WO2010086950A1 - Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board - Google Patents

Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board Download PDF

Info

Publication number
WO2010086950A1
WO2010086950A1 PCT/JP2009/007244 JP2009007244W WO2010086950A1 WO 2010086950 A1 WO2010086950 A1 WO 2010086950A1 JP 2009007244 W JP2009007244 W JP 2009007244W WO 2010086950 A1 WO2010086950 A1 WO 2010086950A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
dielectric
slot
plasma processing
microwave
Prior art date
Application number
PCT/JP2009/007244
Other languages
French (fr)
Japanese (ja)
Inventor
石橋清隆
桶作正広
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010086950A1 publication Critical patent/WO2010086950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Definitions

  • the present invention relates to a microwave plasma processing apparatus that performs plasma processing on an object to be processed such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element with plasma generated using microwaves.
  • Plasma treatment is widely used in processes such as etching and thin film deposition in semiconductor manufacturing processes.
  • the process rules (IC line width) of semiconductors constituting an LSI have been increasingly miniaturized from the viewpoint of high integration, high speed, and low power consumption of the LSI.
  • the conventional interlayer insulating film cannot be insulated, and there is a possibility of interfering with a signal of an adjacent wiring.
  • an insulating film having a low dielectric constant Low-k
  • the parallel plate type and inductively coupled type plasma processing apparatuses that have been widely used conventionally have a problem of damaging the insulating film having a low dielectric constant due to the high electron temperature.
  • a CF film containing carbon and fluorine which is known as an insulating film having a low dielectric constant
  • the dielectric constant increases due to plasma processing damage.
  • the size of semiconductor wafers has also increased in size, and accordingly, it has been demanded that semiconductor wafers having a large diameter be uniformly processed without being biased.
  • semiconductor wafers having a large diameter be uniformly processed without being biased.
  • a parallel plate type or inductively coupled plasma processing apparatus since a region having a high plasma density is limited, it is difficult to uniformly plasma process a large-diameter wafer.
  • a microwave plasma processing apparatus using RLSA Ring Line Slot Slot Antenna
  • This microwave plasma treatment apparatus radiates microwaves into a processing container from a planar microwave antenna having a number of slots arranged so as to generate uniform microwaves.
  • the gas is ionized to excite the plasma.
  • the microwave plasma processing apparatus since a high plasma density can be realized in a wide region directly under the antenna, it is possible to perform uniform plasma processing in a short time. Moreover, since plasma having a low electron temperature can be generated, there is an advantage that damage to the substrate to be processed can be reduced.
  • the opening of the ceiling portion of the processing container 1 is closed by a dielectric window 2.
  • a microwave antenna 3 is placed on the dielectric window 2.
  • the microwave propagated through the coaxial waveguide 4 having an annular cross section of the coaxial waveguide composed of the inner waveguide and the outer waveguide propagates in the radial direction through the disk-shaped dielectric plate 6.
  • the microwave whose wavelength is compressed in the dielectric plate 6 and resonates passes through the slot of the slot plate 7 made of a conductive material, and is radiated into the processing container 1 through the dielectric window 2.
  • Patent Document 1 discloses a conductive film constituting the slot plate 7 as a dielectric plate 6. A technique for plating on a metal is disclosed. By plating the conductive film on the dielectric plate 6, the dielectric plate 6 and the conductive film can be thermally expanded together, and the generation of a gap between them can be prevented.
  • the gap between the dielectric plate 6 and the conductive film causes machine differences (differences between apparatuses performing the same process).
  • the dielectric plate plated with the conductive film is pressed against the dielectric window from above by a strong force.
  • the thermal expansion coefficient of the conductive film made of the conductive material is different from the thermal expansion coefficient of the dielectric window made of the dielectric. For this reason, when the conductive film and the dielectric window are thermally expanded, a relative shift in the amount of elongation in the horizontal direction occurs between them.
  • the conductive film and the dielectric window are in close contact with each other with a strong force and thermally expanded, wear due to thermal expansion becomes severe. In addition to rubbing the contact surface, the plated conductive film may even peel from the dielectric plate.
  • the present invention provides a microwave plasma processing apparatus capable of preventing the slot plate from being worn or the conductive film as the slot plate from being peeled off from the dielectric plate even if the slot plate and the dielectric window are thermally expanded, It is an object of the present invention to provide a dielectric plate with a slot plate for a microwave plasma processing apparatus and a manufacturing method thereof.
  • an embodiment of the present invention provides a processing container in which a ceiling portion is defined by a dielectric window, a gas exhaust system that decompresses the processing container, and a gas that supplies plasma gas to the processing container
  • a microwave plasma processing apparatus comprising: a supply unit; and a microwave antenna that is placed on the dielectric window of the processing container and that excites plasma gas in the processing container.
  • a microwave plasma processing apparatus wherein the surface of the convex portion of the dielectric plate protrudes outward from the surface of the slot plate toward the dielectric window.
  • a microwave plasma processing apparatus comprising: a slot plate; and a dielectric plate having a convex portion protruding into the slot of the slot plate, and a surface of the convex portion protruding outward from a surface of the slot plate. It is a dielectric plate with a slot plate.
  • Still another aspect of the present invention is a method of manufacturing a dielectric plate with a slot plate for a microwave plasma processing apparatus for plasma processing a target object with plasma generated using a microwave, the microplate of the slot plate Removing the remaining part of the dielectric plate while leaving the part corresponding to the slot so that the part corresponding to the slot through which the wave is transmitted becomes a convex part, and the part other than the convex part of the dielectric plate Forming a slot plate made of a conductive film so that the surface of the convex portion protrudes outward from the surface of the slot plate, and a method of manufacturing a dielectric plate with a slot plate for a microwave plasma processing apparatus It is.
  • the convex portion of the dielectric protrudes from the slot of the slot plate, the convex portion can be brought into contact with the dielectric window, and the slot plate can not be brought into direct contact with the dielectric window. Therefore, even if the slot plate and the dielectric window are thermally expanded, it is possible to prevent the slot plate from being worn and the conductive film as the slot plate from being peeled off from the dielectric plate.
  • Sectional view of a conventional microwave plasma processing apparatus Sectional drawing which shows the deformation
  • Sectional drawing of the microwave plasma processing apparatus of one Embodiment of this invention Detailed view of dielectric plate on which conductive film is formed Sectional drawing which shows the convex part of the dielectric material protruding from a conductive film Sectional drawing which shows the contact state of a dielectric material window and an electrically conductive film
  • Process diagrams of a method for manufacturing a dielectric plate on which a conductive film is formed ((a) in the figure is a method for manufacturing a dielectric plate of the present embodiment, and (b) in the figure is a method for manufacturing a conventional dielectric plate) is there)
  • FIG. 3 shows an overall configuration diagram of the microwave plasma processing apparatus.
  • the microwave plasma processing apparatus includes a processing container 11 partitioned by an outer wall, and a holding table 16 provided in the processing container 11 and made of AlN or Al2O3 for holding a substrate to be processed by an electrostatic chuck.
  • exhaust ports are formed evenly in the circumferential direction in an annular space surrounding the holding table 16.
  • the processing container 11 is evacuated and decompressed by a vacuum pump through an exhaust port.
  • the processing container 11 is made of Al, preferably stainless steel containing Al, and a protective film made of aluminum oxide is formed on the inner wall surface by oxidation treatment.
  • a dielectric window 12 made of a dielectric material such as Al 2 O 3 or quartz is provided as a part of the outer wall of the ceiling of the processing container 11.
  • the dielectric window 12 is attached to the side wall of the processing container 11 via a seal ring 13.
  • the dielectric window 12 is fixed to the processing container 11 by a dielectric window pressing ring 14 attached to the upper part of the side wall of the processing container 11.
  • the dielectric window pressing ring 14 is made of Al or stainless steel containing Al, like the processing container 11.
  • An annular gas supply unit 15 for supplying plasma gas into the processing container 11 is provided on the side wall of the processing container 11.
  • a gas supply system is connected to the gas supply unit 15.
  • a plasma excitation gas such as Ar gas or Kr gas, or a processing gas corresponding to the type of plasma processing is supplied from the gas supply unit to the processing vessel 11.
  • plasma treatment includes plasma oxidation treatment, plasma nitridation treatment, plasma oxynitridation treatment, plasma CVD treatment and the like.
  • a fluorocarbon gas such as C 4 F 8 , C 5 F 8, or C 4 F 6 or an etching gas such as an F-based or Cl-based gas is supplied from a gas supply unit, and a high-frequency voltage is supplied from a high-frequency power source to the holding table 16. It is also possible to perform reactive ion etching on the substrate to be processed by applying.
  • a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided on the side wall of the processing container 11.
  • the carry-in / out port is opened and closed by a gate valve.
  • the microwave antenna 18 includes a coaxial waveguide 19 that propagates microwaves in the vertical direction in a coaxial mode, and a disk-shaped dielectric that propagates microwaves that have passed through the coaxial waveguide 20 of the coaxial waveguide 19 in the radial direction. It includes a plate 22, a conductive film 23 as a slot plate having a slot through which microwaves are transmitted, and a cooling plate 24 provided on the upper surface of the dielectric plate 22 to cool the dielectric plate 22.
  • the coaxial waveguide 19 as a power feeding means for feeding microwaves includes an inner conductor 19a extending in the vertical direction and a cylindrical outer conductor 19b surrounding the inner conductor 19a.
  • a coaxial waveguide 20 having an annular cross section is formed between the inner conductor 19a and the outer conductor 19b.
  • the upper end portion of the coaxial waveguide 19 is connected to a rectangular waveguide 21 (see FIG. 1) extending in the horizontal direction.
  • a conical mode converter 25 (see FIG. 1) is provided at the connection between the rectangular waveguide 21 and the coaxial waveguide 19.
  • the rectangular waveguide 21 is connected to a microwave generator such as a magnetron through a matching unit.
  • the microwave generator generates microwaves with frequencies of 2.45 GHz, 8.35 GHz, 1.98 GHz, and the like, for example.
  • the microwave propagating through the rectangular waveguide 21 is converted into the coaxial mode by the mode converter 25 and propagates in the vertical direction through the coaxial waveguide 20 (see FIG. 3).
