WO2010016414A1 - Microwave plasma generation device and microwave plasma processing device - Google Patents

Microwave plasma generation device and microwave plasma processing device Download PDF

Info

Publication number
WO2010016414A1
WO2010016414A1 PCT/JP2009/063492 JP2009063492W WO2010016414A1 WO 2010016414 A1 WO2010016414 A1 WO 2010016414A1 JP 2009063492 W JP2009063492 W JP 2009063492W WO 2010016414 A1 WO2010016414 A1 WO 2010016414A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
slot plate
elastic member
slot
microwave
Prior art date
Application number
PCT/JP2009/063492
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 石橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2010523833A priority Critical patent/JP5356390B2/en
Publication of WO2010016414A1 publication Critical patent/WO2010016414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a microwave plasma generator and a microwave plasma processing apparatus.
  • a method using a microwave is known.
  • plasma is generated by ionizing the gas in the plasma processing vessel by microwave discharge.
  • a window made of a dielectric material that transmits microwaves hereinafter referred to as a dielectric window
  • microwaves are introduced from the antenna installed outside the plasma processing container into the container. Can be irradiated.
  • This method has a feature that high-density plasma can be formed even at a relatively low temperature, and is excellent in terms of productivity and energy efficiency.
  • the RLSA Ring Line Slot Slot Antenna
  • the RLSA includes a coaxial waveguide, a cooling jacket, a slow wave plate, and a slot plate.
  • the slot plate is disposed adjacent to the lower surface of the slow wave plate.
  • a plurality of slots as microwave outlets are arranged point-symmetrically.
  • the microwave supplied from the microwave supply source propagates in the coaxial waveguide, reaches the slow wave plate, and forms a standing wave.
  • a part of the microwaves forming the standing wave exits from the plurality of slots arranged on the slot plate and is uniformly irradiated toward the dielectric window.
  • the irradiated microwave passes through the dielectric window and reaches the processing container.
  • the microwaves that have reached the processing container ionize the gas in the processing container and generate plasma.
  • Patent Document 1 discloses a configuration for solving the latter problem among these.
  • the plasma processing apparatus disclosed in Patent Document 1 has a top plate (dielectric window) whose radial thickness continuously changes in a tapered shape.
  • This top plate can resonate the irradiated microwave under various plasma processing conditions. Resonated microwaves are evenly distributed to the peripheral edge of the top plate and transmitted to the processing container. In this way, plasma can be uniformly generated in the processing container under various plasma processing conditions.
  • Patent Document 1 does not disclose another problem, which is to maintain the uniformity of the distribution of the microwaves irradiated to the dielectric window.
  • the slot plate of RLSA is made of a metal such as copper (Cu).
  • the slow wave plate and the dielectric window are formed of a dielectric such as alumina (Al 2 O 3 ).
  • the thermal expansion coefficient of copper (Cu) is larger than that of alumina (Al 2 O 3 ). For this reason, when the temperature of the plasma processing apparatus rises during the plasma processing, the slot plate expands greatly compared to the dielectric window and the slow wave plate.
  • the slot plate is arranged between the slow wave plate and the dielectric window.
  • the thermal expansion coefficient of the slot plate is larger than that of the dielectric window and the slow wave plate. If the slot plate is fixed to the slow wave plate or the dielectric window by a screw or the like at its peripheral edge, the slot plate cannot expand isotropically, and as the temperature rises, the slow wave plate and the dielectric plate are not expanded. It deforms so as to spread between the body windows. When the slot plate is deformed, the microwave transmission path is deformed, or the symmetry of the slot arrangement formed in the slot plate is impaired. As a result, the uniformity of the microwave distribution irradiated to the dielectric window is impaired.
  • Another factor that impairs the uniformity of the microwave distribution applied to the dielectric window is the generation of a gap between the slot plate and other members.
  • the inside of the plasma processing container is depressurized. Due to the pressure difference between the outside and inside of the processing vessel, the dielectric window is pressed against the processing vessel. As a result, for example, a gap may be generated between the slot plate and the slow wave plate. When the gap is generated, the microwave transmission path is deformed, and the uniformity of the distribution of the microwave irradiated to the dielectric window is impaired.
  • the antenna of the plasma processing apparatus is cooled by a cooling jacket disposed adjacently.
  • the dielectric window is also cooled by the cooling jacket via the antenna. Due to the deformation of the slot plate and the generation of a gap, the adhesion between the cooling jacket and the antenna is lowered. As a result, the temperature distribution of the antenna and the dielectric window may be biased. The uneven temperature distribution makes the plasma density in the processing container non-uniform and prevents uniform plasma processing.
  • An object of the present invention is to provide a microwave plasma generator capable of preventing a gap from being generated between a slot plate and other members, suppressing deformation of the slot plate, and preventing non-uniform plasma density in a processing vessel. And providing a microwave plasma processing apparatus.
  • a microwave plasma generator provides: A waveguide for guiding microwaves to generate plasma; A slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion; A slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate; A dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot; An elastic member disposed between the slot plate and the dielectric window; With The slot plate is supported to be deformable in the surface direction, The elastic member is supported by the dielectric window and biases the slot plate in a direction in which the slot plate is in close contact with the slow wave plate.
  • the elastic member has a sheet shape.
  • the microwave plasma generator of the present invention is Two or more elastic members
  • the dielectric window has a recess for holding each of the two or more elastic members on the surface of the slot plate.
  • the elastic member is an annular elastic member
  • the recess is a groove for holding the annular elastic member.
  • the elastic member is arranged so as not to cover the slot opening of the slot plate.
  • a microwave plasma processing apparatus provides: A microwave plasma generator, A processing container in which plasma processing is performed, and A microwave source that outputs microwaves and supplies them to the waveguide; A microwave plasma processing apparatus that plasma-processes an object to be processed by plasma generated using microwaves,
  • the microwave plasma generator is A waveguide for guiding microwaves to generate plasma;
  • a slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion;
  • a slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate;
  • a dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot;
  • An elastic member disposed between the slot plate and the dielectric window; With The slot plate is supported to be deformable in the surface direction, The elastic member is supported by the dielectric window and urges the slot plate in a direction in close contact with the slow wave plate. It is characterized by that.
  • the microwave plasma generation apparatus and the microwave plasma processing apparatus of the present invention it is possible to prevent a gap from being generated between the slot plate and another member, suppress deformation of the slot plate, and reduce the plasma density in the processing container. Uniformity can be prevented.
  • FIG. 1 is a cross-sectional view of a plasma processing apparatus according to a first embodiment of the present invention. It is an example of the slot plate with which the plasma processing apparatus which concerns on the 1st Embodiment of this invention was equipped, Comprising: It is a top view which shows the state which looked at the slot plate from the slow wave plate side. It is the schematic which expanded and showed the cross section of the plasma generator with which the plasma processing apparatus which concerns on the 1st Embodiment of this invention was equipped. In the plasma processing apparatus concerning the modification of the 1st Embodiment of this invention, it is the top view which showed the relationship between an elastic member and a slot plate, Comprising: The figure which looked at the slot plate from the top plate side is shown.
  • a plasma processing apparatus 1 includes a processing container (chamber) 2, a top plate (dielectric window) 3, an antenna 4, a waveguide 5, a microwave source 6, a cooling jacket 7, a substrate holder 8, A vacuum pump 9, a high frequency power source 10, and a gas passage 11 are provided.
  • the antenna 4 includes a slot plate 4a and a slow wave plate (dielectric plate) 4b.
  • a connector 20 and an elastic member 21 are arranged between the slot plate 4a and the top plate 3 (in order to facilitate understanding of the invention, the connector is shown in FIG. 20 and the elastic member 21 are omitted). That is, when viewed from the top plate 3 side, the top plate 3, the connector 20, the elastic member 21, the slot plate 4a, the slow wave plate 4b, and the cooling jacket 7 are arranged adjacently in order.
  • the processing container 2 is configured to be depressurized by being sealed with a top plate 3.
  • the processing container 2 is provided with a gas passage 11 for introducing gas into the processing container 2.
  • a substrate holder 8 for holding the substrate to be processed W is assembled to the bottom of the processing container 2.
  • the top plate 3 is made of a dielectric material such as Al 2 O 3 , for example.
  • the top plate 3 transmits the microwave irradiated from the antenna 4 into the processing container 2.
  • the top plate 3 also has a role as a lid that hermetically seals the opening of the processing container 2.
  • the antenna 4 includes a slot plate 4a and a slow wave plate 4b made of a dielectric.
  • the antenna 4 has a role of uniformly irradiating the top plate 3 with the microwave introduced through the waveguide 5.
  • the slot plate 4a is made of a metal such as copper (Cu), for example.
  • the thickness of the slot plate 4a is about 0.4 mm.
  • the diameter of the slot plate varies depending on the size of the plasma processing apparatus. For example, in the case of the plasma processing apparatus 1 that performs plasma processing on a target substrate W having a diameter of 300 mm, the slot plate 4a has a diameter of about 400 mm.
  • the slot plate 4 a has a shape that covers the opening of the antenna 4. As shown in FIG. 2, the slot plate 4a has a large number of slots 41 and 42 formed therein.
  • the slots 41 and 42 are arranged symmetrically and concentrically with respect to the center point of the slot plate 4a.
  • the slots 41 and 42 are arranged so as to be orthogonal to each other.
  • the slow wave plate 4b is made of a dielectric material such as SiO 2 or Al 2 O 3 .
  • the thickness of the slow wave plate 4b is about 4 mm.
  • the slow wave plate 4b is disposed between the cooling jacket 7 and the slot plate 4a.
  • the slow wave plate 4 b has a role of compressing the wavelength of the microwave supplied through the waveguide 5.
  • the connector 20 is supported by the top plate 3 and supports the slot plate 4a at its peripheral edge without being fixed.
  • the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction.
  • the elastic member 21 is formed in a circular sheet shape as indicated by a broken line in FIG.
  • the diameter of the elastic member 21 is slightly smaller than the diameter of the slot plate 4a.
  • the elastic member 21 is disposed between the top plate 3 and the slot plate 4a.
  • the elastic member 21 has elasticity and is supported by the top plate 3 to urge the slot plate 4a in a direction in close contact with the slow wave plate 4b.
  • the elastic member 21 covers the openings of the slots 41 and 42 of the slot plate 4a.
  • the elastic member 21 is preferably made of a material having a small dielectric loss such as a fluororesin sheet so as not to affect the propagation of the microwave.
  • the waveguide 5 includes an axial tube made up of an outer conductor 5a and an inner conductor 5b, and a rectangular waveguide portion 5c disposed on the upper portion of the axial tube.
  • the inner conductor 5b is coupled to the slot plate 4a.
  • the microwave source 6 has a role of supplying microwaves to the antenna 4 through the waveguide 5.
  • the cooling jacket 7 has a role of cooling the antenna 4 as necessary to prevent the antenna 4 from overheating.
  • the cooling jacket 7 also has a role of cooling the top plate 3 through the antenna 4 as necessary to prevent overheating of the top plate 3.
  • the microwave is supplied from the microwave source 6 to the antenna 4 through the waveguide 5.
  • the slow wave plate 4b compresses the wavelength of the supplied microwave.
  • the microwave whose wavelength is compressed spreads in the radial direction of the plasma processing apparatus 1 and is irradiated to the top plate 3 through the slots 41 and 42 of the slot plate 4a. At this time, the microwave forms a circularly polarized wave.
  • the microwave irradiated to the top plate 3 passes through the top plate 3 and reaches the inside of the processing container 2.
  • the inside of the processing container 2 is depressurized by the vacuum pump 9.
  • a gas such as argon (Ar) or xenon (Xe) is supplied into the processing container 2.
  • Ar argon
  • Xe xenon
  • the microwave reaches the inside of the processing container 2
  • the microwave reaches the inside of the processing container 2
  • the molecules of the film forming gas are ionized to form a film on the substrate W to be processed fixed on the substrate holding table 8.
  • plasma processing such as CVD (Chemical Vapor Deposition) is performed.
