,3r)-对甲砜基苯丝氨酸乙酯的制备方法
WO2024031838A1 (zh) 一种采用固载镍催化工业化生产氘代医药中间体的方法
WO2024045292A1 (zh) 一种采用固载镍与有机碱组合催化工业化生产氘代医药中间体的方法
CN107417548B (zh) 可比司他中间体及其制备方法
CN111269168B (zh) 一种阿比朵尔中间体的制备方法
AU2007288444A1 (en) Process for the synthesis of (+) and (-)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane
CN111978328B (zh) 一种替格瑞洛的合成方法
CN109134351B (zh) S-3-(4-氨基苯基)哌啶的合成方法
CN110003133B (zh) 一种手性樟脑磺酰肼双功能催化剂及其制备方法与应用
JP2018502858A (ja) フォロデシンの製造方法
CN107445835B (zh) 一种1,2-二氢环丁烯并[a]萘衍生物及其前体的合成方法
CN112920053A (zh) 一种手性α-甲基芳乙胺的制备方法
CN107021968B (zh) 多取代bodipy有机光催化剂催化吲哚啉类化合物氧化脱氢合成吲哚类化合物的方法
CN105237466A (zh) 一种合成三取代吡啶衍生物的方法
CN106748884B (zh) 一种比卡鲁胺中间体的制备方法
CN111689993A (zh) 一种新的含硼类佐米药物关键中间体手性α-氨基硼酸酯的制备方法
CN109748929A (zh) 一种化合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921310

Country of ref document: EP

Kind code of ref document: A1