  • the matching unit propagates the microwave generated from the microwave generator to the dielectric plate 22 via the rectangular waveguide 21 and the coaxial waveguide 20.
  • the dielectric plate 22 is made of a dielectric such as Al 2 O 3 or quartz.
  • a conductive film 23 as a slot plate is formed on the lower surface of the dielectric plate 22.
  • the conductive film 23 is formed not only on the lower surface of the dielectric plate 22 but also on the upper surface and the outer peripheral surface.
  • Microwaves are electromagnetic waves that propagate while the electric and magnetic fields change very quickly. Microwaves that hit the metal surface hardly penetrate into the metal, cause an electric current to flow on the very surface (skin depth), and are mostly reflected.
  • the microwave irradiated to the dielectric plate 22 from the coaxial waveguide 20 propagates in the dielectric plate 22 in the radial direction while being reflected by the conductive film 23 formed on the upper and lower surfaces of the dielectric plate 22.
  • the microwave propagation medium changes from air to a dielectric, so that the wavelength of the microwave is compressed.
  • the thickness of the dielectric plate 22 is determined so that the microwave propagates in the TE mode, that is, the electric field can be generated only in the thickness direction. There is no problem if the thickness of the dielectric plate 22 is 1/4 or less of the wavelength of the microwave in the dielectric plate 22.
  • the optimum thickness is about 3 to 6 mm.
  • FIG. 4 shows a detailed view of the dielectric plate 22 on which the conductive film 23 is formed.
  • a conductive film made of a metal layer is plated on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22.
  • a hole 22a through which a slot center contact flange 27 (see FIG. 9) connected to the inner conductor 19a of the coaxial waveguide 19 passes is formed at the center of the dielectric plate 22.
  • a non-film formation area 22b where the conductive film 23 is not formed is formed.
  • the conductive film 23 on the lower surface of the dielectric plate 22 is electrically connected to the inner conductor 19a via the slot center contact flange 27, and the conductive film 23 on the upper surface of the dielectric plate 22 is electrically contacted. It is electrically connected to the outer conductor 19 b of the coaxial waveguide 19 through the elastic body 28 (see FIG. 9) and the cooling plate 24.
  • a number of slots 23 a that transmit microwaves are formed in the conductive film 23 (slot plate) on the lower surface side of the dielectric plate 22, a number of slots 23 a that transmit microwaves are formed.
  • a pair of adjacent slots 23a are arranged in a T shape so as to be orthogonal to each other.
  • a large number of slots 23 a are concentrically arranged on the disk-shaped conductive film 23.
  • the length and arrangement of the slots 23 a are appropriately determined according to the wavelength of the microwave compressed by the dielectric plate 22 so that an electric field is uniformly emitted from the slots 23 a to the processing container 11.
  • the shape of the slot 23a may be an arc shape in addition to the linear shape, and the arrangement of the slots 23a may be a spiral shape or a radial shape in addition to a concentric shape.
  • the convex portion 22 c of the dielectric plate 22 protrudes into the slot 23 a of the conductive film 23 on the lower surface side of the dielectric plate 22.
  • the surface (lower surface) of the convex portion 22 c is formed in a plane and protrudes outward from the surface of the conductive film 23.
  • FIG. 6A shows that the protrusion 22 c comes into contact with the dielectric window 12, and the conductive film 23 does not come into contact with the dielectric window 12.
  • FIG. 6B shows a conventional dielectric plate 22 in which the convex portion 22 c does not protrude from the conductive film 23. In the conventional dielectric plate 22, the conductive film 23 contacts the dielectric window 12 instead of the dielectric plate 22.
  • the conductive film 23 may rub against the dielectric window 12 due to thermal expansion / contraction of the dielectric window 12 and the conductive film 23, and the conductive film 23 may be peeled off from the dielectric plate 22.
  • this problem can be solved by bringing the convex portion 22 c of the dielectric plate 22 into contact with the dielectric window 12 so that the conductive film 23 does not come into contact with the dielectric window 12.
  • a buffer sheet 53 such as a Teflon (registered trademark) sheet or carbon sheet may be interposed in the gap between the conductive film 23 and the dielectric window 12 shown in FIG. 6A (see FIG. 14).
  • FIG. 7A shows a method for manufacturing the dielectric plate 22 on which the conductive film 23 is formed.
  • FIG. 7B shows a comparative method for manufacturing the conventional dielectric plate 22.
  • S1 a non-film formation area corresponding to the slot 23a is masked
  • S3 the masking was removed (S4).
  • ST1 a metal layer is plated on the dielectric plate 22 (ST2), and then a portion corresponding to the slot 23a is etched (ST3). In any case, the portion corresponding to the slot 23a is a space.
  • the convex portion 22c can be formed in the portion corresponding to the slot 23a. Then, the remaining portion of the dielectric plate 22 (the non-slot opening on the slot forming surface) is etched leaving the portion corresponding to the slot 23a (SP2).
  • the protrusion amount of the protrusion 22c is adjusted to about 10 to 30 ⁇ m, for example.
  • the etching method is not particularly limited, and for example, sandblasting, cutting using an end mill, chemical etching using a chemical, or the like can be employed. When blasting, the portion corresponding to the slot 23a is masked.
  • a metal layer is plated on a portion of the dielectric plate 22 other than the convex portions 22c (non-slot opening on the slot forming surface of the dielectric plate 22) (SP3).
  • the metal plate is plated on the dielectric plate 22 by immersing the whole in a plating bath in a state where the convex portions 22c of the dielectric plate 22 are masked.
  • the thickness of the conductive film 23 is adjusted to, for example, about 5 ⁇ m to 10 ⁇ m so that the surface of the convex portion 22 c protrudes outward from the surface of the conductive film 23.
  • the entire surface of the dielectric plate 22 may be put on the plating bath without masking the convex portion 22c of the dielectric plate 22, and then the metal layer attached to the convex portion 22c of the dielectric plate 22 may be scraped off.
  • the slot 23a is filled with a dielectric. A simulation is performed under these conditions, and the optimal shape and arrangement of the slots 23a are designed. Since the medium through which the microwave propagates does not change from the dielectric to the air, reflection of the microwave at the interface can be prevented.
  • FIG. 8 shows an example of metal layer plating.
  • a thin layer 31 of Pd is electrolessly plated on the surface of the dielectric plate 22 in order to activate the surface of the dielectric plate 22.
  • a Cu layer 32 having a thickness of about 5 ⁇ m is plated on the Pd layer 31.
  • a 1-2 ⁇ m Au layer 34 is electrolytically plated.
  • the surface of the Cu layer 32 needs to be treated with Ni. For this reason, a 0.2 to 0.3 ⁇ m Ni layer 33 is electrolessly plated on the surface of the Cu layer 32.
  • the microwave current propagating through the dielectric plate 22 mainly flows through the Cu layer.
  • the conductive film 23 is plated on the upper surface, lower surface and outer peripheral surface of the dielectric plate 22. This is because if only one side is present, the dielectric plate 22 may be warped due to thermal expansion, and a gap may be generated between the dielectric plate 22 and the cooling plate 24.
  • the microwave is reflected by the conductive film 23 on the upper surface of the dielectric plate 22. Since microwaves do not propagate outside the conductive film 23, a Teflon (registered trademark) sheet, carbon sheet, or the like having good thermal conductivity is provided between the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24.
  • a buffer sheet 36 (see FIG. 3) may be interposed.
  • the conductive film 23 may be formed only on the lower surface of the dielectric plate 22. In this case, it is necessary to ensure electrical connection between the conductive film 23 on the lower surface of the dielectric plate 22 and the coaxial waveguide 19.
  • a cooling plate 24 is placed on the dielectric plate 22 of the microwave antenna 18.
  • a cooling water flow path 24 a is formed in the cooling plate 24.
  • the dielectric plate 22 can be cooled by flowing cooling water through the cooling water passage 24a.
  • one or a plurality of buffer sheets 36 having a thickness of, for example, about 0.05 mm are interposed between the cooling plate 24 and the dielectric plate 22.
  • the buffer sheet 36 prevents the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24 from rubbing due to thermal expansion. Since the amount of thermal expansion is small on the inner peripheral side of the conductive film 23 on the upper surface of the dielectric plate 22, there is little friction with the cooling plate 24. For this reason, electrical connection is made between the inner peripheral side of the conductive film 23 and the cooling plate 24.
  • the microwave antenna 18 is fixed to the dielectric window 12 by an antenna holder 37 attached to the dielectric window holder ring 14.
  • the antenna holder 37 is made of Al or stainless steel containing Al, like the processing container 11.
  • An electromagnetic shielding elastic body 38 is provided between the cooling plate 24 and the antenna holder 37.
  • the electromagnetic shielding elastic body 38 has a function of electromagnetic shielding and a function of pressing the microwave antenna 18 against the dielectric window 12. All of the microwaves transmitted through the slot 23 a of the conductive film 23 are not absorbed by the plasma, and part of the microwave leaks out from a small gap between the conductive film 23 and the dielectric window 12.
  • the microwave propagated in the outer circumferential direction through the dielectric window 12 leaks outside through the gap between the dielectric window pressing ring 14 and the cooling plate 24.
  • the electromagnetic shielding elastic body 38 shields the leaked microwave. If the microwave antenna 18 is merely placed on the dielectric window 12, a gap is generated between the microwave antenna 18 and the dielectric window 12 due to thermal expansion. In order to prevent thermal expansion from generating a gap, the electromagnetic shielding elastic body 38 presses the microwave antenna 18 against the dielectric window 12 with a strong force.
  • the two functions of the electromagnetic shielding elastic body may be divided. That is, the function of electromagnetic shield may be provided to the spiral electromagnetic shield, and the function of pressing the microwave antenna 18 against the dielectric window 12 may be provided to the spring-like O-ring that can apply tension.
  • FIG. 9 shows an example of an electrical connection method of the conductive film 23 of the dielectric plate 22. Since it is necessary to electrically connect the conductive film 23 on the lower surface of the dielectric plate 22 and the inner conductor 19 a of the coaxial waveguide 19, the cylindrical slot center contact flange 27 and the plate-shaped slot center contact plate 41. Is provided. As shown in FIG. 10, the slot center contact flange 27 and the slot center contact plate 41 are coupled by bonding, screws, or the like. The slot center contact flange 27 is coupled to the inner conductor 19a by screws or the like.
