WO2023136263A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2023136263A1
WO2023136263A1 PCT/JP2023/000456 JP2023000456W WO2023136263A1 WO 2023136263 A1 WO2023136263 A1 WO 2023136263A1 JP 2023000456 W JP2023000456 W JP 2023000456W WO 2023136263 A1 WO2023136263 A1 WO 2023136263A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
core
fiber cable
main body
Prior art date
Application number
PCT/JP2023/000456
Other languages
English (en)
French (fr)
Inventor
文昭 佐藤
雄紀 下田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023574047A priority Critical patent/JPWO2023136263A1/ja
Publication of WO2023136263A1 publication Critical patent/WO2023136263A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/52Underground or underwater installation; Installation through tubing, conduits or ducts using fluid, e.g. air

Definitions

  • the present disclosure relates to fiber optic cables.
  • This application claims priority based on Japanese Patent Application No. 2022-003066 filed on January 12, 2022, and incorporates all the content described in said application.
  • Patent Document 1 discloses an optical fiber cable for pneumatic feeding, which has a plurality of optical fiber tape core wires, a cable jacket, and a tensile member embedded inside the cable jacket.
  • a fiber optic cable includes: A cable body comprising: an optical fiber core wire having a plurality of core portions; a cable jacket enclosing the plurality of optical fiber core wires; and at least one tensile member embedded in the cable jacket.
  • a cable body comprising: an optical fiber core wire having a plurality of core portions; a cable jacket enclosing the plurality of optical fiber core wires; and at least one tensile member embedded in the cable jacket.
  • Department and a connection member provided at a first end of the cable body have
  • FIG. 1 is a diagram illustrating an optical fiber cable according to this embodiment.
  • FIG. 2 is a diagram illustrating an end portion of an optical fiber cable.
  • FIG. 3 is a cross-sectional view of the cable body.
  • FIG. 4 is a cross-sectional view of an optical fiber core wire.
  • FIG. 5 is a schematic diagram for explaining the conversion unit.
  • a fiber optic cable includes: (1) An optical fiber core wire having a plurality of core portions, a cable jacket enclosing the plurality of optical fiber core wires, and at least one tensile strength member embedded in the cable jacket.
  • the optical fiber cable has a certain degree of rigidity, so that it is difficult to kink even when air-fed.
  • a connection member for multi-core fibers is provided at the first end of the optical fiber core wire.
  • At least part of the cable body may be curled.
  • the curled portion of the cable body can expand and contract in the direction in which the cable body extends.
  • the curled outer diameter of the cable main body may be 50 mm or more and 300 mm or less. According to the above configuration, an increase in transmission loss of the optical fiber cable due to curling is suppressed, and a decrease in workability of laying the optical fiber cable by air feeding is suppressed.
  • connection member may be a multicore connector. According to the above configuration, by using a multi-core connector as the connecting member, it can be connected to another optical fiber cable as it is.
  • connection member may be connected to the second end of the cable body. According to the above configuration, since the connecting member is also provided at the second end of the cable main body, the first end and the second end can be directly connected to other optical fiber cables. Therefore, workability of connection after installation is further improved.
  • one of the connection members connected to the first end and the second end is It may be a conversion section that converts and connects the optical fiber core wire having a plurality of core portions to an optical fiber core wire having a single core portion.
  • a multi-core fiber optical fiber core wire having a plurality of core portions
  • a conversion unit is provided. Therefore, it can be easily connected to an optical fiber cable of single-core fiber.
  • the optical fiber cable according to any one of (1) to (6) above may be pneumatically fed in the duct.
  • the optical fiber cable having the above configuration can easily improve workability for connection after installation even when the cable is installed by pneumatic feeding.
  • FIG. 1 is a diagram for explaining an optical fiber cable 1 according to this embodiment.
  • FIG. 2 is a diagram illustrating an end portion of the optical fiber cable 1.
  • the optical fiber cable 1 of the present embodiment is an optical fiber cable for pneumatic feeding, which is installed by pneumatic feeding.
  • the optical fiber cable 1 has a cable body 2 and a connection member 3.
  • the cable main body 2 includes an optical fiber cable 21 having a plurality of cores 211 therein.
  • the connecting member 3 is provided at the first end of the cable main body 2, and when connecting to another optical fiber cable (not shown), an optical fiber having a plurality of core portions 211 to be described later.
  • a core wire 21 and an optical fiber core wire 21 of another optical fiber cable are held connectably.
  • the optical fiber cable 1 further has a protective tube 4.
  • a protective tube 4 is provided at the first end of the cable body 2 .
  • the protection tube 4 is made of metal, for example, and is provided so as to cover the connection member 3 .
  • the protective tube 4 protects the first end of the cable main body 2 and the connection member 3 from damage during laying of the optical fiber cable 1 by pneumatic feeding.
  • FIG. 3 is a cross-sectional view of the cable main body 2.
