WO2023136043A1 - ニューログラニン関連ペプチドの分析方法 - Google Patents

ニューログラニン関連ペプチドの分析方法 Download PDF

Info

Publication number
WO2023136043A1
WO2023136043A1 PCT/JP2022/046405 JP2022046405W WO2023136043A1 WO 2023136043 A1 WO2023136043 A1 WO 2023136043A1 JP 2022046405 W JP2022046405 W JP 2022046405W WO 2023136043 A1 WO2023136043 A1 WO 2023136043A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
neurogranin
matrix
solution
related peptide
Prior art date
Application number
PCT/JP2022/046405
Other languages
English (en)
French (fr)
Inventor
直樹 金子
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2023573928A priority Critical patent/JPWO2023136043A1/ja
Priority to CN202280087660.0A priority patent/CN118541601A/zh
Publication of WO2023136043A1 publication Critical patent/WO2023136043A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for analyzing neurogranin-related peptides.
  • Alzheimer's disease is the main cause of dementia, and the number of people affected by it has increased in recent years, making its research even more important.
  • a ⁇ -related peptides such as amyloid ⁇ (A ⁇ ) produced by cleavage of amyloid precursor protein (APP) are deeply involved in the onset of Alzheimer's disease. They then combined immunoprecipitation and mass spectrometry to detect multiple A ⁇ -related peptides in the blood, and reported that the detected specific A ⁇ -related peptide ratio is a promising blood biomarker for brain amyloid accumulation.
  • Alzheimer's disease requires various biomarkers to monitor its progression, and in addition to aluminoid accumulation, biomarkers to reflect each process of tau accumulation and neurodegeneration are required. ing.
  • neurogranin is one of the biomarkers of neurodegeneration and has been reported to increase in the cerebrospinal fluid (CSF) of Alzheimer's disease patients (Non-Patent Document 3, Non Patent document 4). It has also been reported that the fragmentation of neurogranin is accelerated in the brains of Alzheimer's disease patients, generating fragmented peptides (Non-Patent Document 5). Therefore, mass spectrometry of neurogranin or its fragment peptides (neurogranin-related peptides) is expected as a means of confirming neurodegeneration.
  • analyzing neurogranin-related peptides in cerebrospinal fluid requires collecting cerebrospinal fluid, which is not preferable in terms of invasiveness. Therefore, it is desired to analyze blood, which can be collected by a general test and is less invasive.
  • Neurogranin-related peptides present in blood contain very small amounts of peptides, so they cannot be sufficiently detected by conventional mass spectrometry.
  • Kvartsberg H Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow K, Lewczuk P.: Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls. Alzheimers Res Ther. 2015;7(1):40.
  • Non-Patent Document 6 Even when the analysis method of Non-Patent Document 6 is carried out and when the analysis method of A ⁇ -related peptides described in Non-Patent Document 2 is diverted to neurogranin-related peptides, the analytical sensitivity is insufficient. It has not reached the level of practical use. Therefore, further improvement in sensitivity is required to analyze neurogranin and the like in blood.
  • the purpose of the present invention is to detect neurogranin-related peptides with high sensitivity.
  • a first aspect of the present invention is a method for analyzing neurogranin-related peptides by matrix-assisted laser desorption/ionization mass spectrometry, wherein laser irradiation targets are the neurogranin-related peptides, a matrix, and 9 kDa
  • laser irradiation targets are the neurogranin-related peptides, a matrix, and 9 kDa
  • the above protein is contained, and the content of the protein per 1 ⁇ g of the matrix is 10 fmol or more and 600 fmol or less.
  • neurogranin-related peptides can be analyzed with high sensitivity.
  • FIG. 1 is a graph of Example 1 showing the rate of variation in detection sensitivity of MALDI-MS when recombinant Ng is included as a protein in a laser irradiation target.
  • the vertical axis is the signal/noise ratio (S/N) of the mass spectrum peak when protein (recombant Ng) is not contained, and the S/N of the peak when protein is contained, and the horizontal axis is the protein content per 1 ⁇ g of matrix. indicate quantity.
  • FIG. 2 is a graph of Example 2 showing the rate of variation in detection sensitivity of MALDI-MS when Cytochrome C is included as a protein in the object to be irradiated with laser.
  • FIG. 1 is a graph of Example 1 showing the rate of variation in detection sensitivity of MALDI-MS when recombinant Ng is included as a protein in a laser irradiation target.
  • the vertical axis is the signal/noise ratio (S/N) of the mass spectrum peak when protein (
  • FIG. 3 is a graph of Example 3 showing the rate of variation in detection sensitivity of MALDI-MS when bovine sewerum albumin is included as a protein in the object to be irradiated with laser.
  • FIG. 4 is a graph of Example 4 showing variation in detection sensitivity for Ng43-75 peptide when a protein-containing solution was dropped onto a MALDI plate.
  • the vertical axis represents the signal/noise ratio (S/N) of the mass spectrum peak without protein, and the S/N of the peak with protein, and the horizontal axis represents the type of protein.
  • FIG. 5 is a graph of Example 4 showing variation in detection sensitivity for Ng33-75 peptide when a protein-containing solution was dropped onto a MALDI plate.
  • An analysis method is a method for analyzing neurogranin-related peptides in a sample, and includes a purification step and a detection step in this order. Each step will be described in detail below.
  • Neuron-related peptides include neurogranin, translated/modified neurogranin, and fragment peptides thereof.
  • fragment peptides include Ng43-75 (SEQ ID NO: 1), Ng33-75 (SEQ ID NO: 2), Ng50-78 (SEQ ID NO: 3) and the like.
  • the mass (molecular weight) of the Ng-related peptide is generally less than 9 kDa, preferably 8 kDa or less, and for example 1 kDa or more, preferably 2 kDa or more.
  • especially Ng-related peptides of less than 9 KDa can be preferably measured. This mass can be measured, for example, by a MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometer.
  • the purification step is, for example, affinity purification, and specifically includes a first binding step (an example of the binding step), a first washing step (an example of the washing step), a first elution step, A purification step, a second binding step, a second washing step, and a second elution step (an example of the elution step) are provided in this order.
  • First bonding step In the first binding step, the sample is brought into contact with the first carrier in the binding solution.
  • the binding solution, sample and first carrier are mixed in any suitable order. Thereby, the Ng-related peptide in the sample binds to the first carrier to obtain the first conjugate.
  • the sample is a sample containing neurogranin-related peptides, generally a biological sample.
  • biological samples include body fluids such as blood, cerebrospinal fluid, urine, body secretions, saliva, and sputum; Blood includes whole blood, plasma, serum, and the like.
  • the blood may be whole blood collected from an individual that has been subjected to a treatment such as centrifugation or cryopreservation. In this analysis method, blood is preferably used. Blood is less invasive than cerebrospinal fluid, and is easily available as an object sample for screening in health examinations and the like.
  • the binding solution is preferably a neutral buffer containing a surfactant.
  • buffers include Tris buffer, phosphate buffer, HEPES buffer, ammonium acetate buffer and the like.
  • the pH of the binding solution is, for example, pH 6.0 or higher, preferably 6.5 or higher, and for example, pH 8.5 or lower, preferably 8.0 or lower.
  • surfactants contained in the binding solution include neutral surfactants having a hydrophobic group with 7 or more and 15 or less carbon atoms (preferably 9 or more and 11 or less). This makes it possible to suppress non-specific adsorption to the first conjugate and reduce ionization interference in mass spectrometry.
  • surfactants include n-nonyl- ⁇ -D-maltoside, n-nonyl- ⁇ -D-thiomaltoside, n-decyl- ⁇ -D-maltoside, n-undecyl- ⁇ -D-maltoside.
  • UDM n-Undecyl- ⁇ -D-maltoside
  • other surfactants having maltose in the hydrophilic portion for example, surfactants having glucose in the hydrophilic portion, such as n-decyl- ⁇ -D-glucoside.
  • These surfactants can be used singly or in combination of two or more.
  • the surfactant concentration in the binding solution is, for example, 0.01% (w/v) or higher, preferably 0.05% (w/v) or higher, and for example, 10% (w/v). Below, preferably 3% (w/v) or less. If the concentration of the surfactant is within the above range, sufficient micelles are formed, so that the effects of the surfactant can be reliably exhibited.
  • the first carrier should be capable of binding Ng-related peptides, and examples thereof include antibody-immobilized carriers.
  • the antibody immobilized on the first carrier is an antibody (anti-Ng-related peptide antibody) having an antigen-binding site capable of recognizing the Ng-related peptide. globulin or fragments thereof.
  • immunoglobulins examples include IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgY, IgD, and IgE.
  • immunoglobulin fragments include F(ab')2, F(ab'), F(ab), Fd, Fv, L chains, H chains, and the like. More specifically, clones NG2, NG7, EPR21152 and fragments thereof and the like.
  • Antibodies may be either monoclonal antibodies or polyclonal antibodies.
  • Examples of materials for the first carrier include agarose, sepharose, dextran, silica gel, polyacrylamide, polystyrene, polyethylene, polypropylene, polyester, polyacrylonitrile, (meth)acrylic acid-based polymer, fluororesin, metal complex resin, glass, and metal. , a magnetic material, and the like.
  • the shape of the first carrier may be any shape such as spherical (including bead shape), plate-like, needle-like, irregular shape, etc., and may be the channel wall in the microdevice. .
  • pretreatment for removing antibodies such as IgG and IgM may be performed.
  • the first washing solution is preferably a neutral buffer containing a surfactant.
  • a neutral buffer containing a surfactant As a result, highly hydrophobic unnecessary components (blood proteins, lipids, glycolipids, etc.) can be effectively removed.
  • the neutral buffer and surfactant in the first washing solution include those similar to the neutral buffer and surfactant exemplified for the binding solution.