  • the contact reinforcing elastic body 42 made of an O-ring or the like reinforces the electrical contact between the slot center contact plate 41 and the conductive film 23, and the electrical connection between the conductive film 23 on the upper surface side of the dielectric plate 22 and the cooling plate 24.
  • the contact is reinforced with an electrical contact elastic 28 made of a conductive spring.
  • the slot outer peripheral contact ring 44 and the slot outer peripheral contact plate 45 are coupled.
  • the slot outer peripheral contact ring 44 is coupled to the cooling plate 24 with bolts or the like.
  • a contact reinforcing elastic body 46 made of an O-ring or the like reinforces electrical contact between the slot outer peripheral contact plate 45 and the conductive film 23 on the lower surface side of the dielectric plate 22. Further, the heat transfer contact between the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24 is reinforced through the heat transfer buffer sheet 36.
  • the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.
  • the antenna of the present invention does not have a structure that spreads the microwave from the center to the outside like a coaxial waveguide.
  • the structure which introduces a wave may be sufficient.
  • the slot plate may not be a conductive film plated on the dielectric plate, but may be a copper plate separate from the dielectric plate.
  • the convex portion of the dielectric plate may be fitted into the slot of the slot plate.
  • the convex portion of the dielectric plate may be separated from the dielectric main body, and the convex portion may be attached to the dielectric main body.
  • a buffer sheet 52 may be interposed between the convex portion 22 c of the dielectric plate 22 and the dielectric window 12.
  • a plasma gas supply path for supplying plasma gas into the processing container may be formed in the dielectric window, and an intermediate shower head for supplying the processing gas may be provided between the dielectric window and the substrate to be processed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Provided is a microwave plasma processing apparatus which prevents a slot board from wearing and a conductive film as the slot board from peeling from a dielectric board even when the slot board and a dielectric window are thermally expanded. A dielectric board (22) is provided with a protruding section (22c) which protrudes to the inside of a slot (23a) of a slot board (23).  Then, the surface of the protruding section (22c) of the dielectric board (22) is protruded outward from the surface of a dielectric window (12) toward the dielectric window (12).  When the slot board (23) is directly in contact with the dielectric window (12), an elongation quantity difference is generated due to the difference between the thermal expansion coefficient of the slot board (23) and that of the dielectric window (12).  By bringing the protruding section (22c) of the dielectric board (22) into contact with the dielectric window (12) and not bringing the slot board (23) into contact with the dielectric window (12), the slot board (23) is prevented from wearing and the conductive film as the slot board (23) is prevented from peeling from the dielectric board (22), even when the slot board (23) and the dielectric window (12) are thermally expanded.

Description

マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法Microwave plasma processing apparatus, dielectric plate with slot plate for microwave plasma processing apparatus, and manufacturing method thereof
 本発明は、マイクロ波を用いて生成されたプラズマにより半導体ウェハ、液晶用基板、有機EL素子等の被処理体をプラズマ処理するマイクロ波プラズマ処理装置に関する。 The present invention relates to a microwave plasma processing apparatus that performs plasma processing on an object to be processed such as a semiconductor wafer, a liquid crystal substrate, and an organic EL element with plasma generated using microwaves.
 プラズマ処理は、半導体製造工程のエッチング、薄膜成膜などのプロセスに広く使用されている。近年、LSIの高集積化、高速化、小電力化の観点からLSIを構成する半導体のプロセスルール(ICの線幅)が益々微細化されている。配線間の距離が縮まると、従来の層間絶縁膜では絶縁できず、隣接する配線の信号と干渉するおそれがある。この干渉するおそれを解決するために、低誘電率(Low-k)の絶縁膜が求められている。しかし、従来から多用されている平行平板型や誘導結合型のプラズマ処理装置では、電子温度が高いので、低誘電率の絶縁膜にダメージを与えてしまうという課題がある。例えば、低誘電率の絶縁膜として知られている炭素とフッ素を含むCF膜を使用した場合、プラズマ処理のダメージによって誘電率が上がってしまう。 Plasma treatment is widely used in processes such as etching and thin film deposition in semiconductor manufacturing processes. In recent years, the process rules (IC line width) of semiconductors constituting an LSI have been increasingly miniaturized from the viewpoint of high integration, high speed, and low power consumption of the LSI. When the distance between the wirings is shortened, the conventional interlayer insulating film cannot be insulated, and there is a possibility of interfering with a signal of an adjacent wiring. In order to solve this interference, an insulating film having a low dielectric constant (Low-k) is required. However, the parallel plate type and inductively coupled type plasma processing apparatuses that have been widely used conventionally have a problem of damaging the insulating film having a low dielectric constant due to the high electron temperature. For example, when a CF film containing carbon and fluorine, which is known as an insulating film having a low dielectric constant, is used, the dielectric constant increases due to plasma processing damage.
 さらに、半導体のウェハサイズも大口径化しており、これに伴って大口径の半導体ウェハに偏りなく均一に処理を行うことが要請されている。しかし、平行平板型や誘導結合型のプラズマ処理装置においては、プラズマ密度の高い領域が限定されるので、大口径のウェハを均一にプラズマ処理することが困難である。 Furthermore, the size of semiconductor wafers has also increased in size, and accordingly, it has been demanded that semiconductor wafers having a large diameter be uniformly processed without being biased. However, in a parallel plate type or inductively coupled plasma processing apparatus, since a region having a high plasma density is limited, it is difficult to uniformly plasma process a large-diameter wafer.
 そこで近年、高密度で低電子温度のプラズマを均一に形成することができるRLSA(Radial Line Slot Antenna)を用いたマイクロ波プラズマ処理装置が注目されている。このマイクロ波プラズマ処置装置は、均一なマイクロ波を発生するように配列された多数のスロットを有する平面状のマイクロ波アンテナから処理容器内にマイクロ波を放射し、マイクロ波の電界により処理容器内のガスを電離してプラズマを励起させるものである。マイクロ波プラズマ処理装置によれば、アンテナ直下の広い領域に高いプラズマ密度を実現できるので、短時間で均一なプラズマ処理を行うことが可能である。しかも、低電子温度のプラズマを生成することができるので、被処理基板へのダメージを少なくすることができるという利点もある。 Therefore, in recent years, a microwave plasma processing apparatus using RLSA (Radial Line Slot Slot Antenna) capable of uniformly forming a high density and low electron temperature plasma has attracted attention. This microwave plasma treatment apparatus radiates microwaves into a processing container from a planar microwave antenna having a number of slots arranged so as to generate uniform microwaves. The gas is ionized to excite the plasma. According to the microwave plasma processing apparatus, since a high plasma density can be realized in a wide region directly under the antenna, it is possible to perform uniform plasma processing in a short time. Moreover, since plasma having a low electron temperature can be generated, there is an advantage that damage to the substrate to be processed can be reduced.
 図1に示すように、マイクロ波プラズマ処理装置において、処理容器1の天井部の開口は誘電体窓2により塞がれる。誘電体窓2の上にはマイクロ波アンテナ3が載せられる。内側導波管及び外側導波管からなる同軸導波管の断面円環状の同軸導波路4を伝搬したマイクロ波は、ディスク状の誘電体板6を放射方向に伝搬する。誘電体板6内で波長が圧縮され、かつ共振するマイクロ波は、導電材料からなるスロット板7のスロットを透過し、誘電体窓2を介して処理容器1内に放射される。 As shown in FIG. 1, in the microwave plasma processing apparatus, the opening of the ceiling portion of the processing container 1 is closed by a dielectric window 2. A microwave antenna 3 is placed on the dielectric window 2. The microwave propagated through the coaxial waveguide 4 having an annular cross section of the coaxial waveguide composed of the inner waveguide and the outer waveguide propagates in the radial direction through the disk-shaped dielectric plate 6. The microwave whose wavelength is compressed in the dielectric plate 6 and resonates passes through the slot of the slot plate 7 made of a conductive material, and is radiated into the processing container 1 through the dielectric window 2.
 処理容器1内のプラズマガスを励起させると、マイクロ波アンテナ3には誘電体窓2を介して熱が伝達される。導電材料からなるスロット板7の熱膨張係数は、誘電体からなる誘電体板6の熱膨張係数よりも大きいので、スロット板7が誘電体板6よりも大きく伸び、これが原因で図2に示すように、スロット板7が曲がったり、変形したりしてしまう。誘電体板6とスロット板7との間に隙間が生じると、反射波が増えたりするので、マイクロ波の伝搬特性が変化してしまう。誘電体板6とスロット板7との間に隙間が発生するのを防止し、マイクロ波の伝搬を一定に保つため、特許文献1には、スロット板7を構成する導電膜を誘電体板6にめっきする技術が開示されている。誘電体板6に導電膜をめっきすることにより、誘電体板6と導電膜とを一緒に熱膨張させることができ、これらの間に隙間が発生するのを防止することができる。 When the plasma gas in the processing container 1 is excited, heat is transferred to the microwave antenna 3 through the dielectric window 2. Since the thermal expansion coefficient of the slot plate 7 made of a conductive material is larger than the thermal expansion coefficient of the dielectric plate 6 made of a dielectric, the slot plate 7 extends larger than the dielectric plate 6 and this is shown in FIG. As described above, the slot plate 7 is bent or deformed. When a gap is generated between the dielectric plate 6 and the slot plate 7, the reflected wave increases, so that the microwave propagation characteristics change. In order to prevent a gap from being generated between the dielectric plate 6 and the slot plate 7 and to keep the propagation of microwaves constant, Patent Document 1 discloses a conductive film constituting the slot plate 7 as a dielectric plate 6. A technique for plating on a metal is disclosed. By plating the conductive film on the dielectric plate 6, the dielectric plate 6 and the conductive film can be thermally expanded together, and the generation of a gap between them can be prevented.
