WO2023136008A1 - Plasma treatment device - Google Patents
Plasma treatment device Download PDFInfo
- Publication number
- WO2023136008A1 WO2023136008A1 PCT/JP2022/045563 JP2022045563W WO2023136008A1 WO 2023136008 A1 WO2023136008 A1 WO 2023136008A1 JP 2022045563 W JP2022045563 W JP 2022045563W WO 2023136008 A1 WO2023136008 A1 WO 2023136008A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- slit
- plasma processing
- antenna
- processing apparatus
- Prior art date
Links
- 238000009832 plasma treatment Methods 0.000 title abstract 3
- 239000002245 particle Substances 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 3
- 239000000758 substrate Substances 0.000 description 18
- 238000002834 transmittance Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 12
- 238000009616 inductively coupled plasma Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000004380 ashing Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical class N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
- H01J37/32183—Matching circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the present invention relates to a plasma processing apparatus that uses plasma to process an object to be processed.
- a conventional plasma processing apparatus applies a high-frequency current to an antenna, generates an inductively coupled plasma (abbreviated as ICP) by an induced electric field, and uses this inductively coupled plasma to process an object to be processed such as a substrate.
- ICP inductively coupled plasma
- Patent Document 1 an antenna is arranged outside a vacuum vessel, and a high-frequency magnetic field generated from the antenna is transmitted into the vacuum vessel through a magnetic field transmission window provided so as to block an opening in the side wall of the vacuum vessel. It is disclosed that a plasma is generated in the vacuum vessel by passing through the air.
- the plasma processing apparatus of Patent Document 1 includes a metal slit plate that closes the opening of the vacuum vessel, and a dielectric plate that closes the slit formed in the slit plate from the outside of the vacuum vessel.
- the slit plate made of metal and the dielectric plate superimposed on the slit plate function as the magnetic field transmission window, so that only the dielectric plate functions as the magnetic field transmission window.
- the thickness of the magnetic field permeable window can be reduced compared to the case where it is carried. As a result, the distance from the antenna to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel.
- the space between the slits becomes conductive due to the deposits as described above, the surface of the dielectric plate becomes conductive, so that the high-frequency magnetic field generated from the antenna is shielded, and the high-frequency magnetic field that penetrates into the vacuum vessel is blocked. decreases, causing plasma density reduction and instability.
- the heat of the generated plasma and the radiation from the object to be processed due to the plasma may raise the temperature of the dielectric plate and damage it.
- the present invention has been made to solve these problems at once.
- the main object is to prevent contamination of the body plate, reduce transmittance of the high-frequency magnetic field, suppress heat generation due to induced current, and suppress temperature rise of the dielectric plate due to plasma.
- a high-frequency current is passed through an antenna provided outside a vacuum vessel to generate plasma in the vacuum vessel, and the plasma processing apparatus is formed at a position facing the antenna of the vacuum vessel.
- a slit plate closing the opening formed in the slit plate; a dielectric plate covering the slit formed in the slit plate from the outside of the vacuum vessel; and a mask plate covering the slit from the inside of the vacuum vessel with a gap therebetween.
- the mask plate covers the slit formed in the slit plate from the inside of the vacuum vessel so that the dielectric plate is hidden when viewed from the inside of the vacuum vessel. It is possible to prevent contaminants from adhering to the dielectric plate. As a result, it is possible to prevent the surface of the dielectric plate from becoming conductive, suppress a decrease in the transmittance of the high-frequency magnetic field, and prevent heat generation due to an induced current flowing on the surface of the dielectric plate. Moreover, since the gap is provided between the mask plate and the slit plate, the induced current generated in the mask plate and the slit plate along the antenna can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be efficiently suppressed.
- the mask plate covers the slit, the dielectric plate exposed from the slit is not directly exposed to the plasma or the object to be processed, so that the temperature rise of the dielectric plate due to radiation or the like can be suppressed and damage can be prevented.
- the mask plate is formed with a plurality of slits crossing the antenna when viewed from the thickness direction, and the beam-shaped regions formed between the plurality of slits form the slit plate.
- the slit is covered.
- the high-frequency magnetic field can be efficiently transmitted to the inside of the vacuum vessel.
- a plurality of slits are formed so as to intersect the antenna, the induced current flowing through the mask plate along the antenna can be reduced. As a result, it is possible to suppress a decrease in transmittance of the high-frequency magnetic field in the mask plate, and to suppress temperature rise of the mask plate and accompanying temperature rise of the dielectric plate due to radiation.
- the plasma processing apparatus includes a plurality of mask plates spaced apart in the thickness direction thereof, and the beam-shaped regions of the respective mask plates are displaced from each other along the longitudinal direction of the antenna. It preferably covers the slit. In this way, by covering the slits of the slit plate with the beam-shaped regions of the plurality of mask plates, the slits of each mask plate can be covered more effectively than when the slits of the slit plate are covered with a single mask plate. The width (length along the antenna) of the beam-like region can be reduced. As a result, the induced current generated in each mask plate can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be further suppressed.
- the width of each slit in the slit plate can be widened and the width between the slits can be narrowed, thereby further increasing the transmittance of the high-frequency field. You can make it bigger.
- the effective width of the beam-like region is increased, thereby facilitating the flow of induced current in the mask plates. Since they are provided with a gap so as not to contact each other, the effective width of the beam region can be reduced, thereby reducing the induced current generated in each mask plate and effectively increasing the transmittance of the high-frequency magnetic field. can be suppressed to Furthermore, by providing a plurality of mask plates with a gap between them, it is possible to suppress unevenness in plasma density that may occur along the antenna due to the contact of the plurality of mask plates with each other.
- the transmittance of the high-frequency magnetic field as a whole is the product of the transmittance when each plate is used alone without being laminated. Therefore, from the viewpoint of suppressing a decrease in the transmittance of the high-frequency magnetic field, the width of each beam-shaped region of the mask plate is preferably narrower than the width of the beam-shaped region of the slit plate when the mask plate is not provided. For example, it is preferably 10 mm or less, more preferably 5 mm or less. For the same reason, the width between the slits in the slit plate is preferably 10 mm or less, more preferably 5 mm or less.
- the width of each beam-shaped region of the mask plate can be set to such a range, even if the slit plate is covered with the mask plate, the induced current flowing through the mask plate can be made sufficiently small, and the transmittance of the high-frequency magnetic field can be effectively reduced. can be effectively suppressed.
- the mask plate is connected to a connection area set outside in the extending direction of the slit on the inward surface of the slit plate.
- An induced current is particularly likely to flow at the connection point between the mask plate and the slit plate. Decrease can be efficiently suppressed.
- a flow path through which a cooling medium flows is formed in the vicinity of the connection area of the slit plate. In this way, the mask plate can be cooled while cooling the slit plate, and heat flow to the dielectric plate due to radiation can be suppressed.
- the mask plate may be attached to a side wall of the vacuum vessel in which the opening is formed, or to a flange member interposed between the side wall and the slit plate.
- the gap between the mask plate and the slit plate is wide.
- the gap is too wide, plasma may be generated in the gap and the plasma density around the workpiece may decrease. Therefore, the length along the thickness direction of the gap between the mask plate and the slit plate is preferably 5 mm or less.
- plasma may be generated in the gap between the mask plate and the slit plate depending on the type of gas used, the gas pressure, or the magnitude of the current applied to the antenna. Therefore, in the plasma processing apparatus, it is preferable that a shielding wall for shielding charged particles moving along the longitudinal direction of the antenna is provided in the gap between the slit plate and the mask plate. In this way, the motion of the charged particles along the longitudinal direction of the antenna within the gap can be suppressed by the shield wall, and the occurrence of discharge within the gap can be prevented.
- the slit plate and the mask plate have a ground potential or are applied with an alternating voltage.
- the slit plate and the mask plate have a ground potential or are applied with an alternating voltage.
- the present invention configured as described above, in a plasma processing apparatus in which an antenna is arranged outside a vacuum vessel and a magnetic field transmission window is formed by stacking a dielectric plate and a slit plate, contamination of the dielectric plate is prevented. Therefore, it is possible to suppress the decrease in the transmittance of the high-frequency magnetic field and the heat generation due to the induced current, as well as suppress the temperature rise of the dielectric plate due to the plasma.
- FIG. 1 is a longitudinal sectional view schematically showing the configuration of a plasma processing apparatus according to one embodiment
- FIG. FIG. 2 is a cross-sectional view schematically showing the configuration of the plasma processing apparatus of the same embodiment
- Sectional drawing which shows typically the structure of magnetic field permeable window vicinity in the same embodiment.
- the top view which looked at the structure of magnetic field permeable window vicinity in the same embodiment from the inside of the vacuum vessel.
- the perspective view which looked at the structure near the magnetic field permeable window in the same embodiment from the inside of the vacuum vessel.
- FIG. 10 is a vertical cross-sectional view schematically showing the configuration around the magnetic field transmission window in another embodiment.
- FIG. 11 is a cross-sectional view schematically showing the configuration around the magnetic field transmission window in another embodiment;
- FIG. 11 is a cross-sectional view schematically showing the configuration around the magnetic field transmission window in another embodiment;
- FIG. 11 is a cross-sectional view schematically showing the configuration around the magnetic field transmission window in another embodiment;
- the plasma processing apparatus 100 of this embodiment processes a substrate O using an inductively coupled plasma P.
- the substrate O is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like.
- the processing applied to the substrate O includes, for example, film formation by plasma CVD, etching, ashing, sputtering, and the like.
- the plasma processing apparatus 100 is also referred to as a plasma CVD apparatus for film formation by plasma CVD, a plasma etching apparatus for etching, a plasma ashing apparatus for ashing, and a plasma sputtering apparatus for sputtering. Called.
- the plasma processing apparatus 100 includes, as shown in FIGS. 1 and 2, a vacuum vessel 1 which is evacuated and gas is introduced, an antenna 2 provided outside the vacuum vessel 1, and a high-frequency wave in the antenna 2. and a high-frequency power source 3 for applying
- a high frequency when a high frequency is applied to the antenna 2 from the high frequency power source 3, a high frequency current IR flows through the antenna 2, an induced electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated.
- the vacuum container 1 is, for example, a container made of metal, and an opening 1x that penetrates in the thickness direction is formed in its wall (here, the upper wall 1a). This vacuum vessel 1 is electrically grounded here, and its interior is evacuated by an evacuation device 4 .
- gas is introduced into the vacuum vessel 1 via, for example, a flow rate regulator (not shown) or one or a plurality of gas introduction ports 11 provided in the vacuum vessel 1 .
- the gas may be selected according to the content of the processing to be performed on the substrate O.
- the gas is a raw material gas or a gas obtained by diluting it with a diluent gas (eg, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film. : F film (fluorinated silicon nitride film) can be formed on each substrate.
