WO2022239537A1 - ニューログラニン関連ペプチドの分析方法 - Google Patents

ニューログラニン関連ペプチドの分析方法 Download PDF

Info

Publication number
WO2022239537A1
WO2022239537A1 PCT/JP2022/014578 JP2022014578W WO2022239537A1 WO 2022239537 A1 WO2022239537 A1 WO 2022239537A1 JP 2022014578 W JP2022014578 W JP 2022014578W WO 2022239537 A1 WO2022239537 A1 WO 2022239537A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
neurogranin
surfactant
washing
related peptide
Prior art date
Application number
PCT/JP2022/014578
Other languages
English (en)
French (fr)
Inventor
直樹 金子
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN202280032928.0A priority Critical patent/CN117396758A/zh
Priority to JP2023520908A priority patent/JPWO2022239537A1/ja
Priority to EP22807242.7A priority patent/EP4339617A1/en
Publication of WO2022239537A1 publication Critical patent/WO2022239537A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer

Definitions

  • the present invention relates to a method for analyzing neurogranin-related peptides.
  • Alzheimer's disease is the main cause of dementia, and the number of people affected by it has increased in recent years, making its research even more important.
  • a ⁇ -related peptides such as amyloid ⁇ (A ⁇ ) produced by cleavage of amyloid precursor protein (APP) are deeply involved in the onset of Alzheimer's disease. They then combined immunoprecipitation and mass spectrometry to detect multiple A ⁇ -related peptides in the blood, and reported that the detected specific A ⁇ -related peptide ratio is a promising blood biomarker for amyloid accumulation in the brain.
  • Non-Patent Documents 1-2, Patent Documents 1-3 Non-Patent Documents 1-2, Patent Documents 1-3).
  • Alzheimer's disease requires various biomarkers to capture the progression of the disease, and in addition to aluminoid accumulation, biomarkers to reflect each process of tau accumulation and neurodegeneration are required. ing.
  • neurogranin is one of the biomarkers of neurodegeneration and has been reported to increase in the cerebrospinal fluid (CSF) of Alzheimer's disease patients (Non-Patent Document 3, Non Patent document 4). It has also been reported that the fragmentation of neurogranin is accelerated in the brains of Alzheimer's disease patients, generating fragmented peptides (Non-Patent Document 5). Therefore, mass spectrometry of neurogranin or its fragment peptides (neurogranin-related peptides) is expected as a means of capturing neurodegeneration.
  • analyzing neurogranin-related peptides in cerebrospinal fluid requires collecting cerebrospinal fluid, which is not preferable in terms of invasiveness. Therefore, it is desired to analyze blood, which can be collected by a general test and is less invasive.
  • Non-Patent Document 6 Neurogranin-related peptides present in blood are so minute that they cannot be sufficiently detected by conventional mass spectrometry. For example, it has been reported that neurogranin or its fragment peptide could be detected by a method combining immunoprecipitation and mass spectrometry (Non-Patent Document 6).
  • Kvartsberg H Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow K, Lewczuk P.: Characterization of the postsynaptic protein neurogranin paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls. Alzheimers Res Ther. 2015;7(1):40.
  • Non-Patent Document 6 Even when the analysis method of Non-Patent Document 6 is carried out and when the analysis method of A ⁇ -related peptides described in Non-Patent Document 2 is diverted to neurogranin-related peptides, the analytical sensitivity is insufficient. It has not reached the level of practical use. Therefore, further improvement in sensitivity is required to analyze neurogranin or its fragment peptides in blood.
  • the purpose of the present invention is to analyze neurogranin-related peptides with high sensitivity.
  • the analysis method of the first aspect of the present invention is a method of analyzing a neurogranin-related peptide contained in a biological sample, wherein the biological sample is brought into contact with a first carrier in a binding solution to obtain a neurogranin-related peptide.
  • a detection step of detecting the neurogranin-related peptide in the second eluate by mass spectrometry wherein the binding solution, the first wash solution, the neutral buffer, and the second wash solution are all surfactant
  • the number of carbon atoms in the hydrophobic group of the surfactant is 9 or more and 11 or less.
  • the analysis method of the second aspect of the present invention is a method for analyzing neurogranin-related peptides contained in a biological sample, wherein the biological sample is brought into contact with a carrier in a binding solution to obtain neurogranin-related peptides.
  • An elution step of obtaining a liquid and a detection step of detecting neurogranin-related peptides in the eluate by mass spectrometry are provided in order, and both the binding solution and the washing solution contain a surfactant, and the surfactant is The number of carbon atoms in the hydrophobic group is 9 or more and 11 or less.
  • neurogranin-related peptides can be analyzed with high sensitivity.
  • FIG. 1 shows a mass spectrum of Ng-related peptides detected by a MALDI-TOF/MS apparatus in Reference Example 1.
  • FIG. FIG. 2 is a graph showing the relative ratio of the sensitivity (S/N) of each example and each comparative example to the sensitivity (S/N) of Reference Example 1 in SIL-Ng50-78.
  • FIG. 3 is a graph showing the relative ratio of the sensitivity (S/N) of each example and each comparative example to the sensitivity (S/N) of Reference Example 1 in Ng43-75.
  • the analysis method of the first aspect is a method for analyzing neurograninde-related peptides in a biological sample, comprising a first binding step, a first washing step, a first elution step, a neutral A purification step, a second binding step, a second washing step, a second elution step, and a detection step are provided in this order. Each step will be described in detail below.
  • Neurogranin-related peptides include neurogranin and fragment peptides obtained by fragmenting neurogranin.
  • fragment peptides include Ng50-78 (SEQ ID NO: 1), Ng43-75 (SEQ ID NO: 2) and the like.
  • First bonding step In the first binding step, the biological sample is brought into contact with the first carrier in the binding liquid.
  • the binding solution, biological sample and first carrier are mixed in an appropriate order.
  • the Ng-related peptide in the biological sample binds to the first carrier to obtain the first conjugate.
  • biological samples include body fluids such as blood, cerebrospinal fluid, urine, body secretions, saliva, and sputum; for example, feces.
  • Blood includes whole blood, plasma, serum, and the like.
  • the blood may be whole blood collected from an individual that has been subjected to a treatment such as centrifugation or cryopreservation. In this analysis method, blood is preferably used.
  • Blood is less invasive than cerebrospinal fluid, and is easily available as an object sample for screening in health examinations and the like.
  • the binding solution contains a surfactant.
  • the binding solution is a neutral buffer containing a surfactant.
  • neutral buffers examples include Tris buffers, phosphate buffers, HEPES buffers, and ammonium acetate buffers.
  • the pH of the neutral buffer solution is, for example, pH 6.0 or higher, preferably 6.5 or higher, and is, for example, 8.5 or lower, preferably 8.0 or lower.
  • the number of carbon atoms in the hydrophobic group of the surfactant is 9 or more and 11 or less. That is, the surfactant contained in the binding solution is composed of a surfactant having a hydrophobic group with 9 to 11 carbon atoms. The number of carbon atoms in the hydrophobic group is more preferably 11. Non-specific adsorption to the first conjugate can be suppressed by containing a surfactant having such a carbon number.
  • neutral surfactants are preferred.
  • neutral surfactants include surfactants having maltose in the hydrophilic portion, surfactants having trehalose in the hydrophilic portion, and surfactants having glucose in the hydrophilic portion.
  • Surfactants having a hydrophobic group having 9 to 11 carbon atoms and maltose include, for example, n-nonyl- ⁇ -D-maltoside (NM: n-Nonyl- ⁇ -D-maltoside), n-nonyl- ⁇ -D-thiomaltoside (NTM: n-Nonyl- ⁇ -D-thiomaltoside), n-decyl- ⁇ -D-maltoside (DM: n-Decyl- ⁇ -D-maltoside), n-undecyl- ⁇ -D-maltoside (UDM: n-Undecyl- ⁇ -D-maltoside) and the like.
  • NM n-Nonyl- ⁇ -D-maltoside
  • NTM n-Nonyl- ⁇ -D-thiomaltoside
  • DM n-Decyl- ⁇ -D-maltoside
  • UDM n-undecyl- ⁇ -D-mal
  • surfactants having a hydrophobic group having 9 to 11 carbon atoms and trehalose include ⁇ -D-glucopyranosyl ⁇ -D-glucopyranoside monodecanoate (trehalose C10).
  • surfactants having a hydrophobic group having 9 to 11 carbon atoms and glucose include n-decyl- ⁇ -D-glucoside.
  • surfactants can be used singly or in combination of two or more.
  • the critical micelle concentration (cmc) of the surfactant is, for example, 0.2 mmol/L or more, preferably 0.4 mmol/L or more, and, for example, 10 mmol/L or less, preferably 5 mmol/L or less. be. Further, for example, it is 0.01% or more, preferably 0.02% or more, and for example, it is 0.5% or less, preferably 0.3% or less. If the critical micelle concentration is within the above range, the analytical sensitivity of Ng-related peptides can be improved.
  • the surfactant concentration in the binding solution is, for example, 0.02% (w/v) or higher, preferably 0.2% (w/v) or higher, and for example, 10% (w/v). Below, preferably 3% (w/v) or less. Also, the surfactant concentration is, for example, 2 to 20 times the critical micelle concentration. If the concentration of the surfactant is within the above range, sufficient micelles are formed, so that the effects of the surfactant can be reliably achieved.
  • the first carrier should be capable of binding Ng-related peptides, and examples thereof include antibody-immobilized carriers.
  • the antibody immobilized on the first carrier is an antibody (anti-Ng-related peptide antibody) having an antigen-binding site capable of recognizing the Ng-related peptide. globulin or fragments thereof.
  • immunoglobulins examples include IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgY, IgD, and IgE.
  • immunoglobulin fragments include F(ab')2, F(ab'), F(ab), Fd, Fv, L chains, H chains, and the like. More specifically, clones NG2, NG7, EPR21152 and fragments thereof and the like.
  • Antibodies may be either monoclonal antibodies or polyclonal antibodies.
  • Examples of materials for the first carrier include agarose, sepharose, dextran, silica gel, polyacrylamide, polystyrene, polyethylene, polypropylene, polyester, polyacrylonitrile, (meth)acrylic acid-based polymer, fluororesin, metal complex resin, glass, and metal. , a magnetic material, and the like.
  • the shape of the first carrier may be any shape such as spherical (including bead shape), plate-like, needle-like, irregular shape, etc., and may be the channel wall in the microdevice. .
  • pretreatment for removing antibodies such as IgG and IgM may be performed.
  • the first cleaning solution contains a surfactant.
  • the first wash solution is a neutral buffer containing a surfactant.
  • the number of carbon atoms in the hydrophobic group of the surfactant contained in the first washing solution is 9 or more and 11 or less, and most preferably 11. That is, the surfactant contained in the first cleaning solution is composed of a surfactant having a hydrophobic group with 9 to 11 carbon atoms. As a result, highly hydrophobic unnecessary components (blood proteins, lipids, glycolipids, etc.) can be effectively removed.
  • the neutral buffers and surfactants in the first washing solution include those similar to the neutral buffers and surfactants exemplified for the binding solution.
  • the surfactant concentration in the first cleaning solution is, for example, 0.01% (w/v) or more, preferably 0.1% (w/v) or more, and for example, 5% (w/v) or more. v) less than or equal to 2% (w/v), preferably less than or equal to 2% (w/v); Also, the surfactant concentration is, for example, the critical micelle concentration or more and 10 times or less of the critical micelle concentration. If the concentration of the surfactant is within the above range, sufficient micelles are formed, so that the effects of the surfactant can be reliably achieved.
  • washing method A known method may be adopted for the washing method, and preferably, washing is performed multiple times. For example, washing with a neutral buffer containing detergent, followed by washing with a neutral buffer without detergent.
  • Neutral buffers containing no surfactant can also be the same as the neutral buffers exemplified for the binding solution. As a result, foaming caused by the surfactant remaining in the first combined body can be suppressed.
  • a general method may be adopted, for example, a method of stirring the carrier in the cleaning solution, a method of injecting the cleaning solution from a cleaning nozzle, and the like. After washing with these neutral buffers, washing with water may be further carried out, if necessary.
  • First elution step In the first elution step, after the first washing step, the first binder is brought into contact with the first acidic solution. As a result, the Ng-related peptide is dissociated from the first conjugate, and neurogranin is eluted into the first acidic solution. As a result, a first eluate containing Ng-related peptides is obtained.