  • the top plate 3 When the plasma processing is performed, the top plate 3 is pressed against the processing container 2 due to a pressure difference between the outside and the inside of the processing container 2.
  • the slot plate 4a is urged in a direction in close contact with the slow wave plate 4b by a restoring force of the elastic member 21 supported by the top plate 3.
  • the adhesion between the slot plate 4a and the slow wave plate 4b is maintained by the restoring force of the elastic member 21, and transmission of microwaves is performed. Route deformation is prevented.
  • the uniformity of the microwave distribution irradiated on the top 3 is maintained, and it becomes possible to generate plasma uniformly in the processing container 2.
  • the cooling efficiency of the antenna 4 and the top plate 3 is maintained, and the temperature distribution of the plasma processing apparatus 1 is appropriately controlled. Easy to do. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented.
  • the slot plate 4a is made of a metal such as copper (Cu), its thermal expansion coefficient is large.
  • the top plate 3 and the slow wave plate 4b are made of a dielectric material such as Al 2 O 3 , the coefficient of thermal expansion is smaller than that of the slot plate 4a. If the slot plate 4a is fixed to the top plate 3 or the slow wave plate 4b by a screw or the like at the periphery thereof, the slot plate 4a disposed between the top plate 3 and the slow wave plate 4b is isotropic.
  • the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction. For this reason, the slot plate 4a can expand isotropically, and the symmetry of the arrangement of the slots 41 and 42 is maintained. In this way, the uniformity of the distribution of microwaves irradiated on the top 3 is maintained.
  • the temperature of the peripheral portion of the top plate 3 is higher than the temperature of the portion where the microwave is introduced into the top plate 3 (that is, the central portion of the top plate 3 near the waveguide 5). Tend to be low. Under the influence of the top plate 3, a temperature gradient is also generated in the slot plate 4a. Since the slot plate 4a has a large coefficient of thermal expansion and is formed as thin as 0.4 mm, such a temperature gradient causes warp deformation of the slot plate 4a. When the warp deformation of the slot plate 4a occurs, the symmetry of the arrangement of the slots 41 and 42 is lost, and as a result, the uniformity of the distribution of microwaves irradiated on the top plate 3 is lost.
  • the slot plate 4a is urged by the elastic member 21 and is in close contact with the slow wave plate 4b.
  • the thermal expansion coefficient of the top plate 3 and the slow wave plate 4b is smaller than the thermal expansion coefficient of the slot plate 4a.
  • the top plate 3 and the slow wave plate 4b are less likely to be deformed by heat than the slot plate 4a.
  • warp deformation of the slot plate 4a is suppressed.
  • the symmetry of the arrangement of the slots 41 and 42 is maintained, and the uniformity of the distribution of the microwaves irradiated on the top plate 3 is maintained.
  • the sheet-like elastic member 22 has a plurality of holes 22a.
  • the holes 22a are arranged point-symmetrically in accordance with the positions of the slots 41 and 42 formed in the slot plate 4a. That is, since the sheet-like elastic member 22 does not cover the slots 41 and 42, the propagation of the microwave is not affected. For this reason, the material used for the sheet-like elastic member 22 is not limited to a material having a small dielectric loss. As the sheet-like elastic member 22, for example, a fluororesin sheet is preferably used. Further, the slots 41 and 42 are provided point-symmetrically in the slot plate 4a, and the holes 22a of the elastic member 22 are arranged point-symmetrically in accordance with the positions of the slots 41 and 42. The alignment with the slots 41 and 42 is easy.
  • FIG. 5 the plasma processing apparatus 1 which concerns on the 2nd Embodiment of this invention is demonstrated, referring FIG. 5, FIG.
  • the plasma processing apparatus 1 is the same as that shown in FIG. 1, and the slot plate 4a is the same as that shown in FIG.
  • the difference from the first embodiment is that, as shown in FIG. 5, four elastic members 23a, 23b, 23c and 23d are used instead of the elastic member 21, and as shown in FIG.
  • the groove 26 is formed in the plate 3.
  • elastic members 23a, 23b, 23c, and 23d are arranged on four circles having different diameters. ing.
  • the four circles are concentric circles sharing the central point of the slot plate 4a as the central point.
  • the elastic member 23 is disposed so as to avoid the slots 41 and 42.
  • the elastic member 23 is composed of, for example, an O-ring.
  • the cross section of the O-ring is not limited to a circle, but may be an ellipse, a semicircle, or a polygon with rounded corners.
  • fluororubber is preferably used as the material of the O-ring.
  • the elastic member 23 includes a plurality of elastic members 23a, 23b, 23c, and 23d. Since the plurality of elastic members 23a, 23b, 23c and 23d are arranged concentrically, the elastic member 23 urges the slot plate 4a with equal pressure in any radial direction, and the slow wave plate 4b Can be adhered to. For this reason, according to this embodiment, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b can be adhered more reliably.
  • grooves 26 for holding a plurality of elastic members 23 are formed on the surface of the top plate 3 on the slot plate 4 a side.
  • the elastic member 23 is disposed along the groove 26 and is held by the groove 26.
  • the formation of the groove 26 makes it easy to determine the position of the elastic member 23 when the plasma processing apparatus 1 is assembled. Further, since the elastic member 23 is held by the groove 26, the position of the elastic member 23 is not displaced during the assembly of the plasma processing apparatus 1 or during the plasma processing. For this reason, the slot plate 4a can be more closely attached to the slow wave plate 4b. Furthermore, the adhesiveness between the slot plate 4a and the slow wave plate 4b can be further improved by changing the shape of the groove 26 depending on the part.
  • the slot plate 4a is urged in a direction in close contact with the slow wave plate 4b by the restoring force of the elastic member 23 supported by the top plate 3. For this reason, even if the top plate 3 is displaced in the direction of the processing container 2 due to a pressure difference, the adhesiveness between the slot plate 4a and the slow wave plate 4b is maintained by the restoring force of the elastic member 23, and transmission of microwaves is performed. Route deformation is prevented. As a result, the uniformity of the microwave distribution irradiated on the top 3 is maintained, and it becomes possible to generate plasma uniformly in the processing container 2.
  • the cooling efficiency of the antenna 4 and the top plate 3 by the cooling jacket 7 is maintained, and the temperature distribution of the plasma processing apparatus 1 is maintained. It becomes easy to appropriately control. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented. As a result, uniform plasma processing can be performed on the entire surface of the substrate W to be processed.
  • the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction. For this reason, the slot plate 4a can expand isotropically, and the symmetry of the arrangement of the slots 41 and 42 is maintained. In this way, the uniformity of the distribution of microwaves irradiated on the top 3 is maintained.
  • the slot plate 4a is urged by the elastic member 23 and is in close contact with the slow wave plate 4b. Due to the close contact with the slow wave plate 4b which is not easily deformed by heat, warp deformation of the slot plate 4a is suppressed. As a result of suppressing the warp deformation of the slot plate 4a, the symmetry of the arrangement of the slots 41 and 42 is maintained, and the uniformity of the distribution of the microwaves irradiated on the top plate 3 is maintained.
  • the degree of deformation of the slot plate 4a may be different between the central portion and the peripheral portion.
  • the adhesion between the slot plate 4a and the slow wave plate 4b may be partially insufficient.
  • the elastic member 23 includes a plurality of elastic members 23a, 23b, 23c, and 23d.
  • the material, shape, thickness, elasticity and the like of the elastic members 23a, 23b, 23c and 23d can be individually selected according to the expected temperature gradient and the expected deformation state.
  • an elastic member 23a having a high compressive stress may be disposed at a position corresponding to a portion having a large warp deformation
  • an elastic member 23d having a relatively low compressive stress may be disposed at a position corresponding to a portion having a small warp deformation. It is.
  • the elastic member 23a having a high compressive stress strongly repels due to the force of the slot plate 4a to deform, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b are more reliably brought into close contact with each other. Can do.
  • the distribution of the pressure transmitted to the slot plate 4a via the elastic member 23 can be optimized by changing the shape of the groove 26 depending on the part.
  • the elastic member 24 includes two annular elastic members 24a and 24b and one sheet-like elastic member 24x.
  • the two annular elastic members 24a and 24b are arranged on two circles having different diameters. These two circles are concentric circles that share the central point of the slot plate 4a as the central point.
  • the two annular elastic members 24a and 24b are arranged so as not to cover the slots 41 and 42.
  • the sheet-like elastic member 24x is disposed at the peripheral edge of the slot plate 4a.
  • the sheet-like elastic member 24x covers the peripheral edge of the slot plate 4a including the slots 41 and 42.
  • the sheet-like elastic member 24x is formed of a material having a small dielectric loss such as a fluororesin sheet.
  • a groove 26 is formed at a position of the top plate 3 facing the annular elastic members 24a and 24b.
  • the elastic member 25 includes three annular elastic members 25a, 25b and 25c and a sheet-like elastic member 25x.
  • the three annular elastic members 25a, 25b and 25c are arranged on three circles having different diameters. These three circles are concentric circles that share the central point of the slot plate 4a as the central point.
  • the annular elastic member 25a is disposed on the peripheral edge of the slot plate 4a.
  • the annular elastic members 25b and 25c are disposed at the center of the slot plate 4a.
  • the annular elastic members 25b and 25c are, for example, O-rings made of fluororubber.
  • Each sheet-like elastic member 25x and the annular elastic member 25a are coupled.
  • Each sheet-like elastic member 25x is arranged point-symmetrically with the center point of the slot plate 4a as a reference point.
  • Each sheet-like elastic member 25x is arranged so as not to cover the slots 41 and 42.
  • Grooves 26 are formed in advance on the top plate 3 at positions facing the annular elastic members 25a, 25b, and 25c.
  • the elastic member 24 or the elastic member 25 between the top plate 3 and the antenna 4 even when the slot plate 4a is thermally expanded, the adhesion between the slot plate 4a and the slow wave plate 4b is maintained. be able to.
  • the microwave transmission path can be prevented from being deformed, the microwave distribution applied to the top plate 3 can be kept uniform, and the plasma distribution in the processing vessel 2 can be kept uniform.
  • the cooling efficiency of the antenna 4 and the top plate 3 by the cooling jacket 7 is maintained, and the temperature distribution of the plasma processing apparatus 1 is maintained. It becomes easy to appropriately control. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented. As a result, uniform plasma processing can be performed on the entire surface of the substrate W to be processed.
  • the elastic member 24 or the elastic member 25 is composed of a plurality of elastic members. By arranging the plurality of elastic members in point symmetry with respect to the center of the slot plate 4a, the entire slot plate 4a can be urged with equal pressure and brought into close contact with the slow wave plate 4b.
  • the material, shape, thickness, elasticity, etc. of the elastic member 24 or the elastic member 25 are individually selected according to the expected temperature gradient and the expected deformation state. can do. For this reason, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b can be adhered more reliably.
  • the distribution of the pressure transmitted to the slot plate 4a via the elastic member 24 or the elastic member 25 can be optimized by changing the shape of the groove 26 depending on the part.
  • the present invention it is possible to prevent a gap from being generated between the slot plate and other members, to suppress deformation of the slot plate, and to prevent uneven distribution of plasma in the processing vessel. it can. According to the present invention, even if the plasma processing apparatus is increased in size by increasing the diameter of the substrate, it is possible to perform uniform plasma processing on the entire surface to be processed of the substrate. Examples of possible substrate processing include plasma oxidation processing, plasma nitriding processing, plasma oxynitriding processing, plasma CVD processing, plasma etching processing, and the like.
  • top plate, slot plate, slow wave plate, cooling jacket, etc. described in the embodiment are merely examples, and the invention is not limited to these.
  • the number, material, and shape of the elastic member can be arbitrarily selected according to the arrangement and shape of the slots and the plasma processing conditions.
  • SYMBOLS 1 Plasma processing apparatus 2 Processing container (chamber) 3 Top plate (dielectric window) DESCRIPTION OF SYMBOLS 4 Antenna 4a Slot plate 4b Slow wave plate 5 Waveguide 5a Outer conductor 5b Inner conductor 5c Rectangular waveguide part 6 Microwave source 7 Cooling jacket 8 Substrate holding base 9 Vacuum pump 10 High frequency power supply 11 Gas passage 20 Connector 21 Elastic member 22 Sheet Elastic member 22a Holes 23a, 23b, 23c, 23d Elastic member 24a, 24b Annular elastic member 24x Sheet elastic member 25 Elastic member 25a, 25b, 25c Annular elastic member 25x Sheet elastic member 26 Groove 41, 42 Slot 100 Plasma generation Equipment S Space W Substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

