WO2010110080A1 - Microwave plasma processing apparatus - Google Patents

Microwave plasma processing apparatus Download PDF

Info

Publication number
WO2010110080A1
WO2010110080A1 PCT/JP2010/054100 JP2010054100W WO2010110080A1 WO 2010110080 A1 WO2010110080 A1 WO 2010110080A1 JP 2010054100 W JP2010054100 W JP 2010054100W WO 2010110080 A1 WO2010110080 A1 WO 2010110080A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
plate
microwave
dielectric plate
dielectric window
Prior art date
Application number
PCT/JP2010/054100
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 石橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201080013280XA priority Critical patent/CN102362557A/en
Priority to KR1020117022121A priority patent/KR101256850B1/en
Publication of WO2010110080A1 publication Critical patent/WO2010110080A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a microwave plasma processing apparatus that performs plasma processing on an object to be processed such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element with plasma generated using microwaves.
  • Plasma treatment is widely used in processes such as etching and thin film deposition in semiconductor manufacturing processes.
  • the process rules (IC line width) of semiconductors constituting an LSI have been increasingly miniaturized from the viewpoint of high integration, high speed, and low power consumption of the LSI.
  • the parallel plate type and inductively coupled plasma processing apparatuses that have been widely used conventionally have a problem in that the substrate is damaged due to the high electron temperature.
  • the size of semiconductor wafers has also increased in size, and accordingly, it has been demanded that semiconductor wafers having a large diameter be uniformly processed without being biased.
  • a microwave plasma processing apparatus using RLSA Ring Line Slot Slot Antenna
  • This microwave plasma treatment apparatus radiates microwaves into a processing container from a planar microwave antenna having a large number of slots arranged to emit uniform microwaves.
  • the gas is ionized to excite the plasma.
  • the microwave plasma processing apparatus since a high plasma density can be realized in a wide region directly under the antenna, it is possible to perform uniform plasma processing in a short time.
  • plasma having a low electron temperature can be generated, there is an advantage that damage to the substrate to be processed can be reduced.
  • the opening of the ceiling portion of the processing container 1 is closed by a dielectric window 2.
  • a microwave antenna 3 is placed on the dielectric window 2.
  • the microwave propagated through the coaxial waveguide 4 having an annular cross section of the coaxial waveguide composed of the inner waveguide and the outer waveguide propagates in the radial direction through the disk-shaped dielectric plate 6.
  • the microwave that is compressed and resonated in the dielectric plate 6 passes through the slot of the slot plate 7 made of a conductive material, and is radiated into the processing container 1 through the dielectric window 2.
  • Patent Document 1 discloses that the microwave antenna is brought into close contact with the dielectric window, and the heat accumulated in the dielectric window by the cooling plate provided in the microwave antenna.
  • a plasma processing apparatus for sucking up water is disclosed.
  • the contact surface between the slot plate of the microwave antenna and the dielectric window is 0.8 to 0.9 atm (608 to 684 Torr) in order to improve heat transfer at the contact surface. Maintained pressure within range.
  • JP 2002-355550 A (refer to the section of action of paragraph 0023, paragraph 0026, claim 7)
  • the gap around the slot plate can be cited as one that affects the propagation and radiation of microwaves. Specifically, there are (1) a gap between the cooling plate and the dielectric plate, a gap between the dielectric and the slot plate, and (2) a gap between the slot plate and the dielectric window.
  • the gap (1) adversely affects the propagation of microwaves in the dielectric plate.
  • the gap (2) changes the microwave emissivity from the slot plate. If the gap between (1) and (2) fluctuates with time or is spatially asymmetric, the microwave electric field distribution is disturbed, and the plasma density changes.
  • the central portion of the slot plate 7 is coupled to the inner conductor 8 of the coaxial waveguide by bolts or the like, and the outer periphery of the slot plate 7 is coupled to the cooling plate 9 by bolts or the like.
  • a microwave is input from the microwave antenna 3 to the processing container 1
  • Joule heat is generated by a microwave current flowing through the slot plate 7, so that the slot plate 7 is heated and thermally expanded.
  • the outer periphery of the slot plate 7 is fixed to the cooling plate 9, the slot plate 7 is bent and a gap is formed between the slot plate and the dielectric plate 6.
  • heat from the plasma enters the dielectric window 2 and the dielectric plate 6.
  • the temperature distribution of the dielectric window 2 and the dielectric plate 6 changes, causing deformation such as warping of the dielectric window 2 and the dielectric plate 6. Furthermore, since the inside of the processing container 1 is vacuum and atmospheric pressure is applied to the dielectric window 2 from the outside, the dielectric window 2 is originally bent. As a result, the gaps (1) and (2) described above are generated.
  • the contact surface between the slot plate 7 and the dielectric window 2 is set to 0.8 to 0.9 atm, that is, 608 to 684 Torr (8.106 ⁇ 10 4 to 9.192). Even if the negative pressure is set to ⁇ 10 4 Pa), it is not possible to eliminate the occurrence of a gap due to the bending of the dielectric window.
  • the present invention solves the above-described problems of the conventional plasma treatment apparatus, and an object of the present invention is to provide a microwave plasma processing apparatus capable of preventing the occurrence of a gap due to the bending of a dielectric window.
  • a first aspect of the present invention includes a processing container having a ceiling portion defined by a dielectric window, a gas exhaust system for depressurizing the processing container, and supplying plasma gas to the processing container.
  • a microwave plasma processing apparatus comprising: a plasma gas supply unit configured to perform a microwave antenna mounted on the dielectric window of the processing container and exciting the plasma gas in the processing container.
  • a dielectric plate that propagates microwaves in a direction and compresses the wavelength of the microwave, and a slot plate that is provided between the dielectric plate and the dielectric window and has a slot that transmits microwaves.
  • microwave plasma between said dielectric window and said dielectric plate is a negative pressure in the range of 1 ⁇ 600Torr (1.3332 ⁇ 10 2 ⁇ 7.9993 ⁇ 10 4 Pa) It is a management apparatus.
  • a processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container,
  • a microwave plasma processing apparatus comprising: a microwave antenna mounted on the dielectric window of a processing container and exciting a plasma gas in the processing container. The microwave antenna propagates microwaves in a horizontal direction.
  • a microwave plasma processing apparatus including a cooling plate for cooling the dielectric plate, wherein a negative pressure lower than an atmospheric pressure is set between the dielectric plate and the cooling plate.
  • a processing container having a ceiling portion defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container,
  • a microwave plasma processing apparatus comprising: a microwave antenna mounted on the dielectric window of a processing container and exciting a plasma gas in the processing container. The microwave antenna propagates microwaves in a horizontal direction.
  • a dielectric plate that compresses the wavelength of the microwave a slot plate that is provided between the dielectric plate and the dielectric window and has a slot that transmits microwaves, and is placed on the upper surface of the dielectric plate
  • the negative pressure in the range of 1 to 600 Torr (1.3332 ⁇ 10 2 to 7.9993 ⁇ 10 4 Pa) is set between the dielectric window and the dielectric plate.
  • the dielectric plate can be pressed against the dielectric window, and the dielectric plate can be brought into close contact with the deflection of the dielectric window. For this reason, it is possible to prevent a gap from being generated between the dielectric plate and the slot plate or between the slot plate and the dielectric window.
  • the atmospheric pressure is not directly applied to the dielectric window, the deflection of the dielectric window is also reduced. As a result, stable and uniform plasma can be generated even when a microwave is input and temperature fluctuation occurs.
  • the lower the pressure the more force can be applied to press the dielectric plate against the dielectric window. Therefore, the upper limit of the negative pressure is set to 600 Torr (7.9993 ⁇ 10 4 Pa). On the other hand, if the pressure is less than 1 Torr (1.3332 ⁇ 10 2 Pa), the number of gas molecules decreases and heat transfer is deteriorated. Therefore, the lower limit of the negative pressure is set to 1 Torr (1.3332 ⁇ 10 2 Pa).
  • cooling is further achieved by setting a negative pressure in the range of 1 to 600 Torr (1.3332 ⁇ 10 2 to 7.9993 ⁇ 10 4 Pa) between the dielectric plate and the cooling plate.
  • the plate can be pressed toward the dielectric window, and the cooling plate can be brought into close contact with the deflection of the dielectric window. For this reason, it is possible to prevent a gap from being generated between the cooling plate and the dielectric plate.
  • the adhesion between the cooling plate and the dielectric plate is improved by applying a negative pressure between the cooling plate and the dielectric plate. Since the heat accumulated in the dielectric plate and the slot plate is sucked up by the cooling plate, the expansion amount of the thermal expansion of the slot plate can be suppressed from the expansion amount of the thermal expansion of the dielectric window. As a result, a tensile force can be applied to the slot plate from the dielectric window, and the slot plate can be prevented from being bent.
  • the third aspect of the present invention by setting the negative pressure lower than the atmospheric pressure between the dielectric window and the dielectric plate and between the dielectric plate and the cooling plate, A force for sandwiching the dielectric plate between the dielectric window and the dielectric window can be generated. For this reason, it is possible to prevent a gap from occurring between them.
  • Sectional view of a conventional microwave plasma processing apparatus Sectional drawing which shows the deformation
  • Sectional drawing of the microwave plasma processing apparatus of 4th embodiment of this invention Sectional drawing of the microwave plasma processing apparatus of 5th embodiment of this invention
  • FIG. 3 shows an overall configuration diagram of the microwave plasma processing apparatus according to the first embodiment of the present invention.
  • the microwave plasma processing apparatus includes a processing container 11 partitioned by an outer wall, and a holding table 16 provided in the processing container 11 and made of AlN or Al 2 O 3 for holding a substrate to be processed by an electrostatic chuck. .
  • exhaust ports are uniformly formed in the circumferential direction in an annular space surrounding the holding table.
  • the processing container 11 is evacuated and decompressed by a vacuum pump through an exhaust port.
  • the processing container 11 is made of Al, preferably stainless steel containing Al, and a protective film made of aluminum oxide is formed on the inner wall surface by oxidation treatment.
  • a dielectric window 12 made of a dielectric material such as Al 2 O 3 or quartz is provided as a part of the outer wall of the ceiling of the processing container 11.
  • the dielectric window 12 is attached to the side wall of the processing container 11 via a seal ring 13.
  • the dielectric window 12 is fixed to the processing container 11 by a dielectric window holder 14 attached to the upper part of the side wall of the processing container 11.
  • the dielectric window holder 14 is made of Al or stainless steel containing Al, like the processing container 11.
  • An annular gas supply unit 15 for supplying plasma gas into the processing container 11 is provided on the side wall of the processing container 11.
  • a gas supply system is connected to the gas supply unit 15.
  • a plasma excitation gas such as Ar gas or Kr gas or a processing gas corresponding to the type of plasma processing is supplied from the gas supply unit 15 to the processing container 11.
  • plasma treatment includes plasma oxidation treatment, plasma nitridation treatment, plasma oxynitridation treatment, plasma CVD treatment and the like.
  • a fluorocarbon gas such as C 4 F 8 , C 5 F 8, or C 4 F 6 or an etching gas such as an F-based or Cl-based gas is supplied from a gas supply unit, and a high-frequency voltage is supplied from a high-frequency power source to the holding table 16. It is also possible to perform reactive ion etching on the substrate to be processed by applying.
  • a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided on the side wall of the processing container 11.
  • the carry-in / out port is opened and closed by a gate valve.
  • the microwave antenna 18 includes a coaxial waveguide 19 that propagates microwaves in the vertical direction in a coaxial mode, and a disk-shaped dielectric that propagates microwaves that have passed through the coaxial waveguide 20 of the coaxial waveguide 19 in the radial direction.
  • the coaxial waveguide 19 as a power feeding means for feeding microwaves includes an inner conductor 19a extending in the vertical direction and a cylindrical outer conductor 19b surrounding the inner conductor 19a.
  • a coaxial waveguide 20 having an annular cross section is formed between the inner conductor 19a and the outer conductor 19b.
  • the upper end portion of the coaxial waveguide 19 is connected to a rectangular waveguide 21 (see FIG. 1) extending in the horizontal direction.
  • a conical mode converter 25 (see FIG. 1) is provided at the connection between the rectangular waveguide 21 and the coaxial waveguide 19.
  • the rectangular waveguide 21 is connected to a microwave generator such as a magnetron through a matching unit.
  • the microwave generator generates microwaves having frequencies of 2.45 GHz, 8.35 GHz, 1.98 GHz, 915 MHz, and the like, for example.
  • the microwave propagating through the rectangular waveguide 21 is converted into the coaxial mode by the mode converter 25 and propagates in the vertical direction through the coaxial waveguide 20 (see FIG. 3).
  • the matching unit propagates the microwave generated from the microwave generator to the dielectric plate 22 via the rectangular waveguide 21 and the coaxial waveguide 20.
  • the dielectric plate 22 is made of a dielectric such as Al 2 O 3 or quartz. Microwaves are electromagnetic waves that propagate while the electric and magnetic fields change very quickly. A slot plate 23 made of metal is provided on the lower surface of the dielectric plate 22, and a cooling plate 24 made of metal is provided on the upper surface of the dielectric plate 22. Microwaves that hit the metal surface hardly penetrate into the metal, cause an electric current to flow on the very surface (skin depth), and are mostly reflected. For this reason, the microwave irradiated to the dielectric plate 22 from the coaxial waveguide 20 propagates through the dielectric plate 22 in the radial direction while being reflected by the slot plate 23 and the cooling plate 24.
  • the microwave propagation medium changes from air to a dielectric, so that the wavelength of the microwave is compressed.
  • the thickness of the dielectric plate 22 is determined so that the microwave propagates in the TE mode, that is, the electric field can be generated only in the thickness direction. There is no problem if the thickness of the dielectric plate 22 is 1/4 or less of the wavelength of the microwave in the dielectric plate 22. However, if it is too thin, there is a problem of strength, and if it is too thick, it becomes difficult to bend. Therefore, in the present embodiment, when alumina is used as the material of the dielectric plate 22, the optimum thickness is about 3 to 6 mm.