  • the surfactant concentration in the first cleaning solution is, for example, 0.01% (w/v) or more, preferably 0.02% (w/v) or more, and for example, 5% (w/v) or more. v) less than or equal to 2% (w/v), preferably less than or equal to 2% (w/v); If the concentration of the surfactant is within the above range, sufficient micelles are formed, so that the effects of the surfactant can be reliably exhibited.
  • washing method A known method may be adopted for the washing method, and preferably, washing is performed multiple times. For example, washing with a neutral buffer containing detergent, followed by washing with a neutral buffer without detergent.
  • Neutral buffers containing no surfactant can also be the same as the neutral buffers exemplified for the binding solution. As a result, foaming caused by the surfactant remaining in the first combined body can be suppressed.
  • a general method may be adopted, for example, a method of stirring the carrier in the cleaning solution, a method of injecting the cleaning solution from a cleaning nozzle, and the like. After washing with these neutral buffers, washing with water may be further carried out, if necessary.
  • First elution step In the first elution step, after the first washing step, the first binder is brought into contact with the first acidic solution. As a result, the Ng-related peptide is dissociated from the first conjugate, and the Ng-related peptide is eluted into the first acidic solution. As a result, a first eluate containing Ng-related peptides is obtained.
  • the first acidic solution examples include acidic aqueous solutions such as glycine buffer and hydrochloric acid, preferably glycine buffer.
  • the pH of the first acidic solution is, for example, 3.5 or less, preferably 3.0 or less, and is, for example, 0.5 or more, preferably 1.0 or more.
  • the first acidic solution preferably contains a surfactant. This makes it possible to more reliably dissociate the Ng-related peptide from the first conjugate. It also prevents the eluted Ng-related peptides from adhering to containers such as test tubes and microplates. Therefore, it is possible to reliably improve the recovery rate of Ng-related peptides and improve the detection sensitivity.
  • Surfactants used in the first acidic solution include the same surfactants as those exemplified for the binding solution. Also, the surfactant concentration in the first acidic solution is similar to the surfactant concentration in the first cleaning solution.
  • the first eluate is mixed with a neutral buffer solution after the first elution step. This neutralizes the first eluate to obtain a purified solution containing Ng-related peptides.
  • the neutral buffer used in the neutralization step preferably contains a surfactant. Thereby, non-specific adsorption to the second conjugate can be suppressed in the second binding step.
  • the neutral buffers and surfactants used in the neutralization step include those similar to the neutral buffers and surfactants exemplified for the binding solution. Also, the surfactant concentration in the neutral buffer is similar to the surfactant concentration in the first binding solution.
  • the pH of the resulting purified solution is neutral, for example, pH 6.0 or higher, preferably 6.5 or higher, and for example, pH 8.5 or lower, preferably 8.0 or lower.
  • the coupling efficiency can be improved in the second coupling step.
  • the purified solution is brought into contact with the second carrier after the neutralization step. Thereby, the Ng-related peptide in the purified solution binds to the second carrier to obtain the second conjugate.
  • the second carrier is preferably an antibody-immobilized carrier, and specifically includes the same antibody-immobilized carriers exemplified for the first carrier.
  • the second washing solution is preferably a neutral buffer containing a surfactant.
  • a neutral buffer containing a surfactant for example, highly hydrophobic unnecessary components (blood proteins, lipids, glycolipids, etc.) can be effectively removed.
  • Neutral buffers and surfactants used in the second washing solution include those similar to the neutral buffers and surfactants exemplified for the binding solution.
  • the surfactant concentration in the second cleaning solution is similar to the surfactant concentration in the first cleaning solution.
  • a known method may be adopted for the washing method, and specifically, the same method as the washing method exemplified in the first washing step may be performed.
  • Examples of the acidic aqueous solution constituting the second acidic solution include those similar to the first acidic solution exemplified in the first elution step, preferably hydrochloric acid.
  • the second acidic solution contains protein.
  • the mass of the protein is 9 kDa or more and, for example, 100 kDa or less, preferably 15 kDa or less, more preferably 11 kDa or less.
  • Proteins are not limited as long as their mass is 9 kDa or more, and specific examples include recombinant neurogranin, cytochrome, bovine serum albumin (BSA), ovalbumin, and lysozyme.
  • BSA bovine serum albumin
  • the protein concentration in the second acidic solution is, for example, 10 nM or higher, preferably 20 nM or higher, more preferably 30 nM or higher. , 600 nM or less, preferably 300 nM or less, more preferably 150 nM or less.
  • the concentration is, for example, 0.1 ⁇ g/mL or more, preferably 0.25 ⁇ g/mL or more, and is, for example, 30 ⁇ g/mL or less, preferably 4.00 ⁇ g/mL or less.
  • the second acidic solution preferably contains a volatile organic solvent.
  • Volatile organic solvents include organic solvents that are miscible with water in any proportion, such as acetonitrile, methanol, ethanol, acetone, toluene, isopropanol, hexane, butanol, cyclohexane, ethylene glycol, benzene, chloroform, acetaldehyde, Triethylamine, phenol, naphthalene, formaldehyde, tetrahydrofuran, ethyl acetate and the like, preferably acetonitrile, methanol, ethanol, acetone and isopropanol. These organic solvents can be used singly or in combination of two or more.
  • Volatile organic solvent concentration in the second acidic solution is, for example, 10% (v/v) or more, preferably 25% (v/v) or more, and, for example, 90% (v/v) or less , preferably 80% (v/v) or less. If the concentration is within the above range, the Ng-related peptide can be efficiently dissociated from the second carrier, and the sensitivity (S/N ratio) during mass spectrometry can be improved.
  • the second acidic solution preferably further contains an amino acid such as methiotine.
  • an amino acid such as methiotine.
  • the amino acid concentration in the second acidic solution is, for example, 0.01 mM or higher, preferably 0.05 mM or higher, and is, for example, 5 mM or lower, preferably 1 mM or lower.
  • Detection step In the detection step, after the purification step, the second eluate is subjected to MALDI-MS (Matrix Assisted Laser Desorption / Ionization-Mass spectrometry) to detect Ng-related Detect peptides. Specifically, Ng-related peptides contained in the second eluate or its dried product are ionized by MALDI, and the ionized peptides are detected by mass spectrometry.
  • MALDI-MS Microx Assisted Laser Desorption / Ionization-Mass spectrometry
  • MALDI-MS for example, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometer, MALDI-IT (matrix-assisted laser desorption ionization-ion trap) mass spectrometer, MALDI-IT-TOF (matrix-assisted laser desorption/ionization-ion trap-time-of-flight) type mass spectrometer, MALDI-FTICR (matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance) type mass spectrometer, etc., can be operated according to a conventional method. Just do it.
  • the laser irradiation target is placed on the MALDI plate. Specifically, for example, a matrix-containing solution is dropped onto a MALDI plate and dried (crystallized) to dispose the matrix, and then the second eluate is dropped onto the matrix and dried. As a result, a laser irradiation target is obtained in which the matrix, Ng-related peptides, and proteins of 9 kD or more are present in a dry state (solid state). In addition, if necessary, the object to be irradiated with laser may be obtained in a liquid state in which solid components are concentrated without drying completely.
  • the Ng-related peptide is ionized by irradiating the laser irradiation target with the laser, and the ionized peptide is detected by the mass spectrometer.
  • the mass spectrometer By analyzing the detection result with a mass spectrometer, the Ng-related peptide can be quantified.
  • matrices examples include ⁇ -cyano-4-hydroxycinnamic acid (CHCA; ⁇ -cyano-4-hydroxycinnamic acid), 2,5-dihydroxybenzoic acid, sinapinic acid, and 3-aminoquinoline. These matrices can be used singly or in combination of two or more.
  • solvents that contain the matrix include acetonitrile, trifluoroacetic acid, methanol, ethanol, and water. These solvents can be used singly or in combination of two or more.
  • the matrix concentration in the matrix-containing solution is, for example, 0.1 mg/mL or more, preferably 0.5 mg/mL or more, and is, for example, 50 mg/mL or less, preferably 10 mg/mL or less.
  • the amount of matrix placed on the MALDI plate is, for example, 0.1 ⁇ g or more, preferably 0.5 ⁇ g or more, and is, for example, 50 ⁇ g or less, preferably 10 ⁇ g or less per well.
  • a matrix additive is used together with the matrix.
  • matrix additives include phosphonic acid group-containing compounds and ammonium salts.
  • Phosphonic acid group-containing compounds include, for example, phosphonic acid, methylphosphonic acid, phenylphosphonic acid, 1-naphthylmethylphosphonic acid, methylenediphosphonic acid (MDPNA; Methylenediphosphonic acid), ethylenediphosphonic acid, ethane-1-hydroxy-1, 1-diphosphonic acid, nitrilotriphosphonic acid, ethylenediaminotetraphosphonic acid and the like.
  • the matrix additive concentration in the matrix-containing solution is, for example, 0.01% (w/v) or more, preferably 0.1% (w/v) or more, and for example, 10% (w/v). Below, preferably 1% (w/v) or less.
  • the content of a protein of 9 kDa or more per 1 ⁇ g of matrix is 10 fmol or more and 600 fmol or less. It is preferably 20 fmol or more, more preferably 30 fmol or more, and preferably 300 fmol or less, more preferably 150 fmol or less. If the protein content is below the above lower limit, the effect of blending the protein may not be produced and the detection sensitivity may not be improved. On the other hand, when the protein content exceeds the above upper limit, there is a possibility that the detection sensitivity may be lowered compared to the case where the protein is not contained.