Provided are a plasma generation device (100) and a plasma processing device (1), in which formation of a gap near a slot plate (4a) can be prevented, deformation of a microwave transmission path is suppressed, and a uniform plasma density can be maintained. In the plasma generation device (100), constituent members, that is, a top plate (3), an elastic member (21), the slot plate (4a), a retardation plate (4b), and a cooling jacket (7) are provided adjacent to each other in this order from the top plate (3) side.  The slot plate (4a) is supported by an adapter (20) so as to be deformable in the plane direction thereof, and biased by the elastic member (21) supported by the top plate (3) in the direction in which the slot plate is brought into close contact with the retardation plate (4b).  The slot plate (4a) can be thermally expanded isotropically, and thus the deformation of the microwave transmission path due to the deformation of the slot plate (4a) is suppressed.  Even when the pressure in a processing container (2) is reduced, the close contact between the slot plate (4a) and the retardation plate (4b) is maintained.  The control of the plasma generation condition to a predetermined condition becomes easy, and consequently a uniform plasma density is maintained.

Description

マイクロ波プラズマ発生装置およびマイクロ波プラズマ処理装置Microwave plasma generator and microwave plasma processing apparatus
 本発明は、マイクロ波プラズマ発生装置およびマイクロ波プラズマ処理装置に関する。 The present invention relates to a microwave plasma generator and a microwave plasma processing apparatus.
 半導体の製造プロセスでは、薄膜の成膜又はエッチング等を目的としたプラズマ処理が広く行われている。高性能かつ高機能な半導体を得るためには、被処理基板の被処理面全面に対して均一なプラズマ処理を行う必要がある。均一なプラズマ処理を行うためには、清浄度の高い空間内で、プラズマを均一に発生させる必要がある。この要求は、基板の大径化及び半導体製品の微細化に伴いますます強まっている。 In the semiconductor manufacturing process, plasma processing for the purpose of forming a thin film or etching is widely performed. In order to obtain a high-performance and high-performance semiconductor, it is necessary to perform uniform plasma treatment on the entire surface of the substrate to be processed. In order to perform uniform plasma processing, it is necessary to generate plasma uniformly in a highly clean space. This demand is increasing with the increase in substrate diameter and the miniaturization of semiconductor products.
 プラズマ処理におけるプラズマ発生手段として、マイクロ波を用いる方法が知られている。この方法では、マイクロ波放電によってプラズマ処理容器内の気体を電離させ、プラズマを発生させる。プラズマ処理容器に、マイクロ波を透過させる誘電体材料で形成された窓(以下、誘電体窓と呼称する。)を設けることで、プラズマ処理容器の外部に設置されたアンテナから容器内へマイクロ波を照射することが可能になる。この結果、プラズマ処理容器内に放電電極を設ける必要がなくなり、処理装置内の清浄度が高く保たれる。この方法は、比較的低温でも高密度のプラズマを形成できるという特徴を有しており、生産性やエネルギー効率の点でも優れている。 As a plasma generation means in plasma processing, a method using a microwave is known. In this method, plasma is generated by ionizing the gas in the plasma processing vessel by microwave discharge. By providing the plasma processing container with a window made of a dielectric material that transmits microwaves (hereinafter referred to as a dielectric window), microwaves are introduced from the antenna installed outside the plasma processing container into the container. Can be irradiated. As a result, there is no need to provide a discharge electrode in the plasma processing container, and the cleanliness in the processing apparatus is kept high. This method has a feature that high-density plasma can be formed even at a relatively low temperature, and is excellent in terms of productivity and energy efficiency.
 プラズマ処理容器内にマイクロ波を照射するためのアンテナとして、RLSA(Radial Line Slot Antenna)が広く用いられている。一般に、RLSAは、同軸導波管、冷却ジャケット、遅波板、及びスロット板を備える。スロット板は遅波板の下面に隣接して配置されている。スロット板には、マイクロ波の放出口としての複数のスロットが点対称に配列されている。マイクロ波供給源から供給されたマイクロ波は、同軸導波管内を伝播し、遅波板に到達し、定在波を形成する。定在波を形成したマイクロ波の一部は、スロット板に配列されている複数のスロットから出て、誘電体窓に向け均一に照射される。照射されたマイクロ波は誘電体窓を透過し、処理容器内に到達する。処理容器内に到達したマイクロ波は、処理容器内の気体を電離させ、プラズマを発生させる。 RLSA (Radial Line Slot Slot Antenna) is widely used as an antenna for irradiating microwaves into a plasma processing vessel. In general, the RLSA includes a coaxial waveguide, a cooling jacket, a slow wave plate, and a slot plate. The slot plate is disposed adjacent to the lower surface of the slow wave plate. In the slot plate, a plurality of slots as microwave outlets are arranged point-symmetrically. The microwave supplied from the microwave supply source propagates in the coaxial waveguide, reaches the slow wave plate, and forms a standing wave. A part of the microwaves forming the standing wave exits from the plurality of slots arranged on the slot plate and is uniformly irradiated toward the dielectric window. The irradiated microwave passes through the dielectric window and reaches the processing container. The microwaves that have reached the processing container ionize the gas in the processing container and generate plasma.
 したがって、プラズマを均一に発生させるためには、プラズマ処理容器内においてマイクロ波の分布が均一化されている必要がある。そのためには、少なくとも、誘電体窓に照射されるマイクロ波の分布の均一性が保たれていることと、照射されたマイクロ波がプラズマ処理容器内に均一に伝達されることが必要である。 Therefore, in order to generate plasma uniformly, it is necessary to make the distribution of microwaves uniform in the plasma processing vessel. For this purpose, at least the uniformity of the distribution of the microwave applied to the dielectric window must be maintained, and the irradiated microwave must be uniformly transmitted into the plasma processing container.
 特許文献1には、これらのうち後者の課題を解決するための構成が開示されている。特許文献1において開示されているプラズマ処理装置は、径方向の厚さがテーパ状に連続的に変化する天板(誘電体窓)を有している。この天板は、様々なプラズマ処理条件において、照射されたマイクロ波に共振を起こさせることができる。共振を起こしたマイクロ波は天板の周縁部にまで均一に分布し、処理容器内に伝達される。このようにして、様々なプラズマ処理条件において、処理容器内にプラズマを均一に発生させることが可能となる。 Patent Document 1 discloses a configuration for solving the latter problem among these. The plasma processing apparatus disclosed in Patent Document 1 has a top plate (dielectric window) whose radial thickness continuously changes in a tapered shape. This top plate can resonate the irradiated microwave under various plasma processing conditions. Resonated microwaves are evenly distributed to the peripheral edge of the top plate and transmitted to the processing container. In this way, plasma can be uniformly generated in the processing container under various plasma processing conditions.
特開2005-100931号公報Japanese Patent Laid-Open No. 2005-100931
 一方、もう一つの課題である、誘電体窓に照射されるマイクロ波の分布の均一性を保つことについては、特許文献1は開示していない。 On the other hand, Patent Document 1 does not disclose another problem, which is to maintain the uniformity of the distribution of the microwaves irradiated to the dielectric window.
 誘電体窓に照射されるマイクロ波の分布の均一性を損なう要因の一つに、スロット板の変形がある。RLSAのスロット板は銅(Cu)などの金属で形成されている。これに対し、遅波板や誘電体窓はアルミナ(Al)などの誘電体で形成されている。銅(Cu)の熱膨張率は、アルミナ(Al)よりも大きい。このため、プラズマ処理中にプラズマ処理装置の温度が上昇すると、スロット板は誘電体窓や遅波板に比べて大きく熱膨張する。 One factor that impairs the uniformity of the distribution of the microwaves irradiated to the dielectric window is deformation of the slot plate. The slot plate of RLSA is made of a metal such as copper (Cu). On the other hand, the slow wave plate and the dielectric window are formed of a dielectric such as alumina (Al 2 O 3 ). The thermal expansion coefficient of copper (Cu) is larger than that of alumina (Al 2 O 3 ). For this reason, when the temperature of the plasma processing apparatus rises during the plasma processing, the slot plate expands greatly compared to the dielectric window and the slow wave plate.
 通常、スロット板は遅波板と誘電体窓とに挟まれる形で配置される。スロット板の熱膨張率は、誘電体窓や遅波板の熱膨張率に比べて大きい。もしスロット板がその周縁部において、ねじ等によって遅波板又は誘電体窓に固定されていると、スロット板は等方的に膨張することができず、温度が上昇するに従って遅波板と誘電体窓との間を押し広げるように変形する。スロット板が変形すると、マイクロ波の伝送経路が変形したり、スロット板に形成されているスロットの配列の対称性が損なわれたりする。この結果、誘電体窓に照射されるマイクロ波の分布の均一性が損なわれる。 Usually, the slot plate is arranged between the slow wave plate and the dielectric window. The thermal expansion coefficient of the slot plate is larger than that of the dielectric window and the slow wave plate. If the slot plate is fixed to the slow wave plate or the dielectric window by a screw or the like at its peripheral edge, the slot plate cannot expand isotropically, and as the temperature rises, the slow wave plate and the dielectric plate are not expanded. It deforms so as to spread between the body windows. When the slot plate is deformed, the microwave transmission path is deformed, or the symmetry of the slot arrangement formed in the slot plate is impaired. As a result, the uniformity of the microwave distribution irradiated to the dielectric window is impaired.
 誘電体窓に照射されるマイクロ波の分布の均一性を損なう他の要因として、スロット板と他部材との間における間隙の発生がある。プラズマ処理を行う際、プラズマ処理容器の内部は減圧される。処理容器外部と内部との間の圧力差により、誘電体窓は処理容器に押しつけられる。この結果、例えばスロット板と遅波板との間において間隙が発生することがある。間隙が発生すると、マイクロ波の伝送経路が変形し、誘電体窓に照射されるマイクロ波の分布の均一性が損なわれる。 Another factor that impairs the uniformity of the microwave distribution applied to the dielectric window is the generation of a gap between the slot plate and other members. When plasma processing is performed, the inside of the plasma processing container is depressurized. Due to the pressure difference between the outside and inside of the processing vessel, the dielectric window is pressed against the processing vessel. As a result, for example, a gap may be generated between the slot plate and the slow wave plate. When the gap is generated, the microwave transmission path is deformed, and the uniformity of the distribution of the microwave irradiated to the dielectric window is impaired.
 また、遅波板とスロット板との間、又は遅波板と冷却ジャケットとの間の間隙が拡大すると、マイクロ波の伝播によって両者の間に電位差が生じ、耐電圧の低い部分に異常放電が発生するおそれもある。 In addition, when the gap between the slow wave plate and the slot plate or between the slow wave plate and the cooling jacket is enlarged, a potential difference occurs between the two due to the propagation of microwaves, and abnormal discharge occurs in a portion with a low withstand voltage. May also occur.
 さらに、スロット板の変形や間隙の発生は、プラズマ処理装置の温度制御を困難にする。通常、プラズマ処理装置のアンテナは、隣接して配置された冷却ジャケットによって冷却されている。誘電体窓も、アンテナを介して冷却ジャケットによって冷却されている。スロット板の変形や間隙の発生によって、冷却ジャケットとアンテナとの密着性は低下する。この結果、アンテナや誘電体窓の温度分布に偏りが生じる場合がある。温度分布の偏りは、処理容器内のプラズマ密度を不均一化させ、均一なプラズマ処理を妨げる。 Furthermore, deformation of the slot plate and generation of gaps make it difficult to control the temperature of the plasma processing apparatus. Usually, the antenna of the plasma processing apparatus is cooled by a cooling jacket disposed adjacently. The dielectric window is also cooled by the cooling jacket via the antenna. Due to the deformation of the slot plate and the generation of a gap, the adhesion between the cooling jacket and the antenna is lowered. As a result, the temperature distribution of the antenna and the dielectric window may be biased. The uneven temperature distribution makes the plasma density in the processing container non-uniform and prevents uniform plasma processing.
 本発明の目的は、スロット板と他部材との間に間隙が生じることを防ぎ、スロット板の変形を抑制し、処理容器内のプラズマ密度の不均一化を防ぐことのできるマイクロ波プラズマ発生装置およびマイクロ波プラズマ処理装置を提供することである。 An object of the present invention is to provide a microwave plasma generator capable of preventing a gap from being generated between a slot plate and other members, suppressing deformation of the slot plate, and preventing non-uniform plasma density in a processing vessel. And providing a microwave plasma processing apparatus.
 上記目的を達成するため、本発明の第1の観点に係るマイクロ波プラズマ発生装置は、
 プラズマを発生させるためのマイクロ波を導く導波部と、
 前記導波部を通じて導入された前記マイクロ波を放射するための複数のスロットを有するスロット板と、
 前記導波部と前記スロット板との間に配置され、前記導波部を通じて導入された前記マイクロ波の波長を圧縮して前記スロット板に導く遅波板と、
 誘電体材料から形成され、前記スロットから放射された前記マイクロ波を透過させる誘電体窓と、
 前記スロット板と前記誘電体窓との間に配置された弾性部材と、
を備え、
 前記スロット板はその面方向に変形可能に支持され、
 前記弾性部材は、前記誘電体窓に支持されて、前記スロット板を前記遅波板に密着させる方向に付勢する。
In order to achieve the above object, a microwave plasma generator according to a first aspect of the present invention provides:
A waveguide for guiding microwaves to generate plasma;
A slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion;
A slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate;
A dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot;
An elastic member disposed between the slot plate and the dielectric window;
With
The slot plate is supported to be deformable in the surface direction,
The elastic member is supported by the dielectric window and biases the slot plate in a direction in which the slot plate is in close contact with the slow wave plate.
 好ましくは、前記弾性部材は、シート状である。 Preferably, the elastic member has a sheet shape.
 好ましくは、本発明のマイクロ波プラズマ発生装置は、
 前記弾性部材を2以上備え、
 前記誘電体窓は、その前記スロット板側の面に、前記2以上の弾性部材のそれぞれを保持するための凹部を有する。
Preferably, the microwave plasma generator of the present invention is
Two or more elastic members,
The dielectric window has a recess for holding each of the two or more elastic members on the surface of the slot plate.
 さらに好ましくは、
 前記弾性部材は、環状弾性部材であって、