  • the slot plate 23 made of a copper plate or the like has a large number of slots 23a through which microwaves are transmitted.
  • the microwaves resonated in the dielectric plate 22 are transmitted through the multiple slots 23 a of the slot plate 23 and radiated into the processing container 11.
  • a cooling plate 24 is placed on the dielectric plate 22 of the microwave antenna 18.
  • a cooling water flow path 24 a is formed in the cooling plate 24.
  • the dielectric plate 22 can be cooled by flowing cooling water through the cooling water passage 24a.
  • a buffer sheet may be interposed between the cooling plate 24 and the dielectric plate 22.
  • the microwave antenna 18 is fixed to the dielectric window 12 by an antenna holder 26 attached to the dielectric window holder 14.
  • the antenna holder 26 is made of Al or stainless steel containing Al, like the processing container 11.
  • An electromagnetic shielding resilient body 27 is provided between the cooling plate 24 and the antenna holder 26. A part of the microwave transmitted through the slot 23 a of the slot plate 23 leaks outside through a small gap between the slot plate 23 and the dielectric window 12. In addition, the microwave propagated in the outer circumferential direction through the dielectric window 12 leaks outward from the gap between the dielectric window retainer 14 and the cooling plate 24.
  • the electromagnetic shielding elastic body 27 shields the leaked microwave.
  • An annular dielectric 28 is fitted between the inner conductor 19a and the outer conductor 19b of the coaxial waveguide 19 (more precisely, the cooling plate 24 constituting the outer conductor 19b).
  • the annular dielectric 28 is integrally coupled to the dielectric plate 22.
  • the gap between the inner conductor 19a and the annular dielectric 28 is sealed with a seal ring 29 as an inner seal member, and the gap between the outer conductor 19b and the annular dielectric 28 is sealed with a seal ring 30 as an outer seal member. .
  • a negative pressure path 35 is formed between the outer periphery of the dielectric window 12, the dielectric plate 22, and the cooling plate 24 and the inner periphery of the dielectric window retainer 14 and the antenna retainer 26.
  • a seal ring 31 seals between the cooling plate 24 and the antenna holder 26, and a seal ring 32 seals between the antenna holder 26 and the dielectric window holder 14.
  • a gap between the dielectric window holder 14 and the processing container 11 is sealed by a seal ring 33.
  • a suction port 34 that sucks air is opened in the negative pressure path 35.
  • a pressure regulator that adjusts the pressure in the negative pressure path 35 is connected to the suction port 34.
  • a vacuum pump is connected to the pressure regulator.
  • the degree of adhesion between the dielectric window 12 and the dielectric plate 22 and the degree of adhesion between the dielectric plate 22 and the cooling plate 24 can be adjusted. It becomes possible to control the temperature of the window 12 and the dielectric plate 22.
  • the negative pressure range is set to 1 to 600 Torr (1.3332 ⁇ 10 2 to 7.9993 ⁇ 10 4 Pa), preferably 200 to 400 Torr (2.6664 ⁇ 10 4 to 5.3328 ⁇ 10 4 Pa). .
  • the pressure be 400 Torr (5.3328 ⁇ 10 4 Pa) or less.
  • the dielectric window 12 may be bent by about 0.1 mm due to vacuum or thermal expansion in the processing container 11.
  • 600 Torr 7.9993 ⁇ 10 4 Pa
  • the dielectric plate 22 and the cooling plate 24 can be bent in accordance with the bending.
  • the reason why the negative pressure range is set to 1 Torr (1.3332 ⁇ 10 2 Pa) or more is that if it is less than 1 Torr (1.3332 ⁇ 10 2 ), the number of gas molecules decreases and heat transfer becomes worse. . Since molecules transfer heat, the higher the gas pressure from a vacuum state, the greater the number of gas molecules and the higher the heat transfer rate. However, when a certain pressure is exceeded, the heat transfer coefficient does not depend on the pressure. The pressure is about 1 Torr (1.3332 ⁇ 10 2 Pa). However, if the space in which strong microwaves propagate is set to a negative pressure, abnormal discharge (undesirable discharge) is likely to occur. In order to prevent abnormal discharge, 200 Torr (2.6664 ⁇ 10 4 Pa) or more is desirable.
  • FIG. 4 shows a microwave plasma processing apparatus according to the second embodiment of the present invention.
  • symbol is attached
  • a conductive film 41 is formed on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22.
  • a seal ring 42 made of an O-ring or the like is provided as a first seal member between the dielectric window 12 and the dielectric plate 22.
  • a seal ring 43 made of an O-ring or the like is provided as a second seal member. Since the conductive film is formed on the upper and lower surfaces of the dielectric plate 22, there is no need to seal between the dielectric plate 22 and the conductive film 41.
  • FIG. 5 shows a detailed view of the dielectric plate 22 on which the conductive film 41 is formed.
  • a conductive film 41 made of a metal layer is plated on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22.
  • a hole 22a through which a slot center contact flange 40 (see FIG. 4) connected to the inner conductor 19a of the coaxial waveguide 19 passes is formed at the center of the dielectric plate 22.
  • a non-film formation area 22b where the conductive film 41 is not formed is formed around the hole 22a (a part of the upper surface and the lower surface of the dielectric plate 22 and the inner peripheral surface).
  • a large number of slots 41 a that transmit microwaves are formed in the conductive film 41 on the lower surface side of the dielectric plate 22, a large number of slots 41 a that transmit microwaves are formed.
  • a pair of adjacent slots 41a are arranged in a T shape so as to be orthogonal to each other.
  • a large number of slots 41 a are concentrically arranged on the disk-shaped conductive film 41.
  • the length and arrangement of the slots 41a are appropriately determined according to the wavelength of the microwave compressed by the dielectric plate 22 so that a strong electric field is radiated from the slot 41a to the processing container 11.
  • the shape of the slot 41a may be an arc shape in addition to a linear shape, and the arrangement of the slots 41a may be a spiral shape or a radial shape in addition to a concentric shape.
  • the conductive film 41 is formed on the dielectric plate 22 through the following steps. After the dielectric plate 22 is manufactured, a non-deposition area corresponding to the slot 41a is masked, and then a metal layer is plated on the dielectric plate 22, and then the masking is removed. Alternatively, after the dielectric plate 22 is manufactured, a metal layer is plated on the dielectric plate 22, and then the portion corresponding to the slot 41a is etched.
  • the conductive film 41 on the lower surface of the dielectric plate 22 is electrically connected to the inner conductor 19a via the slot center contact flange 40.
  • the conductive film 41 on the upper surface of the dielectric plate 22 is electrically connected to the outer conductor 19 b of the coaxial waveguide 19 through the cooling plate 24. Since it is necessary to electrically connect the conductive film 41 on the lower surface of the dielectric plate 22 and the inner conductor 19a of the coaxial waveguide 19, the cylindrical slot center contact flange 40 and the plate-shaped slot center contact plate 44 are provided. And are provided.
  • the slot center contact flange 40 and the slot center contact plate 44 are coupled by bonding, screws or the like.
  • the slot center contact flange 40 is coupled to the inner conductor 19a by screws or the like.
  • the contact reinforcing elastic body 45 made of an O-ring or the like reinforces the electrical contact between the slot center contact plate 44 and the conductive film 41, and the electrical connection between the conductive film 41 on the upper surface side of the dielectric plate 22 and the cooling plate 24. Reinforce contact.
  • the slot outer peripheral contact ring 46 and the slot outer peripheral contact plate 47 are coupled.
  • the slot outer peripheral contact ring 46 is coupled to the cooling plate 24 with bolts or the like.
  • the contact reinforcing elastic body 48 made of an O-ring or the like reinforces electrical contact between the slot outer peripheral contact plate 47 and the conductive film 41 on the lower surface side of the dielectric plate 22.
  • FIG. 6 shows a microwave plasma processing apparatus according to a third embodiment of the present invention.
  • the configuration of the microwave plasma processing apparatus of this embodiment is substantially the same as the microwave plasma processing of the second embodiment, but the seal location is changed. That is, seal rings 51 and 52 are disposed between the dielectric window holder 14 and the dielectric window 12 and between the dielectric window holder 14 and the cooling plate 24.
  • the negative pressure path 53 is formed between the outer periphery of the dielectric plate 22 and the cooling plate 24 and the inner periphery of the dielectric window presser 14.
  • a suction port 54 for sucking air is provided in the dielectric window retainer 14. Even if the seal ring is arranged in this way, negative pressure can be applied between the dielectric window 12 and the dielectric plate 22 and between the dielectric plate 22 and the cooling plate 24.
  • FIG. 7 shows a microwave plasma processing apparatus according to a fourth embodiment of the present invention.
  • a negative pressure is applied between the cooling plate 24 and the dielectric plate 22 in order to improve the adhesion between the cooling plate 24 and the dielectric plate 22.
  • a conductive film 41 is formed on the upper and lower surfaces of the dielectric plate 22.
  • a seal ring 56 made of an O-ring or the like is provided as an inner seal member between the cooling plate 24 and the inner peripheral side of the dielectric plate 22.
  • a seal ring 57 made of an O-ring or the like is provided as an outer seal member between the cooling plate 24 and the outer peripheral side of the dielectric plate 22.
  • a suction port 58 for sucking air is provided between the inner seal ring 56 and the outer seal ring 57 of the cooling plate 24.
  • the adhesion between the cooling plate 24 and the dielectric plate 22 can be improved by applying a negative pressure between the cooling plate 24 and the dielectric plate 22. Further, a tensile force can be applied from the dielectric window 12 to the conductive film 41, and the dielectric window 12 can be prevented from being bent.
  • FIG. 8 shows a microwave plasma processing apparatus according to the fifth embodiment of the present invention.
  • the position 43 of the seal ring of the microwave plasma processing apparatus of the second embodiment shown in FIG. 4 is changed. That is, a seal ring 43 that seals between the dielectric plate 22 and the cooling plate 24 is disposed on the outer peripheral side of the dielectric plate 22 and the cooling plate 24.
  • a seal ring 43 that seals between the dielectric plate 22 and the cooling plate 24 is disposed on the outer peripheral side of the dielectric plate 22 and the cooling plate 24.
  • FIG. Since it is the same as the microwave plasma processing apparatus of 2nd embodiment shown, the same code
  • a negative pressure in the range of 1 to 600 Torr (1.3332 ⁇ 10 2 to 7.9993 ⁇ 10 4 Pa) between the dielectric plate 22 and the dielectric window 12, the dielectric plate 22 is made to be a dielectric window. 12, and the dielectric plate 22 can be brought into close contact with the bending of the dielectric window 12.
  • FIG. 9 shows a microwave plasma processing apparatus according to the sixth embodiment of the present invention. Also in this embodiment, like the microwave plasma processing apparatus of the fifth embodiment, a device for making a negative pressure only between the dielectric plate 22 and the dielectric window 12 is devised. A conductive film 41 is formed on the upper and lower surfaces of the dielectric plate 22. Between the inner peripheral side of the dielectric plate 22 and the inner peripheral side of the dielectric window 12, a seal ring 61 made of an O-ring or the like is provided as an inner seal member. Between the outer peripheral side of the dielectric plate 22 and the outer peripheral side of the dielectric window 12, a seal ring 62 made of an O-ring or the like is provided as an outer seal member.
  • a suction port 63 for sucking air is provided between the inner seal ring 61 and the outer seal ring 62 of the dielectric window 12.
  • the suction path 64 connected to the suction port 63 extends vertically downward from the suction port 63, then bends 90 degrees and extends in the horizontal direction, and is exposed to the outer peripheral surface of the dielectric window 12.
  • a negative pressure path 66 is formed between the outer peripheral surface of the dielectric window 12 and the inner peripheral surface of the dielectric window receiving frame 65 of the processing container 11.
  • the gap between the dielectric window holder 14 and the processing container 11 is sealed by a seal ring 67, and the gap between the antenna holder 26 and the dielectric window 12 is sealed by a seal ring 68.
  • a seal ring 69 seals between the dielectric window 12 and the dielectric window receiving frame 65 of the processing container 11.
  • a suction path 70 connected to the negative pressure path 66 is formed in the processing container 11. By sucking air from the suction path 70, a negative pressure can be created between the dielectric plate 22 and the dielectric window 12.
  • the dielectric plate 22 By setting a negative pressure in the range of 1 to 600 Torr (1.3332 ⁇ 10 2 to 7.9993 ⁇ 10 4 Pa) between the dielectric plate 22 and the dielectric window 12, the dielectric plate 22 is made to be a dielectric window. 12, and the dielectric plate 22 can be brought into close contact with the bending of the dielectric window 12.
  • the antenna of the present invention has a structure in which a microwave is horizontally spread by a rectangular waveguide 51 as a power feeding means, even if the microwave is not spread from the center to the outside like a coaxial waveguide.
  • the structure which introduces a wave may be sufficient.
  • an exhaust groove It is desirable to form a depth of about 20 ⁇ m and a width of about 3 mm.
  • the number and position of the seal rings are not limited to the above embodiment, and can be changed as appropriate. .
  • a buffer sheet such as a Teflon (registered trademark) sheet or carbon sheet having good thermal conductivity may be interposed between the dielectric and the dielectric window and / or between the dielectric plate and the cooling plate. Good.
  • a heat transfer gas such as He gas may be sealed in the negative pressure path through which air is sucked. Even when the heat transfer gas is sealed, the pressure is adjusted to a negative pressure lower than the atmospheric pressure.
  • a plasma gas supply path for supplying plasma gas into the processing container may be formed in the dielectric window, and an intermediate shower head for supplying the processing gas may be provided between the dielectric window and the substrate to be processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a microwave plasma processing apparatus capable of preventing occurrence of clearance caused by deformation of a dielectric window or the like. Between a dielectric window (12) and a dielectric plate (22) of a microwave plasma processing apparatus, developed is a negative pressure ranging from 1 to 600 Torr (1.3332 × 102 to 7.9993 × 104 Pa). Since the dielectric plate (22) is pressed against the dielectric window (12) and the dielectric plate (22) can be thereby deformed in accordance with the deformation of the dielectric window (12), it is possible to prevent the occurrence of clearance between the dielectric plate (22) and a slot plate (23) or between the slot plate (23) and the dielectric window (12). Since the atmosphere pressure is not directly placed on the dielectric window (12), the deformation of the dielectric window (12) decreases.