  • the Ng-related peptides contained in the second eluate (and thus the sample) can be measured.
  • the laser irradiation target contains a protein of 9 kDa or more, and the protein content per 1 ⁇ g of the matrix is 10 fmol or more and 600 fmol or less. can be detected. This is because in MADLI-MS, a sample is usually singly ionized by receiving protons from a laser-excited matrix, and the singly charged ion peak is detected.
  • Ng-related peptides due to their structure, divalent ionization also occurs, and the intensity of monovalent ions is relatively reduced.
  • the first embodiment since proteins of 9 kDa or more coexist in the matrix, the number of proton receptors increases and the protons are dispersed, so it is presumed that divalent ions decrease. Note that the first embodiment is not limited to the above mechanism.
  • a protein of 9 kDa or more is added to the second acidic solution.
  • the detection step on a plate irradiated with a laser, 2.
  • the laser irradiation target is made to contain the protein of 9 kDa or more.
  • the analysis method of the second embodiment includes a purification step and a detection step in order.
  • the purification step is, for example, affinity purification, and includes a first binding step, a first washing step, a first elution step, a neutralization step, a second binding step, a second washing step, and a second elution. and steps in this order.
  • the first binding step, the first washing step, the first elution step, the neutralization step, the second binding step, and the second washing step are the same as those steps in the first embodiment.
  • the second elution step in the second embodiment is the same as the second elution step in the first embodiment, except that the second acidic solution, and thus the second eluate, does not contain a protein of 9 kDa or more. .
  • the laser irradiation target is placed on the MALDI plate.
  • the protein-containing liquid is added dropwise.
  • the matrix-containing solution is dropped onto a MALDI plate and dried, and then the second eluate and protein-containing solution are dropped onto it and dried.
  • the laser irradiation target is irradiated with a laser, and ionized peptides are detected by a mass spectrometer. Since the matrix, the Ng-related peptide, and the protein of 9 kD or more need only be contained in a dry state, the order of dropping the matrix, the Ng-related peptide, and the protein of 9 kD or more does not matter.
  • the protein-containing liquid contains a protein of 9 kDa or more and a solvent.
  • the solvent include, but are not limited to, the same solvent as the matrix-containing solvent, preferably the solvent used for the second acidic solution.
  • the protein concentration per 1 ⁇ g of matrix is 10 fmol or more and 600 fmol or less (preferably 20 fmol or more, more preferably 30 fmol or more, and preferably 300 fmol or less and 150 fmol). below).
  • the protein concentration is, for example, 10 nM or more, preferably 50 nM or more, and, for example, 1000 nM or less, preferably 600 nM or less
  • the dropping amount is, for example, 0.1 ⁇ L or more. , preferably 0.2 ⁇ L or more, and for example, 10 ⁇ L or less, preferably 5 ⁇ L or less.
  • the first embodiment is preferable from the viewpoint of not increasing the number of steps for accurately dropping onto the MALDI plate and facilitating uniform mixing of laser irradiation targets.
  • immunoprecipitation is performed multiple times (twice) as the purification step, but for example, immunoprecipitation is performed only once. You may
  • the analysis method of the third embodiment includes a first binding step (binding step), a first washing step (washing step), a second elution step (elution step), and a detection step.
  • the second acidic solution solution for elution
  • the second acidic solution contains a protein of 9 kDa or more.
  • the analysis method of the fourth embodiment includes a first binding step (binding step), a first washing step (washing step), a second elution step (elution step), and a detection step.
  • first binding step binding step
  • first washing step washing step
  • second elution step elution step
  • detection step detection step
  • the first and second embodiments are preferable from the viewpoint that the Ng-related peptides can be reliably analyzed even when the amount of the Ng-related peptides present in the sample is much smaller.
  • An analysis method is a method of analyzing a neurogranin-related peptide by matrix-assisted laser desorption/ionization mass spectrometry, wherein the laser irradiation target is the neurogranin-related peptide, the matrix , and a protein of 9 kDa or more, and the content of the protein with respect to 1 ⁇ g of the matrix may be 10 fmol or more and 600 fmol or less.
  • the content of the protein with respect to 1 ⁇ g of the matrix may be 30 fmol or more and 150 fmol or less.
  • the mass of the protein may be 9 kDa or more and 15 kDa or less.
  • the sample containing the neurogranin-related peptide is brought into contact with the carrier in the binding solution, and the neurogranin-related peptide is a binding step of obtaining a conjugate bound to a carrier; a washing step of washing the conjugate with a washing solution; and a detection step of performing matrix-assisted laser desorption ionization mass spectrometry on the eluate to detect the neurogranin-related peptide, wherein the acidic The solution may contain said protein.
  • the concentration of the protein in the eluate may be 10 nM or more and 600 nM or less.
  • the sample containing the neurogranin-related peptide is brought into contact with the carrier in the binding solution, and the neurogranin-related peptide is a binding step of obtaining a conjugate bound to a carrier; a washing step of washing the conjugate with a washing solution; and a detection step of performing matrix-assisted laser desorption ionization mass spectrometry on the eluate to detect the neurogranin-related peptide, wherein the detection In the step, the eluate and the liquid containing the protein may be mixed on a plate irradiated with laser.
  • the concentration of the protein in the liquid containing the protein may be 10 nM or more and 600 nM or less.
  • Example 1 (First binding step, first washing step, first elution step) An anti-Ng antibody (IgG1) clone NG2 (BioLegend) with epitope at residues 52-63 of human Neurogranin (Ng) was prepared. 5.5 mg of magnetic beads (Dynabeads M-270 Epoxy) per 100 ⁇ g of anti-Ng antibody were added in an immobilization buffer (0.1 M phosphate buffer containing 1.5 M ammonium sulfate; pH 7.4) at 37°C. for 16-24 hours. Thus, antibody beads were produced.
  • an immobilization buffer 0.1 M phosphate buffer containing 1.5 M ammonium sulfate; pH 7.4
  • a sample of 250 ⁇ L containing two types of Ng peptides (concentration of each peptide: 40 pM) listed in Table 1 below was prepared.
  • the sample was added to a binding buffer (0.1% n-undecyl- ⁇ -D-maltoside (UDM), 800 mM GlcNAc, 100 mM Tris- HCl, 300 mM NaCl; pH 7.4) was mixed with 250 ⁇ L and allowed to stand on ice for 5 to 60 minutes.
  • the mixed sample was mixed with the antibody beads and shaken on ice for 1 hour.
  • Antibody beads were then washed three times with 100 ⁇ L of the first wash buffer (0.05% UDM, 50 mM Tris-HCl, 150 mM NaCl; pH 7.4) and twice with 50 ⁇ L of 50 mM ammonium acetate buffer.
  • the antibody beads were then contacted with a first acidic solution (0.05% UDM, 50 mM glycine buffer; pH 2.8) to elute the Ng-related peptides into the first acidic solution. This gave a first eluate containing Ng-related peptides.
  • the first eluate was mixed with a neutral buffer (0.1% UDM, 800 mM GlcNAc, 300 mM Tris-HCl, 300 mM NaCl; pH 7.4) to obtain a purified solution.
  • a neutral buffer (0.1% UDM, 800 mM GlcNAc, 300 mM Tris-HCl, 300 mM NaCl; pH 7.4
  • the antibody beads are brought into contact with 5 ⁇ L of a second acidic solution (a 70% (v/v) acetonitrile aqueous solution containing the amounts shown in Table 2 of recombinant Ng, 5 mM hydrochloric acid and 0.1 mM methionine) to obtain Ng-related peptides. was eluted in the second acidic solution. This gave a second eluate containing Ng-related peptides.
  • a second acidic solution a 70% (v/v) acetonitrile aqueous solution containing the amounts shown in Table 2 of recombinant Ng, 5 mM hydrochloric acid and 0.1 mM methionine
  • Detection process As a mass spectrometer, AXIMA Performance (Shimadzu/KRATOS, Manchester, UK), which is a MALDI-TOF MS device, was used. 2 mg/mL CHCA/0.2 using ⁇ -cyano-4-hydroxycinnamic acid (CHCA) as matrix for Linear TOF, methylene diphosphonic acid (MDPNA) as matrix additive and acetonitrile as solvent A % (w/v) MDPNA matrix solution was prepared.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • MDPNA methylene diphosphonic acid
  • solvent acetonitrile
  • 0.5 ⁇ L of the matrix solution (that is, 1 ⁇ g of matrix per well) was dropped onto 4 wells of a MALDI plate ( ⁇ Focus MALDI plate 900 ⁇ m (Hudson Surface Technology, Inc., Fort Lee, NJ)) and dried. After that, 1 ⁇ L of the second eluate was added dropwise and dried.
  • the MALDI-TOF MS was then run to detect Ng-related peptides (Ng43-75 and Ng33-75).
  • mass spectral data was acquired with a linear TOF in positive ion mode. 400 spots and 16000 shots were accumulated for each well.
  • the m/z value of Linear TOF is indicated by the average mass of peaks.
  • the m/z values were calibrated using human angiotensin II and human ACTH fragment 18-39, bovine insulin oxidized beta-chain, bovine insulin, and cytochrome c as external standards.
  • the concentration of the protein (recombiant Ng) contained in the second acidic solution, and thus the second eluate, is set to a plurality of concentrations (0 to 1600 nM) shown in Table 2 below, and the measurement is performed. bottom.
  • the mass of recombinant Ng is 9925.92 Da
  • the mass of Cytochrome C is 12360.52 Da
  • Bovine sewrum albumin was 66296 Da.
  • Example 4 It was carried out in the same manner as in Examples 1-3. However, instead of 5 ⁇ L of the second acidic solution containing proteins (rNg, CytC, BSA), 2.5 ⁇ L of the second acidic solution containing no protein was used. In addition, 0.5 ⁇ L of the matrix solution was dropped into each well of the MALDI plate, dried, and then 0.5 ⁇ L of the second eluate and a protein-containing solution (protein concentration: 100 nM, solvent: 5 mM hydrochloric acid and 0.1 mM methionine 0.5 ⁇ L of 70% (v/v) acetonitrile aqueous solution containing and dried.
  • protein concentration 100 nM
  • solvent 5 mM hydrochloric acid
  • methionine 0.5 ⁇ L of 70% (v/v) acetonitrile aqueous solution containing and dried.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