 前記凹部は、前記環状弾性部材を保持するための溝である。
More preferably,
The elastic member is an annular elastic member,
The recess is a groove for holding the annular elastic member.
 好ましくは、前記弾性部材は、前記スロット板のスロットの開口部を被わないように配置されている。 Preferably, the elastic member is arranged so as not to cover the slot opening of the slot plate.
 本発明の第2の観点に係るマイクロ波プラズマ処理装置は、
 マイクロ波プラズマ発生装置と、
 その内部においてプラズマ処理が行われる処理容器と、
 マイクロ波を出力し導波部へ供給するマイクロ波源と、
を備え、マイクロ波を用いて発生されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置であって、
 前記マイクロ波プラズマ発生装置は、
 プラズマを発生させるためのマイクロ波を導く導波部と、
 前記導波部を通じて導入された前記マイクロ波を放射するための複数のスロットを有するスロット板と、
 前記導波部と前記スロット板との間に配置され、前記導波部を通じて導入された前記マイクロ波の波長を圧縮して前記スロット板に導く遅波板と、
 誘電体材料から形成され、前記スロットから放射された前記マイクロ波を透過させる誘電体窓と、
 前記スロット板と前記誘電体窓との間に配置された弾性部材と、
を備え、
 前記スロット板はその面方向に変形可能に支持され、
 前記弾性部材は、前記誘電体窓に支持されて、前記スロット板を前記遅波板に密着させる方向に付勢する、
 ことを特徴とする。
A microwave plasma processing apparatus according to a second aspect of the present invention provides:
A microwave plasma generator,
A processing container in which plasma processing is performed, and
A microwave source that outputs microwaves and supplies them to the waveguide;
A microwave plasma processing apparatus that plasma-processes an object to be processed by plasma generated using microwaves,
The microwave plasma generator is
A waveguide for guiding microwaves to generate plasma;
A slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion;
A slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate;
A dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot;
An elastic member disposed between the slot plate and the dielectric window;
With
The slot plate is supported to be deformable in the surface direction,
The elastic member is supported by the dielectric window and urges the slot plate in a direction in close contact with the slow wave plate.
It is characterized by that.
 本発明のマイクロ波プラズマ発生装置およびマイクロ波プラズマ処理装置によれば、スロット板と他部材との間に間隙が生じることを防ぎ、スロット板の変形を抑制し、処理容器内のプラズマ密度の不均一化を防ぐことができる。 According to the microwave plasma generation apparatus and the microwave plasma processing apparatus of the present invention, it is possible to prevent a gap from being generated between the slot plate and another member, suppress deformation of the slot plate, and reduce the plasma density in the processing container. Uniformity can be prevented.
本発明の第1の実施形態に係るプラズマ処理装置の断面図である。1 is a cross-sectional view of a plasma processing apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るプラズマ処理装置に備えられたスロット板の一例であって、スロット板を遅波板側から見た状態を示す平面図である。It is an example of the slot plate with which the plasma processing apparatus which concerns on the 1st Embodiment of this invention was equipped, Comprising: It is a top view which shows the state which looked at the slot plate from the slow wave plate side. 本発明の第1の実施形態に係るプラズマ処理装置に備えられたプラズマ発生装置の断面を拡大して示した概略図である。It is the schematic which expanded and showed the cross section of the plasma generator with which the plasma processing apparatus which concerns on the 1st Embodiment of this invention was equipped. 本発明の第1の実施形態の変形例に係るプラズマ処理装置において、弾性部材とスロット板との関係を示した平面図であって、スロット板を天板側から見た図を示す。In the plasma processing apparatus concerning the modification of the 1st Embodiment of this invention, it is the top view which showed the relationship between an elastic member and a slot plate, Comprising: The figure which looked at the slot plate from the top plate side is shown. 本発明の第2の実施形態に係るプラズマ処理装置において、弾性部材とスロット板との関係を示した平面図であって、スロット板を天板側から見た図を示す。In the plasma processing apparatus which concerns on the 2nd Embodiment of this invention, it is the top view which showed the relationship between an elastic member and a slot board, Comprising: The figure which looked at the slot board from the top-plate side is shown. 本発明の第2の実施形態に係るプラズマ処理装置に備えられたプラズマ発生装置の断面を拡大して示した概略図である。It is the schematic which expanded and showed the cross section of the plasma generator with which the plasma processing apparatus which concerns on the 2nd Embodiment of this invention was equipped. 本発明の第2の実施形態の一の変形例に係るプラズマ処理装置において、弾性部材とスロット板の関係を示した平面図であって、スロット板を天板側から見た図を示す。In the plasma processing apparatus which concerns on one modification of the 2nd Embodiment of this invention, it is the top view which showed the relationship between an elastic member and a slot board, Comprising: The figure which looked at the slot board from the top plate side is shown. 本発明の第2の実施形態の他の変形例に係るプラズマ処理装置において、弾性部材とスロット板の関係を示した平面図であって、スロット板を天板側から見た図を示す。In the plasma processing apparatus which concerns on the other modification of the 2nd Embodiment of this invention, it is the top view which showed the relationship between an elastic member and a slot plate, Comprising: The figure which looked at the slot plate from the top plate side is shown.
 以下、本発明の実施の形態に係るプラズマ処理装置について図面を参照しながら詳細に説明する。なお、図中同一または相当する部分には同一符号を付す。 Hereinafter, a plasma processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 (第1の実施形態)
 図1に示すように、プラズマ処理装置1は、処理容器(チャンバ)2、天板(誘電体窓)3、アンテナ4、導波管5、マイクロ波源6、冷却ジャケット7、基板保持台8、真空ポンプ9、高周波電源10、ガス通路11、を備えている。アンテナ4はスロット板4aと、遅波板(誘電体板)4bと、を備えている。
(First embodiment)
As shown in FIG. 1, a plasma processing apparatus 1 includes a processing container (chamber) 2, a top plate (dielectric window) 3, an antenna 4, a waveguide 5, a microwave source 6, a cooling jacket 7, a substrate holder 8, A vacuum pump 9, a high frequency power source 10, and a gas passage 11 are provided. The antenna 4 includes a slot plate 4a and a slow wave plate (dielectric plate) 4b.
 ここで、図3に示すように、スロット板4aと、天板3との間には、コネクタ20及び弾性部材21とが配置されている(発明の理解を容易にするため、図1ではコネクタ20及び弾性部材21は省略されている)。すなわち、天板3側からみると、天板3、コネクタ20及び弾性部材21、スロット板4a、遅波板4b、冷却ジャケット7、が順番に隣接して配置されている。 Here, as shown in FIG. 3, a connector 20 and an elastic member 21 are arranged between the slot plate 4a and the top plate 3 (in order to facilitate understanding of the invention, the connector is shown in FIG. 20 and the elastic member 21 are omitted). That is, when viewed from the top plate 3 side, the top plate 3, the connector 20, the elastic member 21, the slot plate 4a, the slow wave plate 4b, and the cooling jacket 7 are arranged adjacently in order.
 処理容器2は、天板3で封止されることにより内部が減圧可能に構成されている。処理容器2には、処理容器2内にガスを導入するためのガス通路11が設けられている。処理容器2の底部には、被処理基板Wを保持するための基板保持台8が組み付けられている。 The processing container 2 is configured to be depressurized by being sealed with a top plate 3. The processing container 2 is provided with a gas passage 11 for introducing gas into the processing container 2. A substrate holder 8 for holding the substrate to be processed W is assembled to the bottom of the processing container 2.
 天板3は、例えばAl等の誘電体材料で形成されている。天板3は、アンテナ4から照射されたマイクロ波を、処理容器2内に透過させる。また、天板3は、処理容器2の開口部を気密に密閉する蓋としての役割も有する。 The top plate 3 is made of a dielectric material such as Al 2 O 3 , for example. The top plate 3 transmits the microwave irradiated from the antenna 4 into the processing container 2. The top plate 3 also has a role as a lid that hermetically seals the opening of the processing container 2.
 アンテナ4はスロット板4aと、誘電体からなる遅波板4bとを備える。アンテナ4は、導波管5を通じて導入されたマイクロ波を天板3に均一に照射する役割を有する。 The antenna 4 includes a slot plate 4a and a slow wave plate 4b made of a dielectric. The antenna 4 has a role of uniformly irradiating the top plate 3 with the microwave introduced through the waveguide 5.
 スロット板4aは、例えば銅(Cu)等の金属で形成されている。スロット板4aの厚みは、約0.4mmである。スロット板の直径は、プラズマ処理装置の大きさによって異なる。例えば、直径300mmの被処理基板Wをプラズマ処理するプラズマ処理装置1の場合、スロット板4aは約400mmの直径を有している。スロット板4aは、アンテナ4の開口部を覆う形状を有する。図2に示すように、スロット板4aには、多数のスロット41、42が形成されている。スロット41、42は、スロット板4aの中心点を基準として点対称かつ同心円状に配列されている。また、スロット41と42とは、互いに直交するように配列されている。 The slot plate 4a is made of a metal such as copper (Cu), for example. The thickness of the slot plate 4a is about 0.4 mm. The diameter of the slot plate varies depending on the size of the plasma processing apparatus. For example, in the case of the plasma processing apparatus 1 that performs plasma processing on a target substrate W having a diameter of 300 mm, the slot plate 4a has a diameter of about 400 mm. The slot plate 4 a has a shape that covers the opening of the antenna 4. As shown in FIG. 2, the slot plate 4a has a large number of slots 41 and 42 formed therein. The slots 41 and 42 are arranged symmetrically and concentrically with respect to the center point of the slot plate 4a. The slots 41 and 42 are arranged so as to be orthogonal to each other.
 遅波板4bは、例えばSiOやAl等の誘電体材料で形成されている。遅波板4bの厚みは約4mmである。遅波板4bは、冷却ジャケット7とスロット板4aとの間に配置されている。遅波板4bは、導波管5を通じて供給されたマイクロ波の波長を圧縮する役割を有する。 The slow wave plate 4b is made of a dielectric material such as SiO 2 or Al 2 O 3 . The thickness of the slow wave plate 4b is about 4 mm. The slow wave plate 4b is disposed between the cooling jacket 7 and the slot plate 4a. The slow wave plate 4 b has a role of compressing the wavelength of the microwave supplied through the waveguide 5.
 コネクタ20は、天板3に支持され、スロット板4aをその周縁部において、固定することなく支持している。言い換えれば、スロット板4aはコネクタ20によって、面方向に変形可能に支持されている。 The connector 20 is supported by the top plate 3 and supports the slot plate 4a at its peripheral edge without being fixed. In other words, the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction.
 弾性部材21は、図2に破線で示されているように、円形のシート状に形成されている。弾性部材21の直径は、スロット板4aの直径よりもやや小さい。弾性部材21は、図3に示すように、天板3と、スロット板4aとの間に配置されている。弾性部材21は弾性を有しており、天板3に支持されて、スロット板4aを遅波板4bに密着する方向に付勢する。弾性部材21は、スロット板4aのスロット41、42の開口部を覆っている。このため、好ましくは、弾性部材21は、マイクロ波の伝播に影響を及ぼさないよう、例えばフッ素樹脂シート等の誘電損失が小さい材質で形成されている。 The elastic member 21 is formed in a circular sheet shape as indicated by a broken line in FIG. The diameter of the elastic member 21 is slightly smaller than the diameter of the slot plate 4a. As shown in FIG. 3, the elastic member 21 is disposed between the top plate 3 and the slot plate 4a. The elastic member 21 has elasticity and is supported by the top plate 3 to urge the slot plate 4a in a direction in close contact with the slow wave plate 4b. The elastic member 21 covers the openings of the slots 41 and 42 of the slot plate 4a. For this reason, the elastic member 21 is preferably made of a material having a small dielectric loss such as a fluororesin sheet so as not to affect the propagation of the microwave.
 導波管5は、図1に示すように、外側導体5a及び内側導体5bからなる軸管と、軸管の上部に配置された矩形導波部5cとを備える。内側導体5bは、スロット板4aに結合されている。 As shown in FIG. 1, the waveguide 5 includes an axial tube made up of an outer conductor 5a and an inner conductor 5b, and a rectangular waveguide portion 5c disposed on the upper portion of the axial tube. The inner conductor 5b is coupled to the slot plate 4a.
 マイクロ波源6は、導波管5を通じてアンテナ4にマイクロ波を供給する役割を有する。 The microwave source 6 has a role of supplying microwaves to the antenna 4 through the waveguide 5.
 冷却ジャケット7は、必要に応じてアンテナ4を冷却し、アンテナ4の過熱を防ぐ役割を有する。また、冷却ジャケット7は、必要に応じてアンテナ4を介して天板3を冷却し、天板3の過熱を防ぐ役割も有する。 The cooling jacket 7 has a role of cooling the antenna 4 as necessary to prevent the antenna 4 from overheating. The cooling jacket 7 also has a role of cooling the top plate 3 through the antenna 4 as necessary to prevent overheating of the top plate 3.
 ここで、プラズマ処理装置1の動作について説明する。マイクロ波は、マイクロ波源6から、導波管5を通じてアンテナ4に供給される。遅波板4bは、供給されたマイクロ波の波長を圧縮する。波長を圧縮されたマイクロ波は、プラズマ処理装置1の径方向に広がり、スロット板4aのスロット41、42を通じて天板3へ照射される。このとき、マイクロ波は円偏波を形成している。天板3に照射されたマイクロ波は、天板3を透過し、処理容器2の内部に到達する。 Here, the operation of the plasma processing apparatus 1 will be described. The microwave is supplied from the microwave source 6 to the antenna 4 through the waveguide 5. The slow wave plate 4b compresses the wavelength of the supplied microwave. The microwave whose wavelength is compressed spreads in the radial direction of the plasma processing apparatus 1 and is irradiated to the top plate 3 through the slots 41 and 42 of the slot plate 4a. At this time, the microwave forms a circularly polarized wave. The microwave irradiated to the top plate 3 passes through the top plate 3 and reaches the inside of the processing container 2.
 プラズマ処理が行われる間、処理容器2内は真空ポンプ9によって減圧されている。処理容器2内には、例えばアルゴン(Ar)、キセノン(Xe)等のガスが供給されている。マイクロ波が処理容器2の内部に到達すると、マイクロ波放電によってガス分子の電離が起き、プラズマが発生する。ここで、成膜用ガスが処理容器2内に供給されると、成膜用ガスの分子は電離し、基板保持台8上に固定された被処理基板W上で膜を形成する。このようにして、CVD(Chemical Vapor Deposition)等のプラズマ処理が行われる。 During the plasma processing, the inside of the processing container 2 is depressurized by the vacuum pump 9. A gas such as argon (Ar) or xenon (Xe) is supplied into the processing container 2. When the microwave reaches the inside of the processing container 2, ionization of gas molecules occurs due to the microwave discharge, and plasma is generated. Here, when the film forming gas is supplied into the processing container 2, the molecules of the film forming gas are ionized to form a film on the substrate W to be processed fixed on the substrate holding table 8. In this way, plasma processing such as CVD (Chemical Vapor Deposition) is performed.