特開2002-355550号公報JP 2002-355550 A
 誘電体板6と導電膜との間の隙間だけでなく、導電膜と誘電体窓との間の隙間も機差(同一処理を行う装置ごとの差)の原因になる。導電膜と誘電体窓との間に隙間が生ずるのを防止するために、導電膜がめっきされた誘電体板は上方から強い力で誘電体窓に押さえ付けられる。導電材料からなる導電膜の熱膨張係数と誘電体からなる誘電体窓の熱膨張係数とは異なる。このため、導電膜及び誘電体窓が熱膨張すると、これらの間には水平方向の伸び量の相対的なずれが発生する。 Not only the gap between the dielectric plate 6 and the conductive film, but also the gap between the conductive film and the dielectric window causes machine differences (differences between apparatuses performing the same process). In order to prevent a gap from being formed between the conductive film and the dielectric window, the dielectric plate plated with the conductive film is pressed against the dielectric window from above by a strong force. The thermal expansion coefficient of the conductive film made of the conductive material is different from the thermal expansion coefficient of the dielectric window made of the dielectric. For this reason, when the conductive film and the dielectric window are thermally expanded, a relative shift in the amount of elongation in the horizontal direction occurs between them.
 導電膜と誘電体窓とを強い力で密着させた状態でこれらを熱膨張させると、熱膨張による摩耗は甚だしいものになる。接触面が単に擦れるだけでなく、めっきした導電膜が誘電体板から剥離するおそれさえもある。 If the conductive film and the dielectric window are in close contact with each other with a strong force and thermally expanded, wear due to thermal expansion becomes severe. In addition to rubbing the contact surface, the plated conductive film may even peel from the dielectric plate.
 そこで本発明は、スロット板及び誘電体窓が熱膨張しても、スロット板が摩耗したり、スロット板としての導電膜が誘電体板から剥離したりするのを防止できるマイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法を提供することを目的とする。 Therefore, the present invention provides a microwave plasma processing apparatus capable of preventing the slot plate from being worn or the conductive film as the slot plate from being peeled off from the dielectric plate even if the slot plate and the dielectric window are thermally expanded, It is an object of the present invention to provide a dielectric plate with a slot plate for a microwave plasma processing apparatus and a manufacturing method thereof.
 上記課題を解決するために、本発明の一態様は、天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、マイクロ波を透過させるスロットを有するスロット板と、を含み、前記誘電体板に前記スロット板の前記スロット内に突出する凸部が設けられ、前記誘電体板の前記凸部の表面が前記スロット板の表面から前記誘電体窓に向かって外方に出っ張るマイクロ波プラズマ処理装置である。 In order to solve the above-described problems, an embodiment of the present invention provides a processing container in which a ceiling portion is defined by a dielectric window, a gas exhaust system that decompresses the processing container, and a gas that supplies plasma gas to the processing container A microwave plasma processing apparatus comprising: a supply unit; and a microwave antenna that is placed on the dielectric window of the processing container and that excites plasma gas in the processing container. A dielectric plate that propagates a wave and compresses the wavelength of the microwave, and a slot plate that has a slot that transmits the microwave, and the dielectric plate has a protrusion protruding into the slot of the slot plate. A microwave plasma processing apparatus, wherein the surface of the convex portion of the dielectric plate protrudes outward from the surface of the slot plate toward the dielectric window. .
 本発明の他の態様は、マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置用のスロット板付き誘電体板であって、マイクロ波を透過させるスロットを有するスロット板と、前記スロット板の前記スロット内に突出する凸部を有し、前記凸部の表面が前記スロット板の表面から外方に出っ張る誘電体板と、を備えるマイクロ波プラズマ処理装置用のスロット板付き誘電体板である。 Another aspect of the present invention is a dielectric plate with a slot plate for a microwave plasma processing apparatus that plasma-processes an object to be processed by plasma generated using microwaves, and has a slot that transmits microwaves. A microwave plasma processing apparatus comprising: a slot plate; and a dielectric plate having a convex portion protruding into the slot of the slot plate, and a surface of the convex portion protruding outward from a surface of the slot plate. It is a dielectric plate with a slot plate.
 さらに本発明の他の態様は、マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置用のスロット板付き誘電体板の製造方法であって、スロット板のマイクロ波を透過させるスロットに対応する部分が凸部になるように前記スロットに対応する部分を残して誘電体板の残りの部分を除去する工程と、前記誘電体板の前記凸部以外の部分に、前記凸部の表面が前記スロット板の表面から外方に出っ張るように導電膜からなるスロット板を成膜する工程と、を備えるマイクロ波プラズマ処理装置用のスロット板付き誘電体板の製造方法である。 Still another aspect of the present invention is a method of manufacturing a dielectric plate with a slot plate for a microwave plasma processing apparatus for plasma processing a target object with plasma generated using a microwave, the microplate of the slot plate Removing the remaining part of the dielectric plate while leaving the part corresponding to the slot so that the part corresponding to the slot through which the wave is transmitted becomes a convex part, and the part other than the convex part of the dielectric plate Forming a slot plate made of a conductive film so that the surface of the convex portion protrudes outward from the surface of the slot plate, and a method of manufacturing a dielectric plate with a slot plate for a microwave plasma processing apparatus It is.
 スロット板を誘電体窓に直接接触させると、スロット板及び誘電体窓の熱膨張係数の差による伸び量のずれが発生する。本発明によれば、スロット板のスロットから誘電体の凸部を突出させるので、当該凸部を誘電体窓に接触させ、スロット板を誘電体窓に直接接触させないことができる。したがって、スロット板及び誘電体窓が熱膨張してもスロット板が摩耗したり、スロット板としての導電膜が誘電体板から剥離したりするのを防止できる。 ¡When the slot plate is brought into direct contact with the dielectric window, the amount of elongation shifts due to the difference in thermal expansion coefficient between the slot plate and the dielectric window. According to the present invention, since the convex portion of the dielectric protrudes from the slot of the slot plate, the convex portion can be brought into contact with the dielectric window, and the slot plate can not be brought into direct contact with the dielectric window. Therefore, even if the slot plate and the dielectric window are thermally expanded, it is possible to prevent the slot plate from being worn and the conductive film as the slot plate from being peeled off from the dielectric plate.
従来のマイクロ波プラズマ処理装置の断面図Sectional view of a conventional microwave plasma processing apparatus 従来のマイクロ波プラズマ処理装置のスロット板の変形を示す断面図Sectional drawing which shows the deformation | transformation of the slot plate of the conventional microwave plasma processing apparatus 本発明の一実施形態のマイクロ波プラズマ処理装置の断面図Sectional drawing of the microwave plasma processing apparatus of one Embodiment of this invention 導電膜が形成される誘電体板の詳細図Detailed view of dielectric plate on which conductive film is formed 導電膜から突出する誘電体の凸部を示す断面図Sectional drawing which shows the convex part of the dielectric material protruding from a conductive film 誘電体窓と導電膜との接触状態を示す断面図(図中(a)が本実施形態の誘電体板を示し、図中(b)が従来の誘電体板を示す)Sectional drawing which shows the contact state of a dielectric material window and an electrically conductive film ((a) in the figure shows the dielectric plate of this embodiment, (b) shows the conventional dielectric plate in the figure) 導電膜が形成される誘電体板の製造方法の工程図(図中(a)が本実施形態の誘電体板の製造方法であり、図中(b)が従来の誘電体板の製造方法である)Process diagrams of a method for manufacturing a dielectric plate on which a conductive film is formed ((a) in the figure is a method for manufacturing a dielectric plate of the present embodiment, and (b) in the figure is a method for manufacturing a conventional dielectric plate) is there) めっきの一例を示す断面図Sectional view showing an example of plating 同軸導波管と誘電体板の上下の導電膜との電気的接触を示す図Diagram showing electrical contact between coaxial waveguide and upper and lower conductive films on dielectric plate 同軸導波管の内導体と誘電体板の下面の導電膜との電気的接触を示す図Diagram showing electrical contact between inner conductor of coaxial waveguide and conductive film on lower surface of dielectric plate 冷却板と誘電体板の下面の導電膜との電気的接触を示す図The figure which shows the electrical contact with the electrically conductive film of the lower surface of a cooling plate and a dielectric plate 給電手段の他の例を示す断面図Sectional drawing which shows the other example of electric power feeding means 誘電体板の凸部と誘電体窓との間に緩衝シートを介在させた例を示す断面図Sectional drawing which shows the example which interposed the buffer sheet between the convex part of the dielectric material plate, and the dielectric material window 導電膜と誘電体窓との間に緩衝シートを介在させた例を示す断面図Sectional drawing which shows the example which interposed the buffer sheet between the electrically conductive film and the dielectric material window
 以下、添付図面を参照して、本発明のマイクロ波プラズマ処理装置の一実施形態を説明する。図3は、マイクロ波プラズマ処理装置の全体の構成図を示す。 Hereinafter, an embodiment of a microwave plasma processing apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 3 shows an overall configuration diagram of the microwave plasma processing apparatus.
 マイクロ波プラズマ処理装置は、外壁によって区画される処理容器11と、処理容器11内に設けられ、被処理基板を静電チャックにより保持するAlN又はAl2O3からなる保持台16と、を含む。処理容器11には、保持台16を囲む円環状の空間に周方向に均等に排気ポートが形成される。処理容器11は、排気ポートを介して真空ポンプにより排気・減圧される。 The microwave plasma processing apparatus includes a processing container 11 partitioned by an outer wall, and a holding table 16 provided in the processing container 11 and made of AlN or Al2O3 for holding a substrate to be processed by an electrostatic chuck. In the processing container 11, exhaust ports are formed evenly in the circumferential direction in an annular space surrounding the holding table 16. The processing container 11 is evacuated and decompressed by a vacuum pump through an exhaust port.
 処理容器11は、Al好ましくはAlを含有するステンレス鋼からなり、内壁面には酸化処理により酸化アルミニウムよりなる保護膜が形成されている。処理容器11の天井部には、Al23、石英等の誘電体からなる誘電体窓12が外壁の一部として設けられる。誘電体窓12は処理容器11の側壁にシールリング13を介して装着される。誘電体窓12は処理容器11の側壁の上部に取り付けられる誘電体窓押えリング14によって処理容器11に固定される。誘電体窓押えリング14は、処理容器11と同様にAl若しくはAlを含有するステンレス鋼からなる。 The processing container 11 is made of Al, preferably stainless steel containing Al, and a protective film made of aluminum oxide is formed on the inner wall surface by oxidation treatment. A dielectric window 12 made of a dielectric material such as Al 2 O 3 or quartz is provided as a part of the outer wall of the ceiling of the processing container 11. The dielectric window 12 is attached to the side wall of the processing container 11 via a seal ring 13. The dielectric window 12 is fixed to the processing container 11 by a dielectric window pressing ring 14 attached to the upper part of the side wall of the processing container 11. The dielectric window pressing ring 14 is made of Al or stainless steel containing Al, like the processing container 11.