  • the first acidic solution examples include acidic aqueous solutions such as glycine buffer and hydrochloric acid, preferably glycine buffer.
  • the pH of the first acidic solution is, for example, 3.5 or less, preferably 3.0 or less, and is, for example, 0.5 or more, preferably 1.0 or more.
  • the first acidic solution preferably contains a surfactant.
  • the number of carbon atoms in the hydrophobic group of the surfactant contained in the first acidic solution is 9 or more and 11 or less, and most preferably 11. That is, the surfactant contained in the first acidic solution is composed of a surfactant having a hydrophobic group with 9 to 11 carbon atoms. This makes it possible to more reliably dissociate the Ng-related peptide from the first conjugate. It also prevents the eluted Ng-related peptides from adhering to containers such as test tubes and microplates. Therefore, the recovery rate of Ng-related peptides can be reliably improved.
  • the surfactant used in the first acidic solution includes the same surfactants as those exemplified for the binding solution. Also, the surfactant concentration in the first acidic solution is similar to the surfactant concentration in the first cleaning solution.
  • the first eluate is mixed with a neutral buffer solution after the first elution step. This neutralizes the first eluate to obtain a purified solution containing Ng-related peptides.
  • the neutral buffer used in the neutralization step may contain a surfactant.
  • the neutral buffer preferably contains a surfactant.
  • the number of carbon atoms in the hydrophobic group of the surfactant contained in the neutral buffer is 9 or more and 11 or less, and most preferably 11. That is, the surfactant contained in the purified solution is composed of a surfactant having a hydrophobic group with 9 to 11 carbon atoms.
  • the neutral buffers and surfactants used in the neutralization step include those similar to the neutral buffers and surfactants exemplified for the binding solution. Also, the surfactant concentration in the neutral buffer is similar to the surfactant concentration in the first binding solution.
  • the pH of the purified solution is neutral, for example, pH 6.0 or higher, preferably 6.5 or higher, and for example, pH 8.5 or lower, preferably 8.0 or lower.
  • the coupling efficiency can be improved in the second coupling step.
  • the purified solution is brought into contact with the second carrier after the neutralization step. Thereby, the Ng-related peptide in the purified solution binds to the second carrier to obtain the second conjugate.
  • the second carrier is preferably an antibody-immobilized carrier, and specifically includes the same antibody-immobilized carriers exemplified for the first carrier.
  • the second washing solution contains a surfactant.
  • the second wash solution is a neutral buffer containing a surfactant.
  • the number of carbon atoms in the hydrophobic group of the surfactant contained in the second washing solution is 9 or more and 11 or less, and most preferably 11. That is, the surfactant contained in the second cleaning solution is composed of a surfactant having a hydrophobic group with 9 to 11 carbon atoms. Thereby, for example, highly hydrophobic unnecessary components (blood proteins, lipids, glycolipids, etc.) can be effectively removed.
  • the neutral buffers and surfactants used in the second washing solution include those similar to the neutral buffers and surfactants exemplified for the binding solution. Also, the surfactant concentration in the second cleaning solution is similar to the surfactant concentration in the first cleaning solution.
  • a known method may be adopted for the washing method, and specifically, the same method as the washing method exemplified in the first washing step may be performed.
  • Examples of the second acidic solution include those similar to the first acidic solution exemplified in the first elution step, preferably hydrochloric acid.
  • the second acidic solution preferably contains a volatile organic solvent.
  • Volatile organic solvents include organic solvents that are miscible with water in any proportion, such as acetonitrile, methanol, ethanol, acetone, toluene, isopropanol, hexane, butanol, cyclohexane, ethylene glycol, benzene, chloroform, acetaldehyde, Triethylamine, phenol, naphthalene, formaldehyde, tetrahydrofuran, ethyl acetate and the like, preferably acetonitrile, methanol, ethanol, acetone and isopropanol. These organic solvents can be used singly or in combination of two or more.
  • Volatile organic solvent concentration in the second acidic solution is, for example, 10% (v/v) or more, preferably 25% (v/v) or more, and, for example, 90% (v/v) or less , preferably 80% (v/v) or less. If the concentration is within the above range, the Ng-related peptide can be efficiently dissociated from the second carrier, and the sensitivity (S/N ratio) during mass spectrometry can be improved.
  • the second acidic solution preferably further contains an amino acid such as methiotine.
  • an amino acid such as methiotine.
  • the amino acid concentration in the second acidic solution is, for example, 0.01 mM or higher, preferably 0.05 mM or higher, and is, for example, 5 mM or lower, preferably 1 mM or lower.
  • MALDI Mass spectrometry
  • MALDI Mass spectrometry
  • ESI Electron ionization
  • APCI Admospheric Pressure Chemical Ionization
  • MALDI is preferable from the viewpoint that loss such as adsorption can be reduced because measurement can be performed without using liquid chromatography, and Ng-related peptides can be reliably ionized even in the presence of some contaminants.
  • MALDI-TOF matrix-assisted laser desorption ionization-time of flight mass spectrometer
  • MALDI-IT matrix-assisted laser desorption ionization-ion trap
  • MALDI-IT- TOF matrix-assisted laser desorption ionization-ion trap-time of flight mass spectrometer
  • MALDI-FTICR matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance
  • the matrix is arranged by dropping a matrix-containing solution onto the MALDI plate and drying it.
  • matrices examples include ⁇ -cyano-4-hydroxycinnamic acid (CHCA; ⁇ -cyano-4-hydroxycinnamic acid), 2,5-dihydroxybenzoic acid, sinapinic acid, and 3-aminoquinoline. These matrices can be used singly or in combination of two or more.
  • solvents that the matrix contains include acetonitrile, trifluoroacetic acid, methanol, ethanol, and water. These solvents can be used singly or in combination of two or more.
  • the matrix concentration in the matrix-containing solvent is, for example, 0.1 mg/mL or higher, preferably 0.5 mg/mL or higher, and is, for example, 50 mg/mL or lower, preferably 10 mg/mL or lower.
  • a matrix additive is used together with the matrix.
  • matrix additives include phosphonic acid group-containing compounds and ammonium salts.
  • Phosphonic acid group-containing compounds include, for example, phosphonic acid, methylphosphonic acid, phenylphosphonic acid, 1-naphthylmethylphosphonic acid, methylenediphosphonic acid (MDPNA; Methylenediphosphonic acid), ethylenediphosphonic acid, ethane-1-hydroxy-1, 1-diphosphonic acid, nitrilotriphosphonic acid, ethylenediaminotetraphosphonic acid and the like.
  • the matrix additive concentration in the matrix-containing solvent is, for example, 0.01% (w/v) or more, preferably 0.1% (w/v) or more, and for example, 10% (w/v ) or less, preferably 1% (w/v) or less.
  • the Ng-related peptides contained in the second eluate can be measured.
  • the binding solution used in the first binding solution, the first washing solution used in the first washing step, the neutral buffer used in the neutralization step, and the second washing solution used in the second washing step in any of the above, by containing a specific surfactant in which the number of carbon atoms in the hydrophobic group is 9 or more and 11 or less, the binding efficiency of the Ng-related peptide to the carrier in the binding step and the Ng-related peptide in the elution step The recovery rate can be improved to a high level, and as a result, Ng-related peptides can be analyzed with extremely high sensitivity (S/N) compared to conventional analysis methods.
  • S/N extremely high sensitivity
  • the analysis method of the first aspect comprises a first binding step (binding step), a first washing step (washing step), a second elution step (elution step), and a detection step.
  • Each step is the same as in the first aspect.
  • This second aspect also has the same effect as the first aspect.
  • the first aspect is preferable from the viewpoint that the Ng-related peptide can be reliably analyzed even when the amount of the Ng-related peptide present in the biological sample is much smaller.
  • An analysis method is a method of analyzing a neurogranin-related peptide contained in a biological sample, wherein the biological sample is brought into contact with a carrier in a binding solution to obtain the neurogranin.
  • a washing step of washing the conjugate with a washing solution; is provided in order with an elution step of obtaining an eluate eluted in the acidic solution, and a detection step of detecting the neurogranin-related peptide in the eluate by mass spectrometry, wherein the binding solution and the washing solution are All of them may contain a surfactant, and the hydrophobic group of the surfactant may have 9 or more and 11 or less carbon atoms.
  • the acidic solution may contain an organic solvent.
  • the biological sample may be blood.
  • the mass spectrometry may be a matrix-assisted laser desorption/ionization method.
  • An analysis method is a method of analyzing neurogranin-related peptides contained in a biological sample, wherein the biological sample is brought into contact with a first carrier in a binding solution, and the neurogranin a first binding step of obtaining a first conjugate in which a logranine-related peptide is bound to the first carrier; a first washing step of washing the first conjugate with a first washing solution; and the first binding a first elution step of contacting the body with a first acidic solution to obtain a first eluate in which the neurogranin-related peptide is eluted in the first acidic solution; and a neutral buffer solution and the first eluate.
  • the second acidic solution may contain an organic solvent.
  • the first acidic solution contains a surfactant, and the number of carbon atoms in the hydrophobic group of the surfactant is 9 or more. It may be 11 or less.
  • the biological sample may be blood.
  • the mass spectrometry may be a matrix-assisted laser desorption/ionization method.
  • Human plasma was spiked with stable isotope-labeled Ng50-78 (SIL-Ng50-78) at 300 pM.
  • 250 ⁇ L of the plasma was mixed with 250 ⁇ L of binding buffer (surfactant [0.2% DDM and 0.2% NTM], 800 mM GlcNAc, 100 mM Tris-HCl, 300 mM NaCl; pH 7.4) and incubated on ice for 5-5 minutes. It was allowed to stand for 60 minutes.
  • the plasma was mixed with antibody beads and shaken on ice for 1 hour.
  • the antibody beads were then washed three times with 100 ⁇ L of the first wash buffer (surfactant [0.1% DDM and 0.1% NTM], 50 mM Tris-HCl, 150 mM NaCl; pH 7.4) and washed with 50 mM acetic acid. Washed twice with 50 ⁇ L of ammonium buffer.
  • the antibody beads were then contacted with a first acidic solution (50 mM glycine buffer containing surfactant [0.1% DDM]; pH 2.8) to elute the Ng-related peptides into the first acidic solution. . This gave a first eluate containing Ng-related peptides.
  • the first eluate was mixed with a neutral buffer (surfactant [0.2% DDM], 800 mM GlcNAc, 300 mM Tris-HCl, 300 mM NaCl; pH 7.4) to obtain a purified solution.
  • a neutral buffer surfactant [0.2% DDM], 800 mM GlcNAc, 300 mM Tris-HCl, 300 mM NaCl; pH 7.4
  • the antibody beads are brought into contact with a second acidic solution (70% (v/v) acetonitrile aqueous solution containing 5 mM hydrochloric acid and 0.1 mM methionine; pH 2.3) to elute the Ng-related peptides into the second acidic solution.
  • a second acidic solution (70% (v/v) acetonitrile aqueous solution containing 5 mM hydrochloric acid and 0.1 mM methionine; pH 2.3
  • a MALDI-TOF MS device manufactured by Shimadzu Corporation was used as a mass spectrometer.
  • 0.5 mg/mL CHCA/0 using ⁇ -cyano-4-hydroxycinnamic acid (CHCA) as matrix for Linear TOF, methylene diphosphonic acid (MDPNA) as matrix additive and acetonitrile as solvent A .2% (w/v) MDPNA matrix solution was prepared.
  • 0.5 ⁇ L of the matrix solution was dropped on 4 wells of a MALDI plate ( ⁇ Focus MALDI plate 900 ⁇ m (Hudson Surface Technology, Inc., Fort Lee, NJ)) and dried. The second eluate was added dropwise to these 4 wells and arranged.
  • the MALDI-TOF MS was operated to detect Ng-related peptides.
  • Mass spectral data were obtained with Linear TOF in positive ion mode using AXIMA Performance (Shimadzu/KRATOS, Manchester, UK) as the setting conditions. 400 spots and 16000 shots were accumulated for each well. The m/z value of Linear TOF is indicated by the average mass of peaks. The m/z values were calibrated using human angiotensin II and human ACTH fragment 18-39, bovine insulin oxidized beta-chain, bovine insulin, and cytochrome c as external standards.
  • TC12 Trehalose C12
  • DDM n-Dodecyl- ⁇ -D-maltoside
  • UDM n-Undecyl- ⁇ -D-maltoside
  • DM n-decyl- ⁇ -D-maltoside
  • NTM n-Nonyl- ⁇ -D-thiomaltoside
  • OG n-Octyl- ⁇ -D-glucoside