  • the cable main body 2 includes, for example, a plurality of optical fiber core wires 21 constituting a plurality of optical fiber tape core wires 20, a water absorbing tape 22, a cable jacket 23, and at least one tensile force. It has a body 24 , at least one tear string 25 (fibrous inclusion) and a plurality of protrusions 26 .
  • the water absorbing tape 22 is, for example, wound vertically or spirally so as to cover the entire periphery of the plurality of optical fiber ribbons 20 .
  • the water-absorbing tape 22 is, for example, a tape that has undergone water-absorbing processing by attaching water-absorbing powder to a base fabric made of polyester or the like.
  • the optical fiber cable 1 is provided with the water absorbing tape 22 in this embodiment, the optical fiber cable 1 does not necessarily have to be provided with the water absorbing tape 22 .
  • the cable jacket 23 covers the periphery of the water absorbing tape 22 .
  • the cable sheath 23 encloses a plurality of optical fiber tape core wires 20 (a plurality of optical fiber core wires 21).
  • a plurality of tensile members 24 are embedded in the cable jacket 23 .
  • the tensile strength member 24 is arranged along the longitudinal direction of the cable body 2 .
  • the diameter of the tension member 24 is, for example, 0.5 mm.
  • the tensile member 24 is made of fiber reinforced plastic (FRP) such as aramid FRP, glass FRP, carbon FRP, or the like. However, the tensile member 24 may be made of a liquid crystal polymer. Strength members 24 are preferably non-inductive. Fiber reinforced plastic (FRP) is generally a combustible material. From the viewpoint of improving the flame retardancy of the optical fiber cable 1 as a whole, the tensile member 24 is arranged inside the cable jacket 23 at a position closer to the center of the optical fiber cable 1 than near the surface of the cable jacket 23. is preferred.
  • the tensile strength member 24 has a circular shape in a cross-sectional view of the cable main body 2 .
  • eight strength members 24 are provided within the cable jacket 23 .
  • the tensile members 24 are provided in pairs of two each. This set is referred to as strength body set 240 .
  • four sets of strength members 240 are provided within the cable jacket 23 .
  • the four sets of tensile strength members 240 are provided at regular intervals. Specifically, the tensile strength member sets 240 are provided one by one at opposing positions across the center of the optical fiber cable 1 in the cross section of the optical fiber cable 1 in the radial direction. The tensile strength member sets 240 in the cross section in the radial direction of the optical fiber cable 1 are arranged so that two straight lines connecting the opposing one tensile strength member sets 240 are orthogonal to each other.
  • a tear string 25 is provided for tearing the cable jacket 23 .
  • the tear string 25 is provided inside the cable jacket 23 along the longitudinal direction of the cable main body 2 .
  • two tear cords 25 are provided.
  • the two tear strings 25 are arranged, for example, so as to face each other with the center of the cable main body 2 interposed therebetween.
  • the tear string 25 is made of a fibrous material, for example, a plastic material (such as polyester) that is resistant to tension.
  • the projection 26 is provided on the outer surface of the cable jacket 23 and is formed in a state of protruding from the cable jacket 23 in the radial direction.
  • two protrusions 26 are provided.
  • the two protrusions 26 are provided along the longitudinal direction of the cable body 2 .
  • the projection 26 is integrally formed with the cable jacket 23 by extrusion.
  • the cable main body 2 has the projection 26 in this embodiment, the cable main body 2 may not have the projection 26 .
  • the two protrusions 26 do not necessarily need to be provided continuously.
  • two protrusions 26 may be intermittently provided.
  • FIG. 4 is a cross-sectional view of the optical fiber cable 21.
  • the optical fiber core 21 includes a plurality of core portions 211 , a clad portion 212 covering the core portions 211 and a coating portion 213 covering the clad portions 212 .
  • the optical fiber core wire 21 is a so-called multi-core fiber having a plurality of core portions 211 .
  • an optical fiber core wire having a plurality of core portions will be referred to as a multi-core fiber or multi-core optical fiber core wire
  • an optical fiber core wire having a single core portion will be referred to as a single-core fiber or single-core optical fiber core.
  • the core portion is made of glass having a higher refractive index than the clad portion 212 .
  • the outer diameter of the core portion 211 is, for example, 5 ⁇ m or more and 10 ⁇ m or less. In this embodiment, four core portions 211 are provided.
  • the clad part 212 is provided so as to cover the four core parts 211, and has a substantially circular outer shape.
  • the outer diameter of the cladding portion 212 is, for example, 125 ⁇ m.
  • the covering portion 213 is provided so as to cover the circumference of the clad portion 212 .
  • the covering portion 213 is made of, for example, an ultraviolet curable resin (UV resin).
  • the cable main body 2 includes a tensile strength member 24 in addition to the multi-core fiber and the cable jacket 23 .
  • the optical fiber cable 1 has a certain rigidity, so that it is difficult to kink even when it is laid by pneumatic feeding.