- a substrate holder 5 for holding the substrate O is provided inside the vacuum vessel 1 .
- a bias voltage may be applied to the substrate holder 5 from the bias power source 6 as in this example.
- the bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited to these. With such a bias voltage, for example, the energy of positive ions in the plasma P when they impinge on the substrate O can be controlled, and the crystallinity of the film formed on the surface of the substrate O can be controlled.
- a heater 51 for heating the substrate O may be provided in the substrate holder 5 .
- the antenna 2 is arranged so as to face the opening 1x formed in the vacuum vessel 1, as shown in FIGS.
- the number of antennas 2 is not limited to one, and a plurality of antennas 2 may be provided.
- the antenna 2 has a feeding end 2a, which is one end thereof, connected to the high-frequency power source 3 via a matching circuit 31, and a terminal end 2b, which is the other end, directly grounded. ing. Note that the terminal portion 2b may be grounded via a capacitor, a coil, or the like.
- the high-frequency power supply 3 can pass a high-frequency current IR to the antenna 2 via the matching circuit 31 .
- the frequency of the high frequency is, for example, a general frequency of 13.56 MHz, but it is not limited to this and may be changed as appropriate.
- This plasma processing apparatus 100 includes a slit plate 7 for closing an opening 1x formed in the wall (upper wall 1a) of the vacuum chamber 1 from the outside of the vacuum chamber 1, and a slit 7x formed in the slit plate 7. It further includes a dielectric plate 8 that closes from the outside.
- the slit plate 7 transmits the high-frequency magnetic field generated from the antenna 2 into the vacuum vessel 1 and prevents an electric field from entering the inside of the vacuum vessel 1 from the outside of the vacuum vessel 1 .
- the slit plate 7 is a plate-like plate in which a plurality of slits 7x are formed along the longitudinal direction of the antenna 2 so as to penetrate in the thickness direction.
- the slit plate 7 preferably has higher mechanical strength than the dielectric plate 8 to be described later, and preferably has a larger thickness dimension than the dielectric plate 8 .
- the plurality of slits 7x are formed so as to be parallel to each other and intersect the antenna 2 (specifically, perpendicularly) when viewed from the thickness direction.
- All of the plurality of slits 7x have the same shape (specifically, a rectangular shape in plan view), and the length (width) along the longitudinal direction of the antenna 2 is, for example, 5 mm or more and 30 mm or less, but is not limited to this.
- the slit plate 7 is made of one selected from the group including Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co, for example. It is produced by rolling (for example, cold rolling or hot rolling) a metal material such as metal or alloy thereof (for example, stainless alloy, aluminum alloy, etc.), and has a thickness of about 5 mm, for example.
- a metal material such as metal or alloy thereof (for example, stainless alloy, aluminum alloy, etc.)
- the manufacturing method and thickness are not limited to this, and may be changed as appropriate according to specifications.
- the slit plate 7 is larger than the opening 1x of the vacuum vessel in plan view, and closes the opening 1x while being supported by the upper wall 1a.
- a sealing member S such as an O-ring or a gasket is interposed between the slit plate 7 and the upper wall 1a, and the space therebetween is vacuum-sealed.
- the dielectric plate 8 is provided on the outward surface 71 of the slit plate 7 facing the outside of the vacuum vessel 1 (the back surface of the inward surface facing the inside of the vacuum vessel 1) and closes the slit 7x of the slit plate 7. be.
- the dielectric plate 8 is made of a flat plate entirely made of a dielectric material.
- the dielectric plate 8 include ceramics such as alumina, silicon carbide, and silicon nitride; It is made of a resin material such as Teflon. From the viewpoint of reducing dielectric loss, the dielectric loss tangent of the material forming the dielectric plate 8 is preferably 0.01 or less, more preferably 0.005 or less.
- the plate thickness of the dielectric plate 8 is made smaller than the plate thickness of the slit plate 7, but the present invention is not limited to this. , and may be appropriately set according to specifications such as the number and length of the slits 7x. However, from the viewpoint of shortening the distance between the antenna 2 and the vacuum vessel 1, the thinner one is preferable.
- the slit plate 7 and the dielectric plate 8 function as a magnetic field transmission window W through which the magnetic field generated by the antenna 2 is transmitted. That is, when a high frequency is applied to the antenna 2 from the high frequency power supply 3, the high frequency magnetic field generated from the antenna 2 is transmitted through the magnetic field transmission window W composed of the slit plate 7 and the dielectric plate 8 and is formed (supplied) in the vacuum vessel 1. be done. As a result, an induced electric field is generated in the space inside the vacuum vessel 1, and an inductively coupled plasma P is generated.
- the plasma processing apparatus 100 of this embodiment includes a mask plate 9 that covers the slits 7x formed in the slit plate 7 from the inside of the vacuum vessel 1 with a gap G therebetween. I have more.
- the mask plate 9 is a flat plate having a plurality of slits 9x formed along the longitudinal direction of the antenna 2 and passing through the mask plate 9 in its thickness direction.
- the plurality of slits 9x are formed parallel to each other and parallel to the plurality of slits 7x formed in the slit plate 7 when viewed from the thickness direction.
- each slit 9x is formed so as to intersect the antenna 2 (specifically, orthogonally). All of the plurality of slits 9x are formed to have the same shape (specifically, a rectangular shape in plan view).
- each slit 9x in the mask plate 9 beam-like regions 9z parallel to each slit 9x are formed.
- a plurality of beam-like regions 9z are formed so as to correspond to the plurality of slits 7x formed in the slit plate 7, and each slit 7x of the slit plate 7 is covered with each beam-like region 9z.
- the length (width) of the beam-shaped regions 9z along the longitudinal direction of the antenna 2 is substantially the same as the width of the slits 7x of the slit plate 7, and each beam-shaped region 9z extends to each slit 7x of the slit plate 7.
- each beam-shaped region 9z is preferably as narrow as possible.
- each beam-like region 9z may be formed so as to cover only a part of each slit 7x.
- the mask plate 9 is connected to the connection region 7R set on the inward surface 72 of the slit plate 7 .
- the connection regions 7R are set on both sides of the inward surface 72 of the slit plate 7 in the extending direction of the plurality of slits 7x, and are long regions extending along the longitudinal direction of the antenna 2.
- An outward surface 91 of the mask plate 9 is formed with a protrusion 9a protruding toward the inward surface 72 of the slit plate 7, and the protrusion 9a is connected to the inward surface 72 of the slit plate 7. It is connected to region 7R.
- the projections 9 a are formed on both outer sides along the extending direction of the plurality of slits 9 x on the outward surface 91 of the mask plate 9 . It has a bar shape extending from one end to the other end.
- the mask plate 9 is electrically connected to the slit plate 7 and both are grounded.
- the mask plate 9 is provided so that its outward surface 91 and the inward surface 72 of the slit plate 7 are substantially parallel (that is, a certain gap G is provided).
- the dimension of the gap G between the outward surface of the mask plate 9 and the inward surface 72 of the slit plate 7 is preferably set to a value of 5 mm or less.
- the mask plate 9 is made of, for example, one metal selected from the group including Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co, or It is made of a metal material such as an alloy (for example, a stainless alloy, an aluminum alloy, etc.).
- the thickness of the mask plate 9 is preferably smaller than the thickness of the slit plate 7, for example about 5 mm or less. However, the thickness of the mask plate 9 is not limited to this and may be changed as appropriate according to specifications.
- the slit plate 7 is formed (or provided) with a flow path 7c through which a cooling medium such as water flows.
- the flow path 7c is formed along the longitudinal direction of the antenna 2 in the vicinity of the connection region 7R in the slit plate 7.
- the channel 7c is formed along the thickness direction of the slit plate 7 so as to be positioned directly above the connection region 7R.
- the gap G is provided between the mask plate 9 and the slit plate 7, the induced current generated in the mask plate 9 and the slit plate 7 along the antenna 2 can be reduced, and the decrease in the transmittance of the high-frequency magnetic field can be effectively prevented. can be well suppressed.
- the slits 7x of the slit plate 7 are covered with the mask plate 9, the dielectric plate 8 exposed from the slits 7x is not directly exposed to the plasma or the object to be processed. It can be held down to prevent damage.
- the high-frequency magnetic field can be efficiently transmitted to the inside of the vacuum vessel 1. Furthermore, since a plurality of slits 9x are formed so as to intersect the antenna 2, the induced current flowing through the mask plate 9 along the antenna 2 can be reduced. As a result, it is possible to suppress a decrease in the transmittance of the high-frequency magnetic field in the mask plate 9, and suppress a temperature rise in the mask plate 9 and an accompanying temperature rise in the dielectric plate 8 due to radiation.
- the plasma processing apparatus 100 of another embodiment includes a plurality of (two or more) mask plates 9 spaced apart from each other by a gap G' along the thickness direction.
- the slits 7 x formed in the slit plate 7 may be covered with the plurality of mask plates 9 .
- the beam-like regions 9z of each mask plate 9 are narrower than the slits 7x of the slit plate 7, and the beam-like regions 9z of each mask plate 9 are separated from each other along the longitudinal direction of the antenna 2. It is sufficient to form it in a shifted position.
- the widths of the beam-like regions 9z on each mask plate 9 may be equal to each other or may be different.
- the beam-like regions 9z in each mask plate 9 may or may not overlap each other when viewed from the thickness direction.
- the size of the gap G' between the mask plates 9 is not particularly limited, and is preferably 5 mm or less, for example.
- the shielding wall SW may have a wall surface formed to intersect (more specifically, perpendicular to) the longitudinal direction of the antenna 2 .
- the shielding wall SW may be formed so as to shield all or part of the gap G when viewed from the longitudinal direction of the antenna 2 .
- a plurality of shielding walls SW may be provided along the longitudinal direction of the antenna 2 .
- the plurality of shielding walls SW are parallel to each other, and are preferably provided at regular intervals (pitch) along the longitudinal direction of the antenna 2 .
- the interval (pitch) between the plurality of shielding walls SW along the longitudinal direction of the antenna 2 may be equal to or different from the interval between the slits 7x of the slit plate 7 .
- the inward surface 72 of the slit plate 7 is formed with a protruding portion 7p protruding into the gap G toward the outward surface 91 of the mask plate 9.
- a shielding wall SW may be configured by the portion 7p.
- a projecting portion 9p is formed on the outward surface 91 of the mask plate 9 and protrudes into the gap G toward the inward surface 72 of the slit plate 7.
- the projecting portion 9p serves as a shielding wall.
- SW may be configured.
- the mask plate 9 is connected to the inward surface 72 of the slit plate 7, but this is not the only option.
