WO2010016423A1 - Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus - Google Patents

Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus Download PDF

Info

Publication number
WO2010016423A1
WO2010016423A1 PCT/JP2009/063572 JP2009063572W WO2010016423A1 WO 2010016423 A1 WO2010016423 A1 WO 2010016423A1 JP 2009063572 W JP2009063572 W JP 2009063572W WO 2010016423 A1 WO2010016423 A1 WO 2010016423A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric window
plasma processing
dielectric
microwave
antenna
Prior art date
Application number
PCT/JP2009/063572
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 石橋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010016423A1 publication Critical patent/WO2010016423A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas

Definitions

  • the present invention relates to a dielectric window, a method for manufacturing the dielectric window, and a plasma processing apparatus using the dielectric window.
  • Plasma treatment is widely used in the manufacture of many semiconductor devices such as integrated circuits, liquid crystal circuit boards, and solar cells.
  • Plasma processing is used for deposition of thin films such as Si and etching processes during semiconductor manufacturing.
  • it is required to support ultra-fine processing technology.
  • a microwave plasma processing apparatus that can stably generate high-density plasma (low-pressure high-density plasma) in a high-vacuum state with low pressure has attracted attention.
  • the microwave plasma processing apparatus is a plasma processing apparatus that generates plasma by ionizing a gas by microwave energy.
  • the microwave is supplied from the slot plate of the antenna through the waveguide. Then, the light passes through a dielectric window (top plate) disposed in the upper opening of the plasma processing container (chamber) and is radiated into the plasma processing chamber.
  • the dielectric window is formed of a dielectric material that can transmit microwaves.
  • the temperature of the dielectric window is required because the dielectric window becomes high temperature during plasma processing and the plasma generation state tends to become unstable.
  • a ring-shaped protrusion is provided on the lower surface of the dielectric window, and the radial thickness of the dielectric window is continuously changed in a tapered shape.
  • one dielectric window also serves as many types of dielectric windows having various thicknesses, and enables microwave resonance in the dielectric window under any plasma generation conditions. .
  • the shape of the dielectric window is devised to optimize the propagation state of microwaves in the dielectric window under various plasma generation conditions.
  • this technique does not take into consideration the control of the propagation state of the microwave until the microwave is introduced into the dielectric window.
  • the dielectric window In the microwave plasma processing apparatus, when the inside of the plasma processing container is in a reduced pressure atmosphere, the dielectric window may be deformed due to a pressure difference between the inside of the plasma processing container and the outside. For this reason, a gap is generated between the antenna and the dielectric window, and the introduction of microwaves into the plasma processing container may vary. In addition, this gap may change the thermal conductivity (cooling efficiency) in the vicinity of the dielectric window, the temperature of the dielectric window becomes nonuniform, and the electromagnetic field distribution in the dielectric window may change. As a result, the plasma density distribution (plasma generation state) may become unstable.
  • the microwave propagates from the waveguide to the antenna slot plate, the cooling jacket located above the antenna, and the like as a transmission path.
  • the gap between the transmission lines slow wave plate and slot plate, antenna and cooling jacket, etc.
  • the propagation of microwaves in the antenna may cause a potential difference between the transmission lines and cause abnormal discharge. It was.
  • the slow wave plate and the dielectric window are both made of a dielectric material and the slot plate is made of metal, a difference in thermal expansion occurs between the members as the temperature rises.
  • the slow wave plate and the dielectric window are made of alumina (Al 2 O 3 ) and the slot plate is made of copper (Cu)
  • the slot plate thermally expands more than the dielectric window and the slow wave plate. .
  • the slot plate In the microwave plasma processing apparatus, the slot plate is placed in a state of being sandwiched between a dielectric window provided on the ceiling and a slow wave plate. If the slot plate is fixed to the cooling jacket by screws or the like at the outer peripheral portion thereof, it cannot thermally expand in the radial direction. For this reason, even if the slot plate is planar before the plasma processing, the slot plate is deformed while expanding between the slow wave plate and the dielectric window as the temperature rises due to the plasma processing. As a result, the position of the slot plate fluctuated, and the propagation of microwaves was uneven. In addition, air gaps are created between the slot plate and slow wave plate, between the slot plate and dielectric window, between the cooling jacket and slow wave plate, and abnormal discharge is generated at sites with high electric field strength during microwave propagation in the antenna. There was a case.
  • the present invention has been made in view of such circumstances, and its purpose is to prevent abnormal discharge by improving the adhesion between the antenna and the dielectric window, and to distribute the electromagnetic field in the dielectric window, That is, it is an object to provide a dielectric window capable of stabilizing the plasma density distribution, a method for manufacturing the dielectric window, and a plasma processing apparatus using the dielectric window.
  • a method of manufacturing a dielectric window according to the first aspect of the present invention includes: It is used in a plasma processing apparatus for generating plasma in a plasma processing container using microwaves and performing plasma processing on an object to be processed, and the inside of the plasma processing container can be sealed in a vacuum state capable of generating plasma.
  • a method of manufacturing a dielectric window that propagates the microwave and transmits the microwave into the plasma processing container An installation step of installing a dielectric plate in a jig that can be in a vacuum state inside; By evacuating and depressurizing the inside of the jig by a vacuum depressurization means, a vacuum state similar to that of the plasma processing container is generated, a pressure difference is generated with the dielectric plate as a boundary, and the dielectric plate is placed inside the jig.
  • the dielectric window according to the second aspect of the present invention is: A dielectric window obtained by the dielectric window manufacturing method according to the first aspect of the present invention, When the dielectric window is installed in the plasma processing apparatus, when there is no pressure difference between the inside and the outside of the dielectric window, one surface located outside the plasma processing container is a curved surface protruding outward. , The dielectric window is bent so as to be convex toward the inside of the plasma processing container when the inside of the plasma processing container is in a vacuum state in which plasma can be generated, and is positioned outside the plasma processing container. It is characterized in that one side to be flattened.
  • the dielectric window has an axisymmetric shape with a central portion being the most convex.
  • a plasma processing apparatus provides: A plasma processing apparatus for generating plasma in a plasma processing container using a microwave and performing plasma processing on an object to be processed, A microwave source for generating the microwave; A waveguide for transmitting the microwave; An antenna that radiates the microwave transmitted from the microwave source through the waveguide; A dielectric window that propagates the microwave radiated from the antenna and transmits the microwave into the plasma processing container, The dielectric window includes the dielectric window.
  • the antenna is disposed so as to overlap one side of the dielectric window located outside the plasma processing vessel.
  • the antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, and the slot plate is supported by a support member so as to be deformable in a plane direction.
  • the antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, and in the slot plate, the plurality of pairs of slots are respectively substantially on the concentric circles of the plurality of concentric circles.
  • Each pair of slots may be formed so as to be orthogonal to each other.
  • a cooling means for cooling the antenna is provided so as to be in contact with and overlap one side of the antenna.
  • the slot plate is made of metal, and the slow wave plate is made of a dielectric material.
  • the method of manufacturing the dielectric window, and the plasma processing apparatus using the dielectric window by improving the adhesion between the antenna and the dielectric window, preventing abnormal discharge, The plasma density distribution can be stabilized.
  • FIG. 1B is a side view showing the dielectric window shown in FIG. 1A and the conventional dielectric window (shown by a broken line) in an overlapped manner so that they can be compared.
  • FIG. 1B is a cross-sectional view of a dielectric plate before forming a curved surface in the dielectric window shown in FIG. 1A. It is a section schematic diagram explaining a manufacturing method of a dielectric window concerning an embodiment of the present invention. It is another cross-sectional schematic explaining the manufacturing method of the dielectric material window which concerns on embodiment of this invention.
  • 1 is an overall cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. It is a top view which shows an example of the slot plate which concerns on embodiment of this invention. It is the elements on larger scale of FIG.
  • the present embodiment relates to a dielectric window manufacturing method according to the first aspect of the present invention, a dielectric window according to the second aspect of the present invention, and a microwave plasma processing apparatus according to the third aspect of the present invention.
  • plasma processing apparatus a microwave plasma processing apparatus
  • the dielectric window of this embodiment has a curved surface that is convex on one side.
  • the curved surface is formed in an axisymmetric shape with high accuracy so that the radius of curvature has a predetermined size. Furthermore, the curved surface is polished smoothly.
  • FIG. 1A is a side view of a dielectric window 3 according to an embodiment of the present invention.
  • the dielectric window corresponds to the dielectric window 3 according to the second aspect of the present invention. Further, the dielectric window corresponds to the dielectric window 3 manufactured by the dielectric window manufacturing method according to the first aspect of the present invention.
  • FIG. 1B is a side view showing the dielectric window 3 shown in FIG. 1A and a prior art dielectric window 30 (shown by broken lines) in an overlapping manner so that they can be compared.
  • the dielectric window 3 when the dielectric window 3 is installed in the plasma processing apparatus 1, one side of the dielectric window 3 located outside the chamber (plasma processing container) 2 is defined as an upper surface 3f. Further, in the dielectric window 3, a surface located inside the chamber 2 is a lower surface 3 b. As will be described later, the chamber 2 has a bottomed rectangular tube shape that can be hermetically sealed.
  • the upper surface 3f of the dielectric window 3 is formed in a curved surface that protrudes upward, and the lower surface 3b is formed flat.
  • a prior art dielectric window 30 is shown in broken lines.
  • the dielectric window 3 has an axisymmetric shape with the center portion being the most convex.
  • FIG. 2 is a cross-sectional view of the dielectric plate 31 before the curved surface is formed in the dielectric window 3 shown in FIG. 1A.
  • a method for forming the curved surface of the dielectric window 3 in the method for manufacturing the dielectric window 3 will be described.
  • a dielectric plate 31 made of a dielectric material having a pair of upper and lower surfaces that are substantially flat and have a predetermined thickness is prepared. As shown in FIG. 2, the dielectric plate 31 may have a size required for the dielectric window 3 of the plasma processing apparatus 1.
  • the dielectric plate 31 has substantially the same shape and the same size as the dielectric window 30 of the prior art, and an extra surface layer portion having a thickness of at least 0.1 mm is provided on the upper surface 3f side as a polishing margin. It is a thing.
  • the dielectric plate 31 is not particularly limited, and can be formed by, for example, a method of forming a dielectric material by compression molding or a method of cutting and separating a cylindrical dielectric material into a thin plate material.
  • 3A and 3B are schematic cross-sectional views illustrating a method for manufacturing the dielectric window 3 according to the embodiment of the present invention.
  • the method for manufacturing the dielectric window 3 corresponds to the method for manufacturing the dielectric window according to the first aspect of the present invention.
  • a jig 20 imitating the chamber 2 of the plasma processing apparatus 1 is used to form a curved surface in the dielectric window 3.
  • the jig 20 includes a jig body 21, an O-ring 22, and a vacuum pump 23 as a vacuum decompression unit.
  • the jig main body 21 is a bottomed rectangular tube-shaped casing having a rectangular opening at the top, and when the upper opening is sealed with the dielectric window 3, the inside of the jig main body 21 is sealed and the inside is in a vacuum state. It has become possible.
  • the O-ring 22 has substantially the same shape and the same size as the upper opening of the jig main body 21 and is disposed on a rectangular support frame along the upper opening of the jig main body 21.
  • the structure of the jig body 21 is the same as that of the chamber 2 that supports the dielectric window 3 with a rectangular support frame.
  • the dielectric plate 31 is installed on a rectangular support frame along the upper opening of the jig body 21 so that the O-ring 22 is interposed (installation step).
  • the center of the O-ring 22 is set to coincide with the center of the dielectric plate 31.
  • the inside of the jig body 21 is evacuated and decompressed using the vacuum pump 23. Thereby, the inside of the jig body 21 can be depressurized to the same pressure as the plasma generation conditions of the actual plasma processing apparatus 1.
  • the inside of the jig main body 21 (the jig 20) is evacuated and decompressed by the vacuum pump 23, so that the actual plasma processing apparatus 1 is brought into a vacuum state where plasma can be generated. Then, a pressure difference is generated with the dielectric window 3 as a boundary. Then, as shown in FIG. 3A, the region surrounded by the O-ring 22 on the lower surface of the dielectric plate 31 is convex toward the inside (downward) of the jig body 21 due to the pressure difference between the inside and outside of the jig 20. Gradually bend (differential pressure step).
  • the pressure inside the jig main body 21 is the same as the plasma generation conditions in the actual plasma processing apparatus 1, for example, about 10 [mPa] to several tens [Pa], the pressure reduction operation by the vacuum pump 23 is performed. And the state where the lower surface of the dielectric plate 31 is deformed downward and convex is maintained.
  • the upper surface (one surface) located on the outer side of the jig body 21 of the dielectric plate 31 is flat and uniform using a polishing jig so that the height is uniform. Polishing (one-side flattening step).
  • the central portion of the upper surface of the dielectric plate 31 is hardly polished, and the amount of polishing increases in the peripheral region on the upper surface of the dielectric plate 31. At this time, the degree of bending of the lower surface of the dielectric plate 31 located inside the jig body 21 is prevented from changing.
  • the dielectric window 3 is created from the dielectric plate 31.