  • the optical fiber cable 1 is provided with a connection member 3 for multi-core fibers at the first end of the cable main body 2 . Alignment work for connecting multi-core fibers during fusion splicing is not required at the first end where the connection member 3 is provided, and work for providing a connector or the like to the end of the optical fiber cable 1 after laying is also unnecessary. becomes. As a result, it is possible to provide the optical fiber cable 1 using multi-core fibers, which is easy to connect after installation.
  • the cable body 2 is provided with a curled portion 2a formed by curling.
  • the curled portion 2a has a spiral shape.
  • the spiral pitch of the curled portion 2a widens, and the cable body 2 and the optical fiber cable 1 as a whole are elongated.
  • the pitch of the spiral shape of the curled portion 2a is reduced, the overall length of the cable main body portion 2 and the optical fiber cable 1 is shortened, and the curled portion 2a returns to its original shape. back to
  • the curled portion 2a can expand and contract in the direction in which the cable body portion 2 extends.
  • the length of the cable main body 2 can be adjusted to the planned laying length by the expansion and contraction of the curled portion 2a. adjusted to be long.
  • a curl outer diameter D1 which is the outer diameter of the spiral shape of the curled portion 2a, is preferably 50 mm or more and 300 mm or less. If the curl outer diameter is too small, the curling process may increase the transmission loss of the optical fiber cable 1 . Further, if the curl outer diameter is too large, the overall outer diameter of the optical fiber cable 1 increases, which may reduce the workability of laying the cables by pneumatic feeding. In the optical fiber cable 1 according to the present embodiment, the curl outer diameter D1 is 50 mm or more and 300 mm or less. deterioration of workability is suppressed.
  • the connecting member 3 covered with the protective tube 4 is a multicore connector 31 .
  • the multi-fiber connector 31 is, for example, a 192-fiber connector having an MT connector as a base structure.
  • the multi-core connector 31 has, for example, a plurality of ferrules 311.
  • the ferrule 311 is configured to fix and hold the optical fiber tape core wire 20 by inserting the tip of the optical fiber tape core wire 20 therein.
  • the ferrule 311 is, for example, a 12-fiber MT ferrule.
  • the numbers of multi-core connectors 31 and ferrules 311 provided in this embodiment are not limited to those illustrated in FIGS.
  • connection member 3 is the multicore connector 31. Since the multi-core connector 31 enables direct connection with another optical fiber cable, the workability of connecting the optical fiber cable 1 after installation is improved.
  • the optical fiber cable 1 includes not only the first end of the cable main body 2 on the side where the protective tube 4 is provided, but also the second end of the cable main body 2.
  • the ends also have connecting members 3 .
  • the connection member 3 is also provided at the second end of the cable body 2, so that the first end and the second end can be directly connected to other optical fiber cables. Therefore, workability of connection after installation is further improved.
  • the connecting member 3 provided at the second end of the cable main body 2 different from the first end provided with the protective tube 4 is the conversion portion 32 is.
  • the conversion unit 32 holds the optical fiber cable 1 having a multi-core fiber inside and the optical fiber cable 1A having a single-core fiber inside so as to be connectable.
  • FIG. 5 is a schematic diagram for explaining the conversion unit 32.
  • the conversion unit 32 holds the multi-core optical fiber 21 by inserting the multi-core optical fiber 21 therein.
  • the converter 32 is configured such that a single-core optical fiber 21A having a single core is connected to each core 211 (see FIG. 4) of the multi-core fiber.
  • the converting portion 32 exposes the single-core optical fiber cable 21A in a direction opposite to the direction in which the multi-core optical fiber cable 21 is inserted.
  • the multi-core optical fiber cable 21 and the single-core optical fiber cable 21A connected to the conversion section 32 have the same number of core sections.
  • 12 single-core optical fibers 21A are connected to the conversion portion 32. preferably connected.
  • the 12 single-core optical fiber cables 21A connected to the conversion unit 32 constitute an optical fiber tape cable consisting of 12 optical fiber cables 21A.
  • the 12-core optical fiber ribbon may be an intermittently connected optical fiber ribbon in which connecting portions and non-connecting portions are alternately provided.
  • the connecting portion connects adjacent optical fiber core wires 21A. In the non-connected portion, adjacent optical fiber core wires 21A are separated from each other.
  • the connection member 3 As the connection member 3, the multi-core optical fiber 21 having a plurality of core portions 211 and the single-core optical fiber 21A having a single core portion A conversion unit 32 is provided for converting and connecting to and. This facilitates connection with single-core fiber optical fiber cables.
  • the optical fiber cable 1 according to this embodiment may be constructed so that it can be laid by being pneumatically fed in the duct.
  • the optical fiber cable 1 according to the present embodiment has the protective tube 4, it is laid by pneumatic feeding while protecting the optical fiber cable 21, the multicore connector 31, and the like.
  • workability for connection after laying is likely to be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本開示の光ファイバケーブル(1)は、複数のコア部(211)を有する光ファイバ心線(21)と、複数の前記光ファイバ心線(21)を内包するケーブル外被(23)と、前記ケーブル外被(23)内に埋め込まれて設けられた少なくとも一つの抗張力体(24)と、を備えるケーブル本体部(2)と、前記ケーブル本体部(2)の第1の端部に設けられている接続部材(3)と、を有する。