- the mask plate 9 may be attached to the side wall 1a of the vacuum vessel 1 in which the opening 1x is formed, or to a flange member interposed between the side wall 1a and the slit plate 7. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Provided is a plasma treatment device which generates plasma in a vacuum container by supply of a high frequency current to an antenna provided outside the vacuum container, said plasma treatment device comprising: a slit plate which closes an opening that is formed in the vacuum container so as to face the antenna; a dielectric plate which closes, from the outside of the vacuum container, a slit formed in the slit plate; and a mask plate which covers the slit from the inside of the vacuum container with a gap therebetween.
Description
本発明は、プラズマを用いて被処理物を処理するプラズマ処理装置に関するものである。
The present invention relates to a plasma processing apparatus that uses plasma to process an object to be processed.
アンテナに高周波電流を流し、それによって生じる誘導電界によって誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板等の被処理物に処理を施すプラズマ処理装置が従来から提案されている。このようなプラズマ処理装置として、特許文献1には、アンテナを真空容器の外部に配置し、真空容器の側壁の開口を塞ぐように設けた磁場透過窓を通じてアンテナから生じた高周波磁場を真空容器内に透過させることで、真空容器内にプラズマを発生させるものが開示されている。
2. Description of the Related Art A conventional plasma processing apparatus applies a high-frequency current to an antenna, generates an inductively coupled plasma (abbreviated as ICP) by an induced electric field, and uses this inductively coupled plasma to process an object to be processed such as a substrate. proposed by. As such a plasma processing apparatus, in Patent Document 1, an antenna is arranged outside a vacuum vessel, and a high-frequency magnetic field generated from the antenna is transmitted into the vacuum vessel through a magnetic field transmission window provided so as to block an opening in the side wall of the vacuum vessel. It is disclosed that a plasma is generated in the vacuum vessel by passing through the air.
この特許文献1のプラズマ処理装置は、真空容器の開口を塞ぐ金属製のスリット板と、スリット板に形成されたスリットを真空容器の外側から塞ぐ誘電体板とを備えるようにしている。このプラズマ処理装置では、金属製のスリット板と、このスリット板に重ね合わせた誘電体板とに磁場透過窓としての機能を担わせているので、誘電体板のみに磁場透過窓としての機能を担わせる場合に比べて磁場透過窓の厚みを小さくすることができる。これにより、アンテナから真空容器内までの距離を短くすることができ、アンテナから生じた高周波磁場を効率良く真空容器内に供給することができる。
The plasma processing apparatus of Patent Document 1 includes a metal slit plate that closes the opening of the vacuum vessel, and a dielectric plate that closes the slit formed in the slit plate from the outside of the vacuum vessel. In this plasma processing apparatus, the slit plate made of metal and the dielectric plate superimposed on the slit plate function as the magnetic field transmission window, so that only the dielectric plate functions as the magnetic field transmission window. The thickness of the magnetic field permeable window can be reduced compared to the case where it is carried. As a result, the distance from the antenna to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel.
しかしながら、上記特許文献1のプラズマ処理装置の構成では、スリット近傍に生成されたプラズマによる堆積物やスパッタ等による粒子の回り込みによる堆積物が誘電体板に堆積してしまい、そうした堆積物が導電性であると、スリットを形成する内側面が堆積物を介して導電してしまう。そうすると、アンテナから生じる高周波磁場により、スリット板にもアンテナの長手方向に沿った高周波電流が流れてしまい、スリット板や堆積物の発熱により誘電体板が加熱される。その結果、誘電体板の熱歪みが生じたり、誘電体板と堆積物との化学反応による強度低下が生じたりして、誘電体板が破損する恐れなどが生じる。
However, in the configuration of the plasma processing apparatus of Patent Document 1, deposits due to plasma generated in the vicinity of the slit and deposits due to particles flowing around due to sputtering or the like are deposited on the dielectric plate, and such deposits are electrically conductive. Then, the inner surface forming the slit becomes conductive through the deposit. Then, a high-frequency magnetic field generated by the antenna causes a high-frequency current to flow through the slit plate along the longitudinal direction of the antenna, and the heat generated by the slit plate and the deposits heats the dielectric plate. As a result, the dielectric plate may be thermally distorted, or the strength may be reduced due to a chemical reaction between the dielectric plate and the deposits, resulting in damage to the dielectric plate.
しかも、上述したようにスリット間が堆積物により導電すると、誘電体板の表面が導電化されることになるので、アンテナから生じる高周波磁場がシールドされてしまい、真空容器内に透過する高周波磁場が低下し、プラズマ密度の低下や不安定性を引き起こす。
Moreover, if the space between the slits becomes conductive due to the deposits as described above, the surface of the dielectric plate becomes conductive, so that the high-frequency magnetic field generated from the antenna is shielded, and the high-frequency magnetic field that penetrates into the vacuum vessel is blocked. decreases, causing plasma density reduction and instability.
さらには、生成したプラズマの熱やプラズマによる被処理物からの輻射により誘電体板が温度上昇して破損してしまう恐れもある。
Furthermore, the heat of the generated plasma and the radiation from the object to be processed due to the plasma may raise the temperature of the dielectric plate and damage it.
本発明は、かかる問題を一挙に解決するべくなされたものであり、真空容器の外部にアンテナを配置し、誘電体板とスリット板とを重ねて磁場透過窓を構成したプラズマ処理装置において、誘電体板の汚染を防止して高周波磁場の透過率の低下及び誘導電流による発熱を抑制するとともに、プラズマによる誘電体板の温度上昇を抑えることをその主たる課題とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems at once. The main object is to prevent contamination of the body plate, reduce transmittance of the high-frequency magnetic field, suppress heat generation due to induced current, and suppress temperature rise of the dielectric plate due to plasma.
すなわち本発明に係るプラズマ処理装置は、真空容器の外部に設けられたアンテナに高周波電流を流して前記真空容器内にプラズマを発生させるものであって、前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐスリット板と、前記スリット板に形成されたスリットを前記真空容器の外側から塞ぐ誘電体板と、前記スリットを前記真空容器の内側から間隙を空けて覆うマスク板とを備えることを特徴とする。
That is, in the plasma processing apparatus according to the present invention, a high-frequency current is passed through an antenna provided outside a vacuum vessel to generate plasma in the vacuum vessel, and the plasma processing apparatus is formed at a position facing the antenna of the vacuum vessel. a slit plate closing the opening formed in the slit plate; a dielectric plate covering the slit formed in the slit plate from the outside of the vacuum vessel; and a mask plate covering the slit from the inside of the vacuum vessel with a gap therebetween. characterized by
このような構成であれば、スリット板に形成されたスリットをマスク板によって真空容器の内側から覆うことで、真空容器の内側から視て誘電体板が隠れるようにしているので、導電性の飛来物等が誘電体板に付着して汚染するのを防止できる。これにより、誘電体板の表面が導電化されるのを防ぎ、高周波磁場の透過率の低下を抑制できるとともに、誘電体板の表面に誘導電流が流れることによる発熱も防止することができる。しかも、マスク板とスリット板との間に間隙を設けているので、アンテナに沿ってマスク板及びスリット板に生じる誘導電流を小さくでき、高周波磁場の透過率の低下を効率よく抑制できる。
また、マスク板によりスリットを覆っているので、スリットから露出する誘電体板がプラズマや被処理物に直接晒されないので、輻射等による誘電体板の温度上昇を抑えて破損を防止できる。 With such a configuration, the mask plate covers the slit formed in the slit plate from the inside of the vacuum vessel so that the dielectric plate is hidden when viewed from the inside of the vacuum vessel. It is possible to prevent contaminants from adhering to the dielectric plate. As a result, it is possible to prevent the surface of the dielectric plate from becoming conductive, suppress a decrease in the transmittance of the high-frequency magnetic field, and prevent heat generation due to an induced current flowing on the surface of the dielectric plate. Moreover, since the gap is provided between the mask plate and the slit plate, the induced current generated in the mask plate and the slit plate along the antenna can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be efficiently suppressed.
In addition, since the mask plate covers the slit, the dielectric plate exposed from the slit is not directly exposed to the plasma or the object to be processed, so that the temperature rise of the dielectric plate due to radiation or the like can be suppressed and damage can be prevented.
また、マスク板によりスリットを覆っているので、スリットから露出する誘電体板がプラズマや被処理物に直接晒されないので、輻射等による誘電体板の温度上昇を抑えて破損を防止できる。 With such a configuration, the mask plate covers the slit formed in the slit plate from the inside of the vacuum vessel so that the dielectric plate is hidden when viewed from the inside of the vacuum vessel. It is possible to prevent contaminants from adhering to the dielectric plate. As a result, it is possible to prevent the surface of the dielectric plate from becoming conductive, suppress a decrease in the transmittance of the high-frequency magnetic field, and prevent heat generation due to an induced current flowing on the surface of the dielectric plate. Moreover, since the gap is provided between the mask plate and the slit plate, the induced current generated in the mask plate and the slit plate along the antenna can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be efficiently suppressed.
In addition, since the mask plate covers the slit, the dielectric plate exposed from the slit is not directly exposed to the plasma or the object to be processed, so that the temperature rise of the dielectric plate due to radiation or the like can be suppressed and damage can be prevented.
また前記プラズマ処理装置は、前記マスク板が厚さ方向から視て前記アンテナに交差する複数のスリットが形成されたものであり、当該複数のスリット間に形成された梁状領域により前記スリット板のスリットが覆われているのが好ましい。
このようにすれば、マスク板に複数のスリットを形成することにより、高周波磁場を真空容器の内側に効率よく透過させることができる。さらには、アンテナに交差するように複数のスリットを形成しているので、アンテナに沿ってマスク板に流れる誘導電流を小さくできる。これにより、マスク板における高周波磁場の透過率の低下を抑制し、またマスク板の温度上昇及びこれに伴う輻射による誘電体板の温度上昇を抑制できる。 Further, in the plasma processing apparatus, the mask plate is formed with a plurality of slits crossing the antenna when viewed from the thickness direction, and the beam-shaped regions formed between the plurality of slits form the slit plate. Preferably the slit is covered.
In this way, by forming a plurality of slits in the mask plate, the high-frequency magnetic field can be efficiently transmitted to the inside of the vacuum vessel. Furthermore, since a plurality of slits are formed so as to intersect the antenna, the induced current flowing through the mask plate along the antenna can be reduced. As a result, it is possible to suppress a decrease in transmittance of the high-frequency magnetic field in the mask plate, and to suppress temperature rise of the mask plate and accompanying temperature rise of the dielectric plate due to radiation.
このようにすれば、マスク板に複数のスリットを形成することにより、高周波磁場を真空容器の内側に効率よく透過させることができる。さらには、アンテナに交差するように複数のスリットを形成しているので、アンテナに沿ってマスク板に流れる誘導電流を小さくできる。これにより、マスク板における高周波磁場の透過率の低下を抑制し、またマスク板の温度上昇及びこれに伴う輻射による誘電体板の温度上昇を抑制できる。 Further, in the plasma processing apparatus, the mask plate is formed with a plurality of slits crossing the antenna when viewed from the thickness direction, and the beam-shaped regions formed between the plurality of slits form the slit plate. Preferably the slit is covered.