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、生体試料を結合溶液中で担体に接触させて、ニューログラニン関連ペプチドが担体に結合した結合体を得る結合工程と、結合体を、洗浄溶液を用いて洗浄する洗浄工程と、結合体を、酸性溶液に接触させて、ニューログラニン関連ペプチドが酸性溶液に溶出した溶出液を得る溶出工程と、溶出液中のニューログラニン関連ペプチドを質量分析法にて検出する検出工程と順に備える。結合溶液および洗浄溶液が、いずれも界面活性剤を含有し、界面活性剤が有する疎水基の炭素数が、9以上11以下である。

Description

ニューログラニン関連ペプチドの分析方法
 本発明は、ニューログラニン関連ペプチドの分析方法に関する。
 アルツハイマー病は、認知症の主な原因であり、その罹患者は、近年ますます増加しており、その研究はより一層重要となってきている。アルツハイマー病の発症では、アミロイド前駆タンパク質(APP;Amyloid precursor protein)の切断によって生じるアミドロイドβ(Aβ)などのAβ関連ペプチドが深く関わっている。そして、免疫沈降法および質量分析法を組み合わせて血液内の複数のAβ関連ペプチドを検出し、その検出した特定のAβ関連ペプチド比が、脳内アミロイド蓄積の血液バイオマーカーとして有望であることが報告されている(非特許文献1~2、特許文献1~3)。
 一方、アルツハイマー病は、その病態進行を捕捉するためには、種々のバイオマーカーが必要であり、アルミロイド蓄積以外にも、タウ蓄積、神経変性の各プロセスを反映するためのバイオマーカーが要求されている。その中で、ニューログラニン(Neurogranin)は、神経変性のバイオマーカーの1つであり、アルツハイマー病患者の脳脊髄液(CSF)中で増加することが報告されている(非特許文献3、非特許文献4)。また、アルツハイマー病患者の脳内では、ニューログラニンの断片化が促進され、断片ペプチドが発生していることも報告されている(非特許文献5)。よって、ニューログラニンまたはその断片ペプチド(ニューログラニン関連ペプチド)の質量分析法が、神経変性を捕捉する手段として、期待されている。
 ところで、脳脊髄液中のニューログラニン関連ペプチドを分析することは、脳脊髄液を採取する必要があり、侵襲性の点で好ましくない。そのため、一般的な検査で採取が可能であり、低侵襲性である血液での分析が望まれている。
 しかしながら、血液に存在するニューログラニン関連ペプチドは、ごく微少であるため、従来の質量分析法では、充分に検出できない。例えば、免疫沈降法と質量分析法とを組み合わせた方法により、ニューログラニンまたはその断片ペプチドを検出できたことが報告されている程度である(非特許文献6)。
WO2015/178398 WO2017/47529 特開2017-20980号公報
Kaneko N, Nakamura A, Washimi Y, Kato T, Sakurai T, Arahata Y, Bundo M, Takeda A, Niida S, Ito K, Toba K, Tanaka K, Yanagisawa K. : Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(9):353-364. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, Fowler C, Li QX, Martins R, Rowe C, Tomita T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S, Ito K, Tanaka K, Masters CL, Yanagisawa K. : High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 2018;554(7691):249-254. Portelius E, Olsson B, Hoglund K, Cullen NC, Kvartsberg H, Andreasson U, Zetterberg H, Sandelius A, Shaw LM, Lee VMY, Irwin DJ, Grossman M, Weintraub D, Chen-Plotkin A, Wolk DA, McCluskey L, Elman L, McBride J, Toledo JB, Trojanowski JQ, Blennow K. : Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol. 2018 ;136(3):363-376. Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H, Blennow K. : Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 2010;1362:13-22. Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Cullen NC, Hoglund K, Zetterberg H, Blennow K, Portelius E. : The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol. 2019;137(1):89-102. Kvartsberg H, Portelius E, Andreasson U, Brinkmalm G, Hellwig K, Lelental N, Kornhuber J, Hansson O, Minthon L, Spitzer P, Maler JM, Zetterberg H, Blennow K, Lewczuk P. : Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther. 2015;7(1):40.
 しかしながら、非特許文献6の分析方法を実施した場合においても、非特許文献2に記載のAβ関連ペプチドの分析方法をニューログラニン関連ペプチドに転用した場合においても、分析感度が不十分であり、実用化のレベルに至っていない。したがって、血液中のニューログラニンまたはその断片ペプチドを分析するには、さらなる感度の向上が要求されている。
 本発明は、ニューログラニン関連ペプチドを高感度で分析することを目的とする。
 本発明の第1の態様の分析方法は、生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、結合溶液中で生体試料を第1担体に接触させて、ニューログラニン関連ペプチドが第1担体に結合した第1結合体を得る第1結合工程と、第1結合体を、第1洗浄溶液を用いて洗浄する第1洗浄工程と、第1結合体を、第1酸性溶液に接触させて、ニューログラニン関連ペプチドが第1酸性溶液に溶出した第1溶出液を得る第1溶出工程と、第1溶出液を中性緩衝液と混合して、精製溶液を得る中性化工程と、精製溶液を第2担体に接触させて、ニューログラニン関連ペプチドが第2担体に結合した第2結合体を得る第2結合工程と、第2結合体を、第2洗浄溶液を用いて洗浄する第2洗浄工程と、第2結合体を、第2酸性溶液に接触させて、ニューログラニン関連ペプチドが第2酸性溶液に溶出した第2溶出液を得る第2溶出工程と、第2溶出液中のニューログラニン関連ペプチドを質量分析法にて検出する検出工程とを順に備え、結合溶液、第1洗浄溶液、中性緩衝液および第2洗浄溶液が、いずれも界面活性剤を含有し、界面活性剤が有する疎水基の炭素数が、9以上11以下である。
 本発明の第2の態様の分析方法は、生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、生体試料を結合溶液中で担体に接触させて、ニューログラニン関連ペプチドが担体に結合した結合体を得る結合工程と、結合体を、洗浄溶液を用いて洗浄する洗浄工程と、結合体を、酸性溶液に接触させて、ニューログラニン関連ペプチドが酸性溶液に溶出した溶出液を得る溶出工程と、溶出液中のニューログラニン関連ペプチドを質量分析法にて検出する検出工程と順に備え、結合溶液および洗浄溶液が、いずれも界面活性剤を含有し、界面活性剤が有する疎水基の炭素数が、9以上11以下である。
 本発明の第1の態様および第2の態様によれば、ニューログラニン関連ペプチドを高感度で分析することができる。
図1は、参照例1において、Ng関連ペプチドをMALDI-TOF/MS装置で検出したマススペクトルを示す。 図2は、SIL-Ng50-78において、参照例1の感度(S/N)に対する各実施例および各比較例の感度(S/N)の相対比を示したグラフである。 図3は、Ng43-75において、参照例1の感度(S/N)に対する各実施例および各比較例の感度(S/N)の相対比を示したグラフである。
 1.第1の態様
 第1の態様の分析方法は、生体試料中のニューログラニンド関連ペプチドを分析する方法であって、第1結合工程と、第1洗浄工程と、第1溶出工程と、中性化工程と、第2結合工程と、第2洗浄工程と、第2溶出工程と、検出工程とをこの順に備える。以下、各工程を詳述する。