 プラズマ処理が行われる際、処理容器2の外部と内部の圧力差によって、天板3は処理容器2へと押しつけられている。ここで、スロット板4aは、天板3に支持された弾性部材21が有する復元力によって、遅波板4bと密着する方向へ付勢されている。このため、天板3が圧力差によって処理容器2の方向に変位しても、弾性部材21が有する復元力によってスロット板4aと、遅波板4bとの密着性は保たれ、マイクロ波の伝送経路の変形が防がれる。この結果、天板3に照射されるマイクロ波の分布の均一性が保たれ、処理容器2内にプラズマを均一に発生させることが可能となる。また、スロット板4aと、遅波板4bと、冷却ジャケット7との密着性も保たれる結果、アンテナ4及び天板3の冷却効率が維持され、プラズマ処理装置1の温度分布を適切に制御することが容易となる。さらに、間隙の拡大によって起こり得る各部材間の異常放電も防がれる。 When the plasma processing is performed, the top plate 3 is pressed against the processing container 2 due to a pressure difference between the outside and the inside of the processing container 2. Here, the slot plate 4a is urged in a direction in close contact with the slow wave plate 4b by a restoring force of the elastic member 21 supported by the top plate 3. For this reason, even if the top plate 3 is displaced in the direction of the processing container 2 due to a pressure difference, the adhesion between the slot plate 4a and the slow wave plate 4b is maintained by the restoring force of the elastic member 21, and transmission of microwaves is performed. Route deformation is prevented. As a result, the uniformity of the microwave distribution irradiated on the top 3 is maintained, and it becomes possible to generate plasma uniformly in the processing container 2. Moreover, as a result of maintaining the adhesion between the slot plate 4a, the slow wave plate 4b, and the cooling jacket 7, the cooling efficiency of the antenna 4 and the top plate 3 is maintained, and the temperature distribution of the plasma processing apparatus 1 is appropriately controlled. Easy to do. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented.
 また、プラズマ処理時にはプラズマ処理装置1に熱が蓄積し、天板3、アンテナ4も高温となる。スロット板4aは銅(Cu)等の金属で形成されているため、その熱膨張率は大きい。これに対して、天板3及び遅波板4bはAl等の誘電体材料で形成されているため、その熱膨張率はスロット板4aに比べて小さい。もしスロット板4aがその周縁部において、ねじ等によって天板3や遅波板4bに固定されていると、天板3と遅波板4bとの間に配置されたスロット板4aは等方的に膨張することができず、温度が上昇するに従って天板3と遅波板4bとの間を押し広げるように変形する。この結果、マイクロ波の伝送経路が変形したり、スロット板4aに形成されたスロット41及び42の配列の対称性が損なわれたりする。この結果、天板3に照射されるマイクロ波の分布の均一性が損なわれる。 Further, heat is accumulated in the plasma processing apparatus 1 during the plasma processing, and the top plate 3 and the antenna 4 are also heated. Since the slot plate 4a is made of a metal such as copper (Cu), its thermal expansion coefficient is large. On the other hand, since the top plate 3 and the slow wave plate 4b are made of a dielectric material such as Al 2 O 3 , the coefficient of thermal expansion is smaller than that of the slot plate 4a. If the slot plate 4a is fixed to the top plate 3 or the slow wave plate 4b by a screw or the like at the periphery thereof, the slot plate 4a disposed between the top plate 3 and the slow wave plate 4b is isotropic. It cannot deform | swell, and it deform | transforms so that it may spread between the top plate 3 and the slow wave plate 4b as temperature rises. As a result, the microwave transmission path is deformed, and the symmetry of the arrangement of the slots 41 and 42 formed in the slot plate 4a is impaired. As a result, the uniformity of the distribution of the microwaves irradiated on the top 3 is impaired.
 ここで、プラズマ処理装置1において、スロット板4aは、コネクタ20によって面方向に変形可能に支持されている。このためスロット板4aは等方的に膨張することが可能であり、スロット41及び42の配列の対称性が保たれる。このようにして、天板3に照射されるマイクロ波の分布の均一性が保たれる。 Here, in the plasma processing apparatus 1, the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction. For this reason, the slot plate 4a can expand isotropically, and the symmetry of the arrangement of the slots 41 and 42 is maintained. In this way, the uniformity of the distribution of microwaves irradiated on the top 3 is maintained.
 また、プラズマ処理装置1においては、マイクロ波を天板3に導入する部分(すなわち導波管5直下に近い部分の天板3の中心部)の温度に比べ、天板3の周縁部の温度が低くなる傾向がある。天板3の影響を受け、スロット板4aにも温度勾配が生じる。スロット板4aは熱膨張率が大きく、かつ0.4mmと薄く形成されているため、このような温度勾配は、スロット板4aの反り変形の原因となる。スロット板4aの反り変形が起きると、スロット41及び42の配列の対称性が損なわれ、その結果、天板3に照射されるマイクロ波の分布の均一性が損なわれる。 Further, in the plasma processing apparatus 1, the temperature of the peripheral portion of the top plate 3 is higher than the temperature of the portion where the microwave is introduced into the top plate 3 (that is, the central portion of the top plate 3 near the waveguide 5). Tend to be low. Under the influence of the top plate 3, a temperature gradient is also generated in the slot plate 4a. Since the slot plate 4a has a large coefficient of thermal expansion and is formed as thin as 0.4 mm, such a temperature gradient causes warp deformation of the slot plate 4a. When the warp deformation of the slot plate 4a occurs, the symmetry of the arrangement of the slots 41 and 42 is lost, and as a result, the uniformity of the distribution of microwaves irradiated on the top plate 3 is lost.
 ここで、プラズマ処理装置1においては、スロット板4aは弾性部材21によって付勢され、遅波板4bに密着している。先に述べたように、天板3及び遅波板4bの熱膨張率は、スロット板4aの熱膨張率に比べて小さい。このため、天板3及び遅波板4bは、スロット板4aに比べて熱による変形が起きにくい。熱による変形が起きにくい遅波板4bと密着していることにより、スロット板4aの反り変形は抑制される。スロット板4aの反り変形が抑制される結果、スロット41及び42の配列の対称性が保たれ、天板3に照射されるマイクロ波の分布の均一性が保たれる。 Here, in the plasma processing apparatus 1, the slot plate 4a is urged by the elastic member 21 and is in close contact with the slow wave plate 4b. As described above, the thermal expansion coefficient of the top plate 3 and the slow wave plate 4b is smaller than the thermal expansion coefficient of the slot plate 4a. For this reason, the top plate 3 and the slow wave plate 4b are less likely to be deformed by heat than the slot plate 4a. Due to the close contact with the slow wave plate 4b which is not easily deformed by heat, warp deformation of the slot plate 4a is suppressed. As a result of suppressing the warp deformation of the slot plate 4a, the symmetry of the arrangement of the slots 41 and 42 is maintained, and the uniformity of the distribution of the microwaves irradiated on the top plate 3 is maintained.
(第1の実施形態の変形例)
 次に、本発明の第1の実施形態の変形例について、図面を参照しながら説明する。本変形例において、プラズマ処理装置1は図1に示すものと同じであり、スロット板4aは図2に示すものと同じである。第1の実施形態との違いは、弾性部材21の代わりに、シート状弾性部材22が用いられている点である。
(Modification of the first embodiment)
Next, a modification of the first embodiment of the present invention will be described with reference to the drawings. In this modification, the plasma processing apparatus 1 is the same as that shown in FIG. 1, and the slot plate 4a is the same as that shown in FIG. The difference from the first embodiment is that a sheet-like elastic member 22 is used instead of the elastic member 21.
 図4に示すように、シート状弾性部材22には、複数の孔22aが形成されている。
 孔22aは、スロット板4aに形成されたスロット41、42の位置に合わせ、点対称に配列されている。すなわち、シート状弾性部材22はスロット41、42を被わないため、マイクロ波の伝播に影響を与えない。このため、シート状弾性部材22に用いられる材質は、誘電損失が小さい材質に限定されない。シート状弾性部材22としては、例えば、フッ素樹脂シートが好適に用いられる。また、スロット41、42はスロット板4aに点対称に設けられており、また、弾性部材22の孔22aはスロット41、42の位置に合わせて点対称に配列されているため、孔22aと、スロット41、42との位置合わせが容易である。
As shown in FIG. 4, the sheet-like elastic member 22 has a plurality of holes 22a.
The holes 22a are arranged point-symmetrically in accordance with the positions of the slots 41 and 42 formed in the slot plate 4a. That is, since the sheet-like elastic member 22 does not cover the slots 41 and 42, the propagation of the microwave is not affected. For this reason, the material used for the sheet-like elastic member 22 is not limited to a material having a small dielectric loss. As the sheet-like elastic member 22, for example, a fluororesin sheet is preferably used. Further, the slots 41 and 42 are provided point-symmetrically in the slot plate 4a, and the holes 22a of the elastic member 22 are arranged point-symmetrically in accordance with the positions of the slots 41 and 42. The alignment with the slots 41 and 42 is easy.
(第2の実施形態)
 次に、本発明の第2の実施形態に係るプラズマ処理装置1について、図5、図6を参照しながら説明する。本実施形態において、プラズマ処理装置1は図1に示すものと同じであり、スロット板4aは図2に示すものと同じである。第1の実施形態との違いは、図5に示すように、弾性部材21の代わりに四つの弾性部材23a、23b、23c及び23dが用いられている点と、図6に示すように、天板3に溝26が形成されている点である。
(Second Embodiment)
Next, the plasma processing apparatus 1 which concerns on the 2nd Embodiment of this invention is demonstrated, referring FIG. 5, FIG. In the present embodiment, the plasma processing apparatus 1 is the same as that shown in FIG. 1, and the slot plate 4a is the same as that shown in FIG. The difference from the first embodiment is that, as shown in FIG. 5, four elastic members 23a, 23b, 23c and 23d are used instead of the elastic member 21, and as shown in FIG. The groove 26 is formed in the plate 3.
 図5に示すように、四つの弾性部材23a、23b、23c及び23d(以下、これらは必要に応じて弾性部材23と総称される。)は、互いに異なる直径を有する四つの円上に配置されている。四つの円は、スロット板4aの中心点をその中心点として共有する同心円である。弾性部材23は、スロット41、42を避けるように配置されている。弾性部材23は例えばOリングなどから構成されている。Oリングの断面は円に限られず、楕円や半円、もしくは角が丸められた多角形などでもよい。Oリングの材質としては、例えば、フッ素ゴムが好適に用いられる。 As shown in FIG. 5, four elastic members 23a, 23b, 23c, and 23d (hereinafter collectively referred to as elastic members 23 as necessary) are arranged on four circles having different diameters. ing. The four circles are concentric circles sharing the central point of the slot plate 4a as the central point. The elastic member 23 is disposed so as to avoid the slots 41 and 42. The elastic member 23 is composed of, for example, an O-ring. The cross section of the O-ring is not limited to a circle, but may be an ellipse, a semicircle, or a polygon with rounded corners. As the material of the O-ring, for example, fluororubber is preferably used.
 本実施形態では弾性部材23が複数の弾性部材23a、23b、23c及び23dから構成されている。複数の弾性部材23a、23b、23c及び23dが同心円上に配置されているため、弾性部材23は、スロット板4aを、どの径方向に対しても均等な圧力で付勢し、遅波板4bに密着させることができる。このため、本実施形態によれば、天板3とスロット板4a、又はスロット板4aと遅波板4bを、より確実に密着させることができる。 In the present embodiment, the elastic member 23 includes a plurality of elastic members 23a, 23b, 23c, and 23d. Since the plurality of elastic members 23a, 23b, 23c and 23d are arranged concentrically, the elastic member 23 urges the slot plate 4a with equal pressure in any radial direction, and the slow wave plate 4b Can be adhered to. For this reason, according to this embodiment, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b can be adhered more reliably.
 また、図6に示すように、天板3のスロット板4a側の面には、複数の弾性部材23を保持するための溝26が形成されている。弾性部材23は、溝26に沿って配置され、溝26によって保持される。溝26が形成されていることによって、プラズマ処理装置1の組み立ての際、弾性部材23の位置を決めることが容易になる。また、弾性部材23は溝26によって保持されているため、プラズマ処理装置1の組み立ての際や、プラズマ処理の際に、弾性部材23の位置が変位することがない。このため、スロット板4aをより確実に、遅波板4bに密着させることができる。さらに、部位によって溝26の形状を変えることで、スロット板4aと遅波板4bとの密着性をさらに高めることも可能である。 Further, as shown in FIG. 6, grooves 26 for holding a plurality of elastic members 23 are formed on the surface of the top plate 3 on the slot plate 4 a side. The elastic member 23 is disposed along the groove 26 and is held by the groove 26. The formation of the groove 26 makes it easy to determine the position of the elastic member 23 when the plasma processing apparatus 1 is assembled. Further, since the elastic member 23 is held by the groove 26, the position of the elastic member 23 is not displaced during the assembly of the plasma processing apparatus 1 or during the plasma processing. For this reason, the slot plate 4a can be more closely attached to the slow wave plate 4b. Furthermore, the adhesiveness between the slot plate 4a and the slow wave plate 4b can be further improved by changing the shape of the groove 26 depending on the part.
 また、第1の実施形態と同様、スロット板4aは、天板3に支持された弾性部材23が有する復元力によって、遅波板4bと密着する方向へ付勢されている。このため、天板3が圧力差によって処理容器2の方向に変位しても、弾性部材23が有する復元力によってスロット板4aと、遅波板4bとの密着性は保たれ、マイクロ波の伝送経路の変形が防がれる。この結果、天板3に照射されるマイクロ波の分布の均一性が保たれ、処理容器2内にプラズマを均一に発生させることが可能となる。また、スロット板4aと、遅波板4bと、冷却ジャケット7との密着性も保たれる結果、冷却ジャケット7によるアンテナ4及び天板3の冷却効率が維持され、プラズマ処理装置1の温度分布を適切に制御することが容易となる。さらに、間隙の拡大によって起こり得る各部材間の異常放電も防がれる。この結果、被処理基板Wの被処理面全面に対して、均一なプラズマ処理を行うことが可能となる。 Further, as in the first embodiment, the slot plate 4a is urged in a direction in close contact with the slow wave plate 4b by the restoring force of the elastic member 23 supported by the top plate 3. For this reason, even if the top plate 3 is displaced in the direction of the processing container 2 due to a pressure difference, the adhesiveness between the slot plate 4a and the slow wave plate 4b is maintained by the restoring force of the elastic member 23, and transmission of microwaves is performed. Route deformation is prevented. As a result, the uniformity of the microwave distribution irradiated on the top 3 is maintained, and it becomes possible to generate plasma uniformly in the processing container 2. Moreover, as a result of maintaining the adhesion between the slot plate 4a, the slow wave plate 4b, and the cooling jacket 7, the cooling efficiency of the antenna 4 and the top plate 3 by the cooling jacket 7 is maintained, and the temperature distribution of the plasma processing apparatus 1 is maintained. It becomes easy to appropriately control. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented. As a result, uniform plasma processing can be performed on the entire surface of the substrate W to be processed.