ニューログラニン関連ペプチドを、マトリックス支援レーザー脱離イオン化質量分析法により分析する方法であって、レーザー照射対象が、前記ニューログラニン関連ペプチド、マトリックス、および、9kDa以上のタンパク質を含有し、前記マトリックス1μgに対する前記タンパク質の含有量が、10fmol以上、600fmol以下である。

Description

ニューログラニン関連ペプチドの分析方法
 本発明は、ニューログラニン関連ペプチドの分析方法に関する。
 アルツハイマー病は、認知症の主な原因であり、その罹患者は、近年ますます増加しており、その研究はより一層重要となってきている。アルツハイマー病の発症では、アミロイド前駆タンパク質(APP;Amyloid precursor protein)の切断によって生じるアミドロイドβ(Aβ)などのAβ関連ペプチドが深く関わっている。そして、免疫沈降法および質量分析法を組み合わせて血液内の複数のAβ関連ペプチドを検出し、その検出した特定のAβ関連ペプチド比が、脳内アミロイド蓄積の血液バイオマーカーとして有望であることが報告されている(非特許文献1~2、特許文献1~3)。
 一方、アルツハイマー病は、その病態進行をモニターするためには、種々のバイオマーカーが必要であり、アルミロイド蓄積以外にも、タウ蓄積、神経変性の各プロセスを反映するためのバイオマーカーが要求されている。その中で、ニューログラニン(Neurogranin)は、神経変性のバイオマーカーの1つであり、アルツハイマー病患者の脳脊髄液(CSF)中で増加することが報告されている(非特許文献3、非特許文献4)。また、アルツハイマー病患者の脳内では、ニューログラニンの断片化が促進され、断片ペプチドが発生していることも報告されている(非特許文献5)。よって、ニューログラニンまたはその断片ペプチドなど(ニューログラニン関連ペプチド)の質量分析法が、神経変性を確認する手段として、期待されている。
 ところで、脳脊髄液中のニューログラニン関連ペプチドを分析することは、脳脊髄液を採取する必要があり、侵襲性の点で好ましくない。そのため、一般的な検査で採取が可能であり、低侵襲性である血液での分析が望まれている。
 しかしながら、血液に存在するニューログラニン関連ペプチドは、ごく微少なペプチドも含まれているため、従来の質量分析法では、充分に検出できない。例えば、免疫沈降法と質量分析法とを組み合わせた方法により、ニューログラニンなどを検出できたことが報告されている程度である(非特許文献6)。
WO2015/178398 WO2017/47529 特開2017-20980号公報
Kaneko N, Nakamura A, Washimi Y, Kato T, Sakurai T, Arahata Y, Bundo M, Takeda A, Niida S, Ito K, Toba K, Tanaka K, Yanagisawa K. : Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(9):353-364. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K. : High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 2018;554(7691):249-254. Portelius E, Olsson B, Hoglund K, Cullen NC, Kvartsberg H, Andreasson U, Zetterberg H, Sandelius A, Shaw LM, Lee VMY, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk DA, McCluskey L, Elman L, McBride J, Toledo JB, Trojanowski JQ, Blennow K. : Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol. 2018 ;136(3):363-376. Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K. : Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 2010;1362:13-22. Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Cullen NC, Hoglund K, Zetterberg H, Blennow K, Portelius E. : The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2019;137(1):89-102. Kvartsberg H, Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow K, Lewczuk P. : Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther. 2015;7(1):40.
 しかしながら、非特許文献6の分析方法を実施した場合においても、非特許文献2に記載のAβ関連ペプチドの分析方法をニューログラニン関連ペプチドに転用した場合においても、分析感度が不十分であり、実用化のレベルに至っていない。したがって、血液中のニューログラニンなどを分析するには、さらなる感度の向上が要求されている。
 本発明は、ニューログラニン関連ペプチドを高感度で検出することを目的とする。
 本発明の第1の態様は、ニューログラニン関連ペプチドを、マトリックス支援レーザー脱離イオン化質量分析法により分析する方法であって、レーザー照射対象が、前記ニューログラニン関連ペプチド、マトリックス、および、9kDa以上のタンパク質を含有し、 前記マトリックス1μgに対する前記タンパク質の含有量が、10fmol以上、600fmol以下である。
 本発明の第1の態様によれば、ニューログラニン関連ペプチドを高感度で分析することができる。
図1は、タンパク質としてrecombiant Ngをレーザー照射対象に含有させた場合において、MALDI-MSの検出感度の変動率を示す実施例1のグラフである。縦軸は、タンパク質(recombiant Ng)を含有しない場合のマススペクトルピークのシグナル/ノイズ比(S/N)に対するタンパク質を含有する場合のピークのS/N、横軸は、マトリックス1μgに対するタンパク質の含有量を示す。 図2は、タンパク質としてCytochrome Cをレーザー照射対象に含有させた場合において、MALDI-MSの検出感度の変動率を示す実施例2のグラフである。 図3は、タンパク質としてBovine sewrum albuminをレーザー照射対象に含有させた場合において、MALDI-MSの検出感度の変動率を示す実施例3のグラフである。 図4は、タンパク質含有液をMALDIプレートに滴下した際において、Ng43-75ペプチドの検出感度の変動率を示す実施例4のグラフである。縦軸は、タンパク質を含有しない場合のマススペクトルピークのシグナル/ノイズ比(S/N)に対するタンパク質を含有する場合のピークのS/N、横軸は、タンパク質の種類を示す。 図5は、タンパク質含有液をMALDIプレートに滴下した際において、Ng33-75ペプチドの検出感度の変動率を示す実施例4のグラフである。
 1.第1の実施形態
 第1の実施形態にかかる分析方法は、試料中のニューログラニン関連ペプチドを分析する方法であって、精製工程と、検出工程とを順に備える。以下、各工程を詳述する。
 なお、「ニューログラニン関連ペプチド」(以下、「Ng関連ペプチド」と略する。)には、ニューログラニン、翻訳・修飾されたニューログラニン、および、これらの断片ペプチドが含まれる。断片ペプチドとしては、例えば、Ng43-75(配列番号1)、Ng33-75(配列番号2)、Ng50-78(配列番号3)などが挙げられる。Ng関連ペプチドの質量(分子量)は、一般的には、9kDa未満であり、好ましくは、8kDa以下であり、また、例えば、1kDa以上、好ましくは、2kDa以上である。第1の実施形態では、特に、9KDa未満のNg関連ペプチドに対して、好適に測定することができる。この質量は、例えば、MALDI-TOF(マトリックス支援レーザー脱離イオン化-飛行時間)型質量分析装置などによって測定することができる。
 1-1.精製工程
 精製工程は、例えば、アフィニティ精製であり、具体的には、第1結合工程(結合工程の一例)と、第1洗浄工程(洗浄工程の一例)と、第1溶出工程と、中性化工程と、第2結合工程と、第2洗浄工程と、第2溶出工程(溶出工程の一例)とをこの順に備える。
 (第1結合工程)
 第1結合工程では、結合液中にて、試料を第1担体に接触させる。例えば、結合溶液、試料および第1担体を適宜の順で混合する。これにより、試料中のNg関連ペプチドが第1担体に結合して、第1結合体が得られる。
 試料は、ニューログラニン関連ペプチドを含有する試料であって、一般的には、生体試料である。生体試料としては、例えば、血液、脳脊髄液、尿、体分泌液、唾液、痰などの体液;例えば、糞便などが挙げられる。血液には、全血、血漿、血清などが含まれる。血液は、個体から採取された全血に、遠心分離、冷凍保存などの処理がなされたものであってよい。本分析方法では、好ましくは、血液が挙げられる。血液は、脳骨髄液と比較して低侵襲性であり、また、健康診断等におけるスクリーニングの対象試料であって入手が容易である。
 結合溶液は、好ましくは、界面活性剤を含有する中性緩衝液である。緩衝液としては、例えば、Tris緩衝液、リン酸緩衝液、HEPES緩衝液、酢酸アンモニウム緩衝液などが挙げられる。結合溶液のpHは、例えば、pH6.0以上、好ましくは、6.5以上であり、また、例えば、8.5以下、好ましくは、8.0以下である。