 なお、「ニューログラニン関連ペプチド」(以下、「Ng関連ペプチド」と略する。)には、ニューログラニン、および、ニューログラニンが断片化して得られる断片ペプチドが含まれる。断片ペプチドとしては、例えば、Ng50-78(配列番号1)、Ng43-75(配列番号2)などが挙げられる。
 (第1結合工程)
 第1結合工程では、結合液中にて、生体試料を第1担体に接触させる。例えば、結合溶液、生体試料および第1担体を適宜の順で混合する。これにより、生体試料中のNg関連ペプチドが第1担体に結合して、第1結合体が得られる。
 生体試料としては、例えば、血液、脳脊髄液、尿、体分泌液、唾液、痰などの体液;例えば、糞便などが挙げられる。血液には、全血、血漿、血清などが含まれる。血液は、個体から採取された全血に、遠心分離、冷凍保存などの処理がなされたものであってよい。本分析方法では、好ましくは、血液が挙げられる。血液は、脳骨髄液と比較して低侵襲性であり、また、健康診断等におけるスクリーニングの対象試料であって入手が容易である。
 結合溶液は、界面活性剤を含有する。好ましくは、結合溶液は、界面活性剤を含有する中性緩衝液である。
 中性緩衝液としては、例えば、Tris緩衝液、リン酸緩衝液、HEPES緩衝液、酢酸アンモニウム緩衝液などが挙げられる。中性緩衝液のpHは、例えば、pH6.0以上、好ましくは、6.5以上であり、また、例えば、8.5以下、好ましくは、8.0以下である。
 結合溶液に含有される界面活性剤において、界面活性剤の疎水基の炭素数は、9以上、11以下である。すなわち、結合溶液に含有される界面活性剤は、炭素数9~11である疎水基を有する界面活性剤から構成される。疎水基の炭素数は、より好ましくは、11である。このような炭素数の界面活性剤を含有することにより、第1結合体への非特異的吸着を抑制することができる。
 また、タンパク質変性の抑制、除去容易性、質量分析におけるイオン化干渉の低減などの観点から、好ましくは、中性界面活性剤が挙げられる。このような中性界面活性剤としては、例えば、マルトースを親水性部分に有する界面活性剤、トレハロースを親水性部分に有する界面活性剤、グルコースを親水性部分に有する界面活性剤などが挙げられる。
 炭素数9~11の疎水基、および、マルトースを有する界面活性剤としては、例えば、n-ノニル-β-D-マルトシド(NM:n-Nonyl-β-D-maltoside)、n-ノニル-β-D-チオマルトシド(NTM:n-Nonyl-β-D-thiomaltoside)、n-デシル-β-D-マルトシド(DM:n-Decyl-β-D-maltoside)、n-ウンデシル-β-D-マルトシド(UDM:n-Undecyl-β-D-maltoside)などが挙げられる。
 炭素数9~11の疎水基、および、トレハロースを有する界面活性剤としては、例えば、α-D-グルコピラノシルα-D-グルコピラノシド モノデカノエート(トレハロースC10)などが挙げられる。
 炭素数9~11の疎水基、および、グルコースを有する界面活性剤としては、例えば、n-デシル-β-D-グルコシドなどが挙げられる。
 これら界面活性剤は、1種単独で用いることができ、また、2種以上を併用することができる。
 界面活性剤の臨界ミセル濃度(cmc)は、例えば、0.2mmol/L以上、好ましくは、0.4mmol/L以上であり、また、例えば、10mmol/L以下、好ましくは、5mmol/L以下である。また、例えば、0.01%以上、好ましくは、0.02%以上であり、また、例えば、0.5%以下、好ましくは、0.3%以下である。臨界ミセル濃度が上記範囲であれば、Ng関連ペプチドの分析感度を向上させることができる。
 結合溶液中の界面活性剤濃度は、例えば、0.02%(w/v)以上、好ましくは、0.2%(w/v)以上であり、また、例えば、10%(w/v)以下、好ましくは、3%(w/v)以下である。また、界面活性剤濃度は、例えば、臨界ミセル濃度の2以上、20倍以下である。界面活性剤濃度が上記範囲であれば、ミセルが充分に形成されるため、界面活性剤の効果を確実に達成させることができる。
 第1担体は、Ng関連ペプチドが結合可能なものであればよく、例えば、抗体固定化担体が挙げられる。
 第1担体に固定化されている抗体は、Ng関連ペプチドを認識可能な抗原結合部位を有する抗体(抗Ng関連ペプチド抗体)であり、例えば、Ng関連ペプチドを認識可能な抗原結合部位を有する免疫グロブリンまたはその断片が挙げられる。
 免疫グロブリンとしては、例えば、IgG(IgG1、IgG2、IgG3、IgG4)、IgM、IgA、IgY、IgD、IgEなどが挙げられる。免疫グロブリン断片としては、例えば、F(ab’)2、F(ab’)、F(ab)、Fd、Fv、L鎖、H鎖などが挙げられる。より具体的には、クローンNG2、NG7、EPR21152およびこれらの断片などである。抗体は、モノクローナル抗体、ポリクローナル抗体のいずれでもよい。
 第1担体の材質としては、例えば、アガロース、セファロース、デキストラン、シリカゲル、ポリアクリルアミド、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル、ポリアクリロニトリル、(メタ)アクリル酸系ポリマー、フッ素樹脂、金属錯体樹脂、ガラス、金属、磁性体などが挙げられる。
 第1担体の形状としては、球状(ビーズ形状を含む)、板状、針状、不定形などのいずれの形状であってもよく、また、マイクロデバイス内の流路壁などであってもよい。
 第1結合工程の前に、必要に応じて、IgG、IgMなどの抗体を除去する前処理などを実施してもよい。
 (第1洗浄工程)
 第1洗浄工程では、第1結合工程の後において、第1洗浄溶液を用いて第1結合体を洗浄する。
 第1洗浄溶液は、界面活性剤を含有する。好ましくは、第1洗浄溶液は、界面活性剤を含有する中性緩衝液である。
 第1洗浄溶液が含有する界面活性剤の疎水基の炭素数は、9以上、11以下であり、最も好ましくは、11である。すなわち、第1洗浄溶液に含有される界面活性剤は、炭素数9~11である疎水基を有する界面活性剤から構成される。これにより、疎水性の高い不要成分(血中タンパク質、脂質、糖脂質など)を効果的に除去することができる。
 第1洗浄溶液における中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。
 第1洗浄溶液中の界面活性剤濃度は、例えば、0.01%(w/v)以上、好ましくは、0.1%(w/v)以上であり、また、例えば、5%(w/v)以下、好ましくは、2%(w/v)以下である。また、界面活性剤濃度は、例えば、臨界ミセル濃度以上、臨界ミセル濃度の10倍以下である。界面活性剤濃度が上記範囲であれば、ミセルが充分に形成されるため、界面活性剤の効果を確実に達成させることができる。
 洗浄方法は、公知の方法を採用すればよく、好ましくは、複数回洗浄を実施する。例えば、界面活性剤を含有する中性緩衝液を用いて洗浄し、続いて、界面活性剤を含有しない中性緩衝液を用いて洗浄する。
 界面活性剤を含有しない中性緩衝液も、結合溶液で例示した中性緩衝液と同様のものを使用することができる。これにより、界面活性剤が第1結合体に残存することによる泡立ちを抑制することができる。
 洗浄方法としては、一般的な方法を採用すればよく、例えば、洗浄溶液内で担体を攪拌する方法、洗浄ノズルから洗浄溶液を噴射する方法などが挙げられる。これら中性緩衝液による洗浄後に、必要に応じて、水による洗浄をさらに実施してもよい。
 (第1溶出工程)
 第1溶出工程では、第1洗浄工程の後において、第1結合体を第1酸性溶液に接触させる。これにより、第1結合体からNg関連ペプチドが解離して、第1酸性溶液にニューログラニンが溶出する。その結果、Ng関連ペプチドを含有する第1溶出液が得られる。
 第1酸性溶液としては、例えば、グリシン緩衝液、塩酸などの酸性水溶液が挙げられ、好ましくは、グリシン緩衝液が挙げられる。第1酸性溶液のpHは、例えば、3.5以下、好ましくは、3.0以下であり、また、例えば、0.5以上、好ましくは、1.0以上である。
 第1酸性溶液は、好ましくは、界面活性剤を含有する。第1酸性溶液が含有する界面活性剤の疎水基の炭素数は、9以上、11以下であり、最も好ましくは、11である。すなわち、第1酸性溶液に含有される界面活性剤は、炭素数9~11である疎水基を有する界面活性剤から構成される。これにより、第1結合体からNg関連ペプチドをより確実に解離させることができる。また、溶出されたNg関連ペプチドが、試験管、マイクロプレートなどの容器に付着することを抑制する。したがって、Ng関連ペプチドの回収率を確実に向上させることができる。
 第1酸性溶液に用いる界面活性剤としては、結合溶液で例示した界面活性剤と同様のものが挙げられる。また、第1酸性溶液中の界面活性剤濃度は、第1洗浄溶液中の界面活性剤濃度と同様である。
 (中性化工程)
 中性化工程では、第1溶出工程の後において、第1溶出液を中性緩衝液と混合する。これにより、第1溶出液が中性化して、Ng関連ペプチドを含有する精製溶液が得られる。
 中性化工程に用いる中性緩衝液は、界面活性剤を含有していてもよい。特に、第1酸性溶液(ひいては、第1溶出液)が界面活性剤を含有しない場合に、中性緩衝剤は、界面活性剤を含有することが好ましい。中性緩衝液が含有する界面活性剤の疎水基の炭素数は、9以上、11以下であり、最も好ましくは、11である。すなわち、精製溶液に含有される界面活性剤は、炭素数9~11である疎水基を有する界面活性剤から構成される。これにより、第2結合工程で第2結合体への非特異的吸着を抑制することができる。