 また、第1の実施形態と同様、スロット板4aは、コネクタ20によって、面方向に変形可能に支持されている。このためスロット板4aは等方的に膨張することが可能であり、スロット41及び42の配列の対称性が保たれる。このようにして、天板3に照射されるマイクロ波の分布の均一性が保たれる。 Also, as in the first embodiment, the slot plate 4a is supported by the connector 20 so as to be deformable in the surface direction. For this reason, the slot plate 4a can expand isotropically, and the symmetry of the arrangement of the slots 41 and 42 is maintained. In this way, the uniformity of the distribution of microwaves irradiated on the top 3 is maintained.
 さらに、第1の実施形態と同様、スロット板4aは弾性部材23によって付勢され、遅波板4bに密着している。熱による変形が起きにくい遅波板4bと密着していることにより、スロット板4aの反り変形は抑制される。スロット板4aの反り変形が抑制される結果、スロット41及び42の配列の対称性が保たれ、天板3に照射されるマイクロ波の分布の均一性が保たれる。 Furthermore, as in the first embodiment, the slot plate 4a is urged by the elastic member 23 and is in close contact with the slow wave plate 4b. Due to the close contact with the slow wave plate 4b which is not easily deformed by heat, warp deformation of the slot plate 4a is suppressed. As a result of suppressing the warp deformation of the slot plate 4a, the symmetry of the arrangement of the slots 41 and 42 is maintained, and the uniformity of the distribution of the microwaves irradiated on the top plate 3 is maintained.
 ところで、スロット板4aはその中心部と周縁部とで変形度が異なる場合がある。反り変形が大きい場合には、部分的に、スロット板4aと遅波板4bとの密着性が不充分となる場合がある。 Incidentally, the degree of deformation of the slot plate 4a may be different between the central portion and the peripheral portion. When the warp deformation is large, the adhesion between the slot plate 4a and the slow wave plate 4b may be partially insufficient.
 ここで、本実施形態においては、弾性部材23は複数の弾性部材23a、23b、23c、23dから構成されている。弾性部材23a、23b、23c及び23dの材質、形状、厚み、弾力等は、予想される温度勾配や予想される変形状態に合わせて、個別に選択することができる。例えば、反り変形が大きい部位に対応する位置には圧縮応力の高い弾性部材23aを配置し、反り変形が小さい部位に対応する位置には比較的圧縮応力の低い弾性部材23dを配置することも可能である。高い圧縮応力を有する弾性部材23aは、スロット板4aの変形しようとする力により強く反発するため、天板3とスロット板4a、又はスロット板4aと遅波板4bを、より確実に密着させることができる。同様に、部位によって溝26の形状を変えることで、弾性部材23を介してスロット板4aに伝えられる圧力の分布を最適化することも可能である。 Here, in the present embodiment, the elastic member 23 includes a plurality of elastic members 23a, 23b, 23c, and 23d. The material, shape, thickness, elasticity and the like of the elastic members 23a, 23b, 23c and 23d can be individually selected according to the expected temperature gradient and the expected deformation state. For example, an elastic member 23a having a high compressive stress may be disposed at a position corresponding to a portion having a large warp deformation, and an elastic member 23d having a relatively low compressive stress may be disposed at a position corresponding to a portion having a small warp deformation. It is. Since the elastic member 23a having a high compressive stress strongly repels due to the force of the slot plate 4a to deform, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b are more reliably brought into close contact with each other. Can do. Similarly, the distribution of the pressure transmitted to the slot plate 4a via the elastic member 23 can be optimized by changing the shape of the groove 26 depending on the part.
(第2の実施形態の変形例)
 次に、第2の実施形態の変形例について図7A及び図7Bを参照しながら説明する。各変形例において、プラズマ処理装置1は図1に示すものと同じであり、スロット板4aは図2に示すものと同じである。
(Modification of the second embodiment)
Next, a modification of the second embodiment will be described with reference to FIGS. 7A and 7B. In each modification, the plasma processing apparatus 1 is the same as that shown in FIG. 1, and the slot plate 4a is the same as that shown in FIG.
 図7Aに示すように、第2の実施形態の一の変形例では、弾性部材24は、二つの環状弾性部材24a、24bと、一つのシート状弾性部材24xと、から構成されている。二つの環状弾性部材24a、24bは、互いに直径の異なる二つの円上に配置されている。これら二つの円は、スロット板4aの中心点をその中心点として共有する同心円である。また、二つの環状弾性部材24a、24bは、スロット41、42を被わないよう配置されている。一方、シート状弾性部材24xは、スロット板4aの周縁部に配置されている。シート状弾性部材24xは、スロット41、42を含んだスロット板4aの周縁部を被っている。このため、シート状弾性部材24xは、例えばフッ素樹脂シートのような誘電損失が小さい材質から形成されている。天板3の、環状弾性部材24a、24bと対向する位置には、溝26が形成されている。 As shown in FIG. 7A, in one modification of the second embodiment, the elastic member 24 includes two annular elastic members 24a and 24b and one sheet-like elastic member 24x. The two annular elastic members 24a and 24b are arranged on two circles having different diameters. These two circles are concentric circles that share the central point of the slot plate 4a as the central point. The two annular elastic members 24a and 24b are arranged so as not to cover the slots 41 and 42. On the other hand, the sheet-like elastic member 24x is disposed at the peripheral edge of the slot plate 4a. The sheet-like elastic member 24x covers the peripheral edge of the slot plate 4a including the slots 41 and 42. For this reason, the sheet-like elastic member 24x is formed of a material having a small dielectric loss such as a fluororesin sheet. A groove 26 is formed at a position of the top plate 3 facing the annular elastic members 24a and 24b.
 図7Bに示すように、第2の実施形態の他の変形例では、弾性部材25は、三つの環状弾性部材25a、25b及び25cと、シート状弾性部材25xから構成されている。三つの環状弾性部材25a、25b及び25cは、互いに直径の異なる三つの円上に配置されている。これら三つの円は、スロット板4aの中心点をその中心点として共有する同心円である。環状弾性部材25aはスロット板4aの周縁部に配置されている。環状弾性部材25b、25cは、スロット板4aの中心部に配置されている。環状弾性部材25b、25cは、例えば、フッ素ゴムで形成されたOリングである。 As shown in FIG. 7B, in another modification of the second embodiment, the elastic member 25 includes three annular elastic members 25a, 25b and 25c and a sheet-like elastic member 25x. The three annular elastic members 25a, 25b and 25c are arranged on three circles having different diameters. These three circles are concentric circles that share the central point of the slot plate 4a as the central point. The annular elastic member 25a is disposed on the peripheral edge of the slot plate 4a. The annular elastic members 25b and 25c are disposed at the center of the slot plate 4a. The annular elastic members 25b and 25c are, for example, O-rings made of fluororubber.
 複数のシート状弾性部材25xと、環状弾性部材25aとは結合されている。各シート状弾性部材25xは、スロット板4aの中心点を基準点として、点対称に配置されている。
各シート状弾性部材25xは、スロット41、42を被わないよう配置されている。天板3の、環状弾性部材25a、25b、25cと対向する位置には、予め溝26が形成されている。
The plurality of sheet-like elastic members 25x and the annular elastic member 25a are coupled. Each sheet-like elastic member 25x is arranged point-symmetrically with the center point of the slot plate 4a as a reference point.
Each sheet-like elastic member 25x is arranged so as not to cover the slots 41 and 42. Grooves 26 are formed in advance on the top plate 3 at positions facing the annular elastic members 25a, 25b, and 25c.
 弾性部材24又は弾性部材25を、天板3とアンテナ4との間に備えることで、スロット板4aが熱膨張した場合であっても、スロット板4aと遅波板4bの密着性を維持することができる。また、マイクロ波の伝送経路の変形を防ぎ、天板3に照射されるマイクロ波の分布を均一に保つことができ、処理容器2内のプラズマの分布を均一に保つことができる。また、スロット板4aと、遅波板4bと、冷却ジャケット7との密着性も保たれる結果、冷却ジャケット7によるアンテナ4及び天板3の冷却効率が維持され、プラズマ処理装置1の温度分布を適切に制御することが容易となる。さらに、間隙の拡大によって起こり得る各部材間の異常放電も防がれる。この結果、被処理基板Wの被処理面全面に対して、均一なプラズマ処理を行うことが可能となる。 By providing the elastic member 24 or the elastic member 25 between the top plate 3 and the antenna 4, even when the slot plate 4a is thermally expanded, the adhesion between the slot plate 4a and the slow wave plate 4b is maintained. be able to. In addition, the microwave transmission path can be prevented from being deformed, the microwave distribution applied to the top plate 3 can be kept uniform, and the plasma distribution in the processing vessel 2 can be kept uniform. Moreover, as a result of maintaining the adhesion between the slot plate 4a, the slow wave plate 4b, and the cooling jacket 7, the cooling efficiency of the antenna 4 and the top plate 3 by the cooling jacket 7 is maintained, and the temperature distribution of the plasma processing apparatus 1 is maintained. It becomes easy to appropriately control. Further, abnormal discharge between the members that may occur due to the expansion of the gap is also prevented. As a result, uniform plasma processing can be performed on the entire surface of the substrate W to be processed.
 また、弾性部材24又は弾性部材25は、複数の弾性部材から構成されている。複数の弾性部材を、スロット板4aの中心を基準として点対称に配置することで、スロット板4a全体を均等な圧力で付勢し、遅波板4bに密着させることができる。また、弾性部材23と同様、弾性部材24又は弾性部材25においても、各弾性部材の材質、形状、厚み、弾力等は、予想される温度勾配や予想される変形状態に合わせて、個別に選択することができる。このため、天板3とスロット板4a、又はスロット板4aと遅波板4bを、より確実に密着させることができる。同様に、部位によって溝26の形状を変えることで、弾性部材24又は弾性部材25を介してスロット板4aに伝えられる圧力の分布を最適化することも可能である。 The elastic member 24 or the elastic member 25 is composed of a plurality of elastic members. By arranging the plurality of elastic members in point symmetry with respect to the center of the slot plate 4a, the entire slot plate 4a can be urged with equal pressure and brought into close contact with the slow wave plate 4b. Similarly to the elastic member 23, the material, shape, thickness, elasticity, etc. of the elastic member 24 or the elastic member 25 are individually selected according to the expected temperature gradient and the expected deformation state. can do. For this reason, the top plate 3 and the slot plate 4a, or the slot plate 4a and the slow wave plate 4b can be adhered more reliably. Similarly, the distribution of the pressure transmitted to the slot plate 4a via the elastic member 24 or the elastic member 25 can be optimized by changing the shape of the groove 26 depending on the part.
 以上詳述したように、本発明によれば、スロット板と他部材との間に間隙が生じることを防ぎ、スロット板の変形を抑制し、処理容器内のプラズマの分布の偏りを防ぐことができる。本発明によれば、基板の大径化によりプラズマ処理装置が大型化しても、基板の被処理面の全面に対し、均一なプラズマ処理を行うことが可能となる。可能な基板処理の例としては、例えばプラズマ酸化処理、プラズマ窒化処理、プラズマ酸窒化処理、またはプラズマCVD処理、プラズマエッチング処理等がある。 As described above in detail, according to the present invention, it is possible to prevent a gap from being generated between the slot plate and other members, to suppress deformation of the slot plate, and to prevent uneven distribution of plasma in the processing vessel. it can. According to the present invention, even if the plasma processing apparatus is increased in size by increasing the diameter of the substrate, it is possible to perform uniform plasma processing on the entire surface to be processed of the substrate. Examples of possible substrate processing include plasma oxidation processing, plasma nitriding processing, plasma oxynitriding processing, plasma CVD processing, plasma etching processing, and the like.
 なお、実施の形態で説明した天板、スロット板、遅波板、冷却ジャケット等は一例であり、これらに限定されるものではない。弾性部材の数、材質、形状についても、スロットの配置や形状、プラズマ処理条件に合わせて、任意に選択が可能である。 The top plate, slot plate, slow wave plate, cooling jacket, etc. described in the embodiment are merely examples, and the invention is not limited to these. The number, material, and shape of the elastic member can be arbitrarily selected according to the arrangement and shape of the slots and the plasma processing conditions.
 本出願は、2008年8月8日に出願された、日本国特許出願2008-205890号に基づく。本明細書中に日本国特許出願2008-205890号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2008-205890 filed on August 8, 2008. The specification, claims, and entire drawings of Japanese Patent Application No. 2008-205890 are incorporated herein by reference.
             1  プラズマ処理装置
             2  処理容器(チャンバ)
             3  天板(誘電体窓)
             4  アンテナ
             4a スロット板
             4b 遅波板
             5  導波管
             5a 外側導体
             5b 内側導体
             5c 矩形導波部
             6  マイクロ波源
             7  冷却ジャケット
             8  基板保持台
             9  真空ポンプ
            10 高周波電源
            11 ガス通路
            20 コネクタ
            21 弾性部材
            22 シート状弾性部材
            22a 孔
23a、23b、23c、23d  弾性部材
        24a、24b 環状弾性部材
            24x シート状弾性部材
            25  弾性部材
    25a、25b、25c 環状弾性部材
            25x シート状弾性部材
            26  溝
         41、42  スロット
           100  プラズマ発生装置
             S  空間
             W  被処理基板
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 2 Processing container (chamber)
3 Top plate (dielectric window)
DESCRIPTION OF SYMBOLS 4 Antenna 4a Slot plate 4b Slow wave plate 5 Waveguide 5a Outer conductor 5b Inner conductor 5c Rectangular waveguide part 6 Microwave source 7 Cooling jacket 8 Substrate holding base 9 Vacuum pump 10 High frequency power supply 11 Gas passage 20 Connector 21 Elastic member 22 Sheet Elastic member 22a Holes 23a, 23b, 23c, 23d Elastic member 24a, 24b Annular elastic member 24x Sheet elastic member 25 Elastic member 25a, 25b, 25c Annular elastic member 25x Sheet elastic member 26 Groove 41, 42 Slot 100 Plasma generation Equipment S Space W Substrate