Description

マイクロ波プラズマ処理装置Microwave plasma processing equipment
 本発明は、マイクロ波を用いて生成されたプラズマにより半導体ウェハ、液晶用基板、有機EL素子等の被処理体をプラズマ処理するマイクロ波プラズマ処理装置に関する。 The present invention relates to a microwave plasma processing apparatus that performs plasma processing on an object to be processed such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element with plasma generated using microwaves.
 プラズマ処理は、半導体製造工程のエッチング、薄膜成膜などのプロセスに広く使用されている。近年、LSIの高集積化、高速化、小電力化の観点からLSIを構成する半導体のプロセスルール(ICの線幅)が益々微細化されている。しかし、従来から多用されている平行平板型や誘導結合型のプラズマ処理装置では、電子温度が高いので、基板にダメージを与えてしまうという課題がある。 Plasma treatment is widely used in processes such as etching and thin film deposition in semiconductor manufacturing processes. In recent years, the process rules (IC line width) of semiconductors constituting an LSI have been increasingly miniaturized from the viewpoint of high integration, high speed, and low power consumption of the LSI. However, the parallel plate type and inductively coupled plasma processing apparatuses that have been widely used conventionally have a problem in that the substrate is damaged due to the high electron temperature.
 さらに、半導体のウェハサイズも大口径化しており、これに伴って大口径の半導体ウェハに偏りなく均一に処理を行うことが要請されている。 Furthermore, the size of semiconductor wafers has also increased in size, and accordingly, it has been demanded that semiconductor wafers having a large diameter be uniformly processed without being biased.
 そこで近年、高密度で低電子温度のプラズマを均一にすることができるRLSA(Radial Line Slot Antenna)を用いたマイクロ波プラズマ処理装置が注目されている。このマイクロ波プラズマ処置装置は、均一なマイクロ波を発するように配列された多数のスロットを有する平面状のマイクロ波アンテナから処理容器内にマイクロ波を放射し、マイクロ波の電界により処理容器内のガスを電離してプラズマを励起させるものである。マイクロ波プラズマ処理装置によれば、アンテナ直下の広い領域に高いプラズマ密度を実現できるので、短時間で均一なプラズマ処理を行うことが可能である。しかも、低電子温度のプラズマを生成することができるので、被処理基板へのダメージを少なくすることができるという利点もある。 Therefore, in recent years, a microwave plasma processing apparatus using RLSA (Radial Line Slot Slot Antenna) that can make high-density and low electron temperature plasma uniform has attracted attention. This microwave plasma treatment apparatus radiates microwaves into a processing container from a planar microwave antenna having a large number of slots arranged to emit uniform microwaves. The gas is ionized to excite the plasma. According to the microwave plasma processing apparatus, since a high plasma density can be realized in a wide region directly under the antenna, it is possible to perform uniform plasma processing in a short time. Moreover, since plasma having a low electron temperature can be generated, there is an advantage that damage to the substrate to be processed can be reduced.
 図1に示すように、マイクロ波プラズマ処理装置において、処理容器1の天井部の開口は誘電体窓2により塞がれる。誘電体窓2の上にはマイクロ波アンテナ3が載せられる。内側導波管及び外側導波管からなる同軸導波管の断面円環状の同軸導波路4を伝搬したマイクロ波は、ディスク状の誘電体板6を放射方向に伝搬する。誘電体板6内で圧縮され、かつ共振するマイクロ波は、導電材料からなるスロット板7のスロットを透過し、誘電体窓2を介して処理容器1内に放射される。 As shown in FIG. 1, in the microwave plasma processing apparatus, the opening of the ceiling portion of the processing container 1 is closed by a dielectric window 2. A microwave antenna 3 is placed on the dielectric window 2. The microwave propagated through the coaxial waveguide 4 having an annular cross section of the coaxial waveguide composed of the inner waveguide and the outer waveguide propagates in the radial direction through the disk-shaped dielectric plate 6. The microwave that is compressed and resonated in the dielectric plate 6 passes through the slot of the slot plate 7 made of a conductive material, and is radiated into the processing container 1 through the dielectric window 2.
 処理容器の誘電体窓は処理容器内部のプラズマに晒されるので、誘電体窓には熱が蓄積する。誘電体窓に熱が蓄積するのを防止するために、特許文献1には、マイクロ波アンテナを誘電体窓に密着させ、マイクロ波アンテナに設けられた冷却板によって誘電体窓に蓄積された熱を吸い上げるプラズマ処理装置が開示されている。特許文献1に記載のプラズマ処理装置において、マイクロ波アンテナのスロット板と誘電体窓の接触面は、接触面における伝熱性を向上させるために、0.8~0.9atm(608~684Torr)の範囲内の圧力に維持される。 Since the dielectric window of the processing container is exposed to the plasma inside the processing container, heat accumulates in the dielectric window. In order to prevent heat from being accumulated in the dielectric window, Patent Document 1 discloses that the microwave antenna is brought into close contact with the dielectric window, and the heat accumulated in the dielectric window by the cooling plate provided in the microwave antenna. A plasma processing apparatus for sucking up water is disclosed. In the plasma processing apparatus described in Patent Document 1, the contact surface between the slot plate of the microwave antenna and the dielectric window is 0.8 to 0.9 atm (608 to 684 Torr) in order to improve heat transfer at the contact surface. Maintained pressure within range.
特開2002-355550号公報(段落0023の作用の欄、段落0026、請求項7参照)JP 2002-355550 A (refer to the section of action of paragraph 0023, paragraph 0026, claim 7)
 マイクロ波の伝搬や放射に影響を与えるものとして、スロット板周辺の隙間が挙げられる。具体的には(1)冷却板と誘電体板との間の隙間や、誘電体とスロット板との間の隙間、(2)スロット板と誘電体窓との間の隙間が挙げられる。(1)の隙間は誘電体板内のマイクロ波の伝播に悪影響を与える。(2)の隙間は、スロット板からのマイクロ波放射率を変化させる。(1)及び(2)の隙間が時間的に変動したり、空間的に非対称であったりすると、マイクロ波電界分布に乱れが生じてしまい、プラズマ密度が変化してしまう。 The gap around the slot plate can be cited as one that affects the propagation and radiation of microwaves. Specifically, there are (1) a gap between the cooling plate and the dielectric plate, a gap between the dielectric and the slot plate, and (2) a gap between the slot plate and the dielectric window. The gap (1) adversely affects the propagation of microwaves in the dielectric plate. The gap (2) changes the microwave emissivity from the slot plate. If the gap between (1) and (2) fluctuates with time or is spatially asymmetric, the microwave electric field distribution is disturbed, and the plasma density changes.
 スロット板の周囲に隙間が発生する原理は以下のとおりである。図2に示すように、スロット板7の中心部は同軸導波管の内導体8にボルト等で結合され、スロット板7の外周は冷却板9にボルト等で結合される。マイクロ波アンテナ3から処理容器1にマイクロ波を投入すると、スロット板7にマイクロ波電流が流れることでジュール熱が発生するので、スロット板7は加熱されて熱膨張してしまう。スロット板7の外周は冷却板9に固定されているので、スロット板7が撓んでスロット板と誘電体板6との間に隙間が生ずる。また、処理容器1内にプラズマが発生すると、誘電体窓2、誘電体板6にはプラズマからの熱が入ってくる。時間変動する熱の移動によって、誘電体窓2及び誘電体板6の温度分布が変化し、誘電体窓2及び誘電体板6に反る等の変形を生じさせる。さらに、処理容器1の内部は真空であり、誘電体窓2には外側から大気圧がかかっているので、誘電体窓2は元々撓んでいる。この結果、上述の(1)及び(2)の隙間が発生する。 The principle that a gap is generated around the slot plate is as follows. As shown in FIG. 2, the central portion of the slot plate 7 is coupled to the inner conductor 8 of the coaxial waveguide by bolts or the like, and the outer periphery of the slot plate 7 is coupled to the cooling plate 9 by bolts or the like. When a microwave is input from the microwave antenna 3 to the processing container 1, Joule heat is generated by a microwave current flowing through the slot plate 7, so that the slot plate 7 is heated and thermally expanded. Since the outer periphery of the slot plate 7 is fixed to the cooling plate 9, the slot plate 7 is bent and a gap is formed between the slot plate and the dielectric plate 6. When plasma is generated in the processing container 1, heat from the plasma enters the dielectric window 2 and the dielectric plate 6. Due to the movement of heat that fluctuates over time, the temperature distribution of the dielectric window 2 and the dielectric plate 6 changes, causing deformation such as warping of the dielectric window 2 and the dielectric plate 6. Furthermore, since the inside of the processing container 1 is vacuum and atmospheric pressure is applied to the dielectric window 2 from the outside, the dielectric window 2 is originally bent. As a result, the gaps (1) and (2) described above are generated.
 隙間を発生させないためには、冷却板9及び誘電体板6が撓むぐらいの強い力でこれらを誘電体窓2に押さえ付ける必要がある。しかしそのためには、アンテナ押え10の剛性を高める必要があるし、仮に冷却板9及び誘電体板6を撓ませたとしても、偏った当たり方になってしまう。 In order not to generate a gap, it is necessary to press the cooling plate 9 and the dielectric plate 6 against the dielectric window 2 with a strong force enough to bend the cooling plate 9 and the dielectric plate 6. However, for that purpose, it is necessary to increase the rigidity of the antenna retainer 10, and even if the cooling plate 9 and the dielectric plate 6 are bent, they will be biased.
 特許文献1に記載のプラズマ処理装置のように、スロット板7と誘電体窓2との接触面を0.8~0.9atm、つまり、608~684Torr(8.106×10~9.1192×10Pa)の負圧に設定しても、誘電体窓の撓み等に起因した隙間の発生をなくすことができない。 As in the plasma processing apparatus described in Patent Document 1, the contact surface between the slot plate 7 and the dielectric window 2 is set to 0.8 to 0.9 atm, that is, 608 to 684 Torr (8.106 × 10 4 to 9.192). Even if the negative pressure is set to × 10 4 Pa), it is not possible to eliminate the occurrence of a gap due to the bending of the dielectric window.
 本発明は上記従来のプラズマ処置装置の課題を解決するもので、誘電体窓の撓み等に起因した隙間が発生するのを防止できるマイクロ波プラズマ処理装置を提供することを目的とする。 The present invention solves the above-described problems of the conventional plasma treatment apparatus, and an object of the present invention is to provide a microwave plasma processing apparatus capable of preventing the occurrence of a gap due to the bending of a dielectric window.
 上記課題を解決するために、本発明の第一の態様は、天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、を含み、前記誘電体窓と前記誘電体板との間が1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にされるマイクロ波プラズマ処理装置である。 In order to solve the above-described problems, a first aspect of the present invention includes a processing container having a ceiling portion defined by a dielectric window, a gas exhaust system for depressurizing the processing container, and supplying plasma gas to the processing container. A microwave plasma processing apparatus comprising: a plasma gas supply unit configured to perform a microwave antenna mounted on the dielectric window of the processing container and exciting the plasma gas in the processing container. A dielectric plate that propagates microwaves in a direction and compresses the wavelength of the microwave, and a slot plate that is provided between the dielectric plate and the dielectric window and has a slot that transmits microwaves. , microwave plasma between said dielectric window and said dielectric plate is a negative pressure in the range of 1 ~ 600Torr (1.3332 × 10 2 ~ 7.9993 × 10 4 Pa) It is a management apparatus.