In this way, by forming a plurality of slits in the mask plate, the high-frequency magnetic field can be efficiently transmitted to the inside of the vacuum vessel. Furthermore, since a plurality of slits are formed so as to intersect the antenna, the induced current flowing through the mask plate along the antenna can be reduced. As a result, it is possible to suppress a decrease in transmittance of the high-frequency magnetic field in the mask plate, and to suppress temperature rise of the mask plate and accompanying temperature rise of the dielectric plate due to radiation.
また前記プラズマ処理装置は、前記マスク板をその厚さ方向に沿って間隙を空けて複数枚備え、前記各マスク板の前記梁状領域がアンテナの長手方向に沿って互いにずれて前記スリット板のスリットを覆っているのが好ましい。
このようにすれば、複数のマスク板の梁状領域によりスリット板のスリットを覆うようにすることで、単一のマスク板によりスリットをスリット板のスリットを覆う場合に比べて、各マスク板の梁状領域の幅(アンテナに沿った長さ)を小さくすることができる。これにより、各マスク板に生じる誘導電流を小さくでき、高周波磁場の透過率の低下をより抑えることができる。また各マスク板に起因する高周波磁場の透過率の低下を抑えられるので、スリット板における各スリット幅を広くし、またそのスリット間の幅を狭くすることができ、高周波場の透過率をより一層大きくすることができる。
ここで、複数のマスク板が互いに接触している場合には、実効的な梁状領域の幅が大きくなることでマスク板に誘導電流が流れやすくなるが、上記した構成では複数のマスク板を互いに接触しないように間隙を空けて設けるようにしているので、実効的な梁用領域の幅を小さくでき、これにより各マスク板に生じる誘導電流を小さくして、高周波磁場の透過率を効果的に抑制することができる。
さらには、複数のマスク板を互いに間隙を空けて設けることで、複数のマスク板が互いに接触することによりアンテナに沿って生じ得るプラズマ密度のムラも抑制できる。 Further, the plasma processing apparatus includes a plurality of mask plates spaced apart in the thickness direction thereof, and the beam-shaped regions of the respective mask plates are displaced from each other along the longitudinal direction of the antenna. It preferably covers the slit.
In this way, by covering the slits of the slit plate with the beam-shaped regions of the plurality of mask plates, the slits of each mask plate can be covered more effectively than when the slits of the slit plate are covered with a single mask plate. The width (length along the antenna) of the beam-like region can be reduced. As a result, the induced current generated in each mask plate can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be further suppressed. In addition, since the decrease in the transmittance of the high-frequency magnetic field due to each mask plate can be suppressed, the width of each slit in the slit plate can be widened and the width between the slits can be narrowed, thereby further increasing the transmittance of the high-frequency field. You can make it bigger.
Here, when a plurality of mask plates are in contact with each other, the effective width of the beam-like region is increased, thereby facilitating the flow of induced current in the mask plates. Since they are provided with a gap so as not to contact each other, the effective width of the beam region can be reduced, thereby reducing the induced current generated in each mask plate and effectively increasing the transmittance of the high-frequency magnetic field. can be suppressed to
Furthermore, by providing a plurality of mask plates with a gap between them, it is possible to suppress unevenness in plasma density that may occur along the antenna due to the contact of the plurality of mask plates with each other.
このようにすれば、複数のマスク板の梁状領域によりスリット板のスリットを覆うようにすることで、単一のマスク板によりスリットをスリット板のスリットを覆う場合に比べて、各マスク板の梁状領域の幅(アンテナに沿った長さ)を小さくすることができる。これにより、各マスク板に生じる誘導電流を小さくでき、高周波磁場の透過率の低下をより抑えることができる。また各マスク板に起因する高周波磁場の透過率の低下を抑えられるので、スリット板における各スリット幅を広くし、またそのスリット間の幅を狭くすることができ、高周波場の透過率をより一層大きくすることができる。
ここで、複数のマスク板が互いに接触している場合には、実効的な梁状領域の幅が大きくなることでマスク板に誘導電流が流れやすくなるが、上記した構成では複数のマスク板を互いに接触しないように間隙を空けて設けるようにしているので、実効的な梁用領域の幅を小さくでき、これにより各マスク板に生じる誘導電流を小さくして、高周波磁場の透過率を効果的に抑制することができる。
さらには、複数のマスク板を互いに間隙を空けて設けることで、複数のマスク板が互いに接触することによりアンテナに沿って生じ得るプラズマ密度のムラも抑制できる。 Further, the plasma processing apparatus includes a plurality of mask plates spaced apart in the thickness direction thereof, and the beam-shaped regions of the respective mask plates are displaced from each other along the longitudinal direction of the antenna. It preferably covers the slit.
In this way, by covering the slits of the slit plate with the beam-shaped regions of the plurality of mask plates, the slits of each mask plate can be covered more effectively than when the slits of the slit plate are covered with a single mask plate. The width (length along the antenna) of the beam-like region can be reduced. As a result, the induced current generated in each mask plate can be reduced, and the decrease in transmittance of the high-frequency magnetic field can be further suppressed. In addition, since the decrease in the transmittance of the high-frequency magnetic field due to each mask plate can be suppressed, the width of each slit in the slit plate can be widened and the width between the slits can be narrowed, thereby further increasing the transmittance of the high-frequency field. You can make it bigger.
Here, when a plurality of mask plates are in contact with each other, the effective width of the beam-like region is increased, thereby facilitating the flow of induced current in the mask plates. Since they are provided with a gap so as not to contact each other, the effective width of the beam region can be reduced, thereby reducing the induced current generated in each mask plate and effectively increasing the transmittance of the high-frequency magnetic field. can be suppressed to
Furthermore, by providing a plurality of mask plates with a gap between them, it is possible to suppress unevenness in plasma density that may occur along the antenna due to the contact of the plurality of mask plates with each other.
スリット板とマスク板とを備える上記した構成では、全体としての高周波磁場の透過率は、各板を積層することなく単体だけで用いた場合の透過率の積となる。そのため、高周波磁場の透過率の低下を抑制する観点から、マスク板の各梁状領域の幅は、マスク板を有しない場合におけるスリット板の梁状領域の幅よりも狭くすることが好ましく、具体的には、例えば10mm以下が好ましく、5mm以下がより好ましい。同様の理由で、スリット板における各スリット間の幅は、例えば10mm以下が好ましく、5mm以下がより好ましい。
マスク板の各梁状領域の幅をこのような範囲にすれば、スリット板をマスク板で覆う構成としても、マスク板に流れる誘導電流を十分に小さくし、高周波磁場の透過率の低下を効果的に抑制できる。 In the above configuration including the slit plate and the mask plate, the transmittance of the high-frequency magnetic field as a whole is the product of the transmittance when each plate is used alone without being laminated. Therefore, from the viewpoint of suppressing a decrease in the transmittance of the high-frequency magnetic field, the width of each beam-shaped region of the mask plate is preferably narrower than the width of the beam-shaped region of the slit plate when the mask plate is not provided. For example, it is preferably 10 mm or less, more preferably 5 mm or less. For the same reason, the width between the slits in the slit plate is preferably 10 mm or less, more preferably 5 mm or less.
By setting the width of each beam-shaped region of the mask plate to such a range, even if the slit plate is covered with the mask plate, the induced current flowing through the mask plate can be made sufficiently small, and the transmittance of the high-frequency magnetic field can be effectively reduced. can be effectively suppressed.
マスク板の各梁状領域の幅をこのような範囲にすれば、スリット板をマスク板で覆う構成としても、マスク板に流れる誘導電流を十分に小さくし、高周波磁場の透過率の低下を効果的に抑制できる。 In the above configuration including the slit plate and the mask plate, the transmittance of the high-frequency magnetic field as a whole is the product of the transmittance when each plate is used alone without being laminated. Therefore, from the viewpoint of suppressing a decrease in the transmittance of the high-frequency magnetic field, the width of each beam-shaped region of the mask plate is preferably narrower than the width of the beam-shaped region of the slit plate when the mask plate is not provided. For example, it is preferably 10 mm or less, more preferably 5 mm or less. For the same reason, the width between the slits in the slit plate is preferably 10 mm or less, more preferably 5 mm or less.
By setting the width of each beam-shaped region of the mask plate to such a range, even if the slit plate is covered with the mask plate, the induced current flowing through the mask plate can be made sufficiently small, and the transmittance of the high-frequency magnetic field can be effectively reduced. can be effectively suppressed.
また前記プラズマ処理装置は、前記マスク板が、前記スリット板の内向き面における前記スリットの延在方向外側に設定された接続領域に接続されているのが好ましい。
マスク板とスリット板の接続箇所は誘導電流が特に流れやすいが、このような構成にすれば、スリット板の内向き面においてアンテナから遠い位置でマスク板を接続するので、高周波磁場の透過率の低下を効率よく抑制できる。 Further, in the plasma processing apparatus, it is preferable that the mask plate is connected to a connection area set outside in the extending direction of the slit on the inward surface of the slit plate.
An induced current is particularly likely to flow at the connection point between the mask plate and the slit plate. Decrease can be efficiently suppressed.
マスク板とスリット板の接続箇所は誘導電流が特に流れやすいが、このような構成にすれば、スリット板の内向き面においてアンテナから遠い位置でマスク板を接続するので、高周波磁場の透過率の低下を効率よく抑制できる。 Further, in the plasma processing apparatus, it is preferable that the mask plate is connected to a connection area set outside in the extending direction of the slit on the inward surface of the slit plate.
An induced current is particularly likely to flow at the connection point between the mask plate and the slit plate. Decrease can be efficiently suppressed.
また前記プラズマ処理装置は、前記スリット板における接続領域の近傍に、冷却媒体が流れる流路が形成されているのが好ましい。
このようにすれば、スリット板を冷却しながらマスク板も冷却することができ、輻射による誘電体板への熱の流れを抑えることができる。 Further, in the plasma processing apparatus, it is preferable that a flow path through which a cooling medium flows is formed in the vicinity of the connection area of the slit plate.
In this way, the mask plate can be cooled while cooling the slit plate, and heat flow to the dielectric plate due to radiation can be suppressed.
このようにすれば、スリット板を冷却しながらマスク板も冷却することができ、輻射による誘電体板への熱の流れを抑えることができる。 Further, in the plasma processing apparatus, it is preferable that a flow path through which a cooling medium flows is formed in the vicinity of the connection area of the slit plate.
In this way, the mask plate can be cooled while cooling the slit plate, and heat flow to the dielectric plate due to radiation can be suppressed.