 中性化工程に用いる中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。また、中性緩衝液中の界面活性剤濃度は、第1結合溶液中の界面活性剤濃度と同様である。
 精製溶液のpHは、中性であって、例えば、pH6.0以上、好ましくは、6.5以上であり、また、例えば、8.5以下、好ましくは、8.0以下である。これにより、第2結合工程において、結合効率を向上させることができる。
 (第2結合工程)
 第2結合工程では、中性化工程の後において、精製溶液を第2担体に接触させる。これにより、精製溶液のNg関連ペプチドが第2担体に結合して、第2結合体が得られる。
 第2担体としては、好ましくは、抗体固定化担体であり、具体的には、第1担体で例示した抗体固定化担体と同様のものが挙げられる。
 (第2洗浄工程)
 第2洗浄工程では、第2結合工程の後において、第2洗浄溶液を用いて第2結合体を洗浄する。
 第2洗浄溶液は、界面活性剤を含有する。好ましくは、第2洗浄溶液は、界面活性剤を含有する中性緩衝液である。
 第2洗浄溶液が含有する界面活性剤の疎水基の炭素数は、9以上、11以下であり、最も好ましくは、11である。すなわち、第2洗浄溶液に含有される界面活性剤は、炭素数9~11である疎水基を有する界面活性剤から構成される。これにより、例えば、疎水性の高い不要成分(血中タンパク質、脂質、糖脂質など)を効果的に除去することができる。
 第2洗浄溶液に用いる中性緩衝液および界面活性剤としては、結合溶液で例示した中性緩衝液および界面活性剤と同様のものが挙げられる。また、第2洗浄溶液中の界面活性剤濃度は、第1洗浄溶液中の界面活性剤濃度と同様である。
 洗浄方法は、公知の方法を採用すればよく、具体的には、第1洗浄工程で例示した洗浄方法と同様の方法を実施すればよい。
 (第2溶出工程)
 第2溶出工程では、第2洗浄工程の後において、第2結合体を第2酸性溶液に接触させる。これにより、第2結合体からNg関連ペプチドが解離して、第2酸性溶液にNg関連ペプチドが溶出する。その結果、Ng関連ペプチドを含有する第2溶出液が得られる。
 第2酸性溶液としては、第1溶出工程で例示した第1酸性溶液と同様のものが挙げられ、好ましくは、塩酸が挙げられる。
 第2酸性溶液は、好ましくは、揮発性有機溶媒を含有する。これにより、第2結合体からNg関連ペプチドを効率よく解離させ、第2酸性溶液に溶出させることができ、Ng関連ペプチドの回収率を向上させることができる。
 揮発性有機溶媒としては、水と任意の割合で混和する有機溶媒が挙げられ、例えば、アセトニトリル、メタノール、エタノール、アセトン、トルエン、イソプロパノール、ヘキサン、ブタノール、シクロヘキサン、エチレングリコール、ベンゼン、クロロホルム、アセトアルデヒド、トリエチルアミン、フェノール、ナフタレン、ホルムアルデヒド、テトラヒドロフラン、酢酸エチルなどが挙げられ、好ましくは、アセトニトリル、メタノール、エタノール、アセトン、イソプロパノールなどが挙げられる。これら有機溶剤は、1種単独で用いることができ、また、2種以上を併用することもできる。
 第2酸性溶液中の揮発性有機溶媒濃度は、例えば、10%(v/v)以上、好ましくは、25%(v/v)以上であり、また、例えば、90%(v/v)以下、好ましくは、80%(v/v)以下である。濃度が上記範囲内であれば、第2担体からNg関連ペプチドが効率よく解離させることができ、また、質量分析時の感度(S/N比)を向上させることができる。
 第2酸性溶液は、好ましくは、メチオチンなどのアミノ酸をさらに含有する。これにより、質量分析装置に配置し、分析が開始するまでの間において、Ng関連ペプチドの酸化を低減させることができ、分析精度を向上させることができる。第2酸性溶液中のアミノ酸濃度は、例えば、0.01mM以上、好ましくは、0.05mM以上であり、また、例えば、5mM以下、好ましくは、1mM以下である。
 (分析工程)
 分析工程では、第2溶出工程の後において、第2溶出液に含有されるNg関連ペプチドを質量分析法によって検出する。
 質量分析法としては、MALDI(Matrix Assisted Laser Desorption / Ionization;マトリックス支援レーザー脱離イオン化法)、ESI(Electrospray ionization;エレクトロスプレーイオン化法)、APCI(Atmospheric Pressure Chemical Ionization;大気圧化学イオン化法)などが挙げられる。液体クロマトグラフィーを介さずに測定できるため吸着などのロスを低減でき、多少の夾雑物が共存してもNg関連ペプチドを確実にイオン化できる観点から、好ましくは、MALDIが挙げられる。
 MALDIの検出には、例えば、MALDI-TOF(マトリックス支援レーザー脱離イオン化-飛行時間)型質量分析装置、MALDI-IT(マトリックス支援レーザー脱離イオン化-イオントラップ)型質量分析装置、MALDI-IT-TOF(マトリックス支援レーザー脱離イオン化-イオントラップ-飛行時間)型質量分析装置、MALDI-FTICR(マトリックス支援レーザー脱離イオン化-フーリエ変換イオンサイクロトロン共鳴)型質量分析装置などを用いて常法に従って操作すればよい。
 MALDIでの検出の際、例えば、マトリックス含有溶液をMALDIプレートに滴下し、乾燥させることにより、マトリックスを配置する。
 マトリックスとしては、例えば、α-シアノ-4-ヒドロキシ桂皮酸(CHCA;α-cyano-4-hydroxycinnamic acid)、2,5-ジヒドロキシ安息香酸、シナピン酸、3-アミノキノリンなどが挙げられる。これらマトリックスは、1種単独で用いることができ、また、2種以上を併用することができる。
 マトリックスが含有させる溶媒としては、例えば、アセトニトリル、トリフルオロ酢酸、メタノール、エタノール、水などが挙げられる。これら溶媒は、1種単独で用いることができ、また、2種以上を併用することができる。
 マトリックス含有溶媒中のマトリックス濃度は、例えば、0.1mg/mL以上、好ましくは0.5mg/mL以上であり、また、例えば、50mg/mL以下、好ましくは、10mg/mL以下である。
 好ましくは、マトリックスとともに、マトリックス添加剤を併用する。マトリックス添加剤としては、例えば、ホスホン酸基含有化合物、アンモニウム塩などが挙げられ、好ましくは、洗浄溶液の残存によるバックグランドへの悪影響を抑制できる観点から、ホスホン酸基含有化合物が挙げられる。ホスホン酸基含有化合物としては、例えば、ホスホン酸、メチルホスホン酸、フェニルホスホン酸、1-ナフチルメチルホスホン酸、メチレンジホスホン酸(MDPNA;Methylenediphosphonic acid)、エチレンジホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、ニトリロトリホスホン酸、エチレンジアミノテトラホスホン酸などが挙げられる。
 マトリックス含有溶媒中のマトリックス添加剤濃度は、例えば、0.01%(w/v)以上、好ましくは、0.1%(w/v)以上であり、また、例えば、10%(w/v)以下、好ましくは、1%(w/v)以下である。
 これにより、第2溶出液(ひいては、生体試料)に含有されるNg関連ペプチドを測定することができる。この分析方法では、特に、第1結合溶液で用いる結合溶液、第1洗浄工程で用いる第1洗浄溶液、中性化工程で用いる中性緩衝液、および、第2洗浄工程で用いる第2洗浄溶液のいずれにおいても、疎水基の炭素数が9以上11以下であるという特定の界面活性剤を含有させることにより、結合工程における担体へのNg関連ペプチドの結合効率や、溶出工程におけるNg関連ペプチドの回収率などをそれぞれ高いレベルに向上させることができ、その結果、従来の分析方法に比して、Ng関連ペプチドを非常に高感度(S/N)で分析することができる。
 2.第2の態様
 第1の態様の分析方法では、2回の免疫沈降法(アフィニティ精製)を実施しているが、例えば、1回の免疫沈降法でもよい。この場合、第2の態様の分析方法は、第1結合工程(結合工程)と、第1洗浄工程(洗浄工程)と、第2溶出工程(溶出工程)と、検出工程とを備える。各工程は、第1の態様と同様である。この第2の態様も第1の態様と同様の作用効果を奏する。生体試料中のNg関連ペプチドの存在量がより一層微量である場合でもNg関連ペプチドを確実に分析することができる観点から、第1の態様が好ましい。
 3.態様
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)一態様に係る分析方法は、生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、前記生体試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、前記結合体を、洗浄溶液を用いて洗浄する洗浄工程と、前記結合体を、酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、前記溶出液中の前記ニューログラニン関連ペプチドを質量分析法にて検出する検出工程とを順に備え、前記結合溶液および前記洗浄溶液が、いずれも界面活性剤を含有し、前記界面活性剤が有する疎水基の炭素数が、9以上11以下であってもよい。