Description

光ファイバケーブル
 本開示は、光ファイバケーブルに関する。
 本出願は、2022年1月12日出願の日本国特許出願2022-003066号に基づく優先権を主張し、前記出願に記載された全ての記載内容を援用するものである。
 特許文献1は、複数の光ファイバテープ心線と、ケーブル外被と、ケーブル外被の内部に埋め込まれた抗張力体と、を有する空気圧送用の光ファイバケーブルを開示している。
日本国特開2020-204752号公報
 本開示の一態様に係る光ファイバケーブルは、
 複数のコア部を有する光ファイバ心線と、複数の前記光ファイバ心線を内包するケーブル外被と、前記ケーブル外被内に埋め込まれて設けられた少なくとも一つの抗張力体と、を備えるケーブル本体部と、
 前記ケーブル本体部の第1の端部に設けられている接続部材と、
を有する。
図1は、本実施形態に係る光ファイバケーブルを説明する図である。 図2は、光ファイバケーブルの端部を説明する図である。 図3は、ケーブル本体部の断面図である。 図4は、光ファイバ心線の断面図である。 図5は、変換部を説明するための模式図である。
(本開示が解決しようとする課題)
 次世代移動通信システムへの移行や、映像情報の増加による要求される通信速度の増加に対応するため、コア密度が高いマルチコアファイバの光ファイバケーブルのニーズが高まっている。一般に、光ファイバケーブルの端末同士は融着接続によって接続される。ところが、マルチコアファイバの融着接続は、コアの回転調心が必要であり、一括融着接続が難しい。このため、その接続作業に係る時間が長くなりがちであった。
(本開示の効果)
 本開示によれば、布設後における接続作業の作業性が良い、マルチコアファイバを使用した光ファイバケーブルを提供できる。
(本開示の実施形態の説明)
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る光ファイバケーブルは、
 (1)複数のコア部を有する光ファイバ心線と、複数の前記光ファイバ心線を内包するケーブル外被と、前記ケーブル外被内に埋め込まれて設けられた少なくとも一つの抗張力体と、を備えるケーブル本体部と、
 前記ケーブル本体部の第1の端部に設けられている接続部材と、
を有する。
 上記の構成によれば、抗張力体がケーブル外被内に埋め込まれて設けられていることにより、光ファイバケーブルは一定の剛性を有するため、空気圧送された場合でもキンクしにくい。また、マルチコアファイバ用の接続部材が光ファイバ心線の第1の端部に設けられている。このため、接続部材が設けられている端部では融着接続時のマルチコアファイバ接続のための調心作業は不要となり、また、布設後に光ファイバケーブルの端末にコネクタ等を設ける作業も不要となる。これにより、布設後における接続の作業性が良い、マルチコアファイバを使用した光ファイバケーブルを提供することができる。
 上記(1)に係る光ファイバケーブルにおいて、
 (2)前記ケーブル本体部の少なくとも一部は、カール加工されていてもよい。
 ケーブル本体部のうち、カール加工されている部分は、ケーブル本体部が延びる方向に伸縮することができる。これにより、予め接続部材を備えた場合に、布設長と実際のケーブル本体部の長さが異なっていた場合でも、カール加工されている部分を伸縮することで、ケーブル本体部の長さを布設長に合わせることができる。 
 (3)上記(2)に係る光ファイバケーブルにおいて、カール加工されている前記ケーブル本体部のカール外径は50mm以上300mm以下であってもよい。
 上記構成によれば、カール加工による光ファイバケーブルの伝送損失の増大は抑制されつつ、光ファイバケーブルの空気圧送による布設の作業性の低下は抑制される。
 (4)上記(1)から(3)のいずれかに係る光ファイバケーブルにおいて、前記接続部材は、多心コネクタであってもよい。
 上記構成によれば、接続部材を多心コネクタとすることにより、そのまま他の光ファイバケーブルに接続できるので、布設後における接続の作業性が良い。
 (5)上記(1)から(4)のいずれかに係る光ファイバケーブルにおいて、前記接続部材は、前記ケーブル本体部の第2の端部に接続されていてもよい。
 上記構成によれば、接続部材がケーブル本体部の第2の端部にも設けられることにより、第1の端部と第2の端部とにおいて、そのまま他の光ファイバケーブルに接続することができるので、布設後における接続の作業性がさらに良くなる。
 (6)上記(5)に係る光ファイバケーブルにおいて、前記第1の端部および前記第2の端部に接続されている前記接続部材のうちの一つが、
複数の前記コア部を有する前記光ファイバ心線から単一のコア部を有する光ファイバ心線に変換して接続する変換部であってもよい。
 上記構成によれば、光ファイバ心線の先端にマルチコアファイバ(複数のコア部を有する光ファイバ心線)からシングルコアファイバ(単一のコア部を有する光ファイバ心線)に変換して接続可能な変換部が設けられている。このため、シングルコアファイバの光ファイバケーブルと容易に接続できる。
 (7)上記(1)から(6)のいずれかに係る光ファイバケーブルは、ダクト内において空気圧送されてもよい。
 上記構成の光ファイバケーブルは、空気圧送による布設を行う場合においても、布設後の接続にかかる作業性が向上しやすい。
(本開示の実施形態の詳細)
 本開示の実施形態に係る光ファイバケーブルの具体例を、以下に図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、本実施形態に係る光ファイバケーブル1を説明する図である。図2は、光ファイバケーブル1の端部を説明する図である。本実施形態の光ファイバケーブル1は、空気圧送により布設作業が行われる空気圧送用の光ファイバケーブルである。図1に示すように、光ファイバケーブル1は、ケーブル本体部2と、接続部材3と、を有する。また、図2に示すように、ケーブル本体部2は、その内部において、複数のコア部211を有する光ファイバ心線21を備えている。また、接続部材3は、ケーブル本体部2の第1の端部に設けられており、別の光ファイバケーブル(図示せず)と接続する際に、後述する複数のコア部211を有する光ファイバ心線21と、別の光ファイバケーブルの光ファイバ心線21とを接続可能に保持する。