  • the inside of the jig body 21 is released to atmospheric pressure, and the dielectric window 3 is removed from the jig 20.
  • the dielectric window 3 released from the pressure difference between the inside and outside of the jig 20 is free from bending.
  • the lower surface 3b of the dielectric window 3 returns to flat as shown in FIG. 1A.
  • the upper surface 3f of the dielectric window 3 has a curved surface that is convex upward and has the highest central portion. This is because in the state where the entire dielectric window 3 is bent downward, the central portion is hardly shaved and the peripheral region is polished.
  • the dielectric plate 31 is hardly polished at the center of the upper surface located outside the chamber 2 of the plasma processing apparatus 1 and is polished toward the outer peripheral region. The amount was increasing. For this reason, the upper surface 3f of the dielectric window 3 is convex upward and has a smooth curved surface.
  • the dielectric window 3 is bent because the inside of the chamber 2 is in a vacuum state.
  • the manufacturing method of the dielectric window 3 of the present embodiment the upper surface 3f positioned outside the chamber 2 is polished flatly in a state where the deflection is generated by the pressure difference between the inside and outside of the jig body 21 imitating the chamber 2. is doing.
  • the upper surface 3f of the dielectric window 3 has a curved surface that protrudes upward when there is no difference in the pressure applied to the upper surface 3f and the lower surface 3b.
  • the upper surface 3f becomes flat when actually used in the plasma processing apparatus 1, as shown in FIG. 3B.
  • the dielectric window 3 of the present embodiment has an axially symmetric shape. Therefore, when the dielectric window 3 is installed in the plasma processing apparatus 1 and performs plasma processing, the dielectric window 3 is positioned outside the chamber 2 of the dielectric window 3.
  • the upper surface 3f one surface can be deformed stably and flatly.
  • FIG. 4 is an overall cross-sectional view of the plasma processing apparatus 1 according to the embodiment of the present invention.
  • This plasma processing apparatus 1 corresponds to the plasma processing apparatus according to the third aspect of the present invention.
  • a plasma processing apparatus 1 according to an embodiment of the present invention includes a bottomed square cylindrical chamber 2, a dielectric window (top plate) 3, a disk-shaped antenna 4, a waveguide 5, a micro A wave source 6, a cooling jacket 7 as a cooling means, a substrate holding table 8, a vacuum pump 9, a high frequency power supply 10, a gas passage 11, a temperature sensor 12, and a support member 13 are provided.
  • the chamber 2 has a sealable structure in order to generate plasma therein.
  • the antenna 4 includes a slot plate 4a made of metal (shield member), and a slow wave plate 4b arranged adjacent to and above the slot plate 4a and made of a dielectric.
  • the waveguide 5 is a so-called coaxial waveguide, and includes an inner conductor 5b and a cylindrical outer conductor 5a disposed so as to form a cylindrical gap through which microwaves pass on the outer periphery of the inner conductor 5b. It is equipped with.
  • the support member 13 is substantially the same shape and the same size as the upper opening of the chamber 2 (peripheral edge of the dielectric window 3), and is disposed on a rectangular support frame along the upper opening of the chamber 2.
  • a dielectric window 3 is disposed on the rectangular support frame via a support member 13.
  • FIG. 5 is a plan view showing an example of the slot plate 4a according to the embodiment of the present invention.
  • the slot plate 4a is disposed adjacent to the lower side of the slow wave plate 4b, and a large number of slots 41 and 42 are formed therethrough.
  • the slot plate 4a is located below the slow wave plate 4b. For this reason, the microwave propagates so as to spread in the surface direction of the slow wave plate 4b with the position introduced from the waveguide 5 as the center.
  • the slots 41 and 42 are formed on the concentric circles of a plurality of concentric circles at substantially equal angular intervals.
  • Each slot 41, 42 is formed to be orthogonal to each other.
  • the microwave propagates in the radial direction of the slot plate 4 a centering on the position introduced from the waveguide 5, and is radiated downward through the slots 41 and 42.
  • the microwaves are repeatedly reflected inside the top plate 3 and interfere to strengthen each other to form a standing wave.
  • plasma is formed in a direction perpendicular to the length direction of the slots 41 and 42.
  • the upper opening of the chamber 2 of the plasma processing apparatus 1 is closed by the dielectric window 3.
  • the upper surface 3 f of the dielectric window 3 forms a convex curved surface toward the outside (upward) of the chamber 2.
  • the antenna 4 is arranged above the dielectric window 3 (on one side) so as to overlap.
  • a waveguide 5 is connected to the center of the antenna 4. Specifically, the lower end portion of the inner conductor 5b is in contact with the slot plate 4a.
  • the slow wave plate 4b is located between the cooling jacket 7 and the slot plate 4a, and compresses the wavelength of the microwave introduced from the waveguide 5 and shifts it to the short wavelength side.
  • the slow wave plate 4b can be formed of a dielectric material such as SiO 2 or Al 2 O 3 .
  • the cooling jacket 7 is provided so as to be in contact with and overlap the upper surface (one surface) of the antenna 4.
  • the temperature sensor 12 is provided on the antenna 4 that is made of metal and is likely to reach the highest temperature.
  • the temperature measurement result by the temperature sensor 12 is fed back to a control device (not shown) that controls the plasma processing apparatus 1.
  • the temperature of a heat medium is controlled by the control apparatus, adjusting the quantity of the heat medium sent through the cooling flow path 7a. Thereby, the temperature of the top plate 3 is more reliably maintained constant.
  • the upper opening of the chamber 2 of the plasma processing apparatus 1 is closed by the dielectric window 3 as shown in FIG. Seal the inside.
  • the inside of the chamber 2 is evacuated and depressurized to a vacuum state in which plasma is generated.
  • a pressure difference is generated with the dielectric window 3 as a boundary.
  • the lower surface 3 b of the dielectric window 3 is gradually bent so as to become a convex curved surface toward the inside (downward) of the chamber 2.
  • the diameter of the dielectric window 3 is about 400 mm, and the maximum amount of deflection at the convex portion of the lower surface 3b is about 0.1 mm.
  • the dielectric window 3 that closes the upper opening of the chamber 2 is brought into the chamber 2 due to the pressure difference inside and outside the chamber 2.
  • Receive the load to head For example, if the inside of the chamber 2 is set to a pressure under plasma generation conditions in which plasma is generated in a good state, for example, about 10 [mPa] to several tens [Pa], the outside of the chamber 2 is atmospheric pressure. A pressure difference of about 10 5 [Pa] occurs between the inside and the outside of 2.
  • the peripheral edge portion of the dielectric window 3 is supported by a support member 13 disposed on a rectangular support frame along the upper opening of the chamber 2.
  • the upper surface 3f of the dielectric window 3 of the present embodiment is flat during the plasma processing. That is, the region surrounded by the support member 13 on the lower surface 3 b of the dielectric window 3 is gradually bent so as to protrude toward the inside (downward) of the chamber 2 due to the pressure difference between the inside and outside of the chamber 2. That is, the flat lower surface 3b is deformed into a convex curved surface toward the inside of the chamber 2, and the upper convex surface 3f is flat.
  • the inside of the chamber 2 is evacuated and decompressed by using the vacuum pump 9 to be in a vacuum state.
  • a microwave is supplied from the microwave source 6 to the antenna 4 through the waveguide 5.
  • the microwave is radiated downward through the slots 41 and 42 of the slot plate 4 a while propagating between the slot plate 4 a and the slow wave plate 4 b in the radial direction of the antenna 4 and reaches the dielectric window 3. .
  • the microwave travels while rotating the polarization plane inside the dielectric window 3 to form a circularly polarized wave.
  • the microwave passes through the dielectric window 3 and is radiated into the chamber 2.
  • the microwave radiated into the chamber 2 through the waveguide 5 and the dielectric window 3 is repeatedly reflected while maintaining the wavelength at a predetermined length with the position introduced from the waveguide 5 as the center. However, it propagates through the dielectric window 3. Since the microwave forms a coarse / dense position pattern in the dielectric window 3, the plasma density distribution in the chamber 2 is formed and stabilized.
  • a plasma excitation gas such as argon (Ar) or xenon (Xe)
  • the gas is ionized in the chamber 2 by the above-described microwave energy, and plasma is generated.
  • plasma processing such as so-called plasma CVD (Plasma Chemical Vapor Deposition) can be performed. That is, a thin film forming gas is supplied into the chamber 2 by a lower gas supply means (not shown). Then, by activating the gas, a thin film such as Si is deposited on the substrate W to be processed which is a semiconductor substrate placed on the substrate holder 8.
  • plasma processing is continuously performed on a predetermined number of substrates to be processed W. It can be performed.
  • the dielectric window 3 and the antenna 4 are cooled by the cooling jacket 7 as described above. However, due to the heat generated when plasma is generated inside the chamber 2, the dielectric window 3 and the antenna 4 are more or less expanded and deformed according to their respective thermal expansion coefficients.
  • the upper surface 3f of the dielectric window 3 is flat during the plasma processing.
  • An antenna 4 is disposed so as to overlap the upper surface 3 f of the dielectric window 3 located outside the chamber 2. For this reason, during the plasma processing, the slot plate 4a of the antenna 4 expands while maintaining the adhesion with the dielectric window 3 even if it is deformed by thermal expansion. For this reason, a gap does not occur between the dielectric window 3 and the antenna 4, and the occurrence of abnormal discharge is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
  • the slot plate 4a is maintained in a planar state while being in close contact with the dielectric window 3.
  • the cooling jacket 7 and the slow wave plate 4b are in close contact with each other before the plasma is generated inside the chamber 2, that is, before the inside of the chamber 2 is evacuated and decompressed. Therefore, the antenna 4 (slot plate 4a and slow wave plate 4b) disposed between the dielectric window 3 and the cooling jacket 7 is not only between the dielectric window 3 but also the cooling jacket 7 at the time of thermal expansion. Adhesion can be maintained even between the two.
  • the dielectric window 3 and the antenna 4 and the antenna 4 and the cooling jacket 7 are in close contact with each other without generating a gap. For this reason, the heat accumulated in the dielectric window 3 and the antenna 4 can be dissipated out of the chamber 2 via the cooling jacket 7 and can be efficiently cooled. As a result, deformation of the dielectric window 3 and the antenna 4 due to heat is suppressed, no gap is generated between the antenna 4 and the dielectric window 3, and the occurrence of abnormal discharge during propagation of microwaves in the antenna is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
  • the dielectric window 3 is created so that the upper surface 3f of the dielectric window 3 returns to a plane during the plasma processing in the actual plasma processing apparatus 1. .
  • the dielectric window 3 of the present embodiment has a convex curved surface simply by polishing the lower surface thereof, and the dielectric window 3 is deformed in comparison with the dielectric window 3 in which the upper surface is deformed flat by the pressure difference between the inside and outside of the chamber 2.
  • the upper surface 3f on the antenna 4 side of the body window 3 is in a state of excellent smoothness.
  • the upper surface of the dielectric window 3 can be polished more flat than the case where the lower surface of the dielectric window 3 is simply polished to form a convex curved surface. It is not necessary to design a complicated curved surface shape. Therefore, according to the method for manufacturing the dielectric window 3 according to the present embodiment, the processing becomes easy and the manufacturing cost can be reduced.
  • the adhesion between the antenna 4 and the dielectric window 3 is improved, so that not only abnormal discharge between the two members is prevented, but also the antenna 4 and the dielectric by the cooling jacket 7.
  • the cooling efficiency of the body window 3 can be maintained high.
  • the temperature change of the antenna 4 or the like that has a great influence on the plasma generation state can be made as small as possible to stabilize the electromagnetic field distribution in the dielectric window 3, that is, the plasma density distribution.
  • FIG. 6 is a partially enlarged view of FIG. 4 and shows the positional relationship between the dielectric window 3 and the antenna 4.
  • a connector provided in the chamber 2 is provided above the dielectric window 3 as a support member that supports the peripheral portion of the slot plate 4 a of the antenna 4 without being fixed. 14 may be provided.
  • the slot plate 4a expands and deforms not only in the vertical direction in which the dielectric window 3 and the slow wave plate 4b exist, but also in the surface direction thereof. Therefore, when the peripheral portion of the slot plate 4a is fixed, the expansion in the surface direction is not absorbed and appears as a vertical distortion.
  • the connector 14 supports the slot plate 4a in a state where it can be freely expanded and deformed in the surface direction. For this reason, even if expansion in the surface direction occurs in the slot plate 4a, the adhesion between the slot plate 4a and the dielectric window 3 is not affected. Therefore, the slot plate 4a of the antenna 4 expands while maintaining the adhesion with the dielectric window 3 during the plasma processing. For this reason, a gap does not occur between the slot plate 4a and the dielectric window 3, and the occurrence of abnormal discharge is prevented when the microwave propagates in the antenna. As a result, the plasma density distribution in the chamber 2 can be stabilized.
  • the plasma processing apparatus 1 performs plasma processing on a 300 mm silicon wafer, but it can also perform plasma processing on a silicon wafer having a larger diameter than 300 mm. As the diameter of the silicon wafer, which is the substrate to be processed W, increases, the plasma processing apparatus 1 becomes larger and the amount of deflection of the dielectric window 3 increases. Therefore, according to the technical idea of the present invention, a greater effect can be obtained. Be able to.
  • the contact resistance during heat conduction with the antenna 4 can be reduced by polishing the surface of the dielectric window 3 so that the surface roughness thereof is reduced. Therefore, the cooling efficiency of the dielectric window 3 by the cooling jacket 7 can be maintained high. For this reason, according to the present embodiment, the dielectric window 3 is not easily affected by temperature changes, and plasma can be stably generated in the chamber 2 without affecting the plasma generation conditions.
  • the method of manufacturing the dielectric plate 31 and the structure of the jig 20 imitating the plasma processing apparatus 1 are examples, and the present invention is not limited to these.
  • the structure of the plasma processing apparatus 1 and the substrate W to be processed can be changed in various ways within the scope of the technical idea of the present invention, and are not limited to the above-described embodiments.
  • Plasma processing equipment microwave plasma processing equipment
  • chamber plasma processing vessel
  • Dielectric window top plate
  • Antenna Slot plate
  • Slot plate Slow wave plate
  • Waveguide Cooling jacket 9
  • Vacuum pump Support member 20
  • Jig 22 O-ring 31 Dielectric plate