 結合溶液に含有される界面活性剤としては、例えば、疎水基の炭素数が7以上15以下(好ましくは、9以上11以下)である中性界面活性剤が挙げられる。これにより、第1結合体への非特異的吸着を抑制したり、質量分析において、イオン化干渉を低減することができる。このような界面活性剤としては、例えば、n-ノニル-β-D-マルトシド、n-ノニル-β-D-チオマルトシド、n-デシル-β-D-マルトシド、n-ウンデシル-β-D-マルトシド(UDM:n-Undecyl-β-D-maltoside)などのマルトースを親水性部分に有する界面活性剤;例えば、α-D-グルコピラノシルα-D-グルコピラノシド モノデカノエート(トレハロースC10)などのトレハロースを親水性部分に有する界面活性剤;例えば、n-デシル-β-D-グルコシドなどのグルコースを親水性部分に有する界面活性剤などが挙げられる。これら界面活性剤は、1種単独で用いることができ、また、2種以上を併用することができる。
 結合溶液中の界面活性剤濃度は、例えば、0.01%(w/v)以上、好ましくは、0.05%(w/v)以上であり、また、例えば、10%(w/v)以下、好ましくは、3%(w/v)以下である。界面活性剤濃度が上記範囲であれば、ミセルが充分に形成されるため、界面活性剤の効果を確実に発揮させることができる。
 第1担体は、Ng関連ペプチドが結合可能なものであればよく、例えば、抗体固定化担体が挙げられる。
 第1担体に固定化されている抗体は、Ng関連ペプチドを認識可能な抗原結合部位を有する抗体(抗Ng関連ペプチド抗体)であり、例えば、Ng関連ペプチドを認識可能な抗原結合部位を有する免疫グロブリンまたはその断片が挙げられる。
 免疫グロブリンとしては、例えば、IgG(IgG1、IgG2、IgG3、IgG4)、IgM、IgA、IgY、IgD、IgEなどが挙げられる。免疫グロブリン断片としては、例えば、F(ab’)2、F(ab’)、F(ab)、Fd、Fv、L鎖、H鎖などが挙げられる。より具体的には、クローンNG2、NG7、EPR21152およびこれらの断片などである。抗体は、モノクローナル抗体およびポリクローナル抗体のいずれでもよい。
 第1担体の材質としては、例えば、アガロース、セファロース、デキストラン、シリカゲル、ポリアクリルアミド、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリアクリロニトリル、(メタ)アクリル酸系ポリマー、フッ素樹脂、金属錯体樹脂、ガラス、金属、磁性体などが挙げられる。
 第1担体の形状としては、球状(ビーズ形状を含む)、板状、針状、不定形などのいずれの形状であってもよく、また、マイクロデバイス内の流路壁などであってもよい。
 第1結合工程の前に、必要に応じて、IgG、IgMなどの抗体を除去する前処理などを実施してもよい。
 (第1洗浄工程)
 第1洗浄工程では、第1結合工程の後において、第1洗浄溶液を用いて第1結合体を洗浄する。
 第1洗浄溶液は、好ましくは、界面活性剤を含有する中性緩衝液である。これにより、疎水性の高い不要成分(血中タンパク質、脂質、糖脂質など)を効果的に除去することができる。第1洗浄溶液における中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。
 第1洗浄溶液中の界面活性剤濃度は、例えば、0.01%(w/v)以上、好ましくは、0.02%(w/v)以上であり、また、例えば、5%(w/v)以下、好ましくは、2%(w/v)以下である。界面活性剤濃度が上記範囲であれば、ミセルが充分に形成されるため、界面活性剤の効果を確実に発揮させることができる。
 洗浄方法は、公知の方法を採用すればよく、好ましくは、複数回洗浄を実施する。例えば、界面活性剤を含有する中性緩衝液を用いて洗浄し、続いて、界面活性剤を含有しない中性緩衝液を用いて洗浄する。
 界面活性剤を含有しない中性緩衝液も、結合溶液で例示した中性緩衝液と同様のものを使用することができる。これにより、界面活性剤が第1結合体に残存することによる泡立ちを抑制することができる。
 洗浄方法としては、一般的な方法を採用すればよく、例えば、洗浄溶液内で担体を攪拌する方法、洗浄ノズルから洗浄溶液を噴射する方法などが挙げられる。これら中性緩衝液による洗浄後に、必要に応じて、水による洗浄をさらに実施してもよい。
 (第1溶出工程)
 第1溶出工程では、第1洗浄工程の後において、第1結合体を第1酸性溶液に接触させる。これにより、第1結合体からNg関連ペプチドが解離して、第1酸性溶液にNg関連ペプチドが溶出する。その結果、Ng関連ペプチドを含有する第1溶出液が得られる。
 第1酸性溶液としては、例えば、グリシン緩衝液、塩酸などの酸性水溶液が挙げられ、好ましくは、グリシン緩衝液が挙げられる。第1酸性溶液のpHは、例えば、3.5以下、好ましくは、3.0以下であり、また、例えば、0.5以上、好ましくは、1.0以上である。
 第1酸性溶液は、好ましくは、界面活性剤を含有する。これにより、第1結合体からNg関連ペプチドをより確実に解離させることができる。また、溶出されたNg関連ペプチドが、試験管、マイクロプレートなどの容器に付着することを抑制する。したがって、Ng関連ペプチドの回収率を確実に向上させて、検出感度を向上させることができる。第1酸性溶液に用いる界面活性剤としては、結合溶液で例示した界面活性剤と同様のものが挙げられる。また、第1酸性溶液中の界面活性剤濃度は、第1洗浄溶液中の界面活性剤濃度と同様である。
 (中性化工程)
 中性化工程では、第1溶出工程の後において、第1溶出液を中性緩衝液と混合する。これにより、第1溶出液が中性化して、Ng関連ペプチドを含有する精製溶液が得られる。
 中性化工程に用いる中性緩衝液は、好ましくは、界面活性剤を含有する。これにより、第2結合工程で第2結合体への非特異的吸着を抑制することができる。中性化工程に用いる中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。また、中性緩衝液中の界面活性剤濃度は、第1結合溶液中の界面活性剤濃度と同様である。
 得られる精製溶液のpHは、中性であって、例えば、pH6.0以上、好ましくは、6.5以上であり、また、例えば、8.5以下、好ましくは、8.0以下である。これにより、第2結合工程において、結合効率を向上させることができる。
 (第2結合工程)
 第2結合工程では、中性化工程の後において、精製溶液を第2担体に接触させる。これにより、精製溶液のNg関連ペプチドが第2担体に結合して、第2結合体が得られる。
 第2担体としては、好ましくは、抗体固定化担体であり、具体的には、第1担体で例示した抗体固定化担体と同様のものが挙げられる。
 (第2洗浄工程)
 第2洗浄工程では、第2結合工程の後において、第2洗浄溶液を用いて第2結合体を洗浄する。
 第2洗浄溶液は、好ましくは、界面活性剤を含有する中性緩衝液である。これにより、例えば、疎水性の高い不要成分(血中タンパク質、脂質、糖脂質など)を効果的に除去することができる。第2洗浄溶液に用いる中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。また、第2洗浄溶液中の界面活性剤濃度は、第1洗浄溶液中の界面活性剤濃度と同様である。
 洗浄方法は、公知の方法を採用すればよく、具体的には、第1洗浄工程で例示した洗浄方法と同様の方法を実施すればよい。
 (第2溶出工程)
 第2溶出工程では、第2洗浄工程の後において、第2結合体を、第2酸性溶液(溶出用溶液)に接触させる。これにより、第2結合体からNg関連ペプチドが解離して、第2酸性溶液にNg関連ペプチドが溶出する。その結果、Ng関連ペプチドを含有する第2溶出液が得られる。
 第2酸性溶液を構成する酸性水溶液としては、第1溶出工程で例示した第1酸性溶液と同様のものが挙げられ、好ましくは、塩酸が挙げられる。
 第2酸性溶液は、タンパク質を含有する。タンパク質の質量は、9kDa以上であり、また、例えば、100kDa以下、好ましくは、15kDa以下、より好ましくは、11kDa以下である。第2酸性溶液に上記質量のタンパク質を配合することにより、レーザー照射対象に上記タンパク質が含まれ、その結果、Ng関連ペプチドの検出感度が向上する。また、タンパク質の質量の下限を9kDaとすることにより、分析対象であるNg関連ペプチドの質量域との重複を回避することができ、Ng関連ペプチドのみを正確に検出することができる。タンパク質の質量の上限を100kDa、好ましくは15kDa、特に11kDaとすることにより、検出感度を格段に向上させることができる。
 タンパク質は、質量が9kDa以上であれば限定的でなく、具体的には、リコンビナントニューログラニン、シトクロム、ウシ血清アルブミン(Bovine Serum Albumin;BSA)、オボアルブミン、リゾチームなどが挙げられる。
 第2酸性溶液におけるタンパク質の濃度、ひいては、第2溶出液(溶出液の一例)におけるタンパク質の濃度は、例えば、10nM以上、好ましくは、20nM以上、より好ましくは、30nM以上であり、また、例えば、600nM以下、好ましくは、300nM以下、より好ましくは、150nM以下である。換言すると、当該濃度は、例えば、0.1μg/mL以上、好ましくは、0.25μg/mL以上であり、また、例えば、30μg/mL以下、好ましくは、4.00μg/mL以下である。タンパク質の濃度を上記範囲とすることにより、適切に検出感度を向上させることができる。
 第2酸性溶液は、好ましくは、揮発性有機溶媒を含有する。これにより、第2結合体からNg関連ペプチドを効率よく解離させ、第2酸性溶液に溶出させることができ、Ng関連ペプチドの回収率を向上させることができる。