 光ファイバケーブル1は、さらに保護管4を有する。保護管4は、ケーブル本体部2の第1の端部に設けられる。保護管4は、例えば金属製であり、接続部材3を覆うように設けられている。保護管4は、空気圧送による光ファイバケーブル1の布設時に、ケーブル本体部2の第1の端部および接続部材3が損傷しないように保護する。
 図3は、ケーブル本体部2の断面図である。図3に示すように、ケーブル本体部2は、例えば、複数の光ファイバテープ心線20を構成する複数の光ファイバ心線21と、吸水テープ22と、ケーブル外被23と、少なくとも1つの抗張力体24と、少なくとも1つの引き裂き紐25(繊維状介在物)と、複数の突起26とを有する。
 吸水テープ22は、複数の光ファイバテープ心線20全体の周囲を覆うように、例えば、縦添えまたは螺旋状に巻回されている。吸水テープ22は、例えば、ポリエステル等からなる基布に吸水性のパウダーを付着させることによって吸水加工が施されたテープである。なお、本実施形態において光ファイバケーブル1は吸水テープ22を備えているが、光ファイバケーブル1は必ずしも吸水テープ22を備えていなくてもよい。
 ケーブル外被23は、吸水テープ22の周囲を覆っている。換言すると、ケーブル外被23は、複数の光ファイバテープ心線20(複数の光ファイバ心線21)を内包している。ケーブル外被23内には、複数の抗張力体24が埋め込まれて設けられている。
 抗張力体24は、ケーブル本体部2の長手方向に沿って配置されている。抗張力体24の直径は、例えば0.5mmである。抗張力体24は、例えば、アラミドFRP、ガラスFRP、カーボンFRP等の繊維強化プラスチック(FRP)で形成されている。ただし、抗張力体24は、液晶ポリマーで形成されていてもよい。抗張力体24は、無誘導性を有することが好ましい。なお、繊維強化プラスチック(FRP)は、一般的に可燃性素材である。光ファイバケーブル1全体の難燃性向上の観点から、抗張力体24は、ケーブル外被23の内部のうち、ケーブル外被23の表面近傍ではなく光ファイバケーブル1の中心に近い位置に配置されることが好ましい。
 本実施形態において、ケーブル本体部2の断面視において、抗張力体24は円形を成している。本実施形態において、8つの抗張力体24がケーブル外被23内に設けられている。なお、本実施形態において、抗張力体24は、1組2つずつ設けられている。この組を抗張力体セット240と称する。換言すれば、4組の抗張力体セット240が、ケーブル外被23内に設けられている。
 本実施形態に係るケーブル本体部2において、4組の抗張力体セット240は、互いに等間隔となるように離隔して設けられている。具体的には、抗張力体セット240は、光ファイバケーブル1の径方向の断面において、光ファイバケーブル1の中心を挟んで対向する位置に一つずつ設けられている。光ファイバケーブル1の径方向の断面における抗張力体セット240は、対向する一つの抗張力体セット240をそれぞれ結ぶ2本の直線が直交するように配置されている。
 引き裂き紐25は、ケーブル外被23を引き裂くために設けられている。引き裂き紐25は、ケーブル本体部2の長手方向に沿って、ケーブル外被23内に設けられている。本実施形態においては、2つの引き裂き紐25が設けられている。2つの引き裂き紐25は、例えばケーブル本体部2の中心を挟んで対向するように配置されている。引き裂き紐25は、繊維状の材料で形成されており、例えば、引張に強いプラスチック材料(例えばポリエステル)で形成されている。
 突起26は、ケーブル外被23の外表面に設けられており、ケーブル外被23から径方向に突出した状態で形成されている。本実施形態において突起26は、2条設けられている。2条の突起26は、ケーブル本体部2の長手方向に沿って設けられている。突起26は、押出成形によって、ケーブル外被23と一体的に形成されている。なお、本実施形態においては、ケーブル本体部2は突起26を備えているが、ケーブル本体部2は突起26を備えていなくてもよい。
 2条の突起26は必ずしも連続して設けられている必要はない。例えば、断続的に2条の突起26が設けられていてもよい。
 次に、光ファイバテープ心線20を構成する光ファイバ心線21について説明する。図4は、光ファイバ心線21の断面図である。図4に示すように、光ファイバ心線21は、複数のコア部211と、コア部211の周囲を覆うクラッド部212と、クラッド部212の周囲を覆う被覆部213とを備える。光ファイバ心線21は、複数のコア部211を有する、所謂、マルチコアファイバである。以降の説明では、複数のコア部を有する光ファイバ心線をマルチコアファイバあるいはマルチコアの光ファイバ心線と称し、単一のコア部を有する光ファイバ心線をシングルコアファイバあるいはシングルコアの光ファイバ心線と称することがある。
 コア部は、クラッド部212よりも屈折率の高いガラスで構成されている。コア部211の外径は、例えば5μm以上10μm以下である。本実施形態においては、4つのコア部211が設けられている。
 クラッド部212は、4つのコア部211を覆うように設けられており、その外形の形状は略円形である。クラッド部212の外径は、例えば125μmである。
 被覆部213は、クラッド部212の周囲を覆うように設けられている。被覆部213は、例えば紫外線硬化型樹脂(UV樹脂)から形成されている。
 本実施形態に係る光ファイバケーブル1において、ケーブル本体部2は、マルチコアファイバとケーブル外被23の他に、抗張力体24を備えている。これにより、光ファイバケーブル1は、一定の剛性を有するため、空気圧送により布設された場合でもキンクしにくい。
 また、光ファイバケーブル1は、マルチコアファイバ用の接続部材3をケーブル本体部2の第1の端部に設けられている。接続部材3が設けられている第1の端部では融着接続時のマルチコアファイバ接続のための調心作業は不要となり、また、布設後に光ファイバケーブル1の端末にコネクタ等を設ける作業も不要となる。これにより、布設後における接続の作業性が良い、マルチコアファイバを使用した光ファイバケーブル1を提供することができる。