 処理容器11の側壁には、プラズマガスを処理容器11内に供給するための環状のガス供給部15が設けられる。ガス供給部15にはガス供給系が接続されている。Arガス、Krガス等のプラズマ励起用ガスや、プラズマ処理の種類に応じた処理ガスがガス供給部から処理容器11に供給される。かかるプラズマ処理には、プラズマ酸化処理、プラズマ窒化処理、プラズマ酸窒化処理、プラズマCVD処理等が含まれる。ガス供給部からC48,C58又はC46などの解離しやすいフルオロカーボンガスや、F系あるいはCl系などのエッチングガスを供給し、保持台16上に高周波電源から高周波電圧を印加することにより、被処理基板に対して反応性イオンエッチングを行うことも可能である。 An annular gas supply unit 15 for supplying plasma gas into the processing container 11 is provided on the side wall of the processing container 11. A gas supply system is connected to the gas supply unit 15. A plasma excitation gas such as Ar gas or Kr gas, or a processing gas corresponding to the type of plasma processing is supplied from the gas supply unit to the processing vessel 11. Such plasma treatment includes plasma oxidation treatment, plasma nitridation treatment, plasma oxynitridation treatment, plasma CVD treatment and the like. A fluorocarbon gas such as C 4 F 8 , C 5 F 8, or C 4 F 6 or an etching gas such as an F-based or Cl-based gas is supplied from a gas supply unit, and a high-frequency voltage is supplied from a high-frequency power source to the holding table 16. It is also possible to perform reactive ion etching on the substrate to be processed by applying.
 処理容器11の側壁には、被処理基板を搬入及び搬出するための図示しない搬出入口が設けられる。搬出入口はゲートバルブによって開閉される。 On the side wall of the processing container 11, a loading / unloading port (not shown) for loading and unloading the substrate to be processed is provided. The carry-in / out port is opened and closed by a gate valve.
 誘電体窓12上には、処理容器11内のプラズマガスを励起する平面状のマイクロ波アンテナ18が載せられる。マイクロ波アンテナ18は、同軸モードでマイクロ波を上下方向に伝搬する同軸導波管19と、同軸導波管19の同軸導波路20を通過したマイクロ波を放射方向に伝搬するディスク状の誘電体板22と、マイクロ波を透過させるスロットを有するスロット板としての導電膜23と、誘電体板22の上面に設けられ、誘電体板22を冷却する冷却板24と、を含む。 On the dielectric window 12, a planar microwave antenna 18 for exciting the plasma gas in the processing vessel 11 is placed. The microwave antenna 18 includes a coaxial waveguide 19 that propagates microwaves in the vertical direction in a coaxial mode, and a disk-shaped dielectric that propagates microwaves that have passed through the coaxial waveguide 20 of the coaxial waveguide 19 in the radial direction. It includes a plate 22, a conductive film 23 as a slot plate having a slot through which microwaves are transmitted, and a cooling plate 24 provided on the upper surface of the dielectric plate 22 to cool the dielectric plate 22.
 マイクロ波を給電する給電手段としての同軸導波管19は、垂直方向に伸びる内導体19aと、内導体19aを囲む筒状の外導体19bと、からなる。内導体19aと外導体19bとの間に断面環状の同軸導波路20が形成される。同軸導波管19の上端部は水平方向に伸びる矩形導波管21(図1参照)に接続される。矩形導波管21と同軸導波管19の接続部には円錐形のモード変換器25(図1参照)が設けられる。矩形導波管21は整合器を介してマグネトロン等のマイクロ波発生装置に接続されている。マイクロ波発生装置は、例えば周波数2.45GHz,8.35GHz,1.98GHz等のマイクロ波を発生する。矩形導波管21を伝搬するマイクロ波はモード変換器25によって同軸モードに変換され、同軸導波路20(図3参照)を上下方向に伝搬する。整合器は、マイクロ波発生装置から発生するマイクロ波を矩形導波管21及び同軸導波路20を介して誘電体板22へ伝搬させる。 The coaxial waveguide 19 as a power feeding means for feeding microwaves includes an inner conductor 19a extending in the vertical direction and a cylindrical outer conductor 19b surrounding the inner conductor 19a. A coaxial waveguide 20 having an annular cross section is formed between the inner conductor 19a and the outer conductor 19b. The upper end portion of the coaxial waveguide 19 is connected to a rectangular waveguide 21 (see FIG. 1) extending in the horizontal direction. A conical mode converter 25 (see FIG. 1) is provided at the connection between the rectangular waveguide 21 and the coaxial waveguide 19. The rectangular waveguide 21 is connected to a microwave generator such as a magnetron through a matching unit. The microwave generator generates microwaves with frequencies of 2.45 GHz, 8.35 GHz, 1.98 GHz, and the like, for example. The microwave propagating through the rectangular waveguide 21 is converted into the coaxial mode by the mode converter 25 and propagates in the vertical direction through the coaxial waveguide 20 (see FIG. 3). The matching unit propagates the microwave generated from the microwave generator to the dielectric plate 22 via the rectangular waveguide 21 and the coaxial waveguide 20.
 誘電体板22は、Al23、石英等の誘電体からなる。誘電体板22の下面には、スロット板としての導電膜23が形成される。この実施形態では、誘電体板22の下面だけでなく、上面及び外周面にも導電膜23が形成される。マイクロ波は、電界と磁界が非常に速く変化しながら伝搬する電磁波である。金属面に当たったマイクロ波は、金属内にはほとんど進入せず、ごく表面(表皮深さ)に電流を流し、大部分が反射する。このため、同軸導波路20から誘電体板22に照射されたマイクロ波は、誘電体板22の上面及び下面に形成される導電膜23によって反射されながら誘電体板22を放射方向に伝搬する。また、同軸導波路20から誘電体板22に入るとき、マイクロ波の伝搬する媒質が空気から誘電体に変化するので、マイクロ波の波長が圧縮される。誘電体板22の厚みは、TEモードでマイクロ波が伝搬するように、すなわち電界が厚み方向にだけできるように決められる。誘電体板22の厚みが誘電体板22内におけるマイクロ波の波長の1/4以下であれば問題ない。ただし、あまり薄いと強度の問題があり、また厚すぎると撓みにくくなる。このため本実施形態において、誘電体板22の材質にアルミナを使用した場合、3~6mm程度が最適な厚みになる。 The dielectric plate 22 is made of a dielectric such as Al 2 O 3 or quartz. A conductive film 23 as a slot plate is formed on the lower surface of the dielectric plate 22. In this embodiment, the conductive film 23 is formed not only on the lower surface of the dielectric plate 22 but also on the upper surface and the outer peripheral surface. Microwaves are electromagnetic waves that propagate while the electric and magnetic fields change very quickly. Microwaves that hit the metal surface hardly penetrate into the metal, cause an electric current to flow on the very surface (skin depth), and are mostly reflected. For this reason, the microwave irradiated to the dielectric plate 22 from the coaxial waveguide 20 propagates in the dielectric plate 22 in the radial direction while being reflected by the conductive film 23 formed on the upper and lower surfaces of the dielectric plate 22. Further, when entering the dielectric plate 22 from the coaxial waveguide 20, the microwave propagation medium changes from air to a dielectric, so that the wavelength of the microwave is compressed. The thickness of the dielectric plate 22 is determined so that the microwave propagates in the TE mode, that is, the electric field can be generated only in the thickness direction. There is no problem if the thickness of the dielectric plate 22 is 1/4 or less of the wavelength of the microwave in the dielectric plate 22. However, if it is too thin, there is a problem of strength, and if it is too thick, it becomes difficult to bend. Therefore, in the present embodiment, when alumina is used as the material of the dielectric plate 22, the optimum thickness is about 3 to 6 mm.
 図4は導電膜23が形成される誘電体板22の詳細図を示す。誘電体板22の上面、下面及び外周面には、金属の層からなる導電膜がめっきされる。誘電体板22の中心部には、同軸導波管19の内導体19aに接続されるスロット中心コンタクトフランジ27(図9参照)が貫通する孔22aが空けられる。孔22aの周囲(誘電体板22の上面及び下面の一部及び内周面)には、導電膜23が成膜されていない非成膜エリア22bが形成される。詳しくは後述するが、誘電体板22の下面の導電膜23は、スロット中心コンタクトフランジ27を介して内導体19aに電気的に接続され、誘電体板22の上面の導電膜23は、電気コンタクト弾性体28(図9参照)及び冷却板24を介して同軸導波管19の外導体19bに電気的に接続される。 FIG. 4 shows a detailed view of the dielectric plate 22 on which the conductive film 23 is formed. A conductive film made of a metal layer is plated on the upper surface, the lower surface, and the outer peripheral surface of the dielectric plate 22. A hole 22a through which a slot center contact flange 27 (see FIG. 9) connected to the inner conductor 19a of the coaxial waveguide 19 passes is formed at the center of the dielectric plate 22. Around the hole 22a (a part of the upper surface and the lower surface of the dielectric plate 22 and the inner peripheral surface), a non-film formation area 22b where the conductive film 23 is not formed is formed. As will be described in detail later, the conductive film 23 on the lower surface of the dielectric plate 22 is electrically connected to the inner conductor 19a via the slot center contact flange 27, and the conductive film 23 on the upper surface of the dielectric plate 22 is electrically contacted. It is electrically connected to the outer conductor 19 b of the coaxial waveguide 19 through the elastic body 28 (see FIG. 9) and the cooling plate 24.