 (第2項)第1項に記載の分析方法において、前記酸性溶液が、有機溶媒を含有してもよい。
 (第3項)第1項または第2項に記載の分析方法において、前記生体試料が、血液であってもよい。
 (第4項)第1~3項のいずれか一項に記載の分析方法において、前記質量分析法が、マトリックス支援レーザー脱離イオン化法であってもよい。
 (第5項)一態様に係る分析方法は、生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、結合溶液中で前記生体試料を第1担体に接触させて、前記ニューログラニン関連ペプチドが前記第1担体に結合した第1結合体を得る第1結合工程と、前記第1結合体を、第1洗浄溶液を用いて洗浄する第1洗浄工程と、前記第1結合体を、第1酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記第1酸性溶液に溶出した第1溶出液を得る第1溶出工程と、前記第1溶出液を中性緩衝液と混合して、精製溶液を得る中性化工程と、前記精製溶液を第2担体に接触させて、前記ニューログラニン関連ペプチドが前記第2担体に結合した第2結合体を得る第2結合工程と、前記第2結合体を、第2洗浄溶液を用いて洗浄する第2洗浄工程と、前記第2結合体を、第2酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記第2酸性溶液に溶出した第2溶出液を得る第2溶出工程と、前記第2溶出液中の前記ニューログラニン関連ペプチドを質量分析法にて検出する検出工程とを順に備え、前記結合溶液、前記第1洗浄溶液および前記第2洗浄溶液が、いずれも界面活性剤を含有し、前記界面活性剤が有する疎水基の炭素数が、9以上11以下であってもよい。
 (第6項)第5項に記載の分析方法において、前記第2酸性溶液が、有機溶媒を含有してもよい。
 (第7項)第5項または第6項に記載の分析方法において、前記第1酸性溶液が、界面活性剤を含有しており、前記界面活性剤が有する疎水基の炭素数が、9以上11以下であってもよい。
 (第8項)第5~7項のいずれか一項に記載の分析方法において、前記生体試料が、血液であってもよい。
 (第9項)第5~8項のいずれか一項に記載の分析方法において、前記質量分析法が、マトリックス支援レーザー脱離イオン化法であってもよい。
 次に実施例および比較例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらによって限定されない。
 <参照例1>
 参照例1として、非特許文献2に記載のアミロイドβの質量分析方法を参照して、Ng関連ペプチドを下記のように分析した。
 (第1結合工程、第1洗浄工程、第1溶出工程)
 ヒトNeurogranin(Ng)の52-63残基をエピトープとする抗Ng抗体(IgG1)のクローンNG2(BioLegend社)を用意した。抗Ng抗体100μgに対して磁性ビーズ(Dynabeads M-270 Epoxy)4.95mgを、固定化緩衝液(1.5M硫酸アンモニウムを含有する0.1Mリン酸緩衝液;pH7.4)中で、37℃で16~24時間反応させた。これにより、抗体ビーズを作製した。
 安定同位体標識されたNg50-78(SIL-Ng50-78)が300pMとなるように、ヒト血漿にスパイクした。その血漿250μLを、結合緩衝液(界面活性剤[0.2%DDMおよび0.2%NTM]、800mM GlcNAc、100mM Tris-HCl、300mM NaCl;pH7.4)250μLと混合し、氷上で5~60分静置させた。その血漿を抗体ビーズと混合し、氷上で1時間振盪させた。その後、抗体ビーズを、第1洗浄緩衝液(界面活性剤[0.1%DDMおよび0.1%NTM]、50mM Tris-HCl、150mM NaCl;pH7.4)100μLで3回洗浄し、50mM 酢酸アンモニウム緩衝液50μLで2回洗浄した。その後、抗体ビーズを、第1酸性溶液(界面活性剤[0.1%DDM]を含有する50mMグリシン緩衝液;pH2.8)に接触させて、Ng関連ペプチドを第1酸性溶液に溶出させた。これにより、Ng関連ペプチドを含む第1溶出液を得た。
 (中性化工程)
 第1溶出液を中性緩衝液(界面活性剤[0.2%DDM]、800mM GlcNAc、300mM Tris-HCl、300mM NaCl;pH7.4)と混合して、精製溶液を得た。
 (第2結合工程、第2洗浄工程、第2溶出工程)
 精製溶液を抗体ビーズと混合し、氷上で1時間振盪させた。その後、抗体ビーズを、第2洗浄緩衝液(界面活性剤[0.1%DDM]、150mM Tris-HCl、150mM NaCl;pH7.4)50μLで5回洗浄し、50mM酢酸アンモニウム緩衝液50μLで2回洗浄し、水30μLで1回洗浄した。その後、抗体ビーズを、第2酸性溶液(5mM塩酸と0.1mMメチオニンを含む70%(v/v)アセトニトリル水溶液;pH2.3)に接触させて、Ng関連ペプチドを第2酸性溶液に溶出させた。これにより、Ng関連ペプチドを含む第2溶出液を得た。
 (分析工程)
 質量分析装置として、MALDI-TOF MS装置(島津製作所製)を用いた。Linear TOF用のマトリックスとしてα-シアノ-4-ヒドロキシ桂皮酸(CHCA)を用い、マトリックス添加剤としてメチレンジホスホン酸(MDPNA)を用い、溶媒としてアセトニトリルを用いて、0.5mg/mL CHCA/0.2%(w/v)MDPNAマトリックス溶液を調製した。MALDIプレート(μFocus MALDI plate 900μm(Hudson Surface Technology,Inc.,Fort Lee,NJ))の4wellに、マトリックス溶液を0.5μLずつ滴下し、乾固させた。これらの4wellに、第2溶出液を滴下して、配置した。
 次いで、MALDI-TOF MSを作動させて、Ng関連ペプチドを検出した。設定条件として、マススペクトルデータは、AXIMA Performance (Shimadzu/KRATOS,Manchester,UK)を用いて、ポジティブイオンモードのLinear TOFで取得した。1wellに対して400スポット、16000ショットずつ積算した。Linear TOFのm/z値はピークのアベレージマスで表示した。m/z値は外部標準としてhuman angiotensin IIおよびhuman ACTH fragment 18-39、bovine insulin oxidized beta-chain、bovine insulin、cytochrome cを用いてキャリブレーションした。
 <実施例1~3>
 各液に含有される界面活性剤およびその濃度を表1に記載の界面活性剤およびその濃度に変更した以外は、参照例1と同様にして、分析方法を実施した。
 <比較例1~3>
 各液に含有される界面活性剤およびその濃度を表1に記載の界面活性剤およびその濃度に変更した以外は、参照例1と同様にして、分析方法を実施した。
Figure JPOXMLDOC01-appb-T000001
 表中の略称およびその炭素数および臨界ミセル数は、下記に示す。
TC12:Trehalose C12
DDM :n-Dodecyl-β-D-maltoside
UDM :n-Undecyl-β-D-maltoside
DM  :n-Decyl-β-D-maltoside
NTM :n-Nonyl-β-D-thiomaltoside
OG  :n-Octyl-β-D-glucoside
Figure JPOXMLDOC01-appb-T000002
 <分析結果>
 参照例1で得られたマススペクトルの1つ(1well)を図1に示す。検出されたピークの中から、SIL-Ng50-78およびNg43-75の質量に相当するピークを抽出し、AXIMA Performanceの解析ソフト(Shimadzu Biotach Launchpad:Shimadzu/KRATOS,Manchester,UK)で表示される各ピークのS/Nを感度の指標とした。このとき、4wellのマススペクトルでの平均値を、S/Nとして採用した。表3に、SIL-Ng50-78およびNg43-75のアミノ酸配列とTheoretical average m/zを示す。Ng43-75は血漿内因性のNgペプチドである。
Figure JPOXMLDOC01-appb-T000003
 各実施例および各比較例も参照例1と同様にして、4wellのマスペクトルから、SIL-Ng50-78およびNg43-75のピークにおけるS/Nをそれぞれ算出した。
 次いで、SIL-Ng50-78およびNg43-75の各ピークにおいて、参照例1のS/Nに対する実施例1~3のS/Nとの相対比、および、参照例1のS/Nに対する比較例1~3のS/Nとの相対比を算出した。
 上記参照例、各実施例および各比較例からなる一連の分析実験を繰り返し実施し、4~5回分の分析データ(上記相対比)を取得した後、これらの4~5回分の平均値を算出した。その結果を図2および図3に示す。
 図2および図3から明らかなように、参照例1と比較して、実施例1~3では、1.5倍以上の感度(S/N)の向上が確認され、実施例1においては、3倍以上の感度の向上が確認された。これにより、本分析方法では、血液からNg断片ペプチドを非常に感度よく検出することが実施でき、血液中のNg断片ペプチドを確実に測定することができる。一方、比較例1~3では、参照例1と同等の感度であった。