 図1に戻って、ケーブル本体部2の少なくとも一部には、カール加工が施されて形成されるカール部2aが設けられている。カール部2aは、螺旋形状を成している。カール部2aに対して長手方向に引張力が与えられると、カール部2aの螺旋形状のピッチが広がり、ケーブル本体部2および光ファイバケーブル1全体が伸長する。伸長したカール部2aに対する引張力が解除されると、カール部2aの螺旋形状のピッチが縮まり、ケーブル本体部2および光ファイバケーブル1全体の長さが短縮して、カール部2aは元の形状に戻る。
 本実施形態に係る光ファイバケーブル1において、カール部2aは、ケーブル本体部2が延びる方向に伸縮することができる。これにより、予定の布設長と実際のケーブル本体部2の長さが異なっていた場合でも、光ファイバケーブル1は、カール部2aが伸縮することで、ケーブル本体部2の長さが予定の布設長となるように調節される。
 カール部2aの螺旋形状の外径であるカール外径D1は、50mm以上300mm以下であることが望ましい。カール外径が小さすぎる場合、カール加工によって、光ファイバケーブル1の伝送損失が増大することがある。また、カール外径が大きすぎる場合、光ファイバケーブル1全体の外径が増大するため、空気圧送による布設の作業性が低下することがある。
 本実施形態に係る光ファイバケーブル1において、カール外径D1は50mm以上300mm以下であるので、カール加工による光ファイバケーブル1の伝送損失の増大が抑制されつつ、光ファイバケーブル1の空気圧送による布設の作業性の低下が抑制される。
 次に、接続部材3についてさらに説明する。図1および図2に例示されるように、本実施形態に係る光ファイバケーブル1において、保護管4に覆われている接続部材3は、多心コネクタ31である。多心コネクタ31は、例えば、MTコネクタをベース構造とした192心のコネクタである。図2に示すように、多心コネクタ31は、例えば複数のフェルール311を備えている。フェルール311は、その内部に光ファイバテープ心線20の先端が挿入されることにより、光ファイバテープ心線20を固定して保持するように構成されている。フェルール311は、例えば、12心のMTフェルールである。
 なお、本実施形態において設けられる多心コネクタ31およびフェルール311の数は図1および図2の例示に限定されない。
 上記のように、本実施形態に係る光ファイバケーブル1において、接続部材3は多心コネクタ31である。多心コネクタ31は、他の光ファイバケーブルと直接接続することを可能とするので、布設後における光ファイバケーブル1の接続の作業性が良くなる。
 図1に示すように、本実施形態に係る光ファイバケーブル1は、保護管4が設けられている側のケーブル本体部2の第1の端部だけでなく、ケーブル本体部2の第2の端部にも接続部材3を有している。このように、接続部材3がケーブル本体部2の第2の端部にも設けられることにより、第1の端部と第2の端部とにおいて、そのまま他の光ファイバケーブルに接続することができるので、布設後における接続の作業性がさらに良くなる。
 なお、本実施形態に係る光ファイバケーブル1では、保護管4が設けられている第1の端部とは異なるケーブル本体部2の第2の端部に設けられる接続部材3は、変換部32である。変換部32は、マルチコアファイバを内部に有する光ファイバケーブル1とシングルコアファイバを内部に有する光ファイバケーブル1Aとを接続可能に保持する。
 図5は、変換部32を説明するための模式図である。変換部32は、その内部にマルチコアの光ファイバ心線21が挿入されることによりマルチコアの光ファイバ心線21を保持する。変換部32は、マルチコアファイバの各コア部211(図4参照)に対して、単一のコア部を有するシングルコアの光ファイバ心線21Aが接続されるように構成されている。変換部32は、マルチコアの光ファイバ心線21が挿入される方向とは逆の方向に、シングルコアの光ファイバ心線21Aを表出する。
 変換部32に接続されるマルチコアの光ファイバ心線21およびシングルコアの光ファイバ心線21Aにおいて、互いにコア部の数は等しいことが望ましい。例えば、変換部32に対してコア部211を4つ備えるマルチコアの光ファイバ心線21が3本接続されている場合は、12本のシングルコアの光ファイバ心線21Aが変換部32に対して接続されていることが望ましい。このとき、図5において例示するように、変換部32に接続される12本のシングルコアの光ファイバ心線21Aは、12心の光ファイバ心線21Aからなる光ファイバテープ心線を構成していてもよい。また、12心の光ファイバテープ心線は、連結部と非連結部とが交互に設けられる、間欠連結型の光ファイバテープ心線であってもよい。連結部は、隣り合う光ファイバ心線21A同士が連結されている。非連結部は、隣り合う光ファイバ心線21A同士が離隔している。
 このように、本実施形態に係る光ファイバケーブル1において、接続部材3として、複数のコア部211を有するマルチコアの光ファイバ心線21と単一のコア部を有するシングルコアの光ファイバ心線21Aとに変換して接続する変換部32が設けられている。これにより、シングルコアファイバの光ファイバケーブルとの接続を容易に達成できる。 
 本実施形態に係る光ファイバケーブル1は、ダクト内において空気圧送されることにより布設可能に構成されていてもよい。例えば、本実施形態に係る光ファイバケーブル1は、保護管4を有しているので、光ファイバ心線21および多心コネクタ31等を保護しながら空気圧送による布設が行われる。このような空気圧送による布設が可能な光ファイバケーブル1において、布設後の接続にかかる作業性が向上しやすい。
 以上、本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本開示を実施する上で好適な数、位置、形状等に変更することができる。
1 光ファイバケーブル
2 ケーブル本体部
2a カール部
3 接続部材
4 保護管
20 光ファイバテープ心線
21,21A 光ファイバ心線
22 吸水テープ
23 ケーブル外被
24 抗張力体
25 引き裂き紐
26 突起
31 多心コネクタ
32 変換部
211 コア部
212 クラッド部
213 被覆部
240 抗張力体セット
311 フェルール
D1 カール外径