また前記プラズマ処理装置は、前記マスク板が、前記開口が形成された前記真空容器の側壁、又は当該側壁と前記スリット板との間に介在するフランジ部材に取り付けられていてもよい。
このようにすれば、マスク板とスリット板とを分離して設けることができるので、作業性を向上することができる。 Further, in the plasma processing apparatus, the mask plate may be attached to a side wall of the vacuum vessel in which the opening is formed, or to a flange member interposed between the side wall and the slit plate.
With this arrangement, the mask plate and the slit plate can be provided separately, so that workability can be improved.
このようにすれば、マスク板とスリット板とを分離して設けることができるので、作業性を向上することができる。 Further, in the plasma processing apparatus, the mask plate may be attached to a side wall of the vacuum vessel in which the opening is formed, or to a flange member interposed between the side wall and the slit plate.
With this arrangement, the mask plate and the slit plate can be provided separately, so that workability can be improved.
マスク板からの輻射による誘電体板の温度上昇を抑える観点から、マスク板とスリット板との間隙は広い方が好ましい。その一方で、間隙が広すぎると間隙内でプラズマが生成し、被処理物の周辺でのプラズマ密度が低下する可能性がある。そのため、マスク板とスリット板との間隙の厚み方向に沿った長さは5mm以下が好ましい。
From the viewpoint of suppressing temperature rise of the dielectric plate due to radiation from the mask plate, it is preferable that the gap between the mask plate and the slit plate is wide. On the other hand, if the gap is too wide, plasma may be generated in the gap and the plasma density around the workpiece may decrease. Therefore, the length along the thickness direction of the gap between the mask plate and the slit plate is preferably 5 mm or less.
また、使用するガス種、ガス圧又はアンテナに印加する電流の大きさによっては、マスク板とスリット板との間隙においてプラズマが発生する可能性がある。
そのため、前記プラズマ処理装置は、前記スリット板と前記マスク板との間隙内に、前記アンテナの長手方向に沿って運動する荷電粒子を遮蔽する遮蔽壁が設けられているのが好ましい。
このようにすれば、間隙内におけるアンテナの長手方向に沿った荷電粒子の運動を遮蔽壁により抑制でき、間隙内での放電発生を防止できる。 Also, plasma may be generated in the gap between the mask plate and the slit plate depending on the type of gas used, the gas pressure, or the magnitude of the current applied to the antenna.
Therefore, in the plasma processing apparatus, it is preferable that a shielding wall for shielding charged particles moving along the longitudinal direction of the antenna is provided in the gap between the slit plate and the mask plate.
In this way, the motion of the charged particles along the longitudinal direction of the antenna within the gap can be suppressed by the shield wall, and the occurrence of discharge within the gap can be prevented.
そのため、前記プラズマ処理装置は、前記スリット板と前記マスク板との間隙内に、前記アンテナの長手方向に沿って運動する荷電粒子を遮蔽する遮蔽壁が設けられているのが好ましい。
このようにすれば、間隙内におけるアンテナの長手方向に沿った荷電粒子の運動を遮蔽壁により抑制でき、間隙内での放電発生を防止できる。 Also, plasma may be generated in the gap between the mask plate and the slit plate depending on the type of gas used, the gas pressure, or the magnitude of the current applied to the antenna.
Therefore, in the plasma processing apparatus, it is preferable that a shielding wall for shielding charged particles moving along the longitudinal direction of the antenna is provided in the gap between the slit plate and the mask plate.
In this way, the motion of the charged particles along the longitudinal direction of the antenna within the gap can be suppressed by the shield wall, and the occurrence of discharge within the gap can be prevented.
また前記プラズマ処理装置は、前記スリット板及び前記マスク板が接地電位である、又は交流電圧が印加されているのが好ましい。
このようにすれば、マスク板により高周波電場を遮蔽した上で、必要な電圧を印加することで、プラズマに電位を任意に付与することで、対向する基板等の被処理物への荷電粒子の入射エネルギーを制御することができる。 Further, in the plasma processing apparatus, it is preferable that the slit plate and the mask plate have a ground potential or are applied with an alternating voltage.
In this way, after shielding the high-frequency electric field with the mask plate, by applying a necessary voltage to arbitrarily apply a potential to the plasma, the charged particles can be transferred to the object to be processed such as the opposing substrate. Incident energy can be controlled.
このようにすれば、マスク板により高周波電場を遮蔽した上で、必要な電圧を印加することで、プラズマに電位を任意に付与することで、対向する基板等の被処理物への荷電粒子の入射エネルギーを制御することができる。 Further, in the plasma processing apparatus, it is preferable that the slit plate and the mask plate have a ground potential or are applied with an alternating voltage.
In this way, after shielding the high-frequency electric field with the mask plate, by applying a necessary voltage to arbitrarily apply a potential to the plasma, the charged particles can be transferred to the object to be processed such as the opposing substrate. Incident energy can be controlled.
このように構成した本発明によれば、真空容器の外部にアンテナを配置し、誘電体板とスリット板とを重ねて磁場透過窓を構成したプラズマ処理装置において、誘電体板の汚染を防止して高周波磁場の透過率の低下及び誘導電流による発熱を抑制するとともに、プラズマによる誘電体板の温度上昇を抑えることができる。
According to the present invention configured as described above, in a plasma processing apparatus in which an antenna is arranged outside a vacuum vessel and a magnetic field transmission window is formed by stacking a dielectric plate and a slit plate, contamination of the dielectric plate is prevented. Therefore, it is possible to suppress the decrease in the transmittance of the high-frequency magnetic field and the heat generation due to the induced current, as well as suppress the temperature rise of the dielectric plate due to the plasma.
以下に、本発明に係るプラズマ処理装置の一実施形態について、図面を参照して説明する。
An embodiment of the plasma processing apparatus according to the present invention will be described below with reference to the drawings.
<装置構成>
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Oに処理を施すものである。ここで、基板Oは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Oに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device configuration>
Theplasma processing apparatus 100 of this embodiment processes a substrate O using an inductively coupled plasma P. As shown in FIG. Here, the substrate O is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like. Further, the processing applied to the substrate O includes, for example, film formation by plasma CVD, etching, ashing, sputtering, and the like.
本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Oに処理を施すものである。ここで、基板Oは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Oに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device configuration>
The
なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。
The plasma processing apparatus 100 is also referred to as a plasma CVD apparatus for film formation by plasma CVD, a plasma etching apparatus for etching, a plasma ashing apparatus for ashing, and a plasma sputtering apparatus for sputtering. Called.
具体的にプラズマ処理装置100は、図1及び図2に示すように、真空排気され且つガスが導入される真空容器1と、真空容器1の外部に設けられたアンテナ2と、アンテナ2に高周波を印加する高周波電源3とを備えたものである。かかる構成において、アンテナ2に高周波電源3から高周波を印加することによりアンテナ2には高周波電流IRが流れて、真空容器1内に誘導電界が発生して誘導結合型のプラズマPが生成される。
Specifically, the plasma processing apparatus 100 includes, as shown in FIGS. 1 and 2, a vacuum vessel 1 which is evacuated and gas is introduced, an antenna 2 provided outside the vacuum vessel 1, and a high-frequency wave in the antenna 2. and a high-frequency power source 3 for applying In this configuration, when a high frequency is applied to the antenna 2 from the high frequency power source 3, a high frequency current IR flows through the antenna 2, an induced electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated.
真空容器1は、例えば金属製の容器であり、その壁(ここでは上壁1a)には、厚さ方向に貫通する開口1xが形成されている。この真空容器1は、ここでは電気的に接地されており、その内部は真空排気装置4によって真空排気される。
The vacuum container 1 is, for example, a container made of metal, and an opening 1x that penetrates in the thickness direction is formed in its wall (here, the upper wall 1a). This vacuum vessel 1 is electrically grounded here, and its interior is evacuated by an evacuation device 4 .
また、真空容器1内には、例えば流量調整器(図示省略)や真空容器1に設けられた1又は複数のガス導入口11を経由して、ガスが導入される。ガスは、基板Oに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板に膜形成を行う場合には、ガスは、原料ガス又はそれを希釈ガス(例えばH2)で希釈したガスである。より具体例を挙げると、原料ガスがSiH4の場合はSi膜を、SiH4+NH3の場合はSiN膜を、SiH4+O2の場合はSiO2膜を、SiF4+N2の場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板上に形成することができる。
Further, gas is introduced into the vacuum vessel 1 via, for example, a flow rate regulator (not shown) or one or a plurality of gas introduction ports 11 provided in the vacuum vessel 1 . The gas may be selected according to the content of the processing to be performed on the substrate O. As shown in FIG. For example, when forming a film on a substrate by plasma CVD, the gas is a raw material gas or a gas obtained by diluting it with a diluent gas (eg, H 2 ). More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film. : F film (fluorinated silicon nitride film) can be formed on each substrate.
この真空容器1の内部には、基板Oを保持する基板ホルダ5が設けられている。この例のように、基板ホルダ5にバイアス電源6からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のバイアス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Oに入射する時のエネルギーを制御して、基板Oの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ5内に、基板Oを加熱するヒータ51を設けておいても良い。
A substrate holder 5 for holding the substrate O is provided inside the vacuum vessel 1 . A bias voltage may be applied to the substrate holder 5 from the bias power source 6 as in this example. The bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited to these. With such a bias voltage, for example, the energy of positive ions in the plasma P when they impinge on the substrate O can be controlled, and the crystallinity of the film formed on the surface of the substrate O can be controlled. . A heater 51 for heating the substrate O may be provided in the substrate holder 5 .
アンテナ2は、図1及び図2に示すように、真空容器1に形成された開口1xに臨むように配置されている。なお、アンテナ2の本数は1本に限らず、複数本のアンテナ2を設けても良い。
The antenna 2 is arranged so as to face the opening 1x formed in the vacuum vessel 1, as shown in FIGS. The number of antennas 2 is not limited to one, and a plurality of antennas 2 may be provided.
アンテナ2は、図2に示すように、その一端部である給電端部2aが、整合回路31を介して高周波電源3が接続されており、他端部である終端部2bが、直接接地されている。なお、終端部2bは、コンデンサ又はコイル等を介して接地されてもよい。
As shown in FIG. 2, the antenna 2 has a feeding end 2a, which is one end thereof, connected to the high-frequency power source 3 via a matching circuit 31, and a terminal end 2b, which is the other end, directly grounded. ing. Note that the terminal portion 2b may be grounded via a capacitor, a coil, or the like.
高周波電源3は、整合回路31を介してアンテナ2に高周波電流IRを流すことができる。高周波の周波数は例えば一般的な13.56MHzであるが、これに限られるものではなく適宜変更してもよい。
The high-frequency power supply 3 can pass a high-frequency current IR to the antenna 2 via the matching circuit 31 . The frequency of the high frequency is, for example, a general frequency of 13.56 MHz, but it is not limited to this and may be changed as appropriate.