 本発明の第二の態様は、天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、前記誘電体板の上面に載せられて前記誘電体板を冷却する冷却板と、を含み、前記誘電体板と前記冷却板との間が大気圧よりも圧力が低い負圧にされるマイクロ波プラズマ処理装置である。 According to a second aspect of the present invention, there is provided a processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container, A microwave plasma processing apparatus comprising: a microwave antenna mounted on the dielectric window of a processing container and exciting a plasma gas in the processing container. The microwave antenna propagates microwaves in a horizontal direction. A dielectric plate that compresses the wavelength of the microwave, a slot plate that is provided between the dielectric plate and the dielectric window and has a slot that transmits microwaves, and is placed on the upper surface of the dielectric plate A microwave plasma processing apparatus including a cooling plate for cooling the dielectric plate, wherein a negative pressure lower than an atmospheric pressure is set between the dielectric plate and the cooling plate. .
 本発明の第三の態様は、天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、前記誘電体板の上面に載せられて前記誘電体板を冷却する冷却板と、を含み、前記誘電体窓と前記誘電体板との間、及び前記誘電体板と前記冷却板との間が大気圧よりも圧力が低い負圧にされるマイクロ波プラズマ処理装置である。 According to a third aspect of the present invention, there is provided a processing container having a ceiling portion defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container, A microwave plasma processing apparatus comprising: a microwave antenna mounted on the dielectric window of a processing container and exciting a plasma gas in the processing container. The microwave antenna propagates microwaves in a horizontal direction. A dielectric plate that compresses the wavelength of the microwave, a slot plate that is provided between the dielectric plate and the dielectric window and has a slot that transmits microwaves, and is placed on the upper surface of the dielectric plate A cooling plate that cools the dielectric plate, and a negative pressure that is lower than the atmospheric pressure between the dielectric window and the dielectric plate and between the dielectric plate and the cooling plate. A microwave plasma processing apparatus to be.
 本発明の第一の態様によれば、誘電体窓と誘電体板との間を1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にするので、誘電体板を誘電体窓に押し付け、誘電体窓の撓みに合わせて誘電体板を密着させることができる。このため、誘電体板とスロット板との間、又はスロット板と誘電体窓との間に隙間が発生するのを防止することができる。さらに、大気圧が直接誘電体窓にかからなくなるので、誘電体窓の撓みも低減する。その結果、マイクロ波が投入されて温度変動が生じても、安定した均一なプラズマを発生させることができる。 According to the first aspect of the present invention, the negative pressure in the range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) is set between the dielectric window and the dielectric plate. The dielectric plate can be pressed against the dielectric window, and the dielectric plate can be brought into close contact with the deflection of the dielectric window. For this reason, it is possible to prevent a gap from being generated between the dielectric plate and the slot plate or between the slot plate and the dielectric window. Furthermore, since the atmospheric pressure is not directly applied to the dielectric window, the deflection of the dielectric window is also reduced. As a result, stable and uniform plasma can be generated even when a microwave is input and temperature fluctuation occurs.
 ここで、圧力が低ければ低いほど、誘電体板を誘電体窓に押し付ける力を働かせることができる。このため、負圧の上限は600Torr(7.9993×104Pa)に設定される。その一方、圧力が1Torr(1.3332×102Pa)未満だと、ガスの分子の数が減り、熱伝達を悪くする。このため負圧の下限は1Torr(1.3332×102Pa)に設定される。 Here, the lower the pressure, the more force can be applied to press the dielectric plate against the dielectric window. Therefore, the upper limit of the negative pressure is set to 600 Torr (7.9993 × 10 4 Pa). On the other hand, if the pressure is less than 1 Torr (1.3332 × 10 2 Pa), the number of gas molecules decreases and heat transfer is deteriorated. Therefore, the lower limit of the negative pressure is set to 1 Torr (1.3332 × 10 2 Pa).
 本発明の第一の態様において、さらに誘電体板と冷却板との間を1~600Torr(1.3332×10~7.9993×10Pa)の範囲の負圧にすることにより、冷却板を誘電体窓の方向に押し付け、誘電体窓の撓みに合わせて冷却板を密着させることができる。このため、冷却板と誘電体板との間に隙間が発生するのを防止することができる。 In the first embodiment of the present invention, cooling is further achieved by setting a negative pressure in the range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) between the dielectric plate and the cooling plate. The plate can be pressed toward the dielectric window, and the cooling plate can be brought into close contact with the deflection of the dielectric window. For this reason, it is possible to prevent a gap from being generated between the cooling plate and the dielectric plate.
 本発明の第二の態様によれば、冷却板と誘電体板との間を負圧にすることで、冷却板と誘電体板との密着性が向上する。誘電体板及びスロット板に蓄積される熱が冷却板に吸い上げられるので、スロット板の熱膨張の伸び量を誘電体窓の熱膨張の伸び量よりも抑えることができる。これにより、誘電体窓からスロット板に引っ張り力を作用させることができ、スロット板が撓むのを防止することができる。 According to the second aspect of the present invention, the adhesion between the cooling plate and the dielectric plate is improved by applying a negative pressure between the cooling plate and the dielectric plate. Since the heat accumulated in the dielectric plate and the slot plate is sucked up by the cooling plate, the expansion amount of the thermal expansion of the slot plate can be suppressed from the expansion amount of the thermal expansion of the dielectric window. As a result, a tensile force can be applied to the slot plate from the dielectric window, and the slot plate can be prevented from being bent.
 本発明の第三の態様によれば、誘電体窓と誘電体板との間、及び誘電体板と冷却板との間を大気圧よりも圧力が低い負圧にすることで、冷却板と誘電体窓との間に誘電体板を挟む力を生じさせることができる。このため、これらの間に隙間が発生するのを防止することができる。 According to the third aspect of the present invention, by setting the negative pressure lower than the atmospheric pressure between the dielectric window and the dielectric plate and between the dielectric plate and the cooling plate, A force for sandwiching the dielectric plate between the dielectric window and the dielectric window can be generated. For this reason, it is possible to prevent a gap from occurring between them.
従来のマイクロ波プラズマ処理装置の断面図Sectional view of a conventional microwave plasma processing apparatus 従来のマイクロ波プラズマ処理装置のスロット板の変形を示す断面図Sectional drawing which shows the deformation | transformation of the slot plate of the conventional microwave plasma processing apparatus 本発明の第一の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 1st embodiment of this invention 本発明の第二の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 2nd embodiment of this invention 導電膜が形成される誘電体板の詳細図Detailed view of dielectric plate on which conductive film is formed 本発明の第三の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 3rd embodiment of this invention 本発明の第四の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 4th embodiment of this invention 本発明の第五の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 5th embodiment of this invention 本発明の第六の実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of 6th embodiment of this invention 給電手段の他の例を示す断面図Sectional drawing which shows the other example of electric power feeding means
 以下、添付図面を参照して、本発明のマイクロ波プラズマ処理装置の実施形態を説明する。図3は、本発明の第一の実施形態のマイクロ波プラズマ処理装置の全体の構成図を示す。 Hereinafter, an embodiment of a microwave plasma processing apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 3 shows an overall configuration diagram of the microwave plasma processing apparatus according to the first embodiment of the present invention.
 マイクロ波プラズマ処理装置は、外壁によって区画される処理容器11と、処理容器11内に設けられ、被処理基板を静電チャックにより保持するAlN又はAl23からなる保持台16と、を含む。処理容器11には、保持台を囲む円環状の空間に周方向に均等に排気ポートが形成される。処理容器11は、排気ポートを介して真空ポンプにより排気・減圧される。 The microwave plasma processing apparatus includes a processing container 11 partitioned by an outer wall, and a holding table 16 provided in the processing container 11 and made of AlN or Al 2 O 3 for holding a substrate to be processed by an electrostatic chuck. . In the processing container 11, exhaust ports are uniformly formed in the circumferential direction in an annular space surrounding the holding table. The processing container 11 is evacuated and decompressed by a vacuum pump through an exhaust port.
 処理容器11は、Al好ましくはAlを含有するステンレス鋼からなり、内壁面には酸化処理により酸化アルミニウムよりなる保護膜が形成されている。処理容器11の天井部には、Al23、石英等の誘電体からなる誘電体窓12が外壁の一部として設けられる。誘電体窓12は処理容器11の側壁にシールリング13を介して装着される。誘電体窓12は処理容器11の側壁の上部に取り付けられる誘電体窓押え14によって処理容器11に固定される。誘電体窓押え14は、処理容器11と同様にAl若しくはAlを含有するステンレス鋼からなる。 The processing container 11 is made of Al, preferably stainless steel containing Al, and a protective film made of aluminum oxide is formed on the inner wall surface by oxidation treatment. A dielectric window 12 made of a dielectric material such as Al 2 O 3 or quartz is provided as a part of the outer wall of the ceiling of the processing container 11. The dielectric window 12 is attached to the side wall of the processing container 11 via a seal ring 13. The dielectric window 12 is fixed to the processing container 11 by a dielectric window holder 14 attached to the upper part of the side wall of the processing container 11. The dielectric window holder 14 is made of Al or stainless steel containing Al, like the processing container 11.
 処理容器11の側壁には、プラズマガスを処理容器11内に供給するための環状のガス供給部15が設けられる。ガス供給部15にはガス供給系が接続されている。Arガス、Krガス等のプラズマ励起用ガスや、プラズマ処理の種類に応じた処理ガスがガス供給部15から処理容器11に供給される。かかるプラズマ処理には、プラズマ酸化処理、プラズマ窒化処理、プラズマ酸窒化処理、プラズマCVD処理等が含まれる。ガス供給部からC48,C58又はC46などの解離しやすいフルオロカーボンガスや、F系あるいはCl系などのエッチングガスを供給し、保持台16上に高周波電源から高周波電圧を印加することにより、被処理基板に対して反応性イオンエッチングを行うことも可能である。 An annular gas supply unit 15 for supplying plasma gas into the processing container 11 is provided on the side wall of the processing container 11. A gas supply system is connected to the gas supply unit 15. A plasma excitation gas such as Ar gas or Kr gas or a processing gas corresponding to the type of plasma processing is supplied from the gas supply unit 15 to the processing container 11. Such plasma treatment includes plasma oxidation treatment, plasma nitridation treatment, plasma oxynitridation treatment, plasma CVD treatment and the like. A fluorocarbon gas such as C 4 F 8 , C 5 F 8, or C 4 F 6 or an etching gas such as an F-based or Cl-based gas is supplied from a gas supply unit, and a high-frequency voltage is supplied from a high-frequency power source to the holding table 16. It is also possible to perform reactive ion etching on the substrate to be processed by applying.