 誘電体板22の下面側の導電膜23(スロット板)には、マイクロ波を透過させる多数のスロット23aが形成される。隣接する一組のスロット23aは、直交するようにT字状に配列される。多数のスロット23aはディスク状の導電膜23に同心円状に配置される。スロット23aの長さや配列は、スロット23aから処理容器11に均一に電界が放射されるように、誘電体板22によって圧縮されたマイクロ波の波長に応じて適宜決定される。スロット23aの形状は直線形状の他に円弧形状でもよく、スロット23aの配列は同心円状の他に螺旋状や放射状でもよい。 In the conductive film 23 (slot plate) on the lower surface side of the dielectric plate 22, a number of slots 23 a that transmit microwaves are formed. A pair of adjacent slots 23a are arranged in a T shape so as to be orthogonal to each other. A large number of slots 23 a are concentrically arranged on the disk-shaped conductive film 23. The length and arrangement of the slots 23 a are appropriately determined according to the wavelength of the microwave compressed by the dielectric plate 22 so that an electric field is uniformly emitted from the slots 23 a to the processing container 11. The shape of the slot 23a may be an arc shape in addition to the linear shape, and the arrangement of the slots 23a may be a spiral shape or a radial shape in addition to a concentric shape.
 図5に示すように、誘電体板22の下面側の導電膜23のスロット23a内には、誘電体板22の凸部22cが突出する。凸部22cの表面(下面)は、平面に形成され、導電膜23の表面よりも外方に出っ張る。このため、図6(a)に示すように、凸部22cが誘電体窓12に接触し、導電膜23が誘電体窓12に接触しないようになる。図6(b)に、導電膜23から凸部22cを出っ張らせていない従来の誘電体板22を示す。従来の誘電体板22においては、誘電体板22ではなく、導電膜23が誘電体窓12に接触する。こうなると、誘電体窓12及び導電膜23の熱膨張・収縮により、導電膜23が誘電体窓12と擦れ、導電膜23が誘電体板22から剥離するおそれがある。本実施形態のように、誘電体板22の凸部22cを誘電体窓12に接触させ、導電膜23が誘電体窓12に接触しないようにすることで、この問題を解決することができる。図6(a)に示す導電膜23と誘電体窓12との間の隙間には、テフロン(登録商標)シート、カーボンシート等の緩衝シート53が介在されてもよい(図14参照)。 As shown in FIG. 5, the convex portion 22 c of the dielectric plate 22 protrudes into the slot 23 a of the conductive film 23 on the lower surface side of the dielectric plate 22. The surface (lower surface) of the convex portion 22 c is formed in a plane and protrudes outward from the surface of the conductive film 23. For this reason, as shown in FIG. 6A, the protrusion 22 c comes into contact with the dielectric window 12, and the conductive film 23 does not come into contact with the dielectric window 12. FIG. 6B shows a conventional dielectric plate 22 in which the convex portion 22 c does not protrude from the conductive film 23. In the conventional dielectric plate 22, the conductive film 23 contacts the dielectric window 12 instead of the dielectric plate 22. If this happens, the conductive film 23 may rub against the dielectric window 12 due to thermal expansion / contraction of the dielectric window 12 and the conductive film 23, and the conductive film 23 may be peeled off from the dielectric plate 22. As in the present embodiment, this problem can be solved by bringing the convex portion 22 c of the dielectric plate 22 into contact with the dielectric window 12 so that the conductive film 23 does not come into contact with the dielectric window 12. A buffer sheet 53 such as a Teflon (registered trademark) sheet or carbon sheet may be interposed in the gap between the conductive film 23 and the dielectric window 12 shown in FIG. 6A (see FIG. 14).
 図7(a)に、導電膜23を形成した誘電体板22の製造方法を示す。図7(b)には、従来の誘電体板22の製造方法が比較して示されている。従来の誘電体板22の製造方法においては、誘電体板22を製作した後(S1)、スロット23aに対応する非成膜エリアをマスキング(S2)し、その後、誘電体板22に金属層をめっきし(S3)、その後、マスキングを除去していた(S4)。又は、誘電体板22を製作した後(ST1)、誘電体板22に金属層をめっきし(ST2)、その後、スロット23aに対応する部分をエッチングしていた(ST3)。いずれにしても、スロット23aに対応する部分は空間となっていた。 FIG. 7A shows a method for manufacturing the dielectric plate 22 on which the conductive film 23 is formed. FIG. 7B shows a comparative method for manufacturing the conventional dielectric plate 22. In the conventional method of manufacturing the dielectric plate 22, after the dielectric plate 22 is manufactured (S1), a non-film formation area corresponding to the slot 23a is masked (S2), and then a metal layer is formed on the dielectric plate 22. After plating (S3), the masking was removed (S4). Alternatively, after the dielectric plate 22 is manufactured (ST1), a metal layer is plated on the dielectric plate 22 (ST2), and then a portion corresponding to the slot 23a is etched (ST3). In any case, the portion corresponding to the slot 23a is a space.
 これに対し、本実施形態の製造方法においては、図7(a)に示すように、誘電体板22を製作した後(SP1)、スロット23aに対応する部分に凸部22cを形成できるように、スロット23aに対応する部分を残して誘電体板22の残りの部分(スロット形成面の非スロット開口部)をエッチングする(SP2)。凸部22cの突出量は、例えば10~30μm程度に調整される。エッチング手法は特に限定されるものではなく、例えばサンドブラスト処理、エンドミルを用いた切削、化学薬品を用いた化学エッチング等を採用することができる。なお、ブラスト処理するとき、スロット23aに対応する部分はマスキングされる。 On the other hand, in the manufacturing method of the present embodiment, as shown in FIG. 7A, after the dielectric plate 22 is manufactured (SP1), the convex portion 22c can be formed in the portion corresponding to the slot 23a. Then, the remaining portion of the dielectric plate 22 (the non-slot opening on the slot forming surface) is etched leaving the portion corresponding to the slot 23a (SP2). The protrusion amount of the protrusion 22c is adjusted to about 10 to 30 μm, for example. The etching method is not particularly limited, and for example, sandblasting, cutting using an end mill, chemical etching using a chemical, or the like can be employed. When blasting, the portion corresponding to the slot 23a is masked.
 その後、誘電体板22の凸部22c以外の部分(誘電体板22のスロット形成面の非スロット開口部)に金属層をめっきする(SP3)。例えば、誘電体板22の凸部22cをマスキングした状態で全体をめっき浴槽に浸けることによって、金属層を誘電体板22にめっきする。導電膜23の厚さは、凸部22cの表面が導電膜23の表面から外方に出っ張るように、例えば5μm~10μm程度に調整される。なお、誘電体板22の凸部22cにマスキングをせずに全体をメッキ浴槽に着け、その後、誘電体板22の凸部22cに付着する金属層を削り取ってもよい。 Thereafter, a metal layer is plated on a portion of the dielectric plate 22 other than the convex portions 22c (non-slot opening on the slot forming surface of the dielectric plate 22) (SP3). For example, the metal plate is plated on the dielectric plate 22 by immersing the whole in a plating bath in a state where the convex portions 22c of the dielectric plate 22 are masked. The thickness of the conductive film 23 is adjusted to, for example, about 5 μm to 10 μm so that the surface of the convex portion 22 c protrudes outward from the surface of the conductive film 23. Alternatively, the entire surface of the dielectric plate 22 may be put on the plating bath without masking the convex portion 22c of the dielectric plate 22, and then the metal layer attached to the convex portion 22c of the dielectric plate 22 may be scraped off.
 本実施形態によれば、スロット23a内が誘電体で充填される。この条件でシミュレーションがなされ、最適なスロット23aの形状・配列が設計される。マイクロ波の伝搬する媒質が誘電体から空気へと変化することがないので、界面でのマイクロ波の反射を防ぐことができる。 According to this embodiment, the slot 23a is filled with a dielectric. A simulation is performed under these conditions, and the optimal shape and arrangement of the slots 23a are designed. Since the medium through which the microwave propagates does not change from the dielectric to the air, reflection of the microwave at the interface can be prevented.
 なお、誘電体板22をエッチングする際、表面粗さをなるべく小さくするのが望ましい。マイクロ波は導電膜23を反射しながら伝搬するので、導電膜23の表面には電流が流れる。誘電体板22の表面粗さが粗くなると、導電膜23の表面に凹凸が形成され、電気抵抗が増大する。こうなるとマイクロ波のパワーを損失する。 It should be noted that when etching the dielectric plate 22, it is desirable to reduce the surface roughness as much as possible. Since the microwave propagates while reflecting the conductive film 23, a current flows on the surface of the conductive film 23. When the surface roughness of the dielectric plate 22 is increased, irregularities are formed on the surface of the conductive film 23 and the electrical resistance increases. When this happens, the microwave power is lost.
 図8は、金属層のめっきの一例を示す。誘電体板22に導電膜23を成膜する際、まず誘電体板22の表面を活性化するため、誘電体板22の表面にPdの薄い層31を無電解めっきする。次に、Pdの層31の上に5μm程度の厚さのCuの層32をめっきする。Cuの層32が温度上昇すると、酸化して劣化する。これを防止するために1~2μmのAuの層34が電解めっきされる。Auの層34をCuの層32にめっきするためには、Cuの層32の表面をNiで処理する必要がある。このため、Cuの層32の表面に0.2~0.3μmのNiの層33が無電解めっきされる。誘電体板22を伝搬するマイクロ波の電流は主にCuの層を流れる。 FIG. 8 shows an example of metal layer plating. When the conductive film 23 is formed on the dielectric plate 22, first, a thin layer 31 of Pd is electrolessly plated on the surface of the dielectric plate 22 in order to activate the surface of the dielectric plate 22. Next, a Cu layer 32 having a thickness of about 5 μm is plated on the Pd layer 31. When the temperature of the Cu layer 32 rises, it oxidizes and deteriorates. In order to prevent this, a 1-2 μm Au layer 34 is electrolytically plated. In order to plate the Au layer 34 on the Cu layer 32, the surface of the Cu layer 32 needs to be treated with Ni. For this reason, a 0.2 to 0.3 μm Ni layer 33 is electrolessly plated on the surface of the Cu layer 32. The microwave current propagating through the dielectric plate 22 mainly flows through the Cu layer.