Claims (6)

  1.  プラズマを発生させるためのマイクロ波を導く導波部と、
     前記導波部を通じて導入された前記マイクロ波を放射するための複数のスロットを有するスロット板と、
     前記導波部と前記スロット板との間に配置され、前記導波部を通じて導入された前記マイクロ波の波長を圧縮して前記スロット板に導く遅波板と、
     誘電体材料から形成され、前記スロットから放射された前記マイクロ波を透過させる誘電体窓と、
     前記スロット板と前記誘電体窓との間に配置された弾性部材と、
    を備え、
     前記スロット板はその面方向に変形可能に支持され、
     前記弾性部材は、前記誘電体窓に支持されて、前記スロット板を前記遅波板に密着させる方向に付勢する、
    マイクロ波プラズマ発生装置。
    A waveguide for guiding microwaves to generate plasma;
    A slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion;
    A slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate;
    A dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot;
    An elastic member disposed between the slot plate and the dielectric window;
    With
    The slot plate is supported to be deformable in the surface direction,
    The elastic member is supported by the dielectric window and urges the slot plate in a direction in close contact with the slow wave plate.
    Microwave plasma generator.
  2.  前記弾性部材は、シート状である、
    ことを特徴とする請求項1に記載のマイクロ波プラズマ発生装置。
    The elastic member is in the form of a sheet,
    The microwave plasma generator of Claim 1 characterized by the above-mentioned.
  3.  前記弾性部材を2以上備え、
     前記誘電体窓は、その前記スロット板側の面に、前記2以上の弾性部材のそれぞれを保持するための凹部を有する、
    ことを特徴とする請求項1に記載のマイクロ波プラズマ発生装置。
    Two or more elastic members,
    The dielectric window has a recess for holding each of the two or more elastic members on the surface of the slot plate.
    The microwave plasma generator of Claim 1 characterized by the above-mentioned.
  4.  前記弾性部材は、環状弾性部材であって、
     前記凹部は、前記環状弾性部材を保持するための溝である、
    ことを特徴とする請求項3に記載のマイクロ波プラズマ発生装置。
    The elastic member is an annular elastic member,
    The recess is a groove for holding the annular elastic member.
    The microwave plasma generator according to claim 3, wherein
  5.  前記弾性部材は、前記スロット板のスロットの開口部を覆わないように配置されている、
    ことを特徴とする請求項1に記載のマイクロ波プラズマ発生装置。
    The elastic member is arranged so as not to cover the opening of the slot of the slot plate.
    The microwave plasma generator of Claim 1 characterized by the above-mentioned.
  6.  マイクロ波プラズマ発生装置と、
     その内部においてプラズマ処理が行われる処理容器と、
     マイクロ波を出力し導波部へ供給するマイクロ波源と、
    を備え、マイクロ波を用いて発生されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置であって、
     前記マイクロ波プラズマ発生装置は、
     プラズマを発生させるためのマイクロ波を導く導波部と、
     前記導波部を通じて導入された前記マイクロ波を放射するための複数のスロットを有するスロット板と、
     前記導波部と前記スロット板との間に配置され、前記導波部を通じて導入された前記マイクロ波の波長を圧縮して前記スロット板に導く遅波板と、
     誘電体材料から形成され、前記スロットから放射された前記マイクロ波を透過させる誘電体窓と、
     前記スロット板と前記誘電体窓との間に配置された弾性部材と、
    を備え、
     前記スロット板はその面方向に変形可能に支持され、
     前記弾性部材は、前記誘電体窓に支持されて、前記スロット板を前記遅波板に密着させる方向に付勢する、
     ことを特徴とするマイクロ波プラズマ処理装置。
    A microwave plasma generator,
    A processing container in which plasma processing is performed, and
    A microwave source that outputs microwaves and supplies them to the waveguide;
    A microwave plasma processing apparatus that plasma-processes an object to be processed by plasma generated using microwaves,
    The microwave plasma generator is
    A waveguide for guiding microwaves to generate plasma;
    A slot plate having a plurality of slots for radiating the microwave introduced through the waveguide portion;
    A slow wave plate disposed between the waveguide and the slot plate and compressing the wavelength of the microwave introduced through the waveguide to guide the slot plate;
    A dielectric window formed of a dielectric material and transmitting the microwaves emitted from the slot;
    An elastic member disposed between the slot plate and the dielectric window;
    With
    The slot plate is supported to be deformable in the surface direction,
    The elastic member is supported by the dielectric window and urges the slot plate in a direction in close contact with the slow wave plate.
    A microwave plasma processing apparatus.
PCT/JP2009/063492 2008-08-08 2009-07-29 Microwave plasma generation device and microwave plasma processing device WO2010016414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523833A JP5356390B2 (en) 2008-08-08 2009-07-29 Microwave plasma generator and microwave plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008205890 2008-08-08
JP2008-205890 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016414A1 true WO2010016414A1 (en) 2010-02-11