 処理容器11の側壁には、被処理基板を搬入及び搬出するための図示しない搬出入口が設けられる。搬出入口はゲートバルブによって開閉される。 On the side wall of the processing container 11, a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided. The carry-in / out port is opened and closed by a gate valve.
 誘電体窓12上には、処理容器11内のプラズマガスを励起する平面状のマイクロ波アンテナ18が載せられる。マイクロ波アンテナ18は、同軸モードでマイクロ波を上下方向に伝搬する同軸導波管19と、同軸導波管19の同軸導波路20を通過したマイクロ波を放射方向に伝搬するディスク状の誘電体板22と、マイクロ波を透過させるスロットを有するスロット板23と、誘電体板22の上面に載せられて誘電体板22を冷却する冷却板24と、を含む。 On the dielectric window 12, a planar microwave antenna 18 for exciting the plasma gas in the processing vessel 11 is placed. The microwave antenna 18 includes a coaxial waveguide 19 that propagates microwaves in the vertical direction in a coaxial mode, and a disk-shaped dielectric that propagates microwaves that have passed through the coaxial waveguide 20 of the coaxial waveguide 19 in the radial direction. A plate 22, a slot plate 23 having a slot through which microwaves are transmitted, and a cooling plate 24 that is placed on the upper surface of the dielectric plate 22 and cools the dielectric plate 22.
 マイクロ波を給電する給電手段としての同軸導波管19は、垂直方向に伸びる内導体19aと、内導体19aを囲む筒状の外導体19bと、からなる。内導体19aと外導体19bとの間に断面環状の同軸導波路20が形成される。同軸導波管19の上端部は水平方向に伸びる矩形導波管21(図1参照)に接続される。矩形導波管21と同軸導波管19の接続部には円錐形のモード変換器25(図1参照)が設けられる。矩形導波管21は整合器を介してマグネトロン等のマイクロ波発生装置に接続されている。マイクロ波発生装置は、例えば周波数2.45GHz,8.35GHz,1.98GHz,915MHz等のマイクロ波を発生する。矩形導波管21を伝搬するマイクロ波はモード変換器25によって同軸モードに変換され、同軸導波路20(図3参照)を上下方向に伝搬する。整合器は、マイクロ波発生装置から発生するマイクロ波を矩形導波管21及び同軸導波路20を介して誘電体板22へ伝搬させる。 The coaxial waveguide 19 as a power feeding means for feeding microwaves includes an inner conductor 19a extending in the vertical direction and a cylindrical outer conductor 19b surrounding the inner conductor 19a. A coaxial waveguide 20 having an annular cross section is formed between the inner conductor 19a and the outer conductor 19b. The upper end portion of the coaxial waveguide 19 is connected to a rectangular waveguide 21 (see FIG. 1) extending in the horizontal direction. A conical mode converter 25 (see FIG. 1) is provided at the connection between the rectangular waveguide 21 and the coaxial waveguide 19. The rectangular waveguide 21 is connected to a microwave generator such as a magnetron through a matching unit. The microwave generator generates microwaves having frequencies of 2.45 GHz, 8.35 GHz, 1.98 GHz, 915 MHz, and the like, for example. The microwave propagating through the rectangular waveguide 21 is converted into the coaxial mode by the mode converter 25 and propagates in the vertical direction through the coaxial waveguide 20 (see FIG. 3). The matching unit propagates the microwave generated from the microwave generator to the dielectric plate 22 via the rectangular waveguide 21 and the coaxial waveguide 20.
 誘電体板22は、Al23、石英等の誘電体からなる。マイクロ波は、電界と磁界が非常に速く変化しながら伝搬する電磁波である。誘電体板22の下面には金属からなるスロット板23が設けられ、誘電体板22の上面には金属からなる冷却板24が設けられる。金属面に当たったマイクロ波は、金属内にはほとんど進入せず、ごく表面(表皮深さ)に電流を流し、大部分が反射する。このため、同軸導波路20から誘電体板22に照射されたマイクロ波は、スロット板23及び冷却板24によって反射されながら誘電体板22を放射方向に伝搬する。また、同軸導波路20から誘電体板22に入るとき、マイクロ波の伝搬する媒質が空気から誘電体に変化するので、マイクロ波の波長が圧縮される。誘電体板22の厚みは、TEモードでマイクロ波が伝搬するように、すなわち電界が厚み方向にだけできるように決められる。誘電体板22の厚みが誘電体板22内におけるマイクロ波の波長の1/4以下であれば問題ない。ただし、あまり薄いと強度の問題があり、また厚すぎると撓みにくくなる。このため本実施形態において、誘電体板22の材質にアルミナを使用した場合、3~6mm程度が最適な厚みになる。 The dielectric plate 22 is made of a dielectric such as Al 2 O 3 or quartz. Microwaves are electromagnetic waves that propagate while the electric and magnetic fields change very quickly. A slot plate 23 made of metal is provided on the lower surface of the dielectric plate 22, and a cooling plate 24 made of metal is provided on the upper surface of the dielectric plate 22. Microwaves that hit the metal surface hardly penetrate into the metal, cause an electric current to flow on the very surface (skin depth), and are mostly reflected. For this reason, the microwave irradiated to the dielectric plate 22 from the coaxial waveguide 20 propagates through the dielectric plate 22 in the radial direction while being reflected by the slot plate 23 and the cooling plate 24. Further, when entering the dielectric plate 22 from the coaxial waveguide 20, the microwave propagation medium changes from air to a dielectric, so that the wavelength of the microwave is compressed. The thickness of the dielectric plate 22 is determined so that the microwave propagates in the TE mode, that is, the electric field can be generated only in the thickness direction. There is no problem if the thickness of the dielectric plate 22 is 1/4 or less of the wavelength of the microwave in the dielectric plate 22. However, if it is too thin, there is a problem of strength, and if it is too thick, it becomes difficult to bend. Therefore, in the present embodiment, when alumina is used as the material of the dielectric plate 22, the optimum thickness is about 3 to 6 mm.
 銅板等からなるスロット板23には、マイクロ波を透過させる多数のスロット23aが空けられる。誘電体板22内で共振したマイクロ波は、スロット板23の多数のスロット23aを透過し、処理容器11内に放射される。 The slot plate 23 made of a copper plate or the like has a large number of slots 23a through which microwaves are transmitted. The microwaves resonated in the dielectric plate 22 are transmitted through the multiple slots 23 a of the slot plate 23 and radiated into the processing container 11.
 図3に示すように、マイクロ波アンテナ18の誘電体板22上には、冷却板24が載せられる。冷却板24には冷却水流路24aが形成される。冷却水流路24aに冷却水を流すことにより、誘電体板22を冷却することができる。熱伝導性を向上させるため、冷却板24と誘電体板22との間には、緩衝シートが介在されてもよい。 As shown in FIG. 3, a cooling plate 24 is placed on the dielectric plate 22 of the microwave antenna 18. A cooling water flow path 24 a is formed in the cooling plate 24. The dielectric plate 22 can be cooled by flowing cooling water through the cooling water passage 24a. In order to improve thermal conductivity, a buffer sheet may be interposed between the cooling plate 24 and the dielectric plate 22.
 マイクロ波アンテナ18は、誘電体窓押え14に取り付けられるアンテナ押え26によって誘電体窓12に固定される。アンテナ押え26は処理容器11と同様にAl若しくはAlを含有するステンレス鋼からなる。冷却板24とアンテナ押え26との間には、電磁遮蔽弾力体27が設けられる。スロット板23のスロット23aを透過するマイクロ波は、一部がスロット板23と誘電体窓12との間の小さな隙間から外側に漏れ出す。それだけでなく、誘電体窓12を外周方向に伝搬したマイクロ波は誘電体窓押え14と冷却板24との間の隙間から外側に漏れ出す。電磁遮蔽弾力体27は漏れ出したマイクロ波をシールドする。 The microwave antenna 18 is fixed to the dielectric window 12 by an antenna holder 26 attached to the dielectric window holder 14. The antenna holder 26 is made of Al or stainless steel containing Al, like the processing container 11. An electromagnetic shielding resilient body 27 is provided between the cooling plate 24 and the antenna holder 26. A part of the microwave transmitted through the slot 23 a of the slot plate 23 leaks outside through a small gap between the slot plate 23 and the dielectric window 12. In addition, the microwave propagated in the outer circumferential direction through the dielectric window 12 leaks outward from the gap between the dielectric window retainer 14 and the cooling plate 24. The electromagnetic shielding elastic body 27 shields the leaked microwave.
 同軸導波管19の内導体19aと外導体19b(正確に言えば外導体19bを構成する冷却板24)との間には、環状誘電体28が嵌められる。この環状誘電体28は誘電体板22に一体に結合される。そして、内導体19aと環状誘電体28との間が内側シール部材としてのシールリング29によってシールされ、外導体19bと環状誘電体28との間が外側シール部材としてのシールリング30によってシールされる。 An annular dielectric 28 is fitted between the inner conductor 19a and the outer conductor 19b of the coaxial waveguide 19 (more precisely, the cooling plate 24 constituting the outer conductor 19b). The annular dielectric 28 is integrally coupled to the dielectric plate 22. The gap between the inner conductor 19a and the annular dielectric 28 is sealed with a seal ring 29 as an inner seal member, and the gap between the outer conductor 19b and the annular dielectric 28 is sealed with a seal ring 30 as an outer seal member. .
 誘電体窓12、誘電体板22及び冷却板24の外周と、誘電体窓押え14及びアンテナ押え26の内周との間に負圧路35が形成される。冷却板24とアンテナ押え26との間はシールリング31によってシールされ、アンテナ押え26と誘電体窓押え14との間はシールリング32によってシールされる。誘電体窓押え14と処理容器11との間はシールリング33によってシールされる。負圧路35には、空気を吸引する吸引口34が空けられる。吸引口34には、負圧路35の圧力を調整する圧力調整器が接続される。圧力調整器には真空ポンプが接続される。負圧路35の圧力を調整することにより、誘電体窓12と誘電体板22との密着度合、及び誘電体板22と冷却板24との密着度合を調整することができ、このため誘電体窓12及び誘電体板22の温度制御を行うことが可能になる。 A negative pressure path 35 is formed between the outer periphery of the dielectric window 12, the dielectric plate 22, and the cooling plate 24 and the inner periphery of the dielectric window retainer 14 and the antenna retainer 26. A seal ring 31 seals between the cooling plate 24 and the antenna holder 26, and a seal ring 32 seals between the antenna holder 26 and the dielectric window holder 14. A gap between the dielectric window holder 14 and the processing container 11 is sealed by a seal ring 33. A suction port 34 that sucks air is opened in the negative pressure path 35. A pressure regulator that adjusts the pressure in the negative pressure path 35 is connected to the suction port 34. A vacuum pump is connected to the pressure regulator. By adjusting the pressure of the negative pressure path 35, the degree of adhesion between the dielectric window 12 and the dielectric plate 22 and the degree of adhesion between the dielectric plate 22 and the cooling plate 24 can be adjusted. It becomes possible to control the temperature of the window 12 and the dielectric plate 22.