Abstract

A dielectric window manufacturing method, a dielectric window, and a plasma treatment apparatus using the dielectric window with which adhesion between an antenna and the dielectric window is improved, and plasma density distribution is stabilized by preventing abnormal electrical discharge. When the dielectric window (3) is installed in the plasma treatment apparatus (1) and there is no pressure difference between the inside and outside of the dielectric window (3), the side positioned on the outside of the plasma treatment chamber (1) is a convex curved surface. The dielectric window (3) flexes to become concave toward the inside of the plasma treatment chamber (1) and the side positioned on the outside of the plasma treatment chamber (1) becomes flat when the inside of the plasma treatment apparatus (1) is in a vacuum state in which a plasma can be generated.

Description

誘電体窓、誘電体窓の製造方法、およびプラズマ処理装置Dielectric window, method of manufacturing dielectric window, and plasma processing apparatus
 本発明は、誘電体窓、誘電体窓の製造方法、および該誘電体窓を用いたプラズマ処理装置に関する。 The present invention relates to a dielectric window, a method for manufacturing the dielectric window, and a plasma processing apparatus using the dielectric window.
 プラズマ処理は、集積回路、液晶回路基板、太陽電池など多くの半導体デバイスの製造に広く用いられている。プラズマ処理は、半導体製造過程でのSiなどの薄膜の堆積やエッチング工程などで利用されている。しかし、より高性能かつ高機能なデバイスの開発、製造のために、例えば、超微細加工技術などに対応することが求められる。このため、圧力が低い高真空状態における高密度なプラズマ(低気圧高密度プラズマ)を安定して生成することができるマイクロ波プラズマ処理装置が注目されている。 Plasma treatment is widely used in the manufacture of many semiconductor devices such as integrated circuits, liquid crystal circuit boards, and solar cells. Plasma processing is used for deposition of thin films such as Si and etching processes during semiconductor manufacturing. However, in order to develop and manufacture higher performance and higher performance devices, for example, it is required to support ultra-fine processing technology. For this reason, a microwave plasma processing apparatus that can stably generate high-density plasma (low-pressure high-density plasma) in a high-vacuum state with low pressure has attracted attention.
 マイクロ波プラズマ処理装置は、マイクロ波のエネルギーにより気体を電離させプラズマを発生させるプラズマ処理装置である。マイクロ波は導波管を通してアンテナのスロット板から供給される。そして、プラズマ処理容器(チャンバ)の上部開口に配置される誘電体窓(天板)を透過してプラズマ処理室内へ放射される。この誘電体窓は、マイクロ波が透過できる誘電材料で形成されている。 The microwave plasma processing apparatus is a plasma processing apparatus that generates plasma by ionizing a gas by microwave energy. The microwave is supplied from the slot plate of the antenna through the waveguide. Then, the light passes through a dielectric window (top plate) disposed in the upper opening of the plasma processing container (chamber) and is radiated into the plasma processing chamber. The dielectric window is formed of a dielectric material that can transmit microwaves.
 マイクロ波プラズマ処理装置は、プラズマ処理時において、誘電体窓が高温になり、プラズマの発生状態が不安定になりやすいため、誘電体窓の温度制御が必要となる。 In the microwave plasma processing apparatus, the temperature of the dielectric window is required because the dielectric window becomes high temperature during plasma processing and the plasma generation state tends to become unstable.
 ところで、広いプラズマ発生条件において、誘電体窓内に最適なマイクロ波共振領域を形成し、安定したプラズマの発生を可能としたプラズマ処理装置が知られている(特許文献1参照)。 By the way, there is known a plasma processing apparatus in which an optimum microwave resonance region is formed in a dielectric window under a wide plasma generation condition, and stable plasma generation is possible (see Patent Document 1).
 この技術によれば、誘電体窓の下面にリング状の突条を設け、その誘電体窓の径方向の厚さをテーパ状に連続的に変化させている。これにより、1枚の誘電体窓が、多様な厚さを有する多種類の誘電体窓を兼ねることになり、いずれのプラズマ発生条件においても、誘電体窓内におけるマイクロ波の共振を可能としている。 According to this technique, a ring-shaped protrusion is provided on the lower surface of the dielectric window, and the radial thickness of the dielectric window is continuously changed in a tapered shape. As a result, one dielectric window also serves as many types of dielectric windows having various thicknesses, and enables microwave resonance in the dielectric window under any plasma generation conditions. .
特開2005-100931号公報Japanese Patent Laid-Open No. 2005-100931
 この技術においては、誘電体窓の形状を工夫することで、多様なプラズマ発生条件において、誘電体窓内におけるマイクロ波の伝播状態を適正化している。しかし、この技術では、マイクロ波が誘電体窓に導入されるまでの同マイクロ波の伝播状態の制御については、特に考慮されていない。 In this technology, the shape of the dielectric window is devised to optimize the propagation state of microwaves in the dielectric window under various plasma generation conditions. However, this technique does not take into consideration the control of the propagation state of the microwave until the microwave is introduced into the dielectric window.
 マイクロ波プラズマ処理装置において、プラズマ処理容器内が減圧雰囲気となると、プラズマ処理容器内と、外部との圧力差により誘電体窓が変形することがある。このため、アンテナと誘電体窓との間に間隙が生じ、プラズマ処理容器内へのマイクロ波の導入にばらつきが生じることがあった。また、この間隙により、誘電体窓付近の熱伝導率(冷却効率)が変化し、誘電体窓の温度が不均一となり、誘電体窓内の電磁界分布が変化することもあった。そして、その結果、プラズマ密度分布(プラズマの発生状態)が不安定となることがあった。 In the microwave plasma processing apparatus, when the inside of the plasma processing container is in a reduced pressure atmosphere, the dielectric window may be deformed due to a pressure difference between the inside of the plasma processing container and the outside. For this reason, a gap is generated between the antenna and the dielectric window, and the introduction of microwaves into the plasma processing container may vary. In addition, this gap may change the thermal conductivity (cooling efficiency) in the vicinity of the dielectric window, the temperature of the dielectric window becomes nonuniform, and the electromagnetic field distribution in the dielectric window may change. As a result, the plasma density distribution (plasma generation state) may become unstable.
 マイクロ波は、導波管からアンテナのスロット板、アンテナの上方に位置する冷却ジャケット等を伝送路として伝播する。この場合、伝送路間(遅波板とスロット板、アンテナと冷却ジャケット等)の間隙が大きくなると、アンテナにおけるマイクロ波の伝播により、伝送路間に電位差が生じて異常放電が発生することがあった。 The microwave propagates from the waveguide to the antenna slot plate, the cooling jacket located above the antenna, and the like as a transmission path. In this case, if the gap between the transmission lines (slow wave plate and slot plate, antenna and cooling jacket, etc.) becomes large, the propagation of microwaves in the antenna may cause a potential difference between the transmission lines and cause abnormal discharge. It was.
 また、遅波板および誘電体窓は、いずれも誘電材料で形成され、スロット板は、金属で形成されているので、温度の上昇とともに各部材に熱膨張差が生じる。たとえば、遅波板および誘電体窓がアルミナ(Al)により形成され、スロット板が銅(Cu)により形成されている場合、スロット板は誘電体窓や遅波板より大きく熱膨張する。 In addition, since the slow wave plate and the dielectric window are both made of a dielectric material and the slot plate is made of metal, a difference in thermal expansion occurs between the members as the temperature rises. For example, when the slow wave plate and the dielectric window are made of alumina (Al 2 O 3 ) and the slot plate is made of copper (Cu), the slot plate thermally expands more than the dielectric window and the slow wave plate. .
 マイクロ波プラズマ処理装置においては、天井部に設けられた誘電体窓と遅波板とにより挟まれた状態でスロット板が載置されている。スロット板が、その外周部において、ねじ等によって冷却ジャケットに固定されていると、径方向に熱膨張することができない。このため、スロット板は、プラズマ処理前に平面状であっても、プラズマ処理に伴う温度上昇とともに遅波板と誘電体窓との間を押し広げながら変形する。その結果、スロット板の位置が変動し、マイクロ波の伝播が不均一になっていた。また、スロット板と遅波板、スロット板と誘電体窓、冷却ジャケットと遅波板のそれぞれの間などに空隙が生じ、アンテナにおけるマイクロ波の伝播時に、電界強度の高い部位にて異常放電を引き起こす場合があった。 In the microwave plasma processing apparatus, the slot plate is placed in a state of being sandwiched between a dielectric window provided on the ceiling and a slow wave plate. If the slot plate is fixed to the cooling jacket by screws or the like at the outer peripheral portion thereof, it cannot thermally expand in the radial direction. For this reason, even if the slot plate is planar before the plasma processing, the slot plate is deformed while expanding between the slow wave plate and the dielectric window as the temperature rises due to the plasma processing. As a result, the position of the slot plate fluctuated, and the propagation of microwaves was uneven. In addition, air gaps are created between the slot plate and slow wave plate, between the slot plate and dielectric window, between the cooling jacket and slow wave plate, and abnormal discharge is generated at sites with high electric field strength during microwave propagation in the antenna. There was a case.
 さらに、これらの空隙により各部材間の熱伝導時の接触抵抗が不均一になるため、熱伝導度にばらつきが生じ、冷却ジャケットによっても、各部材の温度を適切にコントロールすることが困難になっていた。 Furthermore, the contact resistance during heat conduction between the members becomes non-uniform due to these gaps, resulting in variations in thermal conductivity, and it becomes difficult to control the temperature of each member appropriately even by the cooling jacket. It was.
 本発明は、こうした状況に鑑みてなされたものであり、その目的は、アンテナと誘電体窓などの密着性を向上させることで異常放電を防止し、かつ、誘電体窓内の電磁界分布、即ち、プラズマ密度分布を安定させることができる誘電体窓、該誘電体窓の製造方法、および該誘電体窓を用いたプラズマ処理装置を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to prevent abnormal discharge by improving the adhesion between the antenna and the dielectric window, and to distribute the electromagnetic field in the dielectric window, That is, it is an object to provide a dielectric window capable of stabilizing the plasma density distribution, a method for manufacturing the dielectric window, and a plasma processing apparatus using the dielectric window.
 上記目的を達成するため、本発明の第1の観点に係る誘電体窓の製造方法は、
 マイクロ波を用いてプラズマをプラズマ処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置に用いられ、前記プラズマ処理容器の内部をプラズマが発生可能な真空状態に密閉しうるとともに、前記マイクロ波を伝播して前記プラズマ処理容器の内部に透過させる誘電体窓の製造方法であって、
 内部を真空状態としうる治具に誘電体板を設置する設置ステップと、
 真空減圧手段により、前記冶具の内部を排気・減圧して、前記プラズマ処理容器と同様の真空状態とし、前記誘電体板を境界として圧力差を発生させ、前記誘電体板を前記冶具の内部に向けて凸になるように変形する差圧ステップと、
 前記誘電体板を境界とする圧力差を維持した状態で、前記誘電体板の、前記治具の外側に位置する片面を平坦とする片面平坦化ステップと、
を備えることを特徴とする。
In order to achieve the above object, a method of manufacturing a dielectric window according to the first aspect of the present invention includes:
It is used in a plasma processing apparatus for generating plasma in a plasma processing container using microwaves and performing plasma processing on an object to be processed, and the inside of the plasma processing container can be sealed in a vacuum state capable of generating plasma. A method of manufacturing a dielectric window that propagates the microwave and transmits the microwave into the plasma processing container,
An installation step of installing a dielectric plate in a jig that can be in a vacuum state inside;
By evacuating and depressurizing the inside of the jig by a vacuum depressurization means, a vacuum state similar to that of the plasma processing container is generated, a pressure difference is generated with the dielectric plate as a boundary, and the dielectric plate is placed inside the jig. A differential pressure step that deforms to become convex toward the surface,
A single-side flattening step of flattening one side of the dielectric plate located outside the jig, while maintaining a pressure difference with the dielectric plate as a boundary;
It is characterized by providing.
 本発明の第2の観点に係る誘電体窓は、
 本発明の第1の観点に係る誘電体窓の製造方法によって得られる誘電体窓であって、
 前記誘電体窓は、前記プラズマ処理装置に設置された場合に、同誘電体窓の内外で圧力差がないときに、前記プラズマ処理容器の外側に位置する片面が、外側に凸の曲面であり、
 前記誘電体窓は、前記プラズマ処理容器の内部をプラズマが発生可能な真空状態としたときに、前記プラズマ処理容器の内部に向けて凸となるように撓むとともに、前記プラズマ処理容器の外側に位置する片面が平坦となることを特徴とする。
The dielectric window according to the second aspect of the present invention is:
A dielectric window obtained by the dielectric window manufacturing method according to the first aspect of the present invention,
When the dielectric window is installed in the plasma processing apparatus, when there is no pressure difference between the inside and the outside of the dielectric window, one surface located outside the plasma processing container is a curved surface protruding outward. ,
The dielectric window is bent so as to be convex toward the inside of the plasma processing container when the inside of the plasma processing container is in a vacuum state in which plasma can be generated, and is positioned outside the plasma processing container. It is characterized in that one side to be flattened.
 好ましくは、前記誘電体窓は、中央部が最も凸となった軸対称の形状である。 Preferably, the dielectric window has an axisymmetric shape with a central portion being the most convex.
 本発明の第3の観点に係るプラズマ処理装置は、
 マイクロ波を用いてプラズマをプラズマ処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置であって、
 前記マイクロ波を発生するマイクロ波源と、
 前記マイクロ波を伝送する導波管と、
 前記マイクロ波源から前記導波管を介して伝送された前記マイクロ波を放射するアンテナと、
 前記アンテナから放射される前記マイクロ波を伝播し、前記プラズマ処理容器内に透過させる誘電体窓と、を備え、
 前記誘電体窓として、上記誘電体窓を備えることを特徴とする。
A plasma processing apparatus according to a third aspect of the present invention provides:
A plasma processing apparatus for generating plasma in a plasma processing container using a microwave and performing plasma processing on an object to be processed,
A microwave source for generating the microwave;
A waveguide for transmitting the microwave;
An antenna that radiates the microwave transmitted from the microwave source through the waveguide;
A dielectric window that propagates the microwave radiated from the antenna and transmits the microwave into the plasma processing container,
The dielectric window includes the dielectric window.
 好ましくは、前記プラズマ処理容器の外側に位置する前記誘電体窓の片面側には、前記アンテナが重なるように配置されている。 Preferably, the antenna is disposed so as to overlap one side of the dielectric window located outside the plasma processing vessel.