 誘電体板22の上面、下面及び外周面に導電膜23をめっきするのが望ましい。片面だけだと熱膨張により誘電体板22が反るおそれがあるし、誘電体板22と冷却板24との間に隙間が発生するおそれもあるからである。誘電体板22の上面に導電膜23を成膜することで、マイクロ波が誘電体板22の上面の導電膜23で反射する。導電膜23の外側をマイクロ波が伝搬することがないので、誘電体板22の上面の導電膜23と冷却板24との間に熱伝導性のよいテフロン(登録商標)シート、カーボンシート等の緩衝シート36(図3参照)を介在させることもできる。ただしもちろん、誘電体板22の下面のみに導電膜23を成膜させてもよい。この場合、誘電体板22の下面の導電膜23と同軸導波管19との電気的な接続を確保する必要がある。 Desirably, the conductive film 23 is plated on the upper surface, lower surface and outer peripheral surface of the dielectric plate 22. This is because if only one side is present, the dielectric plate 22 may be warped due to thermal expansion, and a gap may be generated between the dielectric plate 22 and the cooling plate 24. By forming the conductive film 23 on the upper surface of the dielectric plate 22, the microwave is reflected by the conductive film 23 on the upper surface of the dielectric plate 22. Since microwaves do not propagate outside the conductive film 23, a Teflon (registered trademark) sheet, carbon sheet, or the like having good thermal conductivity is provided between the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24. A buffer sheet 36 (see FIG. 3) may be interposed. However, of course, the conductive film 23 may be formed only on the lower surface of the dielectric plate 22. In this case, it is necessary to ensure electrical connection between the conductive film 23 on the lower surface of the dielectric plate 22 and the coaxial waveguide 19.
 図3に示すように、マイクロ波アンテナ18の誘電体板22上には、冷却板24が載せられる。冷却板24には冷却水流路24aが形成される。冷却水流路24aに冷却水を流すことにより、誘電体板22を冷却することができる。熱伝導性を向上させるため、冷却板24と誘電体板22との間には、例えば厚みが0.05mm程度の、一枚又は複数枚の緩衝シート36が介在される。この緩衝シート36は、熱膨張によって誘電体板22の上面の導電膜23と冷却板24とが擦れるのを防止する。誘電体板22の上面の導電膜23の内周側は熱膨張の量が小さいので、冷却板24との擦れも少ない。このため、導電膜23の内周側と冷却板24とで電気的な接続がなされる。 As shown in FIG. 3, a cooling plate 24 is placed on the dielectric plate 22 of the microwave antenna 18. A cooling water flow path 24 a is formed in the cooling plate 24. The dielectric plate 22 can be cooled by flowing cooling water through the cooling water passage 24a. In order to improve thermal conductivity, one or a plurality of buffer sheets 36 having a thickness of, for example, about 0.05 mm are interposed between the cooling plate 24 and the dielectric plate 22. The buffer sheet 36 prevents the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24 from rubbing due to thermal expansion. Since the amount of thermal expansion is small on the inner peripheral side of the conductive film 23 on the upper surface of the dielectric plate 22, there is little friction with the cooling plate 24. For this reason, electrical connection is made between the inner peripheral side of the conductive film 23 and the cooling plate 24.
 マイクロ波アンテナ18は、誘電体窓押えリング14に取り付けられるアンテナ押え37によって誘電体窓12に固定される。アンテナ押え37は処理容器11と同様にAl若しくはAlを含有するステンレス鋼からなる。冷却板24とアンテナ押え37との間には、電磁遮蔽弾力体38が設けられる。電磁遮蔽弾力体38は電磁シールドの機能、及びマイクロ波アンテナ18を誘電体窓12に押しつける機能を持つ。導電膜23のスロット23aを透過するマイクロ波は全てがプラズマに吸収されるわけではなく、一部が導電膜23と誘電体窓12との間の小さな隙間から外側に漏れ出す。それだけでなく、誘電体窓12を外周方向に伝搬したマイクロ波は誘電体窓押えリング14と冷却板24との間の隙間から外側に漏れ出す。電磁遮蔽弾力体38は漏れ出したマイクロ波をシールドする。マイクロ波アンテナ18が誘電体窓12上に単に載っているだけだと、熱膨張によってマイクロ波アンテナ18と誘電体窓12との間に隙間が生ずる。熱膨張して隙間が生ずるのを防止するために、電磁遮蔽弾力体38はマイクロ波アンテナ18を強い力で誘電体窓12に押し付ける。なお、電磁遮蔽弾力体の二つの機能を分けてもよい。すなわち、電磁シールドの機能をスパイラル状の電磁シールドに持たせ、マイクロ波アンテナ18を誘電体窓12に押しつける機能をテンションが付与できるばね状のOリングに持たせてもよい。 The microwave antenna 18 is fixed to the dielectric window 12 by an antenna holder 37 attached to the dielectric window holder ring 14. The antenna holder 37 is made of Al or stainless steel containing Al, like the processing container 11. An electromagnetic shielding elastic body 38 is provided between the cooling plate 24 and the antenna holder 37. The electromagnetic shielding elastic body 38 has a function of electromagnetic shielding and a function of pressing the microwave antenna 18 against the dielectric window 12. All of the microwaves transmitted through the slot 23 a of the conductive film 23 are not absorbed by the plasma, and part of the microwave leaks out from a small gap between the conductive film 23 and the dielectric window 12. In addition, the microwave propagated in the outer circumferential direction through the dielectric window 12 leaks outside through the gap between the dielectric window pressing ring 14 and the cooling plate 24. The electromagnetic shielding elastic body 38 shields the leaked microwave. If the microwave antenna 18 is merely placed on the dielectric window 12, a gap is generated between the microwave antenna 18 and the dielectric window 12 due to thermal expansion. In order to prevent thermal expansion from generating a gap, the electromagnetic shielding elastic body 38 presses the microwave antenna 18 against the dielectric window 12 with a strong force. The two functions of the electromagnetic shielding elastic body may be divided. That is, the function of electromagnetic shield may be provided to the spiral electromagnetic shield, and the function of pressing the microwave antenna 18 against the dielectric window 12 may be provided to the spring-like O-ring that can apply tension.
 図9は、誘電体板22の導電膜23の電気的な接続方法の一例を示す。誘電体板22の下面の導電膜23と同軸導波管19の内導体19aとを電気的に接続する必要があることから、円柱状のスロット中心コンタクトフランジ27と板状のスロット中心コンタクト板41を設ける。図10に示すように、スロット中心コンタクトフランジ27とスロット中心コンタクト板41とは、接着、ねじ等により結合される。スロット中心コンタクトフランジ27は、内導体19aにねじ等により結合される。Oリング等からなるコンタクト補強弾性体42は、スロット中心コンタクト板41と導電膜23との電気的接触を補強し、また誘電体板22の上面側の導電膜23と冷却板24との電気的接触を導電性ばねからなる電気コンタクト弾性体28と共に補強する。 FIG. 9 shows an example of an electrical connection method of the conductive film 23 of the dielectric plate 22. Since it is necessary to electrically connect the conductive film 23 on the lower surface of the dielectric plate 22 and the inner conductor 19 a of the coaxial waveguide 19, the cylindrical slot center contact flange 27 and the plate-shaped slot center contact plate 41. Is provided. As shown in FIG. 10, the slot center contact flange 27 and the slot center contact plate 41 are coupled by bonding, screws, or the like. The slot center contact flange 27 is coupled to the inner conductor 19a by screws or the like. The contact reinforcing elastic body 42 made of an O-ring or the like reinforces the electrical contact between the slot center contact plate 41 and the conductive film 23, and the electrical connection between the conductive film 23 on the upper surface side of the dielectric plate 22 and the cooling plate 24. The contact is reinforced with an electrical contact elastic 28 made of a conductive spring.
 図11に示すように、スロット外周コンタクトリング44とスロット外周コンタクト板45とは結合される。スロット外周コンタクトリング44は冷却板24にボルト等で結合される。Oリング等からなるコンタクト補強弾性体46は、スロット外周コンタクト板45と誘電体板22の下面側の導電膜23との電気的接触を補強する。また、伝熱性の緩衝シート36を通して誘電体板22の上面の導電膜23と冷却板24との伝熱的接触を補強する。 As shown in FIG. 11, the slot outer peripheral contact ring 44 and the slot outer peripheral contact plate 45 are coupled. The slot outer peripheral contact ring 44 is coupled to the cooling plate 24 with bolts or the like. A contact reinforcing elastic body 46 made of an O-ring or the like reinforces electrical contact between the slot outer peripheral contact plate 45 and the conductive film 23 on the lower surface side of the dielectric plate 22. Further, the heat transfer contact between the conductive film 23 on the upper surface of the dielectric plate 22 and the cooling plate 24 is reinforced through the heat transfer buffer sheet 36.
 なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々に変更できる。例えば図12に示すように、本発明のアンテナは、同軸導波路のように中心から外に向かってマイクロ波を広げる構造でなくても、給電手段としての矩形導波管51によって水平方向にマイクロ波を導入する構造であってもよい。 Note that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention. For example, as shown in FIG. 12, the antenna of the present invention does not have a structure that spreads the microwave from the center to the outside like a coaxial waveguide. The structure which introduces a wave may be sufficient.
 また、スロット板は誘電体板にめっきされた導電膜でなくても、誘電体板とは別体の銅板であってもよい。この場合、スロット板のスロットに誘電体板の凸部を嵌めればよい。さらに、誘電体板の凸部を誘電体本体とは別体にし、凸部を誘電体本体に貼り付けてもよい。さらに、図13に示すように、誘電体板22の凸部22cと誘電体窓12との間に緩衝シート52を介在させてもよい。 Further, the slot plate may not be a conductive film plated on the dielectric plate, but may be a copper plate separate from the dielectric plate. In this case, the convex portion of the dielectric plate may be fitted into the slot of the slot plate. Furthermore, the convex portion of the dielectric plate may be separated from the dielectric main body, and the convex portion may be attached to the dielectric main body. Further, as shown in FIG. 13, a buffer sheet 52 may be interposed between the convex portion 22 c of the dielectric plate 22 and the dielectric window 12.
 アンテナ押えに冷却板及び誘電体板を誘電体窓に押さえ付ける電磁遮蔽弾力体を設けなくても、冷却板及び誘電体板の周囲を真空にすることによって、これらを誘電体窓に密着させてもよい。 Even if there is no electromagnetic shielding elastic body that presses the cooling plate and dielectric plate against the dielectric window for holding the antenna, the periphery of the cooling plate and dielectric plate is evacuated so that they are in close contact with the dielectric window. Also good.