 同軸導波管19がシールされているので、吸引口34から空気を吸引すると、誘電体板22と誘電体窓12との間、及び誘電体板22と冷却板24との間が負圧になる。負圧の範囲は1~600Torr(1.3332×102~7.9993×104Pa)、望ましくは200~400Torr(2.6664×104~5.3328×104Pa)に設定される。圧力が低ければ低いほど、誘電体板22及び冷却板24を誘電体窓12に押し付ける力を働かせることができる。このため、負圧の範囲は600Torr(7.9993×104Pa)以下に設定される。誘電体板22及び冷却板24を誘電体窓12に押し付ける力を大きくするためには、400Torr(5.3328×104Pa)以下であることが望ましい。誘電体窓12は処理容器11内の真空や熱膨張によって、0.1mm程度撓むこともある。誘電体板22と誘電体窓12との間、及び誘電体板22と冷却板24との間を600Torr(7.9993×104Pa)以下の負圧にすることで、誘電体窓12の撓みに合わせて誘電体板22及び冷却板24を撓ませることができる。 Since the coaxial waveguide 19 is sealed, when air is sucked from the suction port 34, negative pressure is generated between the dielectric plate 22 and the dielectric window 12 and between the dielectric plate 22 and the cooling plate 24. Become. The negative pressure range is set to 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa), preferably 200 to 400 Torr (2.6664 × 10 4 to 5.3328 × 10 4 Pa). . The lower the pressure, the more force can be applied to press the dielectric plate 22 and the cooling plate 24 against the dielectric window 12. Therefore, the negative pressure range is set to 600 Torr (7.9993 × 10 4 Pa) or less. In order to increase the force pressing the dielectric plate 22 and the cooling plate 24 against the dielectric window 12, it is desirable that the pressure be 400 Torr (5.3328 × 10 4 Pa) or less. The dielectric window 12 may be bent by about 0.1 mm due to vacuum or thermal expansion in the processing container 11. By making the negative pressure of 600 Torr (7.9993 × 10 4 Pa) or less between the dielectric plate 22 and the dielectric window 12 and between the dielectric plate 22 and the cooling plate 24, The dielectric plate 22 and the cooling plate 24 can be bent in accordance with the bending.
 負圧の範囲を1Torr(1.3332×102Pa)以上にしたのは、1Torr(1.3332×102)未満だと、ガスの分子の数が減り、熱伝達を悪くするからである。熱を伝達するのは分子であるから真空状態から気体の圧力が高くなればなるほど、気体の分子の数が増え、熱伝達率が向上する。しかし、ある圧力を超えると、熱伝達率が圧力に依存しなくなる。その圧力が1Torr(1.3332×102Pa)程度である。ただし、強いマイクロ波が伝搬する空間を負圧にすると、異常放電(望ましくない放電)が起こり易くなる。異常放電を防止するために200Torr(2.6664×104Pa)以上が望ましい。 The reason why the negative pressure range is set to 1 Torr (1.3332 × 10 2 Pa) or more is that if it is less than 1 Torr (1.3332 × 10 2 ), the number of gas molecules decreases and heat transfer becomes worse. . Since molecules transfer heat, the higher the gas pressure from a vacuum state, the greater the number of gas molecules and the higher the heat transfer rate. However, when a certain pressure is exceeded, the heat transfer coefficient does not depend on the pressure. The pressure is about 1 Torr (1.3332 × 10 2 Pa). However, if the space in which strong microwaves propagate is set to a negative pressure, abnormal discharge (undesirable discharge) is likely to occur. In order to prevent abnormal discharge, 200 Torr (2.6664 × 10 4 Pa) or more is desirable.
 図4は、本発明の第二の実施形態のマイクロ波プラズマ処理装置を示す。なお、第一の実施形態のマイクロ波プラズマ処理装置と同一の構成には同一の符号を附してその説明を省略する。この実施形態においては、誘電体板22の上面、下面及び外周面には、導電膜41が形成される。そして、誘電体窓12と誘電体板22との間には、第一のシール部材としてOリング等からなるシールリング42が設けられる。誘電体板22と冷却板24との間には、第二のシール部材としてOリング等からなるシールリング43が設けられる。誘電体板22の上面及び下面に導電膜が形成されているので、誘電体板22と導電膜41との間をシールする必要はない。 FIG. 4 shows a microwave plasma processing apparatus according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure same as the microwave plasma processing apparatus of 1st embodiment, and the description is abbreviate | omitted. In this embodiment, a conductive film 41 is formed on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22. A seal ring 42 made of an O-ring or the like is provided as a first seal member between the dielectric window 12 and the dielectric plate 22. Between the dielectric plate 22 and the cooling plate 24, a seal ring 43 made of an O-ring or the like is provided as a second seal member. Since the conductive film is formed on the upper and lower surfaces of the dielectric plate 22, there is no need to seal between the dielectric plate 22 and the conductive film 41.
 図5は導電膜41が形成された誘電体板22の詳細図を示す。誘電体板22の上面、下面及び外周面には、金属の層からなる導電膜41がめっきされる。誘電体板22の中心部には、同軸導波管19の内導体19aに接続されるスロット中心コンタクトフランジ40(図4参照)が貫通する孔22aが空けられる。孔22aの周囲(誘電体板22の上面及び下面の一部及び内周面)には、導電膜41が成膜されていない非成膜エリア22bが形成される。 FIG. 5 shows a detailed view of the dielectric plate 22 on which the conductive film 41 is formed. A conductive film 41 made of a metal layer is plated on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22. A hole 22a through which a slot center contact flange 40 (see FIG. 4) connected to the inner conductor 19a of the coaxial waveguide 19 passes is formed at the center of the dielectric plate 22. A non-film formation area 22b where the conductive film 41 is not formed is formed around the hole 22a (a part of the upper surface and the lower surface of the dielectric plate 22 and the inner peripheral surface).
 誘電体板22の下面側の導電膜41には、マイクロ波を透過させる多数のスロット41aが形成される。隣接する一組のスロット41aは、直交するようにT字状に配列される。多数のスロット41aはディスク状の導電膜41に同心円状に配置される。スロット41aの長さや配列は、スロット41aから処理容器11に強い電界が放射されるように、誘電体板22によって圧縮されたマイクロ波の波長に応じて適宜決定される。スロット41aの形状は直線形状の他に円弧形状でもよく、スロット41aの配列は同心円状の他に螺旋状や放射状でもよい。 In the conductive film 41 on the lower surface side of the dielectric plate 22, a large number of slots 41 a that transmit microwaves are formed. A pair of adjacent slots 41a are arranged in a T shape so as to be orthogonal to each other. A large number of slots 41 a are concentrically arranged on the disk-shaped conductive film 41. The length and arrangement of the slots 41a are appropriately determined according to the wavelength of the microwave compressed by the dielectric plate 22 so that a strong electric field is radiated from the slot 41a to the processing container 11. The shape of the slot 41a may be an arc shape in addition to a linear shape, and the arrangement of the slots 41a may be a spiral shape or a radial shape in addition to a concentric shape.
 導電膜41は誘電体板22に以下の工程を経て成膜される。誘電体板22を製作した後、スロット41aに対応する非成膜エリアをマスキングし、その後、誘電体板22に金属層をめっきし、その後、マスキングを除去する。又は、誘電体板22を製作した後、誘電体板22に金属層をめっきし、その後、スロット41aに対応する部分をエッチングする。 The conductive film 41 is formed on the dielectric plate 22 through the following steps. After the dielectric plate 22 is manufactured, a non-deposition area corresponding to the slot 41a is masked, and then a metal layer is plated on the dielectric plate 22, and then the masking is removed. Alternatively, after the dielectric plate 22 is manufactured, a metal layer is plated on the dielectric plate 22, and then the portion corresponding to the slot 41a is etched.
 図4に示すように、誘電体板22の下面の導電膜41は、スロット中心コンタクトフランジ40を介して内導体19aに電気的に接続される。誘電体板22の上面の導電膜41は、冷却板24を介して同軸導波管19の外導体19bに電気的に接続される。誘電体板22の下面の導電膜41と同軸導波管19の内導体19aとを電気的に接続する必要があることから、円柱状のスロット中心コンタクトフランジ40と板状のスロット中心コンタクト板44とが設けられる。スロット中心コンタクトフランジ40とスロット中心コンタクト板44とは、接着、ねじ等により結合される。スロット中心コンタクトフランジ40は、内導体19aにねじ等により結合される。Oリング等からなるコンタクト補強弾性体45は、スロット中心コンタクト板44と導電膜41との電気的接触を補強し、また誘電体板22の上面側の導電膜41と冷却板24との電気的接触を補強する。スロット外周コンタクトリング46とスロット外周コンタクト板47とは結合される。スロット外周コンタクトリング46は冷却板24にボルト等で結合される。Oリング等からなるコンタクト補強弾性体48は、スロット外周コンタクト板47と誘電体板22の下面側の導電膜41との電気的接触を補強する。 As shown in FIG. 4, the conductive film 41 on the lower surface of the dielectric plate 22 is electrically connected to the inner conductor 19a via the slot center contact flange 40. The conductive film 41 on the upper surface of the dielectric plate 22 is electrically connected to the outer conductor 19 b of the coaxial waveguide 19 through the cooling plate 24. Since it is necessary to electrically connect the conductive film 41 on the lower surface of the dielectric plate 22 and the inner conductor 19a of the coaxial waveguide 19, the cylindrical slot center contact flange 40 and the plate-shaped slot center contact plate 44 are provided. And are provided. The slot center contact flange 40 and the slot center contact plate 44 are coupled by bonding, screws or the like. The slot center contact flange 40 is coupled to the inner conductor 19a by screws or the like. The contact reinforcing elastic body 45 made of an O-ring or the like reinforces the electrical contact between the slot center contact plate 44 and the conductive film 41, and the electrical connection between the conductive film 41 on the upper surface side of the dielectric plate 22 and the cooling plate 24. Reinforce contact. The slot outer peripheral contact ring 46 and the slot outer peripheral contact plate 47 are coupled. The slot outer peripheral contact ring 46 is coupled to the cooling plate 24 with bolts or the like. The contact reinforcing elastic body 48 made of an O-ring or the like reinforces electrical contact between the slot outer peripheral contact plate 47 and the conductive film 41 on the lower surface side of the dielectric plate 22.
 図6は、本発明の第三の実施形態のマイクロ波プラズマ処理装置を示す。この実施形態のマイクロ波プラズマ処理装置の構成は、第二の実施形態のマイクロ波プラズマ処理とほぼ同様であるが、シール箇所が変更されている。すなわち、誘電体窓押え14と誘電体窓12との間、及び誘電体窓押え14と冷却板24との間にシールリング51,52を配置している。負圧路53は誘電体板22及び冷却板24の外周と誘電体窓押え14の内周との間に形成される。空気を吸引する吸引口54は誘電体窓押え14に設けられる。このようにシールリングを配置しても、誘電体窓12と誘電体板22との間、及び誘電体板22と冷却板24との間を負圧にすることができる。 FIG. 6 shows a microwave plasma processing apparatus according to a third embodiment of the present invention. The configuration of the microwave plasma processing apparatus of this embodiment is substantially the same as the microwave plasma processing of the second embodiment, but the seal location is changed. That is, seal rings 51 and 52 are disposed between the dielectric window holder 14 and the dielectric window 12 and between the dielectric window holder 14 and the cooling plate 24. The negative pressure path 53 is formed between the outer periphery of the dielectric plate 22 and the cooling plate 24 and the inner periphery of the dielectric window presser 14. A suction port 54 for sucking air is provided in the dielectric window retainer 14. Even if the seal ring is arranged in this way, negative pressure can be applied between the dielectric window 12 and the dielectric plate 22 and between the dielectric plate 22 and the cooling plate 24.