 好ましくは、前記アンテナは、スロット板と、該スロット板に隣接して配置された遅波板と、を備え、前記スロット板は、支持部材によって、面方向に変形可能に支持されている。 Preferably, the antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, and the slot plate is supported by a support member so as to be deformable in a plane direction.
 好ましくは、前記アンテナは、スロット板と、該スロット板に隣接して配置された遅波板と、を備え、前記スロット板において、複数対のスロットがそれぞれ、複数の同心円の各同心円上に略等角度間隔を置いて形成され、かつ各一対のスロットは、互いに直交するように形成されていてもよい。 Preferably, the antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, and in the slot plate, the plurality of pairs of slots are respectively substantially on the concentric circles of the plurality of concentric circles. Each pair of slots may be formed so as to be orthogonal to each other.
 好ましくは、前記アンテナを冷却する冷却手段が、当該アンテナの片面に接触し、かつ重なるように設けられている。 Preferably, a cooling means for cooling the antenna is provided so as to be in contact with and overlap one side of the antenna.
 好ましくは、前記スロット板が金属からなり、前記遅波板が誘電材料からなる。 Preferably, the slot plate is made of metal, and the slow wave plate is made of a dielectric material.
 本発明の誘電体窓、該誘電体窓の製造方法、および該誘電体窓を用いたプラズマ処理装置によれば、アンテナと誘電体窓の密着性を向上させ、異常放電を防止することで、プラズマ密度分布を安定させることができる。 According to the dielectric window of the present invention, the method of manufacturing the dielectric window, and the plasma processing apparatus using the dielectric window, by improving the adhesion between the antenna and the dielectric window, preventing abnormal discharge, The plasma density distribution can be stabilized.
本発明の実施形態に係る誘電体窓の側面図である。It is a side view of the dielectric material window concerning the embodiment of the present invention. 図1Aに示す誘電体窓と、従来技術の誘電体窓(破線で示す)と、を比較できるように重ねて示す側面図である。FIG. 1B is a side view showing the dielectric window shown in FIG. 1A and the conventional dielectric window (shown by a broken line) in an overlapped manner so that they can be compared. 図1Aに示す誘電体窓において、曲面を形成する前の誘電体板の断面図である。FIG. 1B is a cross-sectional view of a dielectric plate before forming a curved surface in the dielectric window shown in FIG. 1A. 本発明の実施形態に係る誘電体窓の製造方法を説明する断面概略図である。It is a section schematic diagram explaining a manufacturing method of a dielectric window concerning an embodiment of the present invention. 本発明の実施形態に係る誘電体窓の製造方法を説明する別の断面概略図である。It is another cross-sectional schematic explaining the manufacturing method of the dielectric material window which concerns on embodiment of this invention. 本発明の実施形態に係るプラズマ処理装置の全体断面図である。1 is an overall cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るスロット板の一例を示す平面図である。It is a top view which shows an example of the slot plate which concerns on embodiment of this invention. 図4の部分拡大図である。It is the elements on larger scale of FIG.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。なお、図中、同一または対応する部分には同一符号を付している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 本実施形態は、本発明の第1の観点に係る誘電体窓の製造方法、本発明の第2の観点に係る誘電体窓、および、本発明の第3の観点に係るマイクロ波プラズマ処理装置(以下、単に「プラズマ処理装置」という。)に関する。本実施形態の誘電体窓は、片側に凸の曲面を有する。該曲面は、曲率半径が所定の大きさになるように、高精度に軸対称の形状に形成されている。さらに、該曲面は、その表面が滑らかに研磨されている。 The present embodiment relates to a dielectric window manufacturing method according to the first aspect of the present invention, a dielectric window according to the second aspect of the present invention, and a microwave plasma processing apparatus according to the third aspect of the present invention. (Hereinafter simply referred to as “plasma processing apparatus”). The dielectric window of this embodiment has a curved surface that is convex on one side. The curved surface is formed in an axisymmetric shape with high accuracy so that the radius of curvature has a predetermined size. Furthermore, the curved surface is polished smoothly.
 図1Aは、本発明の実施形態に係る誘電体窓3の側面図である。また、この誘電体窓は、本発明の第2の観点に係る誘電体窓3に対応する。さらに、この誘電体窓は、本発明の第1の観点に係る誘電体窓の製造方法により製造された誘電体窓3に対応する。
 図1Bは、図1Aに示す誘電体窓3と、従来技術の誘電体窓30(破線で示す)と、を比較できるように重ねて示す側面図である。
FIG. 1A is a side view of a dielectric window 3 according to an embodiment of the present invention. The dielectric window corresponds to the dielectric window 3 according to the second aspect of the present invention. Further, the dielectric window corresponds to the dielectric window 3 manufactured by the dielectric window manufacturing method according to the first aspect of the present invention.
FIG. 1B is a side view showing the dielectric window 3 shown in FIG. 1A and a prior art dielectric window 30 (shown by broken lines) in an overlapping manner so that they can be compared.
 以下の説明において、誘電体窓3をプラズマ処理装置1に設置するときに、該誘電体窓3において、チャンバ(プラズマ処理容器)2の外側に位置する片面を上面3fとする。また、該誘電体窓3において、チャンバ2の内側に位置する面を下面3bとする。チャンバ2は、後述するように、内部が密閉可能な有底四角筒状のものである。 In the following description, when the dielectric window 3 is installed in the plasma processing apparatus 1, one side of the dielectric window 3 located outside the chamber (plasma processing container) 2 is defined as an upper surface 3f. Further, in the dielectric window 3, a surface located inside the chamber 2 is a lower surface 3 b. As will be described later, the chamber 2 has a bottomed rectangular tube shape that can be hermetically sealed.
 図1Aに示すように、外部から負荷が加わらない場合、誘電体窓3の上面3fは、上方に凸の曲面に形成されており、下面3bは、平坦に形成されている。図1Bには、従来技術の誘電体窓30を破線で示す。このように、誘電体窓3は、従来技術の誘電体窓30と同様に、中央部が最も凸となった軸対称の形状である。 As shown in FIG. 1A, when no load is applied from the outside, the upper surface 3f of the dielectric window 3 is formed in a curved surface that protrudes upward, and the lower surface 3b is formed flat. In FIG. 1B, a prior art dielectric window 30 is shown in broken lines. Thus, like the dielectric window 30 of the prior art, the dielectric window 3 has an axisymmetric shape with the center portion being the most convex.
 図2は、図1Aに示す誘電体窓3において、曲面を形成する前の誘電体板31の断面図である。
 以下、誘電体窓3の製造方法における、該誘電体窓3の曲面の形成方法について説明する。
FIG. 2 is a cross-sectional view of the dielectric plate 31 before the curved surface is formed in the dielectric window 3 shown in FIG. 1A.
Hereinafter, a method for forming the curved surface of the dielectric window 3 in the method for manufacturing the dielectric window 3 will be described.
 まず、上下一対の面がそれぞれほぼ平面状で所定の厚さに形成された誘電材料からなる誘電体板31を用意する。
 図2に示すように、誘電体板31は、プラズマ処理装置1の誘電体窓3に必要な大きさであればよい。また、誘電体板31は、従来技術の誘電体窓30とほぼ同形状、かつ同じ大きさであり、上面3f側に、研磨しろとして、少なくとも0.1mm厚さの表層部分が余分に設けられたものである。誘電体板31は、特に限定されず、例えば、誘電材料から圧縮成形によって作成する方法や、円柱形の誘電材料から薄い板材に切断分離する方法によって作成することができる。
First, a dielectric plate 31 made of a dielectric material having a pair of upper and lower surfaces that are substantially flat and have a predetermined thickness is prepared.
As shown in FIG. 2, the dielectric plate 31 may have a size required for the dielectric window 3 of the plasma processing apparatus 1. The dielectric plate 31 has substantially the same shape and the same size as the dielectric window 30 of the prior art, and an extra surface layer portion having a thickness of at least 0.1 mm is provided on the upper surface 3f side as a polishing margin. It is a thing. The dielectric plate 31 is not particularly limited, and can be formed by, for example, a method of forming a dielectric material by compression molding or a method of cutting and separating a cylindrical dielectric material into a thin plate material.
 図3Aおよび図3Bは、本発明の実施形態に係る誘電体窓3の製造方法を説明する断面概略図である。この誘電体窓3の製造方法は、本発明の第1の観点に係る誘電体窓の製造方法に対応する。 3A and 3B are schematic cross-sectional views illustrating a method for manufacturing the dielectric window 3 according to the embodiment of the present invention. The method for manufacturing the dielectric window 3 corresponds to the method for manufacturing the dielectric window according to the first aspect of the present invention.
 図3Aおよび図3Bに示すように、本実施形態では、誘電体窓3に曲面を形成するために、プラズマ処理装置1のチャンバ2に模した冶具20を用いる。この冶具20は、冶具本体21と、Oリング22と、真空減圧手段としての真空ポンプ23とを備えている。冶具本体21は、上部に矩形状の開口を有する有底四角筒状の筺体であり、誘電体窓3で当該上部開口を封止すると、冶具本体21の内部が密閉され、内部が真空状態としうるようになっている。Oリング22は、冶具本体21の上部開口とほぼ同形状、かつ同じ大きさで、冶具本体21の上部開口に沿う矩形状の支持枠に配置されている。この冶具本体21の構造は、誘電体窓3を矩形状の支持枠で支持するチャンバ2の構造と同様である。 As shown in FIGS. 3A and 3B, in the present embodiment, a jig 20 imitating the chamber 2 of the plasma processing apparatus 1 is used to form a curved surface in the dielectric window 3. The jig 20 includes a jig body 21, an O-ring 22, and a vacuum pump 23 as a vacuum decompression unit. The jig main body 21 is a bottomed rectangular tube-shaped casing having a rectangular opening at the top, and when the upper opening is sealed with the dielectric window 3, the inside of the jig main body 21 is sealed and the inside is in a vacuum state. It has become possible. The O-ring 22 has substantially the same shape and the same size as the upper opening of the jig main body 21 and is disposed on a rectangular support frame along the upper opening of the jig main body 21. The structure of the jig body 21 is the same as that of the chamber 2 that supports the dielectric window 3 with a rectangular support frame.
 次に、図3Aに示すように、誘電体板31を、冶具本体21の上部開口に沿う矩形状の支持枠に、Oリング22が間に介在するように設置する(設置ステップ)。
 このとき、Oリング22は、その中心が、誘電体板31の中心と一致するようにする。この状態で、真空ポンプ23を用いて冶具本体21の内部を排気・減圧する。これにより、冶具本体21の内部を、実際のプラズマ処理装置1のプラズマ発生条件と同じ圧力まで減圧することができる。
Next, as shown in FIG. 3A, the dielectric plate 31 is installed on a rectangular support frame along the upper opening of the jig body 21 so that the O-ring 22 is interposed (installation step).
At this time, the center of the O-ring 22 is set to coincide with the center of the dielectric plate 31. In this state, the inside of the jig body 21 is evacuated and decompressed using the vacuum pump 23. Thereby, the inside of the jig body 21 can be depressurized to the same pressure as the plasma generation conditions of the actual plasma processing apparatus 1.
 次に、真空ポンプ23で冶具本体21(治具20)の内部を排気・減圧して、実際のプラズマ処理装置1においてプラズマが発生可能な真空状態とする。そして、誘電体窓3を境界として圧力差を発生させる。すると、図3Aに示すように、誘電体板31の下面のOリング22によって囲まれた領域は、冶具20の内外の圧力差によって、冶具本体21の内部(下方)に向けて凸となるように次第に撓んでいく(差圧ステップ)。 Next, the inside of the jig main body 21 (the jig 20) is evacuated and decompressed by the vacuum pump 23, so that the actual plasma processing apparatus 1 is brought into a vacuum state where plasma can be generated. Then, a pressure difference is generated with the dielectric window 3 as a boundary. Then, as shown in FIG. 3A, the region surrounded by the O-ring 22 on the lower surface of the dielectric plate 31 is convex toward the inside (downward) of the jig body 21 due to the pressure difference between the inside and outside of the jig 20. Gradually bend (differential pressure step).
 そして、冶具本体21の内部の圧力が、実際のプラズマ処理装置1におけるプラズマ発生条件と同じ圧力、例えば、10[mPa]~数10[Pa]程度になったときに、真空ポンプ23による減圧操作を停止し、誘電体板31の下面が下方に凸に変形した状態を維持する。 Then, when the pressure inside the jig main body 21 is the same as the plasma generation conditions in the actual plasma processing apparatus 1, for example, about 10 [mPa] to several tens [Pa], the pressure reduction operation by the vacuum pump 23 is performed. And the state where the lower surface of the dielectric plate 31 is deformed downward and convex is maintained.
 次に、図3Bに示すように、誘電体板31の冶具本体21の外側に位置する上面(片面)を、平坦、かつ高さが均一となるように、研磨用の治具を用いて、研磨を行う(片面平坦化ステップ)。 Next, as shown in FIG. 3B, the upper surface (one surface) located on the outer side of the jig body 21 of the dielectric plate 31 is flat and uniform using a polishing jig so that the height is uniform. Polishing (one-side flattening step).
 ここでは、誘電体板31の上面の中央部はほとんど研磨されず、また、誘電体板31の上面の周縁領域程、研磨される量が増加する。このとき、誘電体板31の冶具本体21の内側に位置する下面の撓み度合いが変化しないようにする。 Here, the central portion of the upper surface of the dielectric plate 31 is hardly polished, and the amount of polishing increases in the peripheral region on the upper surface of the dielectric plate 31. At this time, the degree of bending of the lower surface of the dielectric plate 31 located inside the jig body 21 is prevented from changing.
 以上のように、誘電体板31の上面の研磨が終了すると、誘電体板31から誘電体窓3が作成される。次に、冶具本体21の内部を大気圧まで開放し、冶具20から誘電体窓3を取り外す。冶具20の内外の圧力差から開放された誘電体窓3は、撓みが解消する。そして、誘電体窓3の下面3bは、図1Aに示すように、平坦に復帰する。一方、誘電体窓3の上面3fは、図1Bに示すように、中央部が最も高い、上方に凸の曲面となる。これは、誘電体窓3全体が下方に撓んだ状態で、中央部はほとんど削られず、周縁領域程、研磨されていたためである。 As described above, when the polishing of the upper surface of the dielectric plate 31 is completed, the dielectric window 3 is created from the dielectric plate 31. Next, the inside of the jig body 21 is released to atmospheric pressure, and the dielectric window 3 is removed from the jig 20. The dielectric window 3 released from the pressure difference between the inside and outside of the jig 20 is free from bending. Then, the lower surface 3b of the dielectric window 3 returns to flat as shown in FIG. 1A. On the other hand, as shown in FIG. 1B, the upper surface 3f of the dielectric window 3 has a curved surface that is convex upward and has the highest central portion. This is because in the state where the entire dielectric window 3 is bent downward, the central portion is hardly shaved and the peripheral region is polished.