Claims (7)

  1.  複数のコア部を有する光ファイバ心線と、複数の前記光ファイバ心線を内包するケーブル外被と、前記ケーブル外被内に埋め込まれて設けられた少なくとも一つの抗張力体と、を備えるケーブル本体部と、
     前記ケーブル本体部の第1の端部に設けられている接続部材と、
    を有する、光ファイバケーブル。
  2.  前記ケーブル本体部の少なくとも一部は、カール加工されている、請求項1に記載の光ファイバケーブル。
  3.  カール加工されている前記ケーブル本体部のカール外径は50mm以上300mm以下である、請求項2に記載の光ファイバケーブル。
  4.  前記接続部材は、多心コネクタである、請求項1から請求項3のいずれか一項に記載の光ファイバケーブル。
  5.  前記接続部材は、前記ケーブル本体部の第2の端部に接続されている、請求項1から請求項4のいずれか一項に記載の光ファイバケーブル。
  6.  前記第1の端部および前記第2の端部に接続されている前記接続部材のうちの一つが、複数の前記コア部を有する前記光ファイバ心線から単一のコア部を有する光ファイバ心線に変換して接続する変換部である、請求項5に記載の光ファイバケーブル。
  7.  前記光ファイバケーブルは、ダクト内において空気圧送される、請求項1から請求項6のいずれか一項に記載の光ファイバケーブル。
PCT/JP2023/000456 2022-01-12 2023-01-11 光ファイバケーブル WO2023136263A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023574047A JPWO2023136263A1 (ja) 2022-01-12 2023-01-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003066 2022-01-12
JP2022003066 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136263A1 true WO2023136263A1 (ja) 2023-07-20