 図7は、本発明の第四の実施形態のマイクロ波プラズマ処理装置を示す。この実施形態のプラズマ処理装置においては、冷却板24と誘電体板22との密着性を向上させるために、冷却板24と誘電体板22との間が負圧にされる。誘電体板22の上面及び下面には導電膜41が形成される。冷却板24と誘電体板22の内周側との間には、内側シール部材としてOリング等からなるシールリング56が設けられる。冷却板24と誘電体板22の外周側との間には、外側シール部材としてOリング等からなるシールリング57が設けられる。冷却板24の、内側のシールリング56と外側のシールリング57との間には空気を吸引する吸引口58が設けられる。誘電体板22の上面にマイクロ波を反射する導電膜41を形成することで、冷却板24に吸引口58や溝を形成してもマイクロ波の伝搬特性に影響を与えることはない。このため、誘電体板22に導電膜41を形成させるのが望ましいが、必ずしも形成させなくてもよい。 FIG. 7 shows a microwave plasma processing apparatus according to a fourth embodiment of the present invention. In the plasma processing apparatus of this embodiment, a negative pressure is applied between the cooling plate 24 and the dielectric plate 22 in order to improve the adhesion between the cooling plate 24 and the dielectric plate 22. A conductive film 41 is formed on the upper and lower surfaces of the dielectric plate 22. A seal ring 56 made of an O-ring or the like is provided as an inner seal member between the cooling plate 24 and the inner peripheral side of the dielectric plate 22. A seal ring 57 made of an O-ring or the like is provided as an outer seal member between the cooling plate 24 and the outer peripheral side of the dielectric plate 22. A suction port 58 for sucking air is provided between the inner seal ring 56 and the outer seal ring 57 of the cooling plate 24. By forming the conductive film 41 that reflects the microwave on the upper surface of the dielectric plate 22, even if the suction port 58 and the groove are formed in the cooling plate 24, the propagation characteristics of the microwave are not affected. For this reason, it is desirable to form the conductive film 41 on the dielectric plate 22, but it is not necessary to form it.
 冷却板24と誘電体板22との間を負圧にすることで、冷却板24と誘電体板22との密着性を向上させることができる。さらに、誘電体窓12から導電膜41に引っ張り力を作用させることができ、誘電体窓12が撓むのを防止することができる。 The adhesion between the cooling plate 24 and the dielectric plate 22 can be improved by applying a negative pressure between the cooling plate 24 and the dielectric plate 22. Further, a tensile force can be applied from the dielectric window 12 to the conductive film 41, and the dielectric window 12 can be prevented from being bent.
 図8は、本発明の第五の実施形態のマイクロ波プラズマ処理装置を示す。この実施形態では、図4に示される第二の実施形態のマイクロ波プラズマ処理装置のシールリングの位置43を変えている。すなわち、誘電体板22と冷却板24との間をシールするシールリング43を、誘電体板22及び冷却板24の外周側に配置している。シールリング43を誘電体板22及び冷却板24の外周側に配置することにより、誘電体板22と誘電体窓12との間だけを負圧にすることが可能になる。残りの構成、例えば誘電体板22の上面及び下面に導電膜41が形成される点、誘電体板22と誘電体窓12との間にシールリング42が配置される点等は、図4に示される第二の実施形態のマイクロ波プラズマ処理装置と同一であるので、同一の符号を附してその説明を省略する。誘電体板22と誘電体窓12との間を1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にすることにより、誘電体板22を誘電体窓12に押し付け、誘電体窓12の撓みに合わせて誘電体板22を密着させることができる。 FIG. 8 shows a microwave plasma processing apparatus according to the fifth embodiment of the present invention. In this embodiment, the position 43 of the seal ring of the microwave plasma processing apparatus of the second embodiment shown in FIG. 4 is changed. That is, a seal ring 43 that seals between the dielectric plate 22 and the cooling plate 24 is disposed on the outer peripheral side of the dielectric plate 22 and the cooling plate 24. By disposing the seal ring 43 on the outer peripheral side of the dielectric plate 22 and the cooling plate 24, it becomes possible to make negative pressure only between the dielectric plate 22 and the dielectric window 12. The remaining configuration, for example, the point that the conductive film 41 is formed on the upper and lower surfaces of the dielectric plate 22, the point that the seal ring 42 is disposed between the dielectric plate 22 and the dielectric window 12, etc. are shown in FIG. Since it is the same as the microwave plasma processing apparatus of 2nd embodiment shown, the same code | symbol is attached | subjected and the description is abbreviate | omitted. By setting a negative pressure in the range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) between the dielectric plate 22 and the dielectric window 12, the dielectric plate 22 is made to be a dielectric window. 12, and the dielectric plate 22 can be brought into close contact with the bending of the dielectric window 12.
 図9は、本発明の第六の実施形態のマイクロ波プラズマ処理装置を示す。この実施形態でも、第五の実施形態のマイクロ波プラズマ処理装置と同様に、誘電体板22と誘電体窓12との間だけを負圧にするための工夫がなされている。誘電体板22の上面及び下面には導電膜41が形成される。誘電体板22の内周側と誘電体窓12の内周側との間には、内側シール部材としてOリング等からなるシールリング61が設けられる。誘電体板22の外周側と誘電体窓12の外周側との間には、外側シール部材としてOリング等からなるシールリング62が設けられる。誘電体窓12の、内側のシールリング61と外側のシールリング62との間には空気を吸引する吸引口63が設けられる。吸引口63に繋がる吸引経路64は、吸引口63から鉛直下方に伸びた後、90度曲って水平方向に伸び、誘電体窓12の外周面に露出する。 FIG. 9 shows a microwave plasma processing apparatus according to the sixth embodiment of the present invention. Also in this embodiment, like the microwave plasma processing apparatus of the fifth embodiment, a device for making a negative pressure only between the dielectric plate 22 and the dielectric window 12 is devised. A conductive film 41 is formed on the upper and lower surfaces of the dielectric plate 22. Between the inner peripheral side of the dielectric plate 22 and the inner peripheral side of the dielectric window 12, a seal ring 61 made of an O-ring or the like is provided as an inner seal member. Between the outer peripheral side of the dielectric plate 22 and the outer peripheral side of the dielectric window 12, a seal ring 62 made of an O-ring or the like is provided as an outer seal member. A suction port 63 for sucking air is provided between the inner seal ring 61 and the outer seal ring 62 of the dielectric window 12. The suction path 64 connected to the suction port 63 extends vertically downward from the suction port 63, then bends 90 degrees and extends in the horizontal direction, and is exposed to the outer peripheral surface of the dielectric window 12.
 誘電体窓12の外周面と処理容器11の誘電体窓受け枠65の内周面との間に負圧路66が形成される。誘電体窓押え14と処理容器11との間はシールリング67によってシールされ、アンテナ押え26と誘電体窓12との間はシールリング68によってシールされる。誘電体窓12と処理容器11の誘電体窓受け枠65との間はシールリング69によってシールされる。処理容器11には、負圧路66に繋がる吸引経路70が形成される。吸引経路70から空気を吸引することにより、誘電体板22と誘電体窓12との間を負圧にすることができる。誘電体板22と誘電体窓12との間を1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にすることにより、誘電体板22を誘電体窓12に押し付け、誘電体窓12の撓みに合わせて誘電体板22を密着させることができる。 A negative pressure path 66 is formed between the outer peripheral surface of the dielectric window 12 and the inner peripheral surface of the dielectric window receiving frame 65 of the processing container 11. The gap between the dielectric window holder 14 and the processing container 11 is sealed by a seal ring 67, and the gap between the antenna holder 26 and the dielectric window 12 is sealed by a seal ring 68. A seal ring 69 seals between the dielectric window 12 and the dielectric window receiving frame 65 of the processing container 11. A suction path 70 connected to the negative pressure path 66 is formed in the processing container 11. By sucking air from the suction path 70, a negative pressure can be created between the dielectric plate 22 and the dielectric window 12. By setting a negative pressure in the range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) between the dielectric plate 22 and the dielectric window 12, the dielectric plate 22 is made to be a dielectric window. 12, and the dielectric plate 22 can be brought into close contact with the bending of the dielectric window 12.
 なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々に変更できる。例えば図10に示すように、本発明のアンテナは、同軸導波路のように中心から外に向かってマイクロ波を広げる構造でなくても、給電手段としての矩形導波管51によって水平方向にマイクロ波を導入する構造であってもよい。 Note that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention. For example, as shown in FIG. 10, the antenna of the present invention has a structure in which a microwave is horizontally spread by a rectangular waveguide 51 as a power feeding means, even if the microwave is not spread from the center to the outside like a coaxial waveguide. The structure which introduces a wave may be sufficient.
 誘電体板と誘電体窓との間、及び/又は誘電体板と冷却板との間を排気しやすいように、誘電体板の誘電体窓側及び/又は冷却板側に、排気用の溝(深さ20μm程度、幅3mm程度)を形成することが望ましい。 In order to facilitate exhausting between the dielectric plate and the dielectric window and / or between the dielectric plate and the cooling plate, an exhaust groove ( It is desirable to form a depth of about 20 μm and a width of about 3 mm.
 誘電体板と誘電体窓との間、及び/又は誘電体板と冷却板との間を負圧にできれば、シールリングの配置個数、位置は上記実施形態に限られることはなく、適宜変更できる。 As long as the negative pressure can be set between the dielectric plate and the dielectric window and / or between the dielectric plate and the cooling plate, the number and position of the seal rings are not limited to the above embodiment, and can be changed as appropriate. .
 また、誘電体と誘電体窓との間、及び/又は誘電体板と冷却板との間には、熱伝導性のよいテフロン(登録商標)シート、カーボンシート等の緩衝シートを介在させてもよい。 Further, a buffer sheet such as a Teflon (registered trademark) sheet or carbon sheet having good thermal conductivity may be interposed between the dielectric and the dielectric window and / or between the dielectric plate and the cooling plate. Good.
 さらに、空気を吸引した負圧路にHeガス等の伝熱性ガスを封入してもよい。伝熱性ガスを封入したときも圧力は大気圧よりも低い負圧に調整される。 Furthermore, a heat transfer gas such as He gas may be sealed in the negative pressure path through which air is sucked. Even when the heat transfer gas is sealed, the pressure is adjusted to a negative pressure lower than the atmospheric pressure.
 さらに、誘電体窓に処理容器内にプラズマガスを供給するプラズマガス供給経路を形成し、誘電体窓と被処理基板との間に処理ガスを供給する中段シャワーヘッドを設けてもよい。 Furthermore, a plasma gas supply path for supplying plasma gas into the processing container may be formed in the dielectric window, and an intermediate shower head for supplying the processing gas may be provided between the dielectric window and the substrate to be processed.
 本明細書は、2009年3月23日出願の特願2009-070943に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2009-070943 filed on Mar. 23, 2009. All this content is included here.
11…処理容器
12…誘電体窓
14…誘電体窓押え
15…ガス供給部
16…保持台
18…マイクロ波アンテナ
19…同軸導波管
19a…内導体
19b…外導体
20…同軸導波路
22…誘電体板
23…スロット板
23a…スロット
24…冷却板
28…環状誘電体
29…シールリング(内側シール部材)
30…シールリング(外側シール部材)
34…吸引口
35…負圧路
41…導電膜(スロット板)
41a…スロット
42…シールリング(第一のシール部材)
43…シールリング(第二のシール部材)
53…負圧路
54…吸引口
56…シールリング(内側シール部材)
57…シールリング(外側シール部材)
58…吸引口 
 