 揮発性有機溶媒としては、水と任意の割合で混和する有機溶媒が挙げられ、例えば、アセトニトリル、メタノール、エタノール、アセトン、トルエン、イソプロパノール、ヘキサン、ブタノール、シクロヘキサン、エチレングリコール、ベンゼン、クロロホルム、アセトアルデヒド、トリエチルアミン、フェノール、ナフタレン、ホルムアルデヒド、テトラヒドロフラン、酢酸エチルなどが挙げられ、好ましくは、アセトニトリル、メタノール、エタノール、アセトン、イソプロパノールなどが挙げられる。これら有機溶剤は、1種単独で用いることができ、また、2種以上を併用することもできる。
 第2酸性溶液中の揮発性有機溶媒濃度は、例えば、10%(v/v)以上、好ましくは、25%(v/v)以上であり、また、例えば、90%(v/v)以下、好ましくは、80%(v/v)以下である。濃度が上記範囲内であれば、第2担体からNg関連ペプチドが効率よく解離させることができ、また、質量分析時の感度(S/N比)を向上させることができる。
 第2酸性溶液は、好ましくは、メチオチンなどのアミノ酸をさらに含有する。これにより、質量分析装置に配置し、分析が開始するまでの間において、Ng関連ペプチドの酸化を低減させることができ、分析感度を向上させることができる。第2酸性溶液中のアミノ酸濃度は、例えば、0.01mM以上、好ましくは、0.05mM以上であり、また、例えば、5mM以下、好ましくは、1mM以下である。
 1-2.検出工程
 検出工程では、精製工程の後において、第2溶出液に対してMALDI-MS(Matrix Assisted Laser Desorption / Ionization-Mass spectrometry;マトリックス支援レーザー脱離イオン化質量分析法)を実施して、Ng関連ペプチドを検出する。すなわち、第2溶出液またはその乾燥物に含まれるNg関連ペプチドをMALDIによってイオン化し、イオン化したペプチドを質量分析によって検出する。
 MALDI-MSでは、例えば、MALDI-TOF(マトリックス支援レーザー脱離イオン化-飛行時間)型質量分析装置、MALDI-IT(マトリックス支援レーザー脱離イオン化-イオントラップ)型質量分析装置、MALDI-IT-TOF(マトリックス支援レーザー脱離イオン化-イオントラップ-飛行時間)型質量分析装置、MALDI-FTICR(マトリックス支援レーザー脱離イオン化-フーリエ変換イオンサイクロトロン共鳴)型質量分析装置などを用いて、常法に従って操作すればよい。
 MALDI-MSの検出操作では、まず、MALDIプレートに、レーザー照射対象を配置する。具体的には、例えば、マトリックス含有溶液をMALDIプレートに滴下し、乾燥(結晶化)させることにより、マトリックスを配置した後、そのマトリックス上に、第2溶出液を滴下し、乾燥させる。これにより、マトリックス、Ng関連ペプチドおよび9kD以上のタンパク質が乾燥状態(固体状態)で存在するレーザー照射対象が得られる。なお、必要に応じて、完全な乾燥をせずに、固体成分が濃縮された液体状態で存在するレーザー照射対象を得てもよい。
 続いて、レーザー照射対象にレーザーを照射させることにより、Ng関連ペプチドがイオン化され、イオン化したペプチドが、上記質量分析装置によって検出される。その検出結果を質量分析装置により解析することにより、Ng関連ペプチドを定量することができる。
 マトリックスとしては、例えば、α-シアノ-4-ヒドロキシ桂皮酸(CHCA;α-cyano-4-hydroxycinnamic acid)、2,5-ジヒドロキシ安息香酸、シナピン酸、3-アミノキノリンなどが挙げられる。これらマトリックスは、1種単独で用いることができ、また、2種以上を併用することができる。
 マトリックスを含有させる溶媒としては、例えば、アセトニトリル、トリフルオロ酢酸、メタノール、エタノール、水などが挙げられる。これら溶媒は、1種単独で用いることができ、また、2種以上を併用することができる。
 マトリックス含有溶液におけるマトリックス濃度は、例えば、0.1mg/mL以上、好ましくは0.5mg/mL以上であり、また、例えば、50mg/mL以下、好ましくは、10mg/mL以下である。
 MALDIプレートに配置されるマトリックス量は、1wellあたり、例えば、0.1μg以上、好ましくは0.5μg以上であり、また、例えば、50μg以下、好ましくは、10μg以下である。
 好ましくは、マトリックスとともに、マトリックス添加剤を併用する。マトリックス添加剤としては、例えば、ホスホン酸基含有化合物、アンモニウム塩などが挙げられ、好ましくは、洗浄溶液の残存によるバックグランドへの悪影響を抑制できる観点から、ホスホン酸基含有化合物が挙げられる。ホスホン酸基含有化合物としては、例えば、ホスホン酸、メチルホスホン酸、フェニルホスホン酸、1-ナフチルメチルホスホン酸、メチレンジホスホン酸(MDPNA;Methylenediphosphonic acid)、エチレンジホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、ニトリロトリホスホン酸、エチレンジアミノテトラホスホン酸などが挙げられる。
 マトリックス含有溶液におけるマトリックス添加剤濃度は、例えば、0.01%(w/v)以上、好ましくは、0.1%(w/v)以上であり、また、例えば、10%(w/v)以下、好ましくは、1%(w/v)以下である。
 レーザー照射対象において、マトリックス1μgに対する9kDa以上のタンパク質の含有量は、10fmol以上、600fmol以下である。好ましくは、20fmol以上、より好ましくは、30fmol以上であり、また、好ましく、300fmol以下、より好ましくは、150fmol以下である。タンパク質の含有量が上記下限を下回ると、タンパク質配合の効果が生じず、検出感度が向上しないおそれがある。一方、タンパク質の含有量が上記上限を上回ると、タンパク質を含有しない場合と比べて、検出感度が低下するおそれがある。
 これにより、第2溶出液(ひいては、試料)に含有されるNg関連ペプチドを測定することができる。この分析方法では、特に、レーザー照射対象が9kDa以上のタンパク質を含有し、マトリックス1μgに対するタンパク質の含有量が10fmol以上、600fmol以下であるため、Ng関連ペプチドを非常に高感度(S/N)で検出することができる。これは、MADLI-MSでは、通常、試料が、レーザーにより励起されたマトリックスからプロトンを受け取ることにより、一価でイオン化されて、その一価イオンのピークを検出する。しかしながら、Ng関連ペプチドでは、その構造上、二価イオン化も発生してしまい、相対的に一価イオンの強度が低下する。これに対し、第1の実施形態では、9kDa以上のタンパク質がマトリックス内に共存するため、プロトン受容体が増加し、プロトンが分散されるため、二価イオンが減少することによると推測される。なお、第1の実施態様は上記メカニズムに限定されない。
 2.第2の実施形態
 第1の実施形態では、精製工程において、第2酸性溶液に9kDa以上のタンパク質を添加するが、第2の実施形態では、検出工程において、レーザーを照射するプレート上で、第2溶出液と、9kDa以上のタンパク質を含有する液体(タンパク質含有液)とを混合することにより、レーザー照射対象に9kDa以上のタンパク質を含有させる。
 第2の実施形態の分析方法は、精製工程と、検出工程とを順に備える。精製工程は、例えば、アフィニティ精製であり、第1結合工程と、第1洗浄工程と、第1溶出工程と、中性化工程と、第2結合工程と、第2洗浄工程と、第2溶出工程とをこの順に備える。第1結合工程と、第1洗浄工程と、第1溶出工程と、中性化工程と、第2結合工程と、第2洗浄工程とは、第1の実施形態におけるこれらの工程と同様である。第2の実施形態における第2溶出工程は、第2酸性溶液、ひいては、第2溶出液において、9kDa以上のタンパク質が含まれない以外は、第1の実施形態における第2溶出工程と同様である。
 検出工程では、MALDIプレート上に、レーザー照射対象を配置する。この際、マトリックス含有溶液および第2溶出液に加えて、タンパク質含有液を滴下する。具体的には、MALDIプレートに、マトリックス含有溶液を滴下および乾燥させ、続いて、その上に第2溶出液およびタンパク質含有液を滴下して、乾燥させる。これにより、マトリックス、Ng関連ペプチドおよび9kD以上のタンパク質が、乾燥状態で含有するレーザー照射対象が得られる。その後、第1の実施形態と同様に、レーザー照射対象に、レーザーを照射し、イオン化したペプチドを質量分析装置により検出する。なお、マトリックス、Ng関連ペプチドおよび9kD以上のタンパク質が、乾燥状態で含有していればよいため、マトリックス、Ng関連ペプチド、9kD以上のタンパク質、それぞれの滴下の順番は問わない。
 タンパク質含有液は、9kDa以上のタンパク質および溶媒を含有する。溶媒としては、限定的でなく、例えば、マトリックスを含有させる溶媒と同様の溶媒、好ましくは、第2酸性溶液に用いる溶媒などが挙げられる。タンパク質含有液におけるタンパク質濃度、および、その滴下量は、マトリックス1μgに対するタンパク質濃度が、10fmol以上、600fmol以下(好ましくは、20fmol以上、より好ましくは、30fmol以上であり、また、好ましく、300fmol以下、150fmol以下)となるように調整すればよい。具体的には、タンパク質の濃度は、例えば、10nM以上、好ましくは、50nM以上であり、また、例えば、1000nM以下、好ましくは、600nM以下とすればよく、滴下量は、例えば、0.1μL以上、好ましくは、0.2μL以上であり、また、例えば、10μL以下、好ましくは、5μL以下とすればよい。
 これら第2の実施形態も第1の実施形態と同様の作用効果を奏する。MALDIプレートへの正確な滴下作業工程数が増加せず、レーター照射対象が均一に混合しやすい観点から、第1の実施形態が好ましい。
 3.第3および第4の実施形態
 第1および第2の実施形態の分析方法では、精製工程として、複数回(2回)の免疫沈降を実施しているが、例えば、免疫沈降を1回のみ実施してもよい。