 誘電体窓に処理容器内にプラズマガスを供給するプラズマガス供給経路を形成し、誘電体窓と被処理基板との間に処理ガスを供給する中段シャワーヘッドを設けてもよい。 A plasma gas supply path for supplying plasma gas into the processing container may be formed in the dielectric window, and an intermediate shower head for supplying the processing gas may be provided between the dielectric window and the substrate to be processed.
 本明細書は、2009年1月30日出願の特願2009-018970に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2009-018970 filed on Jan. 30, 2009. All this content is included here.
11…処理容器
12…誘電体窓
15…ガス供給部
16…保持台
18…マイクロ波アンテナ
19…同軸導波管
20…同軸導波路
22…誘電体板
22c…凸部
23…導電膜(スロット板)
23a…スロット
36…緩衝シート
DESCRIPTION OF SYMBOLS 11 ... Processing container 12 ... Dielectric window 15 ... Gas supply part 16 ... Holding stand 18 ... Microwave antenna 19 ... Coaxial waveguide 20 ... Coaxial waveguide 22 ... Dielectric board 22c ... Convex part 23 ... Conductive film (slot board) )
23a ... Slot 36 ... Buffer sheet

Claims (10)

  1.  天井部が誘電体窓により画定される処理容器と、前記処理容器を減圧するガス排気系と、前記処理容器にプラズマガスを供給するガス供給部と、前記処理容器の前記誘電体窓に載せられ、前記処理容器内のプラズマガスを励起するマイクロ波アンテナと、を備えるマイクロ波プラズマ処理装置において、
     前記マイクロ波アンテナは、水平方向にマイクロ波を伝播すると共にマイクロ波の波長を圧縮する誘電体板と、マイクロ波を透過させるスロットを有するスロット板と、を含み、
     前記誘電体板に前記スロット板の前記スロット内に突出する凸部が設けられ、
     前記誘電体板の前記凸部の表面が前記スロット板の表面から前記誘電体窓に向かって外方に出っ張るマイクロ波プラズマ処理装置。
    A processing container having a ceiling defined by a dielectric window, a gas exhaust system for depressurizing the processing container, a gas supply unit for supplying plasma gas to the processing container, and the dielectric window of the processing container. In a microwave plasma processing apparatus comprising: a microwave antenna that excites plasma gas in the processing container;
    The microwave antenna includes a dielectric plate that propagates the microwave in the horizontal direction and compresses the wavelength of the microwave, and a slot plate having a slot that transmits the microwave,
    Protrusions projecting into the slots of the slot plate are provided on the dielectric plate,
    The microwave plasma processing apparatus, wherein a surface of the convex portion of the dielectric plate protrudes outward from the surface of the slot plate toward the dielectric window.
  2.  前記スロット板は、前記誘電体板に形成される導電膜からなることを特徴とする請求項1に記載のマイクロ波プラズマ処理装置。 2. The microwave plasma processing apparatus according to claim 1, wherein the slot plate is made of a conductive film formed on the dielectric plate.
  3.  前記誘電体板の前記凸部は、前記スロットに対応する部分を残して前記誘電体板の残りの部分を除去することにより形成され、
     前記導電膜は、前記誘電体板の前記凸部以外の部分を成膜することにより形成されることを特徴とする請求項2に記載のマイクロ波プラズマ処理装置。
    The convex portion of the dielectric plate is formed by removing a remaining portion of the dielectric plate, leaving a portion corresponding to the slot,
    The microwave plasma processing apparatus according to claim 2, wherein the conductive film is formed by depositing a portion other than the convex portion of the dielectric plate.
  4.  前記導電膜は、前記誘電体板にめっきにより形成されることを特徴とする請求項2又は3に記載のマイクロ波プラズマ処理装置。 The microwave plasma processing apparatus according to claim 2 or 3, wherein the conductive film is formed on the dielectric plate by plating.
  5.  前記スロット板と前記誘電体窓との間には、隙間が空けられることを特徴とする請求項1ないし4のいずれかに記載のマイクロ波プラズマ処理装置。 5. The microwave plasma processing apparatus according to claim 1, wherein a gap is provided between the slot plate and the dielectric window.
  6.  前記スロット板と前記誘電体窓との間には、緩衝シートが介在されることを特徴とする請求項1ないし4のいずれかに記載のマイクロ波プラズマ処理装置。 The microwave plasma processing apparatus according to any one of claims 1 to 4, wherein a buffer sheet is interposed between the slot plate and the dielectric window.
  7.  前記マイクロ波プラズマ処理装置はさらに、前記マイクロ波アンテナを冷却すると共に、前記誘電体窓との間で前記誘電体板を上下方向に挟む冷却板を備え、
     前記誘電体板の上面にはマイクロ波を反射する導電膜が形成され、
     前記誘電体板の上面の前記導電膜と前記冷却板との間には、緩衝シートが介在されることを特徴とする請求項2ないし4のいずれかに記載のマイクロ波プラズマ処理装置。
    The microwave plasma processing apparatus further includes a cooling plate that cools the microwave antenna and sandwiches the dielectric plate with the dielectric window in a vertical direction,
    A conductive film that reflects microwaves is formed on the top surface of the dielectric plate,
    The microwave plasma processing apparatus according to claim 2, wherein a buffer sheet is interposed between the conductive film on the upper surface of the dielectric plate and the cooling plate.
  8.  マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置用のスロット板付き誘電体板であって、
     マイクロ波を透過させるスロットを有するスロット板と、
     前記スロット板の前記スロット内に突出する凸部を有し、前記凸部の表面が前記スロット板の表面から外方に出っ張る誘電体板と、を備えるマイクロ波プラズマ処理装置用のスロット板付き誘電体板。
    A dielectric plate with a slot plate for a microwave plasma processing apparatus for plasma processing a target object by plasma generated using microwaves,
    A slot plate having slots for transmitting microwaves;
    A dielectric with a slot plate for a microwave plasma processing apparatus, comprising: a dielectric plate having a convex portion protruding into the slot of the slot plate, and a surface of the convex portion protruding outward from the surface of the slot plate. Body board.
  9.  前記スロット板は、前記誘電体板に形成される導電膜からなることを特徴とする請求項8に記載のマイクロ波プラズマ処理装置用のスロット板付き誘電体板。 9. The dielectric plate with a slot plate for a microwave plasma processing apparatus according to claim 8, wherein the slot plate is made of a conductive film formed on the dielectric plate.
  10.  マイクロ波を用いて生成されたプラズマにより被処理体をプラズマ処理するマイクロ波プラズマ処理装置用のスロット板付き誘電体板の製造方法であって、
     スロット板のマイクロ波を透過させるスロットに対応する部分が凸部になるように前記スロットに対応する部分を残して誘電体板の残りの部分を除去する工程と、
     前記誘電体板の前記凸部以外の部分に、前記凸部の表面が前記スロット板の表面から外方に出っ張るように導電膜からなるスロット板を成膜する工程と、を備えるマイクロ波プラズマ処理装置用のスロット板付き誘電体板の製造方法。
    A method of manufacturing a dielectric plate with a slot plate for a microwave plasma processing apparatus for plasma processing a target object with plasma generated using a microwave,
    Removing the remaining portion of the dielectric plate leaving the portion corresponding to the slot so that the portion corresponding to the slot through which microwaves of the slot plate are transmitted becomes a convex portion;
    Forming a slot plate made of a conductive film on a portion of the dielectric plate other than the convex portion so that the surface of the convex portion protrudes outward from the surface of the slot plate. A method of manufacturing a dielectric plate with a slot plate for an apparatus.
PCT/JP2009/007244 2009-01-30 2009-12-25 Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board WO2010086950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009018970A JP2010177065A (en) 2009-01-30 2009-01-30 Microwave plasma treatment device, dielectric plate with slot plate for microwave plasma treatment device, and method of manufacturing the same
JP2009-018970 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010086950A1 true WO2010086950A1 (en) 2010-08-05

Family

ID=42395221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007244 WO2010086950A1 (en) 2009-01-30 2009-12-25 Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board

Country Status (3)

Country Link
JP (1) JP2010177065A (en)
TW (1) TW201119521A (en)
WO (1) WO2010086950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498802B2 (en) 2020-06-10 2024-06-12 アプライド マテリアルズ インコーポレイテッド Cleaning unit for chamber exhaust cleaning

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694736B2 (en) * 2016-03-14 2020-05-20 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP6697292B2 (en) * 2016-03-14 2020-05-20 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
KR101966807B1 (en) * 2017-03-27 2019-04-08 세메스 주식회사 Apparatus for treating substrate
KR20220169010A (en) * 2021-06-17 2022-12-27 세메스 주식회사 Apparatus and method for treating substrate
JP2023021764A (en) * 2021-08-02 2023-02-14 日新電機株式会社 Plasma processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355550A (en) * 2001-03-28 2002-12-10 Tadahiro Omi Plasma treatment apparatus, plasma treatment method and slow-wave plate
WO2006092985A1 (en) * 2005-03-04 2006-09-08 Tokyo Electron Limited Microwave plasma processing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357385B1 (en) * 1997-01-29 2002-03-19 Tadahiro Ohmi Plasma device
JPH1167492A (en) * 1997-05-29 1999-03-09 Sumitomo Metal Ind Ltd Plasma treatment equipment and plasma treatment method
JP2001203098A (en) * 2000-01-18 2001-07-27 Rohm Co Ltd Structure of radial line slot antenna in a plasma surface processing apparatus for semiconductor substrate
JP3745700B2 (en) * 2002-03-29 2006-02-15 三井造船株式会社 Antenna for generating microwave plasma
JP4159845B2 (en) * 2002-10-07 2008-10-01 東京エレクトロン株式会社 Plasma processing equipment
KR101005953B1 (en) * 2004-11-04 2011-01-05 도쿄엘렉트론가부시키가이샤 Insulating film forming method
JP4439501B2 (en) * 2006-08-31 2010-03-24 シャープ株式会社 Plasma process apparatus and electrode unit for plasma apparatus
JPWO2008153053A1 (en) * 2007-06-11 2010-08-26 東京エレクトロン株式会社 Plasma processing apparatus, power supply apparatus, and method of using plasma processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355550A (en) * 2001-03-28 2002-12-10 Tadahiro Omi Plasma treatment