DESCRIPTION OF SYMBOLS 11 ... Processing container 12 ... Dielectric window 14 ... Dielectric window holder 15 ... Gas supply part 16 ... Holding stand 18 ... Microwave antenna 19 ... Coaxial waveguide 19a ... Inner conductor 19b ... Outer conductor 20 ... Coaxial waveguide 22 ... Dielectric plate 23 ... slot plate 23a ... slot 24 ... cooling plate 28 ... annular dielectric 29 ... seal ring (inner seal member)
30 ... Seal ring (outer seal member)
34 ... Suction port 35 ... Negative pressure path 41 ... Conductive film (slot plate)
41a ... slot 42 ... seal ring (first seal member)
43 ... Seal ring (second seal member)
53 ... Negative pressure passage 54 ... Suction port 56 ... Seal ring (inner seal member)
57. Seal ring (outer seal member)
58 ... Suction port

Claims (12)

  1.  天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、
     前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、を含み、
     前記誘電体窓と前記誘電体板との間が1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にされるマイクロ波プラズマ処理装置。
    A processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container, and a dielectric window of the processing container A microwave antenna for exciting a plasma gas in the processing vessel, and a microwave plasma processing apparatus comprising:
    The microwave antenna includes a dielectric plate that propagates microwaves in the horizontal direction and compresses the wavelength of the microwave, and a slot that is provided between the dielectric plate and the dielectric window and transmits microwaves. A slot plate having,
    A microwave plasma processing apparatus in which a negative pressure in a range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) is provided between the dielectric window and the dielectric plate.
  2.  前記マイクロ波アンテナはさらに、前記誘電体板の上面に載せられて前記誘電体板を冷却する冷却板を含み、
     前記誘電体板と前記冷却板との間が1~600Torr(1.3332×102~7.9993×104Pa)の範囲の負圧にされる請求項1に記載のマイクロ波プラズマ処理装置。
    The microwave antenna further includes a cooling plate that is placed on an upper surface of the dielectric plate and cools the dielectric plate,
    2. The microwave plasma processing apparatus according to claim 1, wherein a negative pressure in a range of 1 to 600 Torr (1.3332 × 10 2 to 7.9993 × 10 4 Pa) is set between the dielectric plate and the cooling plate. .
  3.  前記負圧の範囲が200~400Torr(2.6664×104~5.3329×104Pa)であることを特徴とする請求項1又は2に記載のマイクロ波プラズマ処理装置。 3. The microwave plasma processing apparatus according to claim 1, wherein a range of the negative pressure is 200 to 400 Torr (2.6664 × 10 4 to 5.3329 × 10 4 Pa).
  4.  前記スロット板は、前記誘電体板の下面側に形成された導電膜からなることを特徴とする請求項1ないし3のいずれかに記載のマイクロ波プラズマ処理装置。 4. The microwave plasma processing apparatus according to claim 1, wherein the slot plate is made of a conductive film formed on a lower surface side of the dielectric plate.
  5.  前記誘電体板の上面に、マイクロ波を反射する導電膜が形成されることを特徴とする請求項4に記載のマイクロ波プラズマ処理装置。 The microwave plasma processing apparatus according to claim 4, wherein a conductive film that reflects microwaves is formed on an upper surface of the dielectric plate.
  6.  前記同軸導波路は、内周側の内導体及び外周側の外導体を含む同軸導波管に形成され、
     前記同軸導波路には、環状誘電体が嵌められ、
     前記内導体と前記環状誘電体との間が内側シール部材でシールされると共に、前記外導体と前記環状誘電体との間が外側シール部材でシールされることを特徴とする請求項2に記載のマイクロ波プラズマ処理装置。
    The coaxial waveguide is formed in a coaxial waveguide including an inner conductor on the inner circumference side and an outer conductor on the outer circumference side,
    The coaxial waveguide is fitted with an annular dielectric,
    The space between the inner conductor and the annular dielectric is sealed with an inner sealing member, and the space between the outer conductor and the annular dielectric is sealed with an outer sealing member. Microwave plasma processing equipment.
  7.  前記誘電体板の下面には、前記スロット板としての導電膜が形成され、
     前記誘電体板の上面には、マイクロ波を反射する導電膜が形成され、
     前記誘電体板の下面側の導電膜と前記誘電体窓との間が環状の第一のシール部材でシールされると共に、前記誘電体板の上面側の導電膜と前記冷却板との間が環状の第二のシール部材でシールされることを特徴とする請求項2に記載のマイクロ波プラズマ処理装置。
    A conductive film as the slot plate is formed on the lower surface of the dielectric plate,
    A conductive film that reflects microwaves is formed on the upper surface of the dielectric plate,
    A gap between the conductive film on the lower surface side of the dielectric plate and the dielectric window is sealed with an annular first sealing member, and a gap between the conductive film on the upper surface side of the dielectric plate and the cooling plate is provided. The microwave plasma processing apparatus according to claim 2, wherein the microwave plasma processing apparatus is sealed with an annular second sealing member.
  8.  前記処理容器には、前記誘電体窓を前記処理容器に固定するための誘電体窓押え、及び前記マイクロ波アンテナを前記誘電体窓に固定するためのアンテナ押えが取り付けられ、
     前記誘電体窓、前記誘電体板及び前記前記冷却板の外周と、前記誘電体窓押え及び前記アンテナ押えの内周との間に負圧路が形成され、
     前記負圧路にガスを吸引する吸引口が設けられることを特徴とする請求項2に記載のマイクロ波プラズマ処理装置。
    The processing container is provided with a dielectric window presser for fixing the dielectric window to the processing container, and an antenna presser for fixing the microwave antenna to the dielectric window,
    A negative pressure path is formed between the outer periphery of the dielectric window, the dielectric plate, and the cooling plate, and the inner periphery of the dielectric window retainer and the antenna retainer,
    The microwave plasma processing apparatus according to claim 2, wherein a suction port for sucking a gas is provided in the negative pressure path.
  9.  前記誘電体窓と前記誘電体板との間、及び前記誘電体板と前記冷却板との間の圧力を調整することにより、前記誘電体窓及び前記誘電体板の温度制御を行うことを特徴とする請求項2,6,7,8のいずれかに記載のマイクロ波プラズマ処理装置。 The temperature of the dielectric window and the dielectric plate is controlled by adjusting the pressure between the dielectric window and the dielectric plate and between the dielectric plate and the cooling plate. The microwave plasma processing apparatus according to any one of claims 2, 6, 7, and 8.
  10.  天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、
     前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、前記誘電体板の上面に載せられて前記誘電体板を冷却する冷却板と、を含み、
     前記誘電体板と前記冷却板との間が大気圧よりも圧力が低い負圧にされるマイクロ波プラズマ処理装置。
    A processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container, and a dielectric window of the processing container A microwave antenna for exciting a plasma gas in the processing vessel, and a microwave plasma processing apparatus comprising:
    The microwave antenna includes a dielectric plate that propagates microwaves in the horizontal direction and compresses the wavelength of the microwave, and a slot that is provided between the dielectric plate and the dielectric window and transmits microwaves. A slot plate, and a cooling plate placed on the top surface of the dielectric plate to cool the dielectric plate,
    A microwave plasma processing apparatus, wherein a negative pressure lower than an atmospheric pressure is set between the dielectric plate and the cooling plate.
  11.  前記冷却板と前記誘電体板の内周側との間が環状の内側シール部材でシールされると共に、前記冷却板と前記誘電体板の外周側との間が環状の外側シール部材でシールされ、
     前記冷却板の、前記内側シール部材と外側シール部材との間には、ガスを吸引する吸引口が設けられることを特徴とする請求項10に記載のマイクロ波プラズマ処理装置。
    The space between the cooling plate and the inner peripheral side of the dielectric plate is sealed with an annular inner seal member, and the space between the cooling plate and the outer peripheral side of the dielectric plate is sealed with an annular outer seal member. ,
    The microwave plasma processing apparatus according to claim 10, wherein a suction port for sucking a gas is provided between the inner seal member and the outer seal member of the cooling plate.
  12.  天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するプラズマガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、
     前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、前記誘電体板と前記誘電体窓との間に設けられ、マイクロ波を透過させるスロットを有するスロット板と、前記誘電体板の上面に載せられて前記誘電体板を冷却する冷却板と、を含み、
     前記誘電体窓と前記誘電体板との間、及び前記誘電体板と前記冷却板との間が大気圧よりも圧力が低い負圧にされるマイクロ波プラズマ処理装置。
    A processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a plasma gas supply unit for supplying plasma gas to the processing container, and a dielectric window of the processing container A microwave antenna for exciting a plasma gas in the processing vessel, and a microwave plasma processing apparatus comprising:
    The microwave antenna includes a dielectric plate that propagates microwaves in the horizontal direction and compresses the wavelength of the microwave, and a slot that is provided between the dielectric plate and the dielectric window and transmits microwaves. A slot plate, and a cooling plate placed on the top surface of the dielectric plate to cool the dielectric plate,
    A microwave plasma processing apparatus in which a negative pressure lower than an atmospheric pressure is set between the dielectric window and the dielectric plate and between the dielectric plate and the cooling plate.
PCT/JP2010/054100 2009-03-23 2010-03-11 Microwave plasma processing apparatus WO2010110080A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080013280XA CN102362557A (en) 2009-03-23 2010-03-11 Microwave plasma processing apparatus
KR1020117022121A KR101256850B1 (en) 2009-03-23 2010-03-11 Microwave plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-070943 2009-03-23
JP2009070943A JP5461040B2 (en) 2009-03-23 2009-03-23 Microwave plasma processing equipment

Publications (1)

Publication Number Publication Date
WO2010110080A1 true WO2010110080A1 (en) 2010-09-30

Family

ID=42780773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054100 WO2010110080A1 (en) 2009-03-23 2010-03-11 Microwave plasma processing apparatus

Country Status (5)

Country Link
JP (1) JP5461040B2 (en)
KR (1) KR101256850B1 (en)
CN (1) CN102362557A (en)
TW (1) TW201116168A (en)
WO (1) WO2010110080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106323A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Plasma treatment device and method for manufacturing plasma treatment device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980475B1 (en) * 2011-03-31 2012-07-18 三井造船株式会社 Induction heating device
KR101299702B1 (en) * 2011-05-31 2013-08-28 세메스 주식회사 Substrate treating apparatus
JP2014154684A (en) * 2013-02-07 2014-08-25 Tokyo Electron Ltd Inductively coupled plasma processing apparatus
KR102524258B1 (en) * 2018-06-18 2023-04-21 삼성전자주식회사 Temperature control unit, temperature measurement unit and plasma processing apparatus including the same
CN111640642B (en) * 2019-03-01 2023-08-18 北京北方华创微电子装备有限公司 Antenna mechanism and surface wave plasma processing equipment
KR102567508B1 (en) * 2020-12-21 2023-08-16 세메스 주식회사 Apparatus for porcessing a substrate and method for processing a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203098A (en) * 2000-01-18 2001-07-27 Rohm Co Ltd Structure of radial line slot antenna in a plasma surface processing apparatus for semiconductor substrate
JP2008243827A (en) * 2001-03-28 2008-10-09 Tadahiro Omi Plasma processing method
JP2008305736A (en) * 2007-06-11 2008-12-18 Tokyo Electron Ltd Plasma processing apparatus, method for using plasma processing apparatus, and method for cleaning plasma processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402860B2 (en) * 2001-03-28 2010-01-20 忠弘 大見 Plasma processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203098A (en) * 2000-01-18 2001-07-27 Rohm Co Ltd Structure of radial line slot antenna in a plasma surface processing apparatus for semiconductor substrate
JP2008243827A (en) * 2001-03-28 2008-10-09 Tadahiro Omi Plasma processing method
JP2008305736A (en) * 2007-06-11 2008-12-18 Tokyo Electron Ltd Plasma processing apparatus, method for using plasma processing apparatus, and method for cleaning plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106323A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Plasma treatment device and method for manufacturing plasma treatment device
JP7067913B2 (en) 2017-12-13 2022-05-16 東京エレクトロン株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
KR101256850B1 (en) 2013-04-22
TW201116168A (en) 2011-05-01
JP2010225396A (en) 2010-10-07
KR20110128888A (en) 2011-11-30
JP5461040B2 (en) 2014-04-02
CN102362557A (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5461040B2 (en) Microwave plasma processing equipment
KR101317018B1 (en) Plasma treatment apparatus
JP4878782B2 (en) Plasma processing apparatus and plasma processing method
JP5357486B2 (en) Plasma processing equipment
JP4694596B2 (en) Microwave plasma processing apparatus and microwave power feeding method
US20150211125A1 (en) Plasma processing apparatus
JP5189999B2 (en) Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus
JP4593652B2 (en) Microwave plasma processing equipment
US8267042B2 (en) Plasma processing apparatus and plasma processing method
JP6063741B2 (en) Plasma processing vessel and plasma processing apparatus
JP5411136B2 (en) Microwave plasma processing apparatus and cooling jacket manufacturing method
WO2010086950A1 (en) Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board
JP5374853B2 (en) Plasma processing equipment
WO2010016423A1 (en) Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus
JP2007059782A (en) Spacer member and plasma processing device
KR20070086378A (en) Plasma processing apparatus
WO2010016414A1 (en) Microwave plasma generation device and microwave plasma processing device
US20150155141A1 (en) Plasma processing apparatus
JP2022006424A (en) Plasma processing apparatus
JP6594664B2 (en) Plasma processing equipment
JP4059570B2 (en) Plasma etching apparatus, plasma etching method, and plasma generation method
JPH07142197A (en) Electromagnetic wave transmission body
JP2019220532A (en) Plasma processing device and plasma processing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013280.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022121

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755880

Country of ref document: EP

Kind code of ref document: A1