 本実施形態の誘電体窓3の製造方法によれば、誘電体板31は、プラズマ処理装置1のチャンバ2の外側に位置する上面の中央部がほとんど研磨されず、外周領域程、研磨される量が増加していた。そのため誘電体窓3の上面3fは、上方に凸、且つ滑らかな曲面となる。そして、誘電体窓3をプラズマ処理装置1で実際に使用する際は、チャンバ2の内部を真空状態とするため、誘電体窓3に撓みが発生する。本実施形態の誘電体窓3の製造方法によれば、チャンバ2に模した冶具本体21の内外の圧力差によって撓みを発生させた状態において、チャンバ2の外側に位置する上面3fを平坦に研磨している。このため、誘電体窓3の上面3fは、図1Aに示すように、上面3fと下面3bとに負荷される圧力に差がない状態では、上方に凸の曲面となる。しかし、この上面3fは、図3Bに示すように、プラズマ処理装置1で実際に使用する際は、平坦となる。 According to the method for manufacturing the dielectric window 3 of the present embodiment, the dielectric plate 31 is hardly polished at the center of the upper surface located outside the chamber 2 of the plasma processing apparatus 1 and is polished toward the outer peripheral region. The amount was increasing. For this reason, the upper surface 3f of the dielectric window 3 is convex upward and has a smooth curved surface. When the dielectric window 3 is actually used in the plasma processing apparatus 1, the dielectric window 3 is bent because the inside of the chamber 2 is in a vacuum state. According to the manufacturing method of the dielectric window 3 of the present embodiment, the upper surface 3f positioned outside the chamber 2 is polished flatly in a state where the deflection is generated by the pressure difference between the inside and outside of the jig body 21 imitating the chamber 2. is doing. For this reason, as shown in FIG. 1A, the upper surface 3f of the dielectric window 3 has a curved surface that protrudes upward when there is no difference in the pressure applied to the upper surface 3f and the lower surface 3b. However, the upper surface 3f becomes flat when actually used in the plasma processing apparatus 1, as shown in FIG. 3B.
 図1Aに示すように、本実施形態の誘電体窓3は、軸対称の形状であるので、プラズマ処理装置1に設置し、プラズマ処理を行う場合において、誘電体窓3のチャンバ2より外側の上面3f(片面)を安定して平坦に変形させることができる。 As shown in FIG. 1A, the dielectric window 3 of the present embodiment has an axially symmetric shape. Therefore, when the dielectric window 3 is installed in the plasma processing apparatus 1 and performs plasma processing, the dielectric window 3 is positioned outside the chamber 2 of the dielectric window 3. The upper surface 3f (one surface) can be deformed stably and flatly.
 図4は、本発明の実施形態に係るプラズマ処理装置1の全体断面図である。このプラズマ処理装置1は、本発明の第3の観点に係るプラズマ処理装置に対応する。
 図4に示すように、本発明の実施形態に係るプラズマ処理装置1は、有底四角筒状のチャンバ2、誘電体窓(天板)3、円盤状のアンテナ4、導波管5、マイクロ波源6、冷却手段としての冷却ジャケット7、基板保持台8、真空ポンプ9、高周波電源10、ガス通路11、温度センサ12、および支持部材13を備えている。チャンバ2は、その内部でプラズマを発生させるため、密閉可能な構造となっている。アンテナ4は、金属(シールド部材)からなるスロット板4aと、該スロット板4aの上方に隣接して配置され、誘電体からなる遅波板4bと、を備えている。導波管5は、いわゆる同軸導波管であり、内側導体5bと、該内側導体5bの外周にマイクロ波が通過する円筒状の隙間を形成するように配置された円筒形の外側導体5aと、を備えている。
FIG. 4 is an overall cross-sectional view of the plasma processing apparatus 1 according to the embodiment of the present invention. This plasma processing apparatus 1 corresponds to the plasma processing apparatus according to the third aspect of the present invention.
As shown in FIG. 4, a plasma processing apparatus 1 according to an embodiment of the present invention includes a bottomed square cylindrical chamber 2, a dielectric window (top plate) 3, a disk-shaped antenna 4, a waveguide 5, a micro A wave source 6, a cooling jacket 7 as a cooling means, a substrate holding table 8, a vacuum pump 9, a high frequency power supply 10, a gas passage 11, a temperature sensor 12, and a support member 13 are provided. The chamber 2 has a sealable structure in order to generate plasma therein. The antenna 4 includes a slot plate 4a made of metal (shield member), and a slow wave plate 4b arranged adjacent to and above the slot plate 4a and made of a dielectric. The waveguide 5 is a so-called coaxial waveguide, and includes an inner conductor 5b and a cylindrical outer conductor 5a disposed so as to form a cylindrical gap through which microwaves pass on the outer periphery of the inner conductor 5b. It is equipped with.
 支持部材13は、チャンバ2の上部開口(誘電体窓3の周縁部)とほぼ同形状、かつ同じ大きさで、チャンバ2の上部開口に沿う矩形状の支持枠に配置されている。そして、誘電体窓3が、この矩形状の支持枠に支持部材13を介して配置されている。 The support member 13 is substantially the same shape and the same size as the upper opening of the chamber 2 (peripheral edge of the dielectric window 3), and is disposed on a rectangular support frame along the upper opening of the chamber 2. A dielectric window 3 is disposed on the rectangular support frame via a support member 13.
 図5は、本発明の実施形態に係るスロット板4aの一例を示す平面図である。
 図5に示すように、スロット板4aは、遅波板4bの下方に隣接して配置され、多数のスロット41、42が貫通して形成されている。このように、スロット板4aは遅波板4bの下方に位置する。このため、マイクロ波は、導波管5から導入された位置を中心として、遅波板4bの面方向に広がるように伝播する。
FIG. 5 is a plan view showing an example of the slot plate 4a according to the embodiment of the present invention.
As shown in FIG. 5, the slot plate 4a is disposed adjacent to the lower side of the slow wave plate 4b, and a large number of slots 41 and 42 are formed therethrough. Thus, the slot plate 4a is located below the slow wave plate 4b. For this reason, the microwave propagates so as to spread in the surface direction of the slow wave plate 4b with the position introduced from the waveguide 5 as the center.
 詳しくは、図5に示すように、各スロット41、42は、それぞれ、複数の同心円の各同心円上に略等角度間隔を置いて形成されている。各スロット41、42は、互いに直交するように形成されている。そして、マイクロ波は、導波管5から導入された位置を中心として、スロット板4aの径方向に伝播し、各スロット41、42を通して下方に放射される。そして、マイクロ波は、天板3の内部で繰り返し反射され、干渉して強め合い、定在波を形成する。そして、天板3の直下領域において、各スロット41、42の長さ方向に垂直な方向にプラズマが形成される。 More specifically, as shown in FIG. 5, the slots 41 and 42 are formed on the concentric circles of a plurality of concentric circles at substantially equal angular intervals. Each slot 41, 42 is formed to be orthogonal to each other. Then, the microwave propagates in the radial direction of the slot plate 4 a centering on the position introduced from the waveguide 5, and is radiated downward through the slots 41 and 42. The microwaves are repeatedly reflected inside the top plate 3 and interfere to strengthen each other to form a standing wave. In the region immediately below the top plate 3, plasma is formed in a direction perpendicular to the length direction of the slots 41 and 42.
 図4に戻り、プラズマ処理装置1のチャンバ2の上部開口は、誘電体窓3によって閉塞されている。誘電体窓3の上面3fは、チャンバ2の外側(上方)に向けて凸の曲面を形成している。また、誘電体窓3の上方(片面側)には、アンテナ4が重なるように配置されている。 Returning to FIG. 4, the upper opening of the chamber 2 of the plasma processing apparatus 1 is closed by the dielectric window 3. The upper surface 3 f of the dielectric window 3 forms a convex curved surface toward the outside (upward) of the chamber 2. In addition, the antenna 4 is arranged above the dielectric window 3 (on one side) so as to overlap.
 アンテナ4の中央部には、導波管5が接続されている。詳しくは、内側導体5bの下端部は、スロット板4aに当接している。遅波板4bは、冷却ジャケット7とスロット板4aとの間に位置しており、導波管5から導入されたマイクロ波の波長を圧縮して短波長側にシフトさせる。この遅波板4bは、例えばSiOやAlなどの誘電材料から形成することができる。 A waveguide 5 is connected to the center of the antenna 4. Specifically, the lower end portion of the inner conductor 5b is in contact with the slot plate 4a. The slow wave plate 4b is located between the cooling jacket 7 and the slot plate 4a, and compresses the wavelength of the microwave introduced from the waveguide 5 and shifts it to the short wavelength side. The slow wave plate 4b can be formed of a dielectric material such as SiO 2 or Al 2 O 3 .
 本実施形態では、図4に示すように、冷却ジャケット7が、アンテナ4の上面(片面)に接触し、かつ重なるように設けられている。この冷却ジャケット7の冷却流路7aに熱媒を流通させることにより、チャンバ2の内部でプラズマが発生するときに発生する熱が誘電体窓3やアンテナ4に蓄積されて高温となっても、その熱を奪い、誘電体窓3やアンテナ4を冷却することができる。 In the present embodiment, as shown in FIG. 4, the cooling jacket 7 is provided so as to be in contact with and overlap the upper surface (one surface) of the antenna 4. By causing a heat medium to flow through the cooling flow path 7a of the cooling jacket 7, even if heat generated when plasma is generated inside the chamber 2 is accumulated in the dielectric window 3 and the antenna 4 and becomes high temperature, The heat can be taken away and the dielectric window 3 and the antenna 4 can be cooled.
 なお、本実施形態では、図4に示すように、金属により形成され、最も高温となりやすいアンテナ4に温度センサ12を設けている。そして、該温度センサ12による測温結果を、プラズマ処理装置1を制御する制御装置(図示せず)にフィードバックしている。そして、制御装置によって、冷却流路7aに流す熱媒体の量を調整しながら、熱媒体の温度を制御している。これにより、天板3の温度がより確実に一定に保たれている。 In the present embodiment, as shown in FIG. 4, the temperature sensor 12 is provided on the antenna 4 that is made of metal and is likely to reach the highest temperature. The temperature measurement result by the temperature sensor 12 is fed back to a control device (not shown) that controls the plasma processing apparatus 1. And the temperature of a heat medium is controlled by the control apparatus, adjusting the quantity of the heat medium sent through the cooling flow path 7a. Thereby, the temperature of the top plate 3 is more reliably maintained constant.
 本実施形態のプラズマ処理装置1で被処理基板Wをプラズマ処理するには、図4に示すように、誘電体窓3で、プラズマ処理装置1のチャンバ2の上部開口を閉塞し、チャンバ2の内部を密閉する。次にチャンバ2内を排気・減圧して、プラズマが発生可能な真空状態にする。そして、誘電体窓3を境界として圧力差を発生させる。そうすると、チャンバ2の内外の圧力差により、誘電体窓3の下面3bがチャンバ2の内部(下方)に向けて凸の曲面になるように次第に撓んでいく。例えば、このプラズマ処理装置1が300mmシリコンウェハ処理用の装置である場合、誘電体窓3の直径は約400mmであり、下面3bの凸部における最大撓み量は約0.1mmとなる。 In order to perform plasma processing on the substrate W to be processed by the plasma processing apparatus 1 of the present embodiment, the upper opening of the chamber 2 of the plasma processing apparatus 1 is closed by the dielectric window 3 as shown in FIG. Seal the inside. Next, the inside of the chamber 2 is evacuated and depressurized to a vacuum state in which plasma is generated. Then, a pressure difference is generated with the dielectric window 3 as a boundary. Then, due to the pressure difference between the inside and outside of the chamber 2, the lower surface 3 b of the dielectric window 3 is gradually bent so as to become a convex curved surface toward the inside (downward) of the chamber 2. For example, when the plasma processing apparatus 1 is an apparatus for processing a 300 mm silicon wafer, the diameter of the dielectric window 3 is about 400 mm, and the maximum amount of deflection at the convex portion of the lower surface 3b is about 0.1 mm.
 図4に示す状態で、真空ポンプ9を用いてチャンバ2内を排気・減圧すると、チャンバ2の上部開口を閉塞する誘電体窓3は、チャンバ2の内外の圧力差により、チャンバ2の内部に向かう負荷を受ける。例えば、チャンバ2の内部を、プラズマが良好な状態で発生するプラズマ発生条件における圧力、例えば、10[mPa]~数10[Pa]程度とすると、チャンバ2の外側は大気圧であるので、チャンバ2の内外に約10[Pa]の圧力差が生じる。図4に示すように、誘電体窓3の周縁部は、チャンバ2の上部開口に沿う矩形状の支持枠に配置された支持部材13に支持されている。 In the state shown in FIG. 4, when the inside of the chamber 2 is evacuated and depressurized using the vacuum pump 9, the dielectric window 3 that closes the upper opening of the chamber 2 is brought into the chamber 2 due to the pressure difference inside and outside the chamber 2. Receive the load to head. For example, if the inside of the chamber 2 is set to a pressure under plasma generation conditions in which plasma is generated in a good state, for example, about 10 [mPa] to several tens [Pa], the outside of the chamber 2 is atmospheric pressure. A pressure difference of about 10 5 [Pa] occurs between the inside and the outside of 2. As shown in FIG. 4, the peripheral edge portion of the dielectric window 3 is supported by a support member 13 disposed on a rectangular support frame along the upper opening of the chamber 2.
 このため、本実施形態の誘電体窓3の上面3fは、プラズマ処理中には平坦となる。即ち、誘電体窓3の下面3bの支持部材13によって囲まれた領域は、チャンバ2の内外の圧力差によって、チャンバ2の内部(下方)に向けて凸となるように次第に撓んでいく。即ち、平坦であった下面3bがチャンバ2の内部に向けて凸の曲面に変形すると共に、上方に凸の曲面であった上面3fが平坦となる。 For this reason, the upper surface 3f of the dielectric window 3 of the present embodiment is flat during the plasma processing. That is, the region surrounded by the support member 13 on the lower surface 3 b of the dielectric window 3 is gradually bent so as to protrude toward the inside (downward) of the chamber 2 due to the pressure difference between the inside and outside of the chamber 2. That is, the flat lower surface 3b is deformed into a convex curved surface toward the inside of the chamber 2, and the upper convex surface 3f is flat.
 以下、本実施形態のプラズマ処理装置1を使用した半導体基板(被処理基板W)のプラズマ処理について説明する。
 図4に示す状態で、真空ポンプ9を用いてチャンバ2内を排気・減圧し、真空状態とする。次に、マイクロ波源6から導波管5を通してマイクロ波をアンテナ4に供給する。すると、マイクロ波は、アンテナ4の径方向に、スロット板4aと遅波板4bの間を伝播しながら、スロット板4aの各スロット41、42を通して下方に放射され、誘電体窓3に到達する。このとき、マイクロ波は、誘電体窓3の内部をその偏波面を回転させ、円偏波を形成しながら進行する。そして、マイクロ波は誘電体窓3を透過し、チャンバ2内に放射される。
Hereinafter, plasma processing of a semiconductor substrate (substrate W to be processed) using the plasma processing apparatus 1 of the present embodiment will be described.
In the state shown in FIG. 4, the inside of the chamber 2 is evacuated and decompressed by using the vacuum pump 9 to be in a vacuum state. Next, a microwave is supplied from the microwave source 6 to the antenna 4 through the waveguide 5. Then, the microwave is radiated downward through the slots 41 and 42 of the slot plate 4 a while propagating between the slot plate 4 a and the slow wave plate 4 b in the radial direction of the antenna 4 and reaches the dielectric window 3. . At this time, the microwave travels while rotating the polarization plane inside the dielectric window 3 to form a circularly polarized wave. The microwave passes through the dielectric window 3 and is radiated into the chamber 2.
 導波管5および誘電体窓3を介してチャンバ2内へ放射されたマイクロ波は、導波管5から導入された位置を中心として、波長を所定の長さに維持したまま、反射を繰り返しながら、誘電体窓3内を伝播する。マイクロ波は、誘電体窓3内で粗密位置パターンを形成するため、チャンバ2内であるプラズマ密度分布を形成して安定する。 The microwave radiated into the chamber 2 through the waveguide 5 and the dielectric window 3 is repeatedly reflected while maintaining the wavelength at a predetermined length with the position introduced from the waveguide 5 as the center. However, it propagates through the dielectric window 3. Since the microwave forms a coarse / dense position pattern in the dielectric window 3, the plasma density distribution in the chamber 2 is formed and stabilized.