このプラズマ処理装置100は、真空容器1の壁(上壁1a)に形成された開口1xを真空容器1の外側から塞ぐスリット板7と、スリット板7に形成されたスリット7xを真空容器1の外側から塞ぐ誘電体板8とをさらに備えている。
This plasma processing apparatus 100 includes a slit plate 7 for closing an opening 1x formed in the wall (upper wall 1a) of the vacuum chamber 1 from the outside of the vacuum chamber 1, and a slit 7x formed in the slit plate 7. It further includes a dielectric plate 8 that closes from the outside.
スリット板7は、アンテナ2から生じた高周波磁場を真空容器1内に透過させるとともに、真空容器1の外部から真空容器1の内部への電界の入り込みを防ぐものである。具体的にこのスリット板7は、その厚さ方向に貫通してなるスリット7xがアンテナ2の長手方向に沿って複数形成された平板状のものである。このスリット板7は、後述する誘電体板8よりも機械強度が高いことが好ましく、誘電体板8よりも厚み寸法が大きいことが好ましい。そして複数のスリット7xは、厚さ方向から視て、互いに平行であって、且つアンテナ2に交差するように(具体的には直交するように)形成されている。複数のスリット7xはいずれも同形状(具体的には平面視矩形状)であり、アンテナ2の長手方向に沿った長さ(幅)は、例えば5mm以上30mm以下であるがこれに限らない。
The slit plate 7 transmits the high-frequency magnetic field generated from the antenna 2 into the vacuum vessel 1 and prevents an electric field from entering the inside of the vacuum vessel 1 from the outside of the vacuum vessel 1 . Specifically, the slit plate 7 is a plate-like plate in which a plurality of slits 7x are formed along the longitudinal direction of the antenna 2 so as to penetrate in the thickness direction. The slit plate 7 preferably has higher mechanical strength than the dielectric plate 8 to be described later, and preferably has a larger thickness dimension than the dielectric plate 8 . The plurality of slits 7x are formed so as to be parallel to each other and intersect the antenna 2 (specifically, perpendicularly) when viewed from the thickness direction. All of the plurality of slits 7x have the same shape (specifically, a rectangular shape in plan view), and the length (width) along the longitudinal direction of the antenna 2 is, for example, 5 mm or more and 30 mm or less, but is not limited to this.
より具体的に説明すると、スリット板7は、例えばCu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W又はCoを含む群から選択される1種の金属又はそれらの合金(例えばステンレス合金、アルミニウム合金等)等の金属材料を圧延加工(例えば冷間圧延や熱間圧延)などにより製造したものであり、例えば厚みが約5mmのものである。ただし、製造方法や厚みはこれに限らず仕様に応じて適宜変更して構わない。
More specifically, the slit plate 7 is made of one selected from the group including Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co, for example. It is produced by rolling (for example, cold rolling or hot rolling) a metal material such as metal or alloy thereof (for example, stainless alloy, aluminum alloy, etc.), and has a thickness of about 5 mm, for example. However, the manufacturing method and thickness are not limited to this, and may be changed as appropriate according to specifications.
このスリット板7は、平面視において真空容器の開口1xよりも大きいものであり、上壁1aに支持された状態で開口1xを塞いでいる。スリット板7と上壁1aとの間には、Oリングやガスケット等のシール部材S(図1及び図2参照)が介在しており、これらの間は真空シールされている。
The slit plate 7 is larger than the opening 1x of the vacuum vessel in plan view, and closes the opening 1x while being supported by the upper wall 1a. A sealing member S (see FIGS. 1 and 2) such as an O-ring or a gasket is interposed between the slit plate 7 and the upper wall 1a, and the space therebetween is vacuum-sealed.
誘電体板8は、スリット板7において真空容器1の外側を向く外向き面71(真空容器1の内部を向く内向き面の裏面)に設けられて、スリット板7のスリット7xを塞ぐものである。
The dielectric plate 8 is provided on the outward surface 71 of the slit plate 7 facing the outside of the vacuum vessel 1 (the back surface of the inward surface facing the inside of the vacuum vessel 1) and closes the slit 7x of the slit plate 7. be.
誘電体板8は、全体が誘電体物質で構成された平板状をなすものであり、例えばアルミナ、炭化ケイ素、窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、フッ素樹脂(例えばテフロン)等の樹脂材料等からなる。なお、誘電損を低減する観点から、誘電体板8を構成する材料は、誘電正接が0.01以下のものが好ましく、0.005以下のものがより好ましい。
The dielectric plate 8 is made of a flat plate entirely made of a dielectric material. Examples of the dielectric plate 8 include ceramics such as alumina, silicon carbide, and silicon nitride; It is made of a resin material such as Teflon. From the viewpoint of reducing dielectric loss, the dielectric loss tangent of the material forming the dielectric plate 8 is preferably 0.01 or less, more preferably 0.005 or less.
ここでは誘電体板8の板厚をスリット板7の板厚よりも小さくしているが、これに限定されず、例えば真空容器1を真空排気した状態において、スリット7xから受ける真空容器1の内外の差圧に耐え得る強度を備えれば良く、スリット7xの数や長さ等の仕様に応じて適宜設定されてよい。ただし、アンテナ2と真空容器1との間の距離を短くする観点からは薄い方が好ましい。
Here, the plate thickness of the dielectric plate 8 is made smaller than the plate thickness of the slit plate 7, but the present invention is not limited to this. , and may be appropriately set according to specifications such as the number and length of the slits 7x. However, from the viewpoint of shortening the distance between the antenna 2 and the vacuum vessel 1, the thinner one is preferable.
かかる構成により、スリット板7及び誘電体板8は、アンテナ2から発生した磁場を透過させる磁場透過窓Wとして機能を担う。すなわち、高周波電源3からアンテナ2に高周波を印加すると、アンテナ2から発生した高周波磁場が、スリット板7及び誘電体板8からなる磁場透過窓Wを透過して真空容器1内に形成(供給)される。これにより、真空容器1内の空間に誘導電界が発生し、誘導結合型のプラズマPが生成される。
With such a configuration, the slit plate 7 and the dielectric plate 8 function as a magnetic field transmission window W through which the magnetic field generated by the antenna 2 is transmitted. That is, when a high frequency is applied to the antenna 2 from the high frequency power supply 3, the high frequency magnetic field generated from the antenna 2 is transmitted through the magnetic field transmission window W composed of the slit plate 7 and the dielectric plate 8 and is formed (supplied) in the vacuum vessel 1. be done. As a result, an induced electric field is generated in the space inside the vacuum vessel 1, and an inductively coupled plasma P is generated.
然して、本実施形態のプラズマ処理装置100は、図1及び図2に示すように、スリット板7に形成された各スリット7xを、真空容器1の内側から間隙Gを空けて覆うマスク板9をさらに備えている。
1 and 2, the plasma processing apparatus 100 of this embodiment includes a mask plate 9 that covers the slits 7x formed in the slit plate 7 from the inside of the vacuum vessel 1 with a gap G therebetween. I have more.
より具体的に説明すると、図3~図5に示すように、マスク板9はその厚さ方向に貫通してなるスリット9xがアンテナ2の長手方向に沿って複数形成された平板状のものである。厚さ方向から視て、この複数のスリット9xは互いに平行であって、かつスリット板7に形成された複数のスリット7xと平行になるように形成されている。ここでは、各スリット9xは、アンテナ2に交差するように(具体的には直交するように)形成されている。複数のスリット9xはいずれも同形状(具体的には平面視矩形状)となるように形成されている。
More specifically, as shown in FIGS. 3 to 5, the mask plate 9 is a flat plate having a plurality of slits 9x formed along the longitudinal direction of the antenna 2 and passing through the mask plate 9 in its thickness direction. be. The plurality of slits 9x are formed parallel to each other and parallel to the plurality of slits 7x formed in the slit plate 7 when viewed from the thickness direction. Here, each slit 9x is formed so as to intersect the antenna 2 (specifically, orthogonally). All of the plurality of slits 9x are formed to have the same shape (specifically, a rectangular shape in plan view).
マスク板9における隣り合うスリット9x間には、各スリット9xに平行な梁状領域9zが形成されている。この梁状領域9zは、スリット板7に形成された複数のスリット7xに対応するように複数形成されており、各梁状領域9zによりスリット板7の各スリット7xが覆われている。ここでは、アンテナ2の長手方向に沿った梁状領域9zの長さ(幅)は、スリット板7のスリット7xの幅と略同一であり、各梁状領域9zがスリット板7の各スリット7xの略全部を覆っている。なお、磁場の透過率を向上させる観点から各梁状領域9zの幅は狭い程好ましく、例えば10mm以下が好ましく、5mm以下がより好ましい。また各梁状領域9zは、各スリット7xの一部のみを覆うように形成されてもよい。
Between adjacent slits 9x in the mask plate 9, beam-like regions 9z parallel to each slit 9x are formed. A plurality of beam-like regions 9z are formed so as to correspond to the plurality of slits 7x formed in the slit plate 7, and each slit 7x of the slit plate 7 is covered with each beam-like region 9z. Here, the length (width) of the beam-shaped regions 9z along the longitudinal direction of the antenna 2 is substantially the same as the width of the slits 7x of the slit plate 7, and each beam-shaped region 9z extends to each slit 7x of the slit plate 7. It covers almost all of From the viewpoint of improving the magnetic field transmittance, the width of each beam-shaped region 9z is preferably as narrow as possible. Moreover, each beam-like region 9z may be formed so as to cover only a part of each slit 7x.
またマスク板9は、スリット板7の内向き面72に設定された接続領域7Rに接続されている。この接続領域7Rは、スリット板7の内向き面72における複数のスリット7xの延在方向の両外側に設定されたものであり、アンテナ2の長手方向に沿って延びる長尺状の領域である。マスク板9の外向き面91には、スリット板7の内向き面72に向かって突き出す突起部9aが形成されており、この突起部9aがスリット板7の内向き面72に設定された接続領域7Rに接続されている。突起部9aは、マスク板9の外向き面91における複数のスリット9xの延在方向に沿った両外側に形成されたものであり、アンテナ2の長手方向に沿ってマスク板9の一方の端部から他方の端部に亘って延びる棒状を成している。なおマスク板9は、スリット板7に電気的に接続されて共に接地電位とされている。
Also, the mask plate 9 is connected to the connection region 7R set on the inward surface 72 of the slit plate 7 . The connection regions 7R are set on both sides of the inward surface 72 of the slit plate 7 in the extending direction of the plurality of slits 7x, and are long regions extending along the longitudinal direction of the antenna 2. . An outward surface 91 of the mask plate 9 is formed with a protrusion 9a protruding toward the inward surface 72 of the slit plate 7, and the protrusion 9a is connected to the inward surface 72 of the slit plate 7. It is connected to region 7R. The projections 9 a are formed on both outer sides along the extending direction of the plurality of slits 9 x on the outward surface 91 of the mask plate 9 . It has a bar shape extending from one end to the other end. The mask plate 9 is electrically connected to the slit plate 7 and both are grounded.