Family

ID=41663634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063492 WO2010016414A1 (en) 2008-08-08 2009-07-29 Microwave plasma generation device and microwave plasma processing device

Country Status (3)

Country Link
JP (1) JP5356390B2 (en)
KR (1) KR20110010643A (en)
WO (1) WO2010016414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106323A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Plasma treatment device and method for manufacturing plasma treatment device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278075B1 (en) * 2014-05-30 2021-07-19 세메스 주식회사 Dielectric plate and substrate processing apparatus using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272897A (en) * 1994-03-31 1995-10-20 Sumitomo Metal Ind Ltd Microwave plasma device
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
JP2000286240A (en) * 1999-03-30 2000-10-13 Rohm Co Ltd Radial line slot antenna structure in plasma surface treatment device for semiconductor substrate
JP2000286238A (en) * 1999-03-30 2000-10-13 Rohm Co Ltd Structure of radial line slot antenna in semiconductor substrate plasma surface treating apparatus
JP2002270599A (en) * 2001-03-13 2002-09-20 Canon Inc Plasma treating apparatus
JP2004134583A (en) * 2002-10-10 2004-04-30 Tokyo Electron Ltd Plasma processing apparatus and dielectric plate as well as processing vessel used therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286095A (en) * 1999-03-30 2000-10-13 Rohm Co Ltd Structure of radial line slot antenna in plasma surface treatment device for semiconductor base
JP2003045810A (en) * 2001-07-31 2003-02-14 Canon Inc Plasma processing system
JP4149427B2 (en) * 2004-10-07 2008-09-10 東京エレクトロン株式会社 Microwave plasma processing equipment
JP4883556B2 (en) * 2006-02-14 2012-02-22 芝浦メカトロニクス株式会社 Microwave transmission window, microwave plasma generator, and microwave plasma processing apparatus
JP2007317499A (en) * 2006-05-25 2007-12-06 Shimadzu Corp Surface wave plasma source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272897A (en) * 1994-03-31 1995-10-20 Sumitomo Metal Ind Ltd Microwave plasma device
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
JP2000286240A (en) * 1999-03-30 2000-10-13 Rohm Co Ltd Radial line slot antenna structure in plasma surface treatment device for semiconductor substrate
JP2000286238A (en) * 1999-03-30 2000-10-13 Rohm Co Ltd Structure of radial line slot antenna in semiconductor substrate plasma surface treating apparatus
JP2002270599A (en) * 2001-03-13 2002-09-20 Canon Inc Plasma treating apparatus
JP2004134583A (en) * 2002-10-10 2004-04-30 Tokyo Electron Ltd Plasma processing apparatus and dielectric plate as well as processing vessel used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106323A (en) * 2017-12-13 2019-06-27 東京エレクトロン株式会社 Plasma treatment device and method for manufacturing plasma treatment device
JP7067913B2 (en) 2017-12-13 2022-05-16 東京エレクトロン株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
KR20110010643A (en) 2011-02-01
JPWO2010016414A1 (en) 2012-01-19
JP5356390B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US9887068B2 (en) Plasma process apparatus
KR101751200B1 (en) Microwave radiation antenna, microwave plasma source and plasma processing apparatus
US8967080B2 (en) Top plate of microwave plasma processing apparatus, plasma processing apparatus and plasma processing method
US9807862B2 (en) Plasma processing apparatus
KR100927913B1 (en) Substrate Mounting Mechanism and Substrate Processing Equipment
US20090301656A1 (en) Microwave plasma processing apparatus
KR101774164B1 (en) Microwave plasma source and plasma processing apparatus
JP6063741B2 (en) Plasma processing vessel and plasma processing apparatus
KR100501777B1 (en) Plasma processing device
JP2010258461A (en) Plasma processing apparatus and top plate for plasma processing apparatus
KR20040045900A (en) Plasma processing equipment
KR101256850B1 (en) Microwave plasma processing apparatus
JP5297885B2 (en) Microwave plasma processing equipment
JP2011249503A (en) Plasma processing device, and gas supply member supporting device
JP5356390B2 (en) Microwave plasma generator and microwave plasma processing apparatus
WO2010016423A1 (en) Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus
JP4705967B2 (en) Plasma processing equipment
JP5143662B2 (en) Plasma processing equipment
JP4118117B2 (en) Plasma process equipment
KR102278075B1 (en) Dielectric plate and substrate processing apparatus using the same
CN108243550B (en) Linear electromagnetic wave plasma source and plasma processing apparatus using the same
KR20230139097A (en) Diamond film forming apparatus using microwave plasma chemical vapor deposition having a ring shaped electrode
KR20230100442A (en) An apparatus for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523833

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028584

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804898

Country of ref document: EP

Kind code of ref document: A1