 そして、チャンバ2内に、アルゴン(Ar)またはキセノン(Xe)等のプラズマ励起用ガスが供給されると、上述したマイクロ波のエネルギーによってチャンバ2内で気体が電離し、プラズマが生成する。ここでは、例えば、いわゆるプラズマCVD(Plasma Chemical Vapor Deposition)等のプラズマ処理を施すことができる。即ち、図示しない下段ガス供給手段等により、薄膜形成用ガスをチャンバ2内へ供給する。そして、該ガスを活性化することにより、基板保持台8に設置した半導体基板である被処理基板Wに、Siなどの薄膜を堆積する。このように、チャンバ2内へ被処理基板Wを搬入し、薄膜を堆積後、プラズマ処理後に搬出するという一連の流れを繰り返すことで、所定枚数の被処理基板Wに対して連続してプラズマ処理を行うことができる。 Then, when a plasma excitation gas such as argon (Ar) or xenon (Xe) is supplied into the chamber 2, the gas is ionized in the chamber 2 by the above-described microwave energy, and plasma is generated. Here, for example, plasma processing such as so-called plasma CVD (Plasma Chemical Vapor Deposition) can be performed. That is, a thin film forming gas is supplied into the chamber 2 by a lower gas supply means (not shown). Then, by activating the gas, a thin film such as Si is deposited on the substrate W to be processed which is a semiconductor substrate placed on the substrate holder 8. In this way, by repeating a series of processes of loading the substrate to be processed W into the chamber 2, depositing a thin film, and then unloading after the plasma processing, plasma processing is continuously performed on a predetermined number of substrates to be processed W. It can be performed.
 本実施形態のプラズマ処理装置1では、上述したように、冷却ジャケット7により誘電体窓3やアンテナ4の冷却を行っている。しかしながら、チャンバ2の内部でプラズマが発生するときに発生する熱によって、誘電体窓3やアンテナ4は、それぞれの熱膨張率に応じて、多かれ少なかれ、膨張し、変形する。 In the plasma processing apparatus 1 of the present embodiment, the dielectric window 3 and the antenna 4 are cooled by the cooling jacket 7 as described above. However, due to the heat generated when plasma is generated inside the chamber 2, the dielectric window 3 and the antenna 4 are more or less expanded and deformed according to their respective thermal expansion coefficients.
 これに対し、本実施形態のプラズマ処理装置1によれば、上述したように、プラズマ処理中において、誘電体窓3の上面3fは平坦となる。また、チャンバ2の外側に位置する誘電体窓3の上面3fには、アンテナ4が重なるように配置されている。このため、プラズマ処理中において、アンテナ4のスロット板4aは、熱膨張によって変形しても、誘電体窓3との密着性を維持したまま膨張する。このため、誘電体窓3とアンテナ4との間に間隙が生じず、異常放電の発生が防止される。この結果、チャンバ2内におけるプラズマ密度分布を安定させることができる。 On the other hand, according to the plasma processing apparatus 1 of the present embodiment, as described above, the upper surface 3f of the dielectric window 3 is flat during the plasma processing. An antenna 4 is disposed so as to overlap the upper surface 3 f of the dielectric window 3 located outside the chamber 2. For this reason, during the plasma processing, the slot plate 4a of the antenna 4 expands while maintaining the adhesion with the dielectric window 3 even if it is deformed by thermal expansion. For this reason, a gap does not occur between the dielectric window 3 and the antenna 4, and the occurrence of abnormal discharge is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
 また、本実施形態のプラズマ処理装置1によれば、スロット板4aは、誘電体窓3と互いに密着された状態で、平面状の状態を維持している。さらに、冷却ジャケット7と遅波板4bは、チャンバ2の内部にプラズマを発生させる前、即ち、チャンバ2の内部を排気・減圧する前より、互いに密着している。そのため、誘電体窓3と冷却ジャケット7の間に配置されたアンテナ4(スロット板4aおよび遅波板4b)は、その熱膨張時において、誘電体窓3との間だけでなく、冷却ジャケット7との間においても、密着性を維持することができる。このため、アンテナ4と誘電体窓3、および、アンテナ4と冷却ジャケット7との間に間隙が生じず、アンテナにおけるマイクロ波の伝播時に異常放電の発生が防止される。この結果、チャンバ2内におけるプラズマ密度分布を安定させることができる。 Further, according to the plasma processing apparatus 1 of the present embodiment, the slot plate 4a is maintained in a planar state while being in close contact with the dielectric window 3. Further, the cooling jacket 7 and the slow wave plate 4b are in close contact with each other before the plasma is generated inside the chamber 2, that is, before the inside of the chamber 2 is evacuated and decompressed. Therefore, the antenna 4 (slot plate 4a and slow wave plate 4b) disposed between the dielectric window 3 and the cooling jacket 7 is not only between the dielectric window 3 but also the cooling jacket 7 at the time of thermal expansion. Adhesion can be maintained even between the two. For this reason, a gap does not occur between the antenna 4 and the dielectric window 3 and between the antenna 4 and the cooling jacket 7, and the occurrence of abnormal discharge during propagation of microwaves in the antenna is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
 また、本実施形態のプラズマ処理装置1によれば、誘電体窓3とアンテナ4、および、アンテナ4と冷却ジャケット7は、それぞれの間に間隙を生ずることなく密着している。このため、冷却ジャケット7を介して、誘電体窓3やアンテナ4に蓄積される熱をチャンバ2の外に向けて放散し、効率よく冷却することができる。これにより、誘電体窓3やアンテナ4の熱による変形を抑制し、アンテナ4と誘電体窓3の間などに空隙が生じず、アンテナにおけるマイクロ波の伝播時に異常放電の発生が防止される。この結果、チャンバ2内におけるプラズマ密度分布を安定させることができる。 Further, according to the plasma processing apparatus 1 of the present embodiment, the dielectric window 3 and the antenna 4 and the antenna 4 and the cooling jacket 7 are in close contact with each other without generating a gap. For this reason, the heat accumulated in the dielectric window 3 and the antenna 4 can be dissipated out of the chamber 2 via the cooling jacket 7 and can be efficiently cooled. As a result, deformation of the dielectric window 3 and the antenna 4 due to heat is suppressed, no gap is generated between the antenna 4 and the dielectric window 3, and the occurrence of abnormal discharge during propagation of microwaves in the antenna is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
 本実施形態に係る誘電体窓3の製造方法によれば、実際のプラズマ処理装置1でのプラズマ処理時に誘電体窓3の上面3fが平面上に復帰するように、誘電体窓3を作成する。このため、本実施形態の誘電体窓3は、その下面を単に研磨するのみで凸の曲面とし、チャンバ2の内外の圧力差によって上面を平坦に変形させる誘電体窓3と比較して、誘電体窓3のアンテナ4側の上面3fは、平滑性に優れた状態となる。よって、アンテナ4が熱膨張によって変形しても、アンテナ4と誘電体窓3との間に隙間が生じず、アンテナにおけるマイクロ波の伝播時に異常放電の発生が防止される。この結果、チャンバ2内におけるプラズマ密度分布を安定させることができる。 According to the method for manufacturing the dielectric window 3 according to the present embodiment, the dielectric window 3 is created so that the upper surface 3f of the dielectric window 3 returns to a plane during the plasma processing in the actual plasma processing apparatus 1. . For this reason, the dielectric window 3 of the present embodiment has a convex curved surface simply by polishing the lower surface thereof, and the dielectric window 3 is deformed in comparison with the dielectric window 3 in which the upper surface is deformed flat by the pressure difference between the inside and outside of the chamber 2. The upper surface 3f on the antenna 4 side of the body window 3 is in a state of excellent smoothness. Therefore, even if the antenna 4 is deformed due to thermal expansion, no gap is generated between the antenna 4 and the dielectric window 3, and the occurrence of abnormal discharge during propagation of microwaves in the antenna is prevented. As a result, the plasma density distribution in the chamber 2 can be stabilized.
 また、本実施形態に係る誘電体窓3の製造方法によれば、誘電体窓3の下面を研磨して単に研磨するのみで凸の曲面とした場合よりも、上面を平坦に研磨するだけで済み、複雑な曲面の形状を設計する必要がない。よって、本実施形態に係る誘電体窓3の製造方法によれば、加工が容易となり、製造コストを低減させることができる。 In addition, according to the method for manufacturing the dielectric window 3 according to the present embodiment, the upper surface of the dielectric window 3 can be polished more flat than the case where the lower surface of the dielectric window 3 is simply polished to form a convex curved surface. It is not necessary to design a complicated curved surface shape. Therefore, according to the method for manufacturing the dielectric window 3 according to the present embodiment, the processing becomes easy and the manufacturing cost can be reduced.
 本実施形態の誘電体窓3によれば、アンテナ4と誘電体窓3の密着性が向上するので、両部材の間での異常放電を防止するだけでなく、冷却ジャケット7によるアンテナ4および誘電体窓3の冷却効率を高く維持することができる。プラズマの発生状態に影響が大きいアンテナ4などの温度変化をできるだけ小さくし、誘電体窓3内の電磁界分布、即ち、プラズマ密度分布を安定させることができる。 According to the dielectric window 3 of the present embodiment, the adhesion between the antenna 4 and the dielectric window 3 is improved, so that not only abnormal discharge between the two members is prevented, but also the antenna 4 and the dielectric by the cooling jacket 7. The cooling efficiency of the body window 3 can be maintained high. The temperature change of the antenna 4 or the like that has a great influence on the plasma generation state can be made as small as possible to stabilize the electromagnetic field distribution in the dielectric window 3, that is, the plasma density distribution.
 図6は、図4の部分拡大図であり、誘電体窓3とアンテナ4の位置関係を示す。
 なお、本実施形態では、図6に示すように、誘電体窓3の上方には、アンテナ4のスロット板4aの周縁部を固定せずに支持する支持部材として、チャンバ2に設けられたコネクタ14を備えていてもよい。スロット板4aは、熱膨張が起こるとき、誘電体窓3や遅波板4bが存在する上下方向だけでなく、その面方向にも膨張し、変形する。そのため、スロット板4aの周縁部を固定している場合では、その面方向の膨張が吸収されず、上下方向の歪みとなって現れる。しかし、このコネクタ14は、面方向に自由に膨張・変形が可能な状態でスロット板4aを支持している。このため、スロット板4aに面方向の膨張が発生しても、スロット板4aと誘電体窓3との密着性に影響がない。よって、アンテナ4のスロット板4aは、プラズマ処理中において、誘電体窓3との密着性を維持したまま膨張する。このため、スロット板4aと誘電体窓3との間に間隙が生じず、アンテナにおけるマイクロ波の伝播時に異常放電の発生が防止される。この結果、チャンバ2内におけるプラズマ密度分布を安定させることができる。
FIG. 6 is a partially enlarged view of FIG. 4 and shows the positional relationship between the dielectric window 3 and the antenna 4.
In the present embodiment, as shown in FIG. 6, a connector provided in the chamber 2 is provided above the dielectric window 3 as a support member that supports the peripheral portion of the slot plate 4 a of the antenna 4 without being fixed. 14 may be provided. When thermal expansion occurs, the slot plate 4a expands and deforms not only in the vertical direction in which the dielectric window 3 and the slow wave plate 4b exist, but also in the surface direction thereof. Therefore, when the peripheral portion of the slot plate 4a is fixed, the expansion in the surface direction is not absorbed and appears as a vertical distortion. However, the connector 14 supports the slot plate 4a in a state where it can be freely expanded and deformed in the surface direction. For this reason, even if expansion in the surface direction occurs in the slot plate 4a, the adhesion between the slot plate 4a and the dielectric window 3 is not affected. Therefore, the slot plate 4a of the antenna 4 expands while maintaining the adhesion with the dielectric window 3 during the plasma processing. For this reason, a gap does not occur between the slot plate 4a and the dielectric window 3, and the occurrence of abnormal discharge is prevented when the microwave propagates in the antenna. As a result, the plasma density distribution in the chamber 2 can be stabilized.
 また、本実施形態では、プラズマ処理装置1は、300mmシリコンウェハをプラズマ処理するものとしたが、300mmより大口径のシリコンウェハをプラズマ処理することもできる。被処理基板Wであるシリコンウェハの大口径化に伴い、プラズマ処理装置1が大型化し、誘電体窓3の撓み量も大きくなるので、本発明の技術的思想によれば、より大きな効果が得られるようになる。 In the present embodiment, the plasma processing apparatus 1 performs plasma processing on a 300 mm silicon wafer, but it can also perform plasma processing on a silicon wafer having a larger diameter than 300 mm. As the diameter of the silicon wafer, which is the substrate to be processed W, increases, the plasma processing apparatus 1 becomes larger and the amount of deflection of the dielectric window 3 increases. Therefore, according to the technical idea of the present invention, a greater effect can be obtained. Be able to.
 また、本実施形態では、誘電体窓3の表面を、その表面粗さが小さくなるように研磨することによって、アンテナ4との熱伝導時の接触抵抗を小さくすることができる。そのため、冷却ジャケット7による誘電体窓3の冷却効率を高く維持することができる。このため、本実施形態によれば、誘電体窓3が温度変化の影響を受けにくくなり、プラズマ発生条件に影響を与えることなく、チャンバ2内に安定してプラズマを発生させることができる。 In the present embodiment, the contact resistance during heat conduction with the antenna 4 can be reduced by polishing the surface of the dielectric window 3 so that the surface roughness thereof is reduced. Therefore, the cooling efficiency of the dielectric window 3 by the cooling jacket 7 can be maintained high. For this reason, according to the present embodiment, the dielectric window 3 is not easily affected by temperature changes, and plasma can be stably generated in the chamber 2 without affecting the plasma generation conditions.
 また、本実施形態で説明した誘電体窓3の製造方法において、誘電体板31の製造方法や、プラズマ処理装置1に模した治具20の構造などは、一例であり、これらに限定されない。さらに、プラズマ処理装置1の構造や、被処理基板Wなども、本発明の技術的思想の範囲内で種種の変更が可能であり、上述した実施形態に限定されるものではない。 Further, in the method of manufacturing the dielectric window 3 described in the present embodiment, the method of manufacturing the dielectric plate 31 and the structure of the jig 20 imitating the plasma processing apparatus 1 are examples, and the present invention is not limited to these. Furthermore, the structure of the plasma processing apparatus 1 and the substrate W to be processed can be changed in various ways within the scope of the technical idea of the present invention, and are not limited to the above-described embodiments.
 本出願は、2008年8月8日に出願された日本国特許出願第2008-205888号を基礎とするものであり、発明の詳細な説明(明細書)、特許請求の範囲、図面及び発明の概要を含む。日本国特許出願第2008-205888号に開示される内容は、ここでの参照により全て援用される。 This application is based on Japanese Patent Application No. 2008-205888 filed on August 8, 2008, and includes a detailed description of the invention (specification), claims, drawings, and Includes an overview. The contents disclosed in Japanese Patent Application No. 2008-205888 are all incorporated herein by reference.
    1  プラズマ処理装置(マイクロ波プラズマ処理装置)
    2  チャンバ(プラズマ処理容器)
    3  誘電体窓(天板)
    4  アンテナ
    4a スロット板
    4b 遅波板
    5  導波管
    7  冷却ジャケット
 9、23  真空ポンプ
   13  支持部材
   20  冶具
   22  Oリング
   31  誘電体板
1 Plasma processing equipment (microwave plasma processing equipment)
2 chamber (plasma processing vessel)
3 Dielectric window (top plate)
4 Antenna 4a Slot plate 4b Slow wave plate 5 Waveguide 7 Cooling jacket 9, 23 Vacuum pump 13 Support member 20 Jig 22 O-ring 31 Dielectric plate