さらにマスク板9は、その外向き面91とスリット板7の内向き面72とが略平行になる(すなわち、一定の間隙Gを空ける)ように設けられている。マスク板9の外向き面とスリット板7の内向き面72との間隙Gの寸法は、5mm以下の値に設定されているのが好ましい。
Further, the mask plate 9 is provided so that its outward surface 91 and the inward surface 72 of the slit plate 7 are substantially parallel (that is, a certain gap G is provided). The dimension of the gap G between the outward surface of the mask plate 9 and the inward surface 72 of the slit plate 7 is preferably set to a value of 5 mm or less.
具体的にマスク板9は、例えばCu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W又はCoを含む群から選択される1種の金属又はそれらの合金(例えばステンレス合金、アルミニウム合金等)等の金属材料により構成されている。マスク板9の厚みは、スリット板7の厚みより小さいことが好ましく、例えば約5mm以下のものである。ただし、マスク板9の厚みはこれに限らず仕様に応じて適宜変更して構わない。
Specifically, the mask plate 9 is made of, for example, one metal selected from the group including Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co, or It is made of a metal material such as an alloy (for example, a stainless alloy, an aluminum alloy, etc.). The thickness of the mask plate 9 is preferably smaller than the thickness of the slit plate 7, for example about 5 mm or less. However, the thickness of the mask plate 9 is not limited to this and may be changed as appropriate according to specifications.
またこの実施形態では、スリット板7には水等の冷却媒体が流れる流路7cが形成されている(又は設けられている。)。この流路7cは、スリット板7における接続領域7Rの近傍にアンテナ2の長手方向に沿って形成されている。ここでは、流路7cは、スリット板7の厚み方向に沿って接続領域7Rの直上に位置するように形成されている。
In addition, in this embodiment, the slit plate 7 is formed (or provided) with a flow path 7c through which a cooling medium such as water flows. The flow path 7c is formed along the longitudinal direction of the antenna 2 in the vicinity of the connection region 7R in the slit plate 7. As shown in FIG. Here, the channel 7c is formed along the thickness direction of the slit plate 7 so as to be positioned directly above the connection region 7R.
<本実施形態の効果>
このように構成した本実施形態のプラズマ処理装置100によれば、
スリット板7に形成されたスリット7xをマスク板9によって真空容器1の内側から覆うことで、真空容器1の内側から視て誘電体板8が隠れるようにしているので、導電性の飛来物等が誘電体板8に付着して汚染するのを防止できる。これにより、誘電体板8の表面が導電化されるのを防ぎ、高周波磁場の透過率の低下を抑制できるとともに、誘電体板8の表面に誘導電流が流れることによる発熱も防止することができる。しかも、マスク板9とスリット板7との間に間隙Gを設けているので、アンテナ2に沿ってマスク板9及びスリット板7に生じる誘導電流を小さくでき、高周波磁場の透過率の低下を効率よく抑制できる。
また、マスク板9によりスリット板7のスリット7xを覆っているので、スリット7xから露出する誘電体板8がプラズマや被処理物に直接晒されないので、輻射等による誘電体板8の温度上昇を抑えて破損を防止できる。 <Effects of this embodiment>
According to theplasma processing apparatus 100 of this embodiment configured in this way,
By covering theslits 7x formed in the slit plate 7 from the inside of the vacuum vessel 1 with the mask plate 9, the dielectric plate 8 is hidden when viewed from the inside of the vacuum vessel 1. Therefore, it is possible to prevent conductive flying objects and the like. can be prevented from adhering to the dielectric plate 8 and contaminating it. As a result, it is possible to prevent the surface of the dielectric plate 8 from becoming conductive, suppress a decrease in the transmittance of the high-frequency magnetic field, and prevent heat generation due to an induced current flowing on the surface of the dielectric plate 8. . Moreover, since the gap G is provided between the mask plate 9 and the slit plate 7, the induced current generated in the mask plate 9 and the slit plate 7 along the antenna 2 can be reduced, and the decrease in the transmittance of the high-frequency magnetic field can be effectively prevented. can be well suppressed.
In addition, since theslits 7x of the slit plate 7 are covered with the mask plate 9, the dielectric plate 8 exposed from the slits 7x is not directly exposed to the plasma or the object to be processed. It can be held down to prevent damage.
このように構成した本実施形態のプラズマ処理装置100によれば、
スリット板7に形成されたスリット7xをマスク板9によって真空容器1の内側から覆うことで、真空容器1の内側から視て誘電体板8が隠れるようにしているので、導電性の飛来物等が誘電体板8に付着して汚染するのを防止できる。これにより、誘電体板8の表面が導電化されるのを防ぎ、高周波磁場の透過率の低下を抑制できるとともに、誘電体板8の表面に誘導電流が流れることによる発熱も防止することができる。しかも、マスク板9とスリット板7との間に間隙Gを設けているので、アンテナ2に沿ってマスク板9及びスリット板7に生じる誘導電流を小さくでき、高周波磁場の透過率の低下を効率よく抑制できる。
また、マスク板9によりスリット板7のスリット7xを覆っているので、スリット7xから露出する誘電体板8がプラズマや被処理物に直接晒されないので、輻射等による誘電体板8の温度上昇を抑えて破損を防止できる。 <Effects of this embodiment>
According to the
By covering the
In addition, since the
マスク板9に複数のスリット9xを形成することにより、高周波磁場を真空容器1の内側に効率よく透過させることができる。さらには、アンテナ2に交差するように複数のスリット9xを形成しているので、アンテナ2に沿ってマスク板9に流れる誘導電流を小さくできる。これにより、マスク板9における高周波磁場の透過率の低下を抑制し、またマスク板9の温度上昇及びこれに伴う輻射による誘電体板8の温度上昇を抑制できる。
By forming a plurality of slits 9x in the mask plate 9, the high-frequency magnetic field can be efficiently transmitted to the inside of the vacuum vessel 1. Furthermore, since a plurality of slits 9x are formed so as to intersect the antenna 2, the induced current flowing through the mask plate 9 along the antenna 2 can be reduced. As a result, it is possible to suppress a decrease in the transmittance of the high-frequency magnetic field in the mask plate 9, and suppress a temperature rise in the mask plate 9 and an accompanying temperature rise in the dielectric plate 8 due to radiation.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。 <Other Modified Embodiments>
It should be noted that the present invention is not limited to the above embodiments.
なお、本発明は前記実施形態に限られるものではない。 <Other Modified Embodiments>
It should be noted that the present invention is not limited to the above embodiments.
例えば、他の実施形態のプラズマ処理装置100は、図6及び図7に示すように、複数のマスク板9をその厚みに方向に沿って互いに間隙G’を空けて複数(2つ以上)備えており、当該複数のマスク板9により、スリット板7に形成されたスリット7xを覆うようにしてもよい。この場合、各マスク板9における梁状領域9zの幅をいずれもスリット板7のスリット7xの幅よりも狭くするとともに、各マスク板9における梁状領域9zをアンテナ2の長手方向に沿って互いにズレた位置に形成すればよい。この場合、各マスク板9における梁状領域9zの幅は、互いに等しくてもよく、異なっていてもよい。また各マスク板9における梁状領域9zは、厚さ方向から視て互いに重複していてもよく、重複してなくてもよい。また各マスク板9間の間隙G’の大きさは特に限定されず、例えば5mm以下が好ましい。
For example, as shown in FIGS. 6 and 7, the plasma processing apparatus 100 of another embodiment includes a plurality of (two or more) mask plates 9 spaced apart from each other by a gap G' along the thickness direction. The slits 7 x formed in the slit plate 7 may be covered with the plurality of mask plates 9 . In this case, the beam-like regions 9z of each mask plate 9 are narrower than the slits 7x of the slit plate 7, and the beam-like regions 9z of each mask plate 9 are separated from each other along the longitudinal direction of the antenna 2. It is sufficient to form it in a shifted position. In this case, the widths of the beam-like regions 9z on each mask plate 9 may be equal to each other or may be different. Moreover, the beam-like regions 9z in each mask plate 9 may or may not overlap each other when viewed from the thickness direction. Also, the size of the gap G' between the mask plates 9 is not particularly limited, and is preferably 5 mm or less, for example.
また他の実施形態のプラズマ処理装置100では、スリット板7とマスク板9との間隙G内に、アンテナ2の長手方向に沿って運動する荷電粒子を遮蔽する遮蔽壁SWが設けられていてもよい。この遮蔽壁SWは、アンテナ2の長手方向に対して交差する(具体的には直交する)ように形成された壁面を有してよい。アンテナ2の長手方向から視て、遮蔽壁SWは間隙Gの全部又は一部を遮蔽するように形成されてよい。そしてこの遮蔽壁SWは、アンテナ2の長手方向に沿って複数設けられてもよい。複数の遮蔽壁SWは互いに平行であり、アンテナ2の長手方向に沿って一定の間隔(ピッチ)で設けられているのが好ましい。アンテナ2の長手方向に沿った複数の遮蔽壁SW間の間隔(ピッチ)は、スリット板7のスリット7x間の間隔と等しくてもよく、異なっていてもよい。
In the plasma processing apparatus 100 of another embodiment, even if a shielding wall SW for shielding charged particles moving along the longitudinal direction of the antenna 2 is provided in the gap G between the slit plate 7 and the mask plate 9 good. The shielding wall SW may have a wall surface formed to intersect (more specifically, perpendicular to) the longitudinal direction of the antenna 2 . The shielding wall SW may be formed so as to shield all or part of the gap G when viewed from the longitudinal direction of the antenna 2 . A plurality of shielding walls SW may be provided along the longitudinal direction of the antenna 2 . The plurality of shielding walls SW are parallel to each other, and are preferably provided at regular intervals (pitch) along the longitudinal direction of the antenna 2 . The interval (pitch) between the plurality of shielding walls SW along the longitudinal direction of the antenna 2 may be equal to or different from the interval between the slits 7x of the slit plate 7 .
具体的には、例えば図8に示すように、スリット板7の内向き面72に、マスク板9の外向き面91に向かって間隙G内に突き出す突出部7pが形成されており、この突出部7pにより遮蔽壁SWが構成されてもよい。また図9に示すように、マスク板9の外向き面91に、スリット板7の内向き面72に向かって間隙G内に突き出す突出部9pが形成されており、この突出部9pにより遮蔽壁SWが構成されてもよい。
Specifically, for example, as shown in FIG. 8, the inward surface 72 of the slit plate 7 is formed with a protruding portion 7p protruding into the gap G toward the outward surface 91 of the mask plate 9. A shielding wall SW may be configured by the portion 7p. Further, as shown in FIG. 9, a projecting portion 9p is formed on the outward surface 91 of the mask plate 9 and protrudes into the gap G toward the inward surface 72 of the slit plate 7. The projecting portion 9p serves as a shielding wall. SW may be configured.