 具体的には、第3の実施形態の分析方法は、第1結合工程(結合工程)と、第1洗浄工程(洗浄工程)と、第2溶出工程(溶出工程)と、検出工程とを備えており、第2溶出工程において、第2酸性溶液(溶出用溶液)が、9kDa以上のタンパク質を含有する。
 第4の実施形態の分析方法は、第1結合工程(結合工程)と、第1洗浄工程(洗浄工程)と、第2溶出工程(溶出工程)と、検出工程とを備えており、検出工程において、プレート上で、第2溶出液とタンパク質含有液とを混合する。
 これら第3および第4の実施形態も第1の実施形態と同様の作用効果を奏する。試料中のNg関連ペプチドの存在量がより一層微量である場合でもNg関連ペプチドを確実に分析することができる観点から、第1および第2の実施形態が好ましい。
 4.態様
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る分析方法は、ニューログラニン関連ペプチドを、マトリックス支援レーザー脱離イオン化質量分析法により分析する方法であって、レーザー照射対象が、前記ニューログラニン関連ペプチド、マトリックス、および、9kDa以上のタンパク質を含有し、前記マトリックス1μgに対する前記タンパク質の含有量が、10fmol以上、600fmol以下であってもよい。
 (第2項)第1項に記載の分析方法において、前記マトリックス1μgに対する前記タンパク質の含有量が、30fmol以上、150fmol以下であってもよい。
 (第3項)第1項または第2項に記載の分析方法において、前記タンパク質の質量が、9kDa以上、15kDa以下であってもよい。
 (第4項)第1~3項のいずれか一項に記載の分析方法において、ニューログラニン関連ペプチドを含有する試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、前記結合体を、洗浄溶液を用いて、洗浄する洗浄工程と、前記結合体を酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、前記溶出液に対して、マトリックス支援レーザー脱離イオン化質量分析法を実施して、前記ニューログラニン関連ペプチドを検出する検出工程とを順に備え、前記酸性溶液は前記タンパク質を含有してもよい。
 (第5項)第4項に記載の分析方法において、前記溶出液における前記タンパク質の濃度が、10nM以上、600nM以下であってもよい。
 (第6項)第1~3項のいずれか一項に記載の分析方法において、ニューログラニン関連ペプチドを含有する試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、前記結合体を、洗浄溶液を用いて、洗浄する洗浄工程と、前記結合体を酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、前記溶出液に対して、マトリックス支援レーザー脱離イオン化質量分析法を実施して、前記ニューログラニン関連ペプチドを検出する検出工程とを順に備え、前記検出工程において、レーザーを照射するプレート上で、前記溶出液と、前記タンパクを含有する液体とを混合してもよい。
 (第7項)第6項に記載の分析方法において、前記タンパクを含有する液体における前記タンパク質の濃度が、10nM以上、600nM以下であってもよい。
 次に実施例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらによって限定されない。
 <実施例1>
 (第1結合工程、第1洗浄工程、第1溶出工程)
 ヒトNeurogranin(Ng)の52-63残基をエピトープとする抗Ng抗体(IgG1)のクローンNG2(BioLegend社)を用意した。抗Ng抗体100μgに対して磁性ビーズ(Dynabeads M-270 Epoxy)5.5mgを、固定化緩衝液(1.5M硫酸アンモニウムを含有する0.1Mリン酸緩衝液;pH7.4)中で、37℃で16~24時間反応させた。これにより、抗体ビーズを作製した。
 下記表1に記載の2種類のNgペプチド(各ペプチド濃度40pM)を含有する試料250μLを用意した。その試料を、安定同位体標識されたNg50-78(SIL-Ng50-78)20pMを含む結合緩衝液(0.1%n-ウンデシル-β-D-マルトシド(UDM)、800mM GlcNAc、100mM Tris-HCl、300mM NaCl;pH7.4)250μLと混合し、氷上で5~60分静置させた。その混合試料を、上記抗体ビーズと混合し、氷上で1時間振盪させた。その後、抗体ビーズを、第1洗浄緩衝液(0.05%UDM、50mM Tris-HCl、150mM NaCl;pH7.4)100μLで3回洗浄し、50mM酢酸アンモニウム緩衝液50μLで2回洗浄した。その後、抗体ビーズを、第1酸性溶液(0.05%UDM、50mMグリシン緩衝液;pH2.8)に接触させて、Ng関連ペプチドを第1酸性溶液に溶出させた。これにより、Ng関連ペプチドを含む第1溶出液を得た。
Figure JPOXMLDOC01-appb-T000001
 (中性化工程)
 第1溶出液を中性緩衝液(0.1%UDM、800mM GlcNAc、300mM Tris-HCl、300mM NaCl;pH7.4)と混合して、精製溶液を得た。
 (第2結合工程、第2洗浄工程、第2溶出工程)
 精製溶液を抗体ビーズと混合し、氷上で1時間振盪させた。その後、抗体ビーズを、第2洗浄緩衝液(0.05%UDM、50mM Tris-HCl、150mM NaCl;pH7.4)50μLで5回洗浄し、50mM酢酸アンモニウム緩衝液50μLで2回洗浄し、水30μLで1回洗浄した。その後、抗体ビーズを、5μLの第2酸性溶液(表2に示す量のrecombiant Ngと5mM塩酸と0.1mMメチオニンとを含む70%(v/v)アセトニトリル水溶液)に接触させて、Ng関連ペプチドを第2酸性溶液に溶出させた。これにより、Ng関連ペプチドを含む第2溶出液を得た。
 (検出工程)
 質量分析装置として、MALDI-TOF MS装置であるAXIMA Performance (Shimadzu/KRATOS,Manchester,UK)を用いた。Linear TOF用のマトリックスとしてα-シアノ-4-ヒドロキシ桂皮酸(CHCA)を用い、マトリックス添加剤としてメチレンジホスホン酸(MDPNA)を用い、溶媒としてアセトニトリルを用いて、2mg/mL CHCA/0.2%(w/v)MDPNAマトリックス溶液を調製した。MALDIプレート(μFocus MALDI plate 900μm(Hudson Surface Technology,Inc.,Fort Lee,NJ))の4wellに、マトリックス溶液を0.5μLずつ(すなわち、1well当たりマトリックス1μgとなるように)滴下し、乾燥させた後、さらに第2溶出液を1μLずつ滴下し、乾燥させた。
 次いで、MALDI-TOF MSを作動させて、Ng関連ペプチド(Ng43-75およびNg33-75)を検出した。設定条件として、マススペクトルデータは、ポジティブイオンモードのLinear TOFで取得した。1wellに対して400スポット、16000ショットずつ積算した。Linear TOFのm/z値はピークのアベレージマスで表示した。m/z値は外部標準としてhuman angiotensin IIおよびhuman ACTH fragment 18-39、bovine insulin oxidized beta-chain、bovine insulin、cytochrome cを用いてキャリブレーションした。
 このとき、第2酸性溶液、ひいては、第2溶出液に含有されるタンパク質(recombiant Ng)の濃度を、下記表2に示す複数の濃度(0~1600nM)の条件に設定して、測定を実施した。タンパク質を含有しない場合(濃度0nM)のピークのシグナル/ノイズ比(S/N)に対する表1の量のタンパク質を含有する場合(濃度25~1600nM)のピークのS/Nを算出し、これらのグラフを図1に示す。
Figure JPOXMLDOC01-appb-T000002
 <実施例2~3>
 第2酸性溶液に含有されるタンパク質の種類および濃度を、表2に記載の種類および濃度に変更した以外は、実施例1と同様にして、分析方法を実施した。これらの結果を図2~図3に示す。図1~3から、マトリックス1μgに対するタンパク質の含有量が、10~600fmolである場合に、検出感度が向上していることが分かる。
 なお、使用したタンパク質において、recombinant Ng(rNg;abcam社)の質量は、9925.92Da、Cytochrome C(CytC; Sigma社)の質量は、12360.52Da、Bovine sewrum albumin (BSA;ナカライテスク社製)の質量は、66296Daであった。
 <実施例4>
 実施例1~3と同様に実施した。ただし、タンパク質(rNg,CytC,BSA)を含有する第2酸性溶液5μLの代わりに、タンパク質を含有しない第2酸性溶液2.5μLを使用した。また、MALDIプレートの各wellに、それぞれ、マトリックス溶液0.5μLを滴下し、乾燥させた後、第2溶出液0.5μLおよびタンパク質含有液(タンパク質濃度100nM、溶媒:5mM塩酸と0.1mMメチオニンとを含む70%(v/v)アセトニトリル水溶液)0.5μLを滴下し、乾燥させた。このときのマトリックス1μg当たりのタンパク質の配合量は、50fmolであった。Ng43-75ペプチドについて、タンパク質(rNg,CytC,BSA)ごとの、タンパク質を含有しない場合(添加タンパク質なし)のピークのシグナル/ノイズ比(S/N)に対するタンパク質を含有する場合のピークのS/N結果を図4に示す。Ng33-75ペプチドについて、タンパク質(rNg,CytC,BSA)ごとの、タンパク質を含有しない場合(添加タンパク質なし)のピークのシグナル/ノイズ比(S/N)に対するタンパク質を含有する場合のピークのS/N結果を図5に示す。