Claims (9)

  1.  マイクロ波を用いてプラズマをプラズマ処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置に用いられ、前記プラズマ処理容器の内部をプラズマが発生可能な真空状態に密閉しうるとともに、前記マイクロ波を伝播して前記プラズマ処理容器の内部に透過させる誘電体窓の製造方法であって、
     内部を真空状態としうる治具に誘電体板を設置する設置ステップと、
     真空減圧手段により、前記冶具の内部を排気・減圧して、前記プラズマ処理容器と同様の真空状態とし、前記誘電体板を境界として圧力差を発生させ、前記誘電体板を前記冶具の内部に向けて凸になるように変形する差圧ステップと、
     前記誘電体板を境界とする圧力差を維持した状態で、前記誘電体板の、前記治具の外側に位置する片面を平坦とする片面平坦化ステップと、
    を備えることを特徴とする誘電体窓の製造方法。
    It is used in a plasma processing apparatus for generating plasma in a plasma processing container using microwaves and performing plasma processing on an object to be processed, and the inside of the plasma processing container can be sealed in a vacuum state capable of generating plasma. A method of manufacturing a dielectric window that propagates the microwave and transmits the microwave into the plasma processing container,
    An installation step of installing a dielectric plate in a jig that can be in a vacuum state inside;
    By evacuating and depressurizing the inside of the jig by a vacuum depressurizing means, a vacuum state similar to that of the plasma processing vessel is generated, a pressure difference is generated with the dielectric plate as a boundary, and the dielectric plate is placed inside the jig. A differential pressure step that deforms to become convex toward the surface,
    A single-side flattening step of flattening one side of the dielectric plate located outside the jig, while maintaining a pressure difference with the dielectric plate as a boundary;
    A method of manufacturing a dielectric window, comprising:
  2.  請求項1に記載の誘電体窓の製造方法によって得られる誘電体窓であって、
     前記誘電体窓は、前記プラズマ処理装置に設置された場合に、同誘電体窓の内外で圧力差がないときに、前記プラズマ処理容器の外側に位置する片面が、外側に凸の曲面であり、
     前記誘電体窓は、前記プラズマ処理容器の内部をプラズマが発生可能な真空状態としたときに、前記プラズマ処理容器の内部に向けて凸となるように撓むとともに、前記プラズマ処理容器の外側に位置する片面が平坦となることを特徴とする誘電体窓。
    A dielectric window obtained by the method of manufacturing a dielectric window according to claim 1,
    When the dielectric window is installed in the plasma processing apparatus, when there is no pressure difference between the inside and outside of the dielectric window, one surface located outside the plasma processing container is a curved surface convex outward. ,
    The dielectric window is bent so as to be convex toward the inside of the plasma processing container when the inside of the plasma processing container is in a vacuum state in which plasma can be generated, and is positioned outside the plasma processing container. A dielectric window characterized in that one side to be flattened.
  3.  前記誘電体窓は、中央部が最も凸となった軸対称の形状であることを特徴とする請求項2に記載の誘電体窓。 3. The dielectric window according to claim 2, wherein the dielectric window has an axisymmetric shape with a convex portion at the center.
  4.  マイクロ波を用いてプラズマをプラズマ処理容器内に発生させ、被処理対象物にプラズマ処理を行うプラズマ処理装置であって、
     前記マイクロ波を発生するマイクロ波源と、
     前記マイクロ波を伝送する導波管と、
     前記マイクロ波源から前記導波管を介して伝送された前記マイクロ波を放射するアンテナと、
     前記アンテナから放射される前記マイクロ波を伝播し、前記プラズマ処理容器内に透過させる誘電体窓と、を備え、
     前記誘電体窓として、請求項1に記載の誘電体窓を備えることを特徴とするプラズマ処理装置。
    A plasma processing apparatus for generating plasma in a plasma processing container using a microwave and performing plasma processing on an object to be processed,
    A microwave source for generating the microwave;
    A waveguide for transmitting the microwave;
    An antenna that radiates the microwave transmitted from the microwave source through the waveguide;
    A dielectric window that propagates the microwave radiated from the antenna and transmits the microwave into the plasma processing container,
    A plasma processing apparatus comprising the dielectric window according to claim 1 as the dielectric window.
  5.  前記プラズマ処理容器の外側に位置する前記誘電体窓の片面側には、前記アンテナが重なるように配置されていることを特徴とする請求項4に記載のプラズマ処理装置。 5. The plasma processing apparatus according to claim 4, wherein the antenna is arranged so as to overlap one surface side of the dielectric window located outside the plasma processing container.
  6.  前記アンテナは、スロット板と、該スロット板に隣接して配置された遅波板と、を備え、前記スロット板は、支持部材によって、面方向に変形可能に支持されていることを特徴とする請求項4に記載のプラズマ処理装置。 The antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, and the slot plate is supported by a support member so as to be deformable in a plane direction. The plasma processing apparatus according to claim 4.
  7.  前記アンテナは、スロット板と、該スロット板に隣接して配置された遅波板と、を備え、前記スロット板において、複数対のスロットがそれぞれ、複数の同心円の各同心円上に略等角度間隔を置いて形成され、かつ各一対のスロットは、互いに直交するように形成されていることを特徴とする請求項4に記載のプラズマ処理装置。 The antenna includes a slot plate and a slow wave plate disposed adjacent to the slot plate, wherein the plurality of pairs of slots are spaced substantially equiangularly on each concentric circle of the concentric circles. The plasma processing apparatus according to claim 4, wherein the pair of slots are formed so as to be orthogonal to each other.
  8.  前記アンテナを冷却する冷却手段が、当該アンテナの片面に接触し、かつ重なるように設けられていることを特徴とする請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein a cooling means for cooling the antenna is provided so as to contact and overlap one surface of the antenna.
  9.  前記スロット板が金属からなり、前記遅波板が誘電材料からなることを特徴とする請求項6に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 6, wherein the slot plate is made of metal, and the slow wave plate is made of a dielectric material.
PCT/JP2009/063572 2008-08-08 2009-07-30 Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus WO2010016423A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008205888A JP2010041014A (en) 2008-08-08 2008-08-08 Method of manufacturing dielectric material window, dielectric material window, and plasma processing apparatus
JP2008-205888 2008-08-08