Family

ID=87279153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000456 WO2023136263A1 (ja) 2022-01-12 2023-01-11 光ファイバケーブル

Country Status (2)

Country Link
JP (1) JPWO2023136263A1 (ja)
WO (1) WO2023136263A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292205A (ja) * 2004-03-31 2005-10-20 Sumitomo Electric Ind Ltd 光ファイバケーブル及び光ファイバケーブルの布設方法
JP2011257603A (ja) * 2010-06-09 2011-12-22 Sumitomo Electric Ind Ltd コネクタ付集合光ケーブル
WO2014109395A1 (ja) * 2013-01-10 2014-07-17 住友電気工業株式会社 光部品および光通信システム
US20140219613A1 (en) * 2013-02-01 2014-08-07 Commscope, Inc. Of North Carolina Transitioning multi-core fiber to plural single core fibers
JP2015052704A (ja) * 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
US20170102504A1 (en) * 2015-10-09 2017-04-13 Commscope Technologies Llc Method for terminating high fiber count cables
JP2020204752A (ja) 2019-06-19 2020-12-24 住友電気工業株式会社 光ファイバケーブル
WO2020256019A1 (ja) * 2019-06-19 2020-12-24 住友電気工業株式会社 光ファイバケーブル
JP2022003066A (ja) 2015-12-09 2022-01-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft カンナビノイド受容体2アゴニストとしてのフェニル誘導体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292205A (ja) * 2004-03-31 2005-10-20 Sumitomo Electric Ind Ltd 光ファイバケーブル及び光ファイバケーブルの布設方法
JP2011257603A (ja) * 2010-06-09 2011-12-22 Sumitomo Electric Ind Ltd コネクタ付集合光ケーブル
WO2014109395A1 (ja) * 2013-01-10 2014-07-17 住友電気工業株式会社 光部品および光通信システム
US20140219613A1 (en) * 2013-02-01 2014-08-07 Commscope, Inc. Of North Carolina Transitioning multi-core fiber to plural single core fibers
JP2015052704A (ja) * 2013-09-06 2015-03-19 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、光ファイバコード、及びテープ心線接続方法
US20170102504A1 (en) * 2015-10-09 2017-04-13 Commscope Technologies Llc Method for terminating high fiber count cables
JP2022003066A (ja) 2015-12-09 2022-01-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft カンナビノイド受容体2アゴニストとしてのフェニル誘導体
JP2020204752A (ja) 2019-06-19 2020-12-24 住友電気工業株式会社 光ファイバケーブル
WO2020256019A1 (ja) * 2019-06-19 2020-12-24 住友電気工業株式会社 光ファイバケーブル

Also Published As

Publication number Publication date
JPWO2023136263A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
EP1831746B1 (en) Distribution cable having overmolded mid-span access location with preferential bending
JP4733115B2 (ja) 複合成形中間分岐点を有する配線ケーブル組立体
US7773843B2 (en) Bi-directional tap assemblies for two-way fiber topologies
US20060280413A1 (en) Fiber optic cables and methods for forming the same
JP2015517679A (ja) リボン型光ファイバー構造体を有する円形で小径の光ケーブル
US20090087154A1 (en) Optical fiber cables
US20130251321A1 (en) Optical Fiber Cables
US20080285924A1 (en) Optical fiber cables
JP2011169938A (ja) ユニット型光ファイバテープ心線及び光ファイバケーブル
WO2020004230A1 (ja) 光ファイバケーブル
JP2016148709A (ja) 光ファイバユニットおよび光ケーブル
WO2021199736A1 (ja) 収容構造体、牽引端付き光ケーブル及び収容構造体の製造方法
WO2023136263A1 (ja) 光ファイバケーブル
US20090087152A1 (en) Optical Cable, Arrangement for Connecting a Multiplicity of Optical Waveguides, and Method for Manufacturing an Optical Cable
JP3991204B2 (ja) 光ファイバコード付き多心光コネクタ
WO2023002971A1 (ja) 光ファイバケーブル
WO2022065485A1 (ja) 光ファイバケーブルおよびコネクタ付きケーブル
WO2022249756A1 (ja) 光ファイバケーブル
WO2023113012A1 (ja) 光ファイバケーブル
WO2023105748A1 (ja) 光ファイバケーブルおよび光ファイバケーブル接続システム
JP2018173649A (ja) リボン型光ファイバー構造体を有する円形で小径の光ケーブル
US20230244050A1 (en) Optical fiber cable and cable with connector
Hashimoto et al. Pre-connectorized Ultra-High-Fiber-Count Cable for Easy Installation
US20210223475A1 (en) Optical fiber cable
WO2023135808A1 (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023574047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023740272

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023740272

Country of ref document: EP

Effective date: 20240812