Claims (9)

  1.  生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、
     前記生体試料を結合溶液中で担体に接触させて、前記ニューログラニン関連ペプチドが前記担体に結合した結合体を得る結合工程と、
     前記結合体を、洗浄溶液を用いて洗浄する洗浄工程と、
     前記結合体を、酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記酸性溶液に溶出した溶出液を得る溶出工程と、
     前記溶出液中の前記ニューログラニン関連ペプチドを質量分析法にて検出する検出工程と
    を順に備え、
     前記結合溶液および前記洗浄溶液が、いずれも界面活性剤を含有し、
     前記界面活性剤が有する疎水基の炭素数が、9以上11以下である、ニューログラニン関連ペプチドの分析方法。
  2.  前記酸性溶液が、有機溶媒を含有する、請求項1に記載の分析方法。
  3.  前記生体試料が、血液である、請求項1に記載の分析方法。
  4.  前記質量分析法が、マトリックス支援レーザー脱離イオン化法である、請求項1~3のいずれか一項に記載の分析方法。
  5.  生体試料に含有されるニューログラニン関連ペプチドを分析する方法であって、
     結合溶液中で前記生体試料を第1担体に接触させて、前記ニューログラニン関連ペプチドが前記第1担体に結合した第1結合体を得る第1結合工程と、
     前記第1結合体を、第1洗浄溶液を用いて洗浄する第1洗浄工程と、
     前記第1結合体を、第1酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記第1酸性溶液に溶出した第1溶出液を得る第1溶出工程と、
     前記第1溶出液を中性緩衝液と混合して、精製溶液を得る中性化工程と、
     前記精製溶液を第2担体に接触させて、前記ニューログラニン関連ペプチドが前記第2担体に結合した第2結合体を得る第2結合工程と、
     前記第2結合体を、第2洗浄溶液を用いて洗浄する第2洗浄工程と、
     前記第2結合体を、第2酸性溶液に接触させて、前記ニューログラニン関連ペプチドが前記第2酸性溶液に溶出した第2溶出液を得る第2溶出工程と、
     前記第2溶出液中の前記ニューログラニン関連ペプチドを質量分析法にて検出する検出工程と
    を順に備え、
     前記結合溶液、前記第1洗浄溶液および前記第2洗浄溶液が、いずれも界面活性剤を含有し、
     前記界面活性剤が有する疎水基の炭素数が、9以上11以下である、ニューログラニン関連ペプチドの分析方法。
  6.  前記第2酸性溶液が、有機溶媒を含有する、請求項5に記載の分析方法。
  7.  前記第1酸性溶液が、界面活性剤を含有しており、
     前記界面活性剤が有する疎水基の炭素数が、9以上11以下である、請求項5に記載の分析方法。
  8.  前記生体試料が、血液である、請求項5に記載の分析方法。
  9.  前記質量分析法が、マトリックス支援レーザー脱離イオン化法である、請求項5に記載の分析方法。
PCT/JP2022/014578 2021-05-14 2022-03-25 ニューログラニン関連ペプチドの分析方法 WO2022239537A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280032928.0A CN117396758A (zh) 2021-05-14 2022-03-25 神经颗粒蛋白相关肽的分析方法
JP2023520908A JPWO2022239537A1 (ja) 2021-05-14 2022-03-25
EP22807242.7A EP4339617A1 (en) 2021-05-14 2022-03-25 Method for analyzing neurogranin-related peptide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082340 2021-05-14
JP2021-082340 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239537A1 true WO2022239537A1 (ja) 2022-11-17