Publications (1)

Publication Number Publication Date
WO2010016423A1 true WO2010016423A1 (en) 2010-02-11

Family

ID=41663643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063572 WO2010016423A1 (en) 2008-08-08 2009-07-30 Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus

Country Status (3)

Country Link
JP (1) JP2010041014A (en)
TW (1) TW201031283A (en)
WO (1) WO2010016423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733274A (en) * 2013-12-19 2015-06-24 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and plasma processing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852878B2 (en) * 2011-12-26 2016-02-03 俊介 細川 Creeping discharge type plasma generator and film forming method using the same
JP6486207B2 (en) * 2015-06-04 2019-03-20 東京エレクトロン株式会社 Plasma processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345319A (en) * 1999-05-31 2000-12-12 Tokyo Electron Ltd Manufacture of transmission window, transmission window, and processing device using the same
JP2003309109A (en) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd Dielectric window for plasma treatment apparatus, and manufacturing method therefor
WO2007026889A1 (en) * 2005-09-01 2007-03-08 Matsushita Electric Industrial Co., Ltd. Plasma processing equipment, plasma processing method, dielectric window for use therein and method for producing the same
JP2008091489A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Microwave plasma treatment equipment, process for fabricating dielectric window, and microwave plasma treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345319A (en) * 1999-05-31 2000-12-12 Tokyo Electron Ltd Manufacture of transmission window, transmission window, and processing device using the same
JP2003309109A (en) * 2002-04-17 2003-10-31 Matsushita Electric Ind Co Ltd Dielectric window for plasma treatment apparatus, and manufacturing method therefor
WO2007026889A1 (en) * 2005-09-01 2007-03-08 Matsushita Electric Industrial Co., Ltd. Plasma processing equipment, plasma processing method, dielectric window for use therein and method for producing the same
JP2008091489A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Microwave plasma treatment equipment, process for fabricating dielectric window, and microwave plasma treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733274A (en) * 2013-12-19 2015-06-24 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and plasma processing equipment

Also Published As

Publication number Publication date
TW201031283A (en) 2010-08-16
JP2010041014A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5013393B2 (en) Plasma processing apparatus and method
US6783628B2 (en) Plasma processing apparatus
JP4878782B2 (en) Plasma processing apparatus and plasma processing method
JP4593652B2 (en) Microwave plasma processing equipment
JP3501715B2 (en) Plasma process equipment
US7478609B2 (en) Plasma process apparatus and its processor
JP2006244891A (en) Microwave plasma processing device
JP5970268B2 (en) Plasma processing apparatus and processing method
KR101256850B1 (en) Microwave plasma processing apparatus
JP2019135749A (en) Plasma processing apparatus
JP6063741B2 (en) Plasma processing vessel and plasma processing apparatus
JP2010086958A (en) Plasma generator
WO2010007863A1 (en) Microwave plasma processing apparatus and method for producing cooling jacket
WO2010016423A1 (en) Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus
JPH07226383A (en) Plasma generating device and plasma treatment device using this plasma generating device
JP5143662B2 (en) Plasma processing equipment
JP5356390B2 (en) Microwave plasma generator and microwave plasma processing apparatus
JP4118117B2 (en) Plasma process equipment
JP2001118698A (en) Method of generating surface wave excitation plasma and plasma generating apparatus
JP3888120B2 (en) Plasma processing equipment
JP2009087949A (en) Microwave plasma device
JP2004119619A (en) Microwave plasma processing apparatus
JP2012134235A (en) Plasma processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804907

Country of ref document: EP

Kind code of ref document: A1