 

Claims (7)

  1.  ニューログラニン関連ペプチドを、マトリックス支援レーザー脱離イオン化質量分析法により分析する方法であって、
     レーザー照射対象が、前記ニューログラニン関連ペプチド、マトリックス、および、9kDa以上のタンパク質を含有し、
     前記マトリックス1μgに対する前記タンパク質の含有量が、10fmol以上、600fmol以下である、ニューログラニン関連ペプチドの分析方法。
  2.  前記マトリックス1μgに対する前記タンパク質の含有量が、30fmol以上、150fmol以下である、請求項1に記載の分析方法。
  3.  前記タンパク質の質量が、9kDa以上、15kDa以下である、請求項1に記載の分析方法。
  4.  ニューログラニン関連ペプチドを含有する試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、
     前記結合体を、洗浄溶液を用いて、洗浄する洗浄工程と、
     前記結合体を酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、
     前記溶出液に対して、マトリックス支援レーザー脱離イオン化質量分析法を実施して、前記ニューログラニン関連ペプチドを検出する検出工程と
    を順に備え、
     前記酸性溶液が前記タンパク質を含有する、請求項1に記載の分析方法。
  5.  前記溶出液における前記タンパク質の濃度が、10nM以上、600nM以下である、請求項4に記載の分析方法。
  6.  ニューログラニン関連ペプチドを含有する試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、
     前記結合体を、洗浄溶液を用いて、洗浄する洗浄工程と、
     前記結合体を酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、
     前記溶出液に対して、マトリックス支援レーザー脱離イオン化質量分析法を実施して、前記ニューログラニン関連ペプチドを検出する検出工程と
    を順に備え、
     前記検出工程において、レーザーを照射するプレート上で、前記溶出液と、前記タンパクを含有する液体とを混合する、請求項1に記載の分析方法。
  7.  前記タンパクを含有する液体における前記タンパク質の濃度が、10nM以上、600nM以下である、請求項6に記載の分析方法。
PCT/JP2022/046405 2022-01-13 2022-12-16 ニューログラニン関連ペプチドの分析方法 WO2023136043A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573928A JPWO2023136043A1 (ja) 2022-01-13 2022-12-16
CN202280087660.0A CN118541601A (zh) 2022-01-13 2022-12-16 神经颗粒蛋白相关肽的分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003946 2022-01-13
JP2022003946 2022-01-13

Publications (1)

Publication Number Publication Date
WO2023136043A1 true WO2023136043A1 (ja) 2023-07-20

Family

ID=87278897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046405 WO2023136043A1 (ja) 2022-01-13 2022-12-16 ニューログラニン関連ペプチドの分析方法

Country Status (3)

Country Link
JP (1) JPWO2023136043A1 (ja)
CN (1) CN118541601A (ja)
WO (1) WO2023136043A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010672A (ja) * 2004-05-24 2006-01-12 Shimadzu Corp Maldi質量分析によって混合物から特定の物質を選択的に測定する方法
JP2007309673A (ja) * 2006-05-16 2007-11-29 Shionogi & Co Ltd 微量タンパク質の同定を可能にするmaldi型質量分析装置用サンプルプレート
WO2015178398A1 (ja) 2014-05-22 2015-11-26 株式会社 島津製作所 脳内のアミロイドβペプチド蓄積状態を評価するサロゲート・バイオマーカー及びその分析方法
JP2017020980A (ja) 2015-07-14 2017-01-26 株式会社島津製作所 ポリペプチドの質量分析方法
WO2017047529A1 (ja) 2015-09-16 2017-03-23 株式会社 島津製作所 脳内のアミロイドβ蓄積状態を評価するマルチプレックスバイオマーカー及びその分析方法
WO2017150516A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 生体試料中の測定対象物質を定量するためのキット及び生体試料中の測定対象物質を定量する方法
WO2019146780A1 (ja) * 2018-01-29 2019-08-01 株式会社島津製作所 分析方法、質量分析用ペプチド酸化防止剤および質量分析用キット
US20210290769A1 (en) * 2018-08-01 2021-09-23 Carnegie Mellon University Tailoring site specificity of bioconjugation using step-wise atrp on proteins
WO2022239537A1 (ja) * 2021-05-14 2022-11-17 株式会社島津製作所 ニューログラニン関連ペプチドの分析方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010672A (ja) * 2004-05-24 2006-01-12 Shimadzu Corp Maldi質量分析によって混合物から特定の物質を選択的に測定する方法
JP2007309673A (ja) * 2006-05-16 2007-11-29 Shionogi & Co Ltd 微量タンパク質の同定を可能にするmaldi型質量分析装置用サンプルプレート
WO2015178398A1 (ja) 2014-05-22 2015-11-26 株式会社 島津製作所 脳内のアミロイドβペプチド蓄積状態を評価するサロゲート・バイオマーカー及びその分析方法
JP2017020980A (ja) 2015-07-14 2017-01-26 株式会社島津製作所 ポリペプチドの質量分析方法
WO2017047529A1 (ja) 2015-09-16 2017-03-23 株式会社 島津製作所 脳内のアミロイドβ蓄積状態を評価するマルチプレックスバイオマーカー及びその分析方法
WO2017150516A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 生体試料中の測定対象物質を定量するためのキット及び生体試料中の測定対象物質を定量する方法
WO2019146780A1 (ja) * 2018-01-29 2019-08-01 株式会社島津製作所 分析方法、質量分析用ペプチド酸化防止剤および質量分析用キット
US20210290769A1 (en) * 2018-08-01 2021-09-23 Carnegie Mellon University Tailoring site specificity of bioconjugation using step-wise atrp on proteins
WO2022239537A1 (ja) * 2021-05-14 2022-11-17 株式会社島津製作所 ニューログラニン関連ペプチドの分析方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KANEKO NAOKI, TAKAHASHI RYOTA, KORENAGA AKIHITO, YODA RITSUKO, SEKIYA SADANORI, IWAMOTO SHINICHI, TANAKA KOICHI: "Semi‐quantitative assay for neurogranin peptides using IP‐MALDI‐MS", ALZHEIMER'S & DEMENTIA, ELSEVIER, NEW YORK, NY, US, vol. 17, no. S5, 1 December 2021 (2021-12-01), US , XP093078287, ISSN: 1552-5260, DOI: 10.1002/alz.051562 *
KANEKO NNAKAMURA AWASHIMI YKATO TSAKURAI TARAHATA YBUNDO MTAKEDA ANIIDA SITO K: "Novel plasma biomarker surrogating cerebral amyloid deposition", PROC JPN ACAD SER B PHYS BIOL SCI., vol. 90, no. 9, 2014, pages 353 - 364, XP055238351, DOI: 10.2183/pjab.90.353
KVARTSBERG HLASHLEY TMURRAY CEBRINKMALM GCULLEN NCHOGLUND KZETTERBERG HBLENNOW KPORTELIUS E.: "The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease", ACTA NEUROPATHOL., vol. 137, no. 1, 2019, pages 89 - 102, XP036677407, DOI: 10.1007/s00401-018-1910-3
KVARTSBERG HPORTELIUS EANDREASSON UBRINKMALM GHELLWIG KLELENTAL NKORNHUBER JHANSSON OMINTHON LSPITZER P: "Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls", ALZHEIMERS RES THER., vol. 7, no. 1, 2015, pages 40
NAKAMURA AKANEKO NVILLEMAGNE VLKATO TDOECKE JDORE VFOWLER CLI QXMARTINS RROWE C: "High performance plasma amyloid-B biomarkers for Alzheimer's disease", NATURE, vol. 554, no. 7691, 2018, pages 249 - 254, XP055618943, DOI: 10.1038/nature25456
PORTELIUS EOLSSON BHOGLUND KCULLEN NCKVARTSBERG HANDREASSON UZETTERBERG HSANDELIUS ASHAW LMLEE VMY: "Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology", ACTA NEUROPATHOL., vol. 136, no. 3, 2018, pages 363 - 376, XP036571628, DOI: 10.1007/s00401-018-1851-x
THORSELL ABJERKE MGOBOM JBRUNHAGE EVANMECHELEN EANDREASEN NHANSSON OMINTHON LZETTERBERG HBLENNOW K.: "Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease", BRAIN RES., vol. 2010, no. 1362, pages 13 - 22

Also Published As

Publication number Publication date
CN118541601A (zh) 2024-08-23
JPWO2023136043A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
JP6424757B2 (ja) ポリペプチドの質量分析方法
JP6582995B2 (ja) App切断型ペプチドの測定方法
US8771969B2 (en) Peptide antibody depletion and its application to mass spectrometry sample preparation
Portelius et al. Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid
RU2007137125A (ru) Способ in vitro-диагностики болезни альцгеймера с помощью моноклонального антитела
WO2008085024A1 (en) Identification and detection of peptides relating to specific disorders
CN107709980A (zh) 单克隆抗体的定量方法
EP3915659B1 (en) Affinity support
WO2022239537A1 (ja) ニューログラニン関連ペプチドの分析方法
Cao et al. Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction
JP6870468B2 (ja) ペプチドの分析方法
WO2023136043A1 (ja) ニューログラニン関連ペプチドの分析方法
US20200284800A1 (en) Identification and monitoring of immunoglobulin j chains
WO2023228497A1 (ja) ニューログラニン関連ペプチド含有試料溶液の調製方法およびニューログラニン関連ペプチドの分析方法
JP7299566B2 (ja) アミロイドベータに対するモノクローナル抗体、及びその抗体を用いるアミロイドベータ関連ペプチドの測定方法
WO2022168417A1 (ja) 分析方法
EP3682249A1 (en) Identification and monitoring of acid hydrolysis products of immunoglobulin heavy chains
WO2022215341A1 (ja) 検量線の作成方法およびアミロイドβ関連ペプチドの測定方法
Menzel et al. High-throughput biomarker discovery and identification by mass spectrometry
WO2022181273A1 (ja) ペプチド測定における品質管理用標準溶液、及びペプチド測定の品質管理
JP6542842B2 (ja) アフィニティ支持体及びそれを用いた物質の捕捉方法
Fornelli Top-down and middle-down mass spectrometry structural characterization of monoclonal antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022920561

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022920561

Country of ref document: EP

Effective date: 20240813