Family

ID=84029582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014578 WO2022239537A1 (ja) 2021-05-14 2022-03-25 ニューログラニン関連ペプチドの分析方法

Country Status (4)

Country Link
EP (1) EP4339617A1 (ja)
JP (1) JPWO2022239537A1 (ja)
CN (1) CN117396758A (ja)
WO (1) WO2022239537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136043A1 (ja) * 2022-01-13 2023-07-20 株式会社島津製作所 ニューログラニン関連ペプチドの分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050236A (ja) * 2001-08-08 2003-02-21 Kyorin Pharmaceut Co Ltd チオール基含有ペプチド・蛋白質の超高感度定量方法
JP2006284389A (ja) * 2005-03-31 2006-10-19 Mcbi:Kk タンパク質、部分タンパク質および/もしくは部分ペプチド、またはそれらのプロファイルに基づく体外診断システム
WO2015178398A1 (ja) 2014-05-22 2015-11-26 株式会社 島津製作所 脳内のアミロイドβペプチド蓄積状態を評価するサロゲート・バイオマーカー及びその分析方法
JP2017020980A (ja) 2015-07-14 2017-01-26 株式会社島津製作所 ポリペプチドの質量分析方法
WO2017047529A1 (ja) 2015-09-16 2017-03-23 株式会社 島津製作所 脳内のアミロイドβ蓄積状態を評価するマルチプレックスバイオマーカー及びその分析方法
JP2018194374A (ja) * 2017-05-15 2018-12-06 株式会社島津製作所 ペプチドの分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050236A (ja) * 2001-08-08 2003-02-21 Kyorin Pharmaceut Co Ltd チオール基含有ペプチド・蛋白質の超高感度定量方法
JP2006284389A (ja) * 2005-03-31 2006-10-19 Mcbi:Kk タンパク質、部分タンパク質および/もしくは部分ペプチド、またはそれらのプロファイルに基づく体外診断システム
WO2015178398A1 (ja) 2014-05-22 2015-11-26 株式会社 島津製作所 脳内のアミロイドβペプチド蓄積状態を評価するサロゲート・バイオマーカー及びその分析方法
JP2017020980A (ja) 2015-07-14 2017-01-26 株式会社島津製作所 ポリペプチドの質量分析方法
WO2017047529A1 (ja) 2015-09-16 2017-03-23 株式会社 島津製作所 脳内のアミロイドβ蓄積状態を評価するマルチプレックスバイオマーカー及びその分析方法
JP2018194374A (ja) * 2017-05-15 2018-12-06 株式会社島津製作所 ペプチドの分析方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KANEKO NNAKAMURA AWASHIMI YKATO TSAKURAI TARAHATA YBUNDO MTAKEDA ANIIDA SITO K: "Novel plasma biomarker surrogating cerebral amyloid deposition", PROC JPN ACAD SER B PHYS BIOL SCI., vol. 90, no. 9, 2014, pages 353 - 364, XP055238351, DOI: 10.2183/pjab.90.353
KVARTSBERG HLASHLEY TMURRAY CEBRINKMALM GCULLEN NCHOGLUND KZETTERBERG HBLENNOW KPORTELIUS E.: "The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease", ACTA NEUROPATHOL., vol. 137, no. 1, 2019, pages 89 - 102, XP036677407, DOI: 10.1007/s00401-018-1910-3
KVARTSBERG HPORTELIUS EANDREASSON UBRINKMALM GHELLWIG KLELENTAL NKORNHUBER JHANSSON OMINTHON LSPITZER P: "Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer's disease patients and healthy controls", ALZHEIMERS RES THER., vol. 7, no. 1, 2015, pages 40
MINAMINO, N. TANAKA, J. KUWAHARA, H. KIHARA, T. SATOMI, Y. MATSUBAE, M. TAKAO, T.: "Determination of endogenous peptides in the porcine brain: possible construction of Peptidome, a fact database for endogenous peptides", JOURNAL OF CHROMATOGRAPHY B, vol. 792, no. 1, 15 July 2003 (2003-07-15), NL , pages 33 - 48, XP004431812, ISSN: 1570-0232, DOI: 10.1016/S1570-0232(03)00280-0 *
NAKAMURA AKANEKO NVILLEMAGNE VLKATO TDOECKE JDORE VFOWLER CLI QXMARTINS RROWE C: "High performance plasma amyloid-β biomarkers for Alzheimer's disease", NATURE, vol. 554, no. 7691, 2018, pages 249 - 254, XP055618943, DOI: 10.1038/nature25456
PORTELIUS EOLSSON BHOGLUND KCULLEN NCKVARTSBERG HANDREASSON UZETTERBERG HSANDELIUS ASHAW LMLEE VMY: "Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology", ACTA NEUROPATHOL., vol. 136, no. 3, 2018, pages 363 - 376, XP036571628, DOI: 10.1007/s00401-018-1851-x
THORSELL ABJERKE MGOBOM JBRUNHAGE EVANMECHELEN EANDREASEN NHANSSON OMINTHON LZETTERBERG HBLENNOW K.: "Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease", BRAIN RES., vol. 1362, 2010, pages 13 - 22, XP027472834, DOI: 10.1016/j.brainres.2010.09.073

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136043A1 (ja) * 2022-01-13 2023-07-20 株式会社島津製作所 ニューログラニン関連ペプチドの分析方法

Also Published As

Publication number Publication date
CN117396758A (zh) 2024-01-12
JPWO2022239537A1 (ja) 2022-11-17
EP4339617A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP6424757B2 (ja) ポリペプチドの質量分析方法
JP6582995B2 (ja) App切断型ペプチドの測定方法
US8771969B2 (en) Peptide antibody depletion and its application to mass spectrometry sample preparation
WO2008085024A1 (en) Identification and detection of peptides relating to specific disorders
EP3915659B1 (en) Affinity support
US20170299605A1 (en) Srm methods in alzheimer's disease and neurological disease assays
JP2003532055A (ja) 前立腺癌マーカー
WO2022239537A1 (ja) ニューログラニン関連ペプチドの分析方法
JP2018194374A (ja) ペプチドの分析方法
US11152198B2 (en) Direct determination of antibody chain pairing
WO2023136043A1 (ja) ニューログラニン関連ペプチドの分析方法
JP7299566B2 (ja) アミロイドベータに対するモノクローナル抗体、及びその抗体を用いるアミロイドベータ関連ペプチドの測定方法
WO2023228497A1 (ja) ニューログラニン関連ペプチド含有試料溶液の調製方法およびニューログラニン関連ペプチドの分析方法
WO2022168417A1 (ja) 分析方法
WO2022215341A1 (ja) 検量線の作成方法およびアミロイドβ関連ペプチドの測定方法
US20160238615A1 (en) Solid phase extraction of global peptides, glycopeptides, and glycans using chemical immobilization in a pipette tip
Menzel et al. High-throughput biomarker discovery and identification by mass spectrometry
WO2022181273A1 (ja) ペプチド測定における品質管理用標準溶液、及びペプチド測定の品質管理
US20210156871A1 (en) Peptide analyzing method
Fornelli Top-down and middle-down mass spectrometry structural characterization of monoclonal antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807242

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520908

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280032928.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18559077

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022807242

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807242

Country of ref document: EP

Effective date: 20231214