また前記実施形態では、マスク板9はスリット板7の内向き面72に接続されていたが、これに限らない。他の実施形態では、マスク板9は、開口1xが形成された真空容器1の側壁1a、又は側壁1aとスリット板7との間に介在するように設けたフランジ部材に取り付けられていてもよい。
Also, in the above embodiment, the mask plate 9 is connected to the inward surface 72 of the slit plate 7, but this is not the only option. In another embodiment, the mask plate 9 may be attached to the side wall 1a of the vacuum vessel 1 in which the opening 1x is formed, or to a flange member interposed between the side wall 1a and the slit plate 7. .
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
In addition, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications are possible without departing from the spirit of the present invention.
真空容器の外部にアンテナを配置し、誘電体板とスリット板とを重ねて磁場透過窓を構成したプラズマ処理装置において、誘電体板の汚染を防止して高周波磁場の透過率の低下及び誘導電流による発熱を抑制するとともに、プラズマによる誘電体板の温度上昇を抑える。
In a plasma processing apparatus in which an antenna is arranged outside a vacuum vessel and a dielectric plate and a slit plate are overlapped to form a magnetic field transmission window, contamination of the dielectric plate is prevented to reduce the transmittance of the high-frequency magnetic field and reduce the induced current. In addition to suppressing the heat generation due to the plasma, the temperature rise of the dielectric plate due to the plasma is suppressed.
100・・・プラズマ処理装置
O ・・・基板
P ・・・誘導結合プラズマ
2 ・・・真空容器
3 ・・・アンテナ
7 ・・・スリット部材
7x ・・・スリット
8 ・・・誘電体板
9 ・・・マスク板
W ・・・磁場透過窓
S ・・・シール 100...Plasma processing apparatus O...Substrate P...Inductively coupledplasma 2...Vacuum container 3...Antenna 7...Slit member 7x...Slit 8...Dielectric plate 9 ..Mask plate W ..Magnetic field transmission window S ..Seal
O ・・・基板
P ・・・誘導結合プラズマ
2 ・・・真空容器
3 ・・・アンテナ
7 ・・・スリット部材
7x ・・・スリット
8 ・・・誘電体板
9 ・・・マスク板
W ・・・磁場透過窓
S ・・・シール 100...Plasma processing apparatus O...Substrate P...Inductively coupled
Claims (10)
- 真空容器の外部に設けられたアンテナに高周波電流を流して前記真空容器内にプラズマを発生させるプラズマ処理装置であって、
前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐスリット板と、
前記スリット板に形成されたスリットを前記真空容器の外側から塞ぐ誘電体板と、
前記スリットを前記真空容器の内側から間隙を空けて覆うマスク板とを備えるプラズマ処理装置。 A plasma processing apparatus for generating plasma in the vacuum vessel by applying a high-frequency current to an antenna provided outside the vacuum vessel,
a slit plate closing an opening formed at a position facing the antenna of the vacuum vessel;
a dielectric plate closing the slit formed in the slit plate from the outside of the vacuum vessel;
A plasma processing apparatus comprising: a mask plate that covers the slit from the inside of the vacuum vessel with a gap therebetween. - 前記マスク板が厚さ方向から視て前記アンテナに交差する複数のスリットが形成されたものであり、当該複数のスリット間に形成された梁状領域により前記スリット板のスリットが覆われている請求項1に記載のプラズマ処理装置。 wherein the mask plate has a plurality of slits crossing the antenna when viewed from the thickness direction, and the slits of the slit plate are covered with beam-like regions formed between the plurality of slits. Item 2. The plasma processing apparatus according to item 1.
- 前記マスク板をその厚さ方向に沿って間隙を空けて複数枚備え、
前記各マスク板の前記梁状領域が前記アンテナの長手方向に沿って互いにずれて前記スリット板のスリットを覆っている請求項2に記載のプラズマ処理装置。 A plurality of the mask plates are provided with a gap along the thickness direction,
3. The plasma processing apparatus according to claim 2, wherein said beam-like regions of said mask plates are offset from each other along the longitudinal direction of said antenna and cover the slits of said slit plate. - 前記マスク板の各梁状領域の幅が10mm以下であり、好ましくは5mm以下である請求項2又は3に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2 or 3, wherein the width of each beam-shaped region of the mask plate is 10 mm or less, preferably 5 mm or less.
- 前記マスク板が、前記スリット板の内向き面における前記スリットの延在方向外側に設定された接続領域に接続されている請求項1~4のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 4, wherein the mask plate is connected to a connection area set outside in the extending direction of the slit on the inward surface of the slit plate.
- 前記スリット板における接続領域の近傍に、冷却媒体が流れる流路が形成されている請求項5に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 5, wherein a flow path through which a cooling medium flows is formed in the vicinity of the connection area in the slit plate.
- 前記マスク板が、前記開口が形成された前記真空容器の側壁、又は当該側壁と前記スリット板との間に介在するフランジ部材に取り付けられている請求項1~4のいずれか一項に記載のプラズマ処理装置。 5. The mask plate according to any one of claims 1 to 4, wherein the mask plate is attached to a side wall of the vacuum vessel in which the opening is formed, or to a flange member interposed between the side wall and the slit plate. Plasma processing equipment.
- 前記マスク板と前記スリット板との間隙の厚み方向に沿った長さが5mm以下である請求項1~7のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 7, wherein the length along the thickness direction of the gap between the mask plate and the slit plate is 5 mm or less.
- 前記スリット板と前記マスク板との間隙内に、前記アンテナの長手方向に沿って運動する荷電粒子を遮蔽する遮蔽壁が設けられている請求項1~8のいずれか一項に記載のプラズマ処理装置。 9. The plasma processing according to any one of claims 1 to 8, wherein a shielding wall for shielding charged particles moving along the longitudinal direction of the antenna is provided in the gap between the slit plate and the mask plate. Device.
- 前記スリット板及び前記マスク板が接地電位である、又は交流電圧が印加されている請求項1~9のいずれか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 9, wherein the slit plate and the mask plate are at ground potential or are applied with an alternating voltage.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280074366.6A CN118235526A (en) | 2022-01-17 | 2022-12-09 | Plasma processing apparatus |
KR1020247019925A KR20240095371A (en) | 2022-01-17 | 2022-12-09 | plasma processing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-004886 | 2022-01-17 | ||
JP2022004886A JP2023104093A (en) | 2022-01-17 | 2022-01-17 | Plasma processing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023136008A1 true WO2023136008A1 (en) | 2023-07-20 |
Family
ID=87278855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045563 WO2023136008A1 (en) | 2022-01-17 | 2022-12-09 | Plasma treatment device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2023104093A (en) |
KR (1) | KR20240095371A (en) |
CN (1) | CN118235526A (en) |
TW (1) | TWI847456B (en) |
WO (1) | WO2023136008A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101024A1 (en) * | 2022-11-07 | 2024-05-16 | 日新電機株式会社 | Plasma processing device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021052170A (en) * | 2019-09-17 | 2021-04-01 | 東京エレクトロン株式会社 | Plasma processing device |
JP2021118114A (en) * | 2020-01-27 | 2021-08-10 | 日新電機株式会社 | Plasma source and plasma processing device |
JP2021168276A (en) * | 2020-04-13 | 2021-10-21 | 日新電機株式会社 | Plasma source and plasma processing apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5554047B2 (en) * | 2009-10-27 | 2014-07-23 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP6305825B2 (en) * | 2014-05-12 | 2018-04-04 | 東京エレクトロン株式会社 | Plasma processing apparatus and exhaust structure used therefor |
NZ730943A (en) | 2014-09-30 | 2017-12-22 | Suntory Beverage & Food Ltd | Carbonated beverage, syrup used for preparing carbonated beverage, method for manufacturing carbonated beverage, and method for suppressing foaming in carbonated beverage |
JP6593004B2 (en) * | 2015-07-22 | 2019-10-23 | 東京エレクトロン株式会社 | Plasma processing equipment |
-
2022
- 2022-01-17 JP JP2022004886A patent/JP2023104093A/en active Pending
- 2022-12-09 KR KR1020247019925A patent/KR20240095371A/en unknown
- 2022-12-09 CN CN202280074366.6A patent/CN118235526A/en active Pending
- 2022-12-09 WO PCT/JP2022/045563 patent/WO2023136008A1/en active Application Filing
- 2022-12-27 TW TW111150201A patent/TWI847456B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021052170A (en) * | 2019-09-17 | 2021-04-01 | 東京エレクトロン株式会社 | Plasma processing device |
JP2021118114A (en) * | 2020-01-27 | 2021-08-10 | 日新電機株式会社 | Plasma source and plasma processing device |
JP2021168276A (en) * | 2020-04-13 | 2021-10-21 | 日新電機株式会社 | Plasma source and plasma processing apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024101024A1 (en) * | 2022-11-07 | 2024-05-16 | 日新電機株式会社 | Plasma processing device |
Also Published As
Publication number | Publication date |
---|---|
TWI847456B (en) | 2024-07-01 |
JP2023104093A (en) | 2023-07-28 |
TW202331784A (en) | 2023-08-01 |
CN118235526A (en) | 2024-06-21 |
KR20240095371A (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5747231B2 (en) | Plasma generating apparatus and plasma processing apparatus | |
KR101317018B1 (en) | Plasma treatment apparatus | |
WO2021210583A1 (en) | Plasma source and plasma processing apparatus | |
US20040149741A1 (en) | Plasma processing apparatus | |
WO2012033191A1 (en) | Plasma processing apparatus | |
WO2023136008A1 (en) | Plasma treatment device | |
JP7232410B2 (en) | Plasma processing equipment | |
JP7238613B2 (en) | Plasma processing equipment | |
JP2004335790A (en) | Substrate processing equipment | |
WO2010110080A1 (en) | Microwave plasma processing apparatus | |
TWI770144B (en) | Plasma processing device | |
JP4193255B2 (en) | Plasma processing apparatus and plasma processing method | |
TWI806253B (en) | Plasma treatment device | |
WO2024177066A1 (en) | Plasma processing device | |
JP7440746B2 (en) | Plasma source and plasma processing equipment | |
WO2024101024A1 (en) | Plasma processing device | |
JP2023001990A (en) | Plasma source and plasma processing device | |
CN115053398B (en) | Antenna mechanism and plasma processing apparatus | |
US20210391150A1 (en) | Plasma Source Configuration | |
JP2024062955A (en) | Inductively coupled antenna unit and plasma processing device | |
JP2022117694A (en) | Sputtering device and deposition method | |
CN116998225A (en) | Plasma processing apparatus | |
JP2020123446A (en) | Plasma processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920527 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280074366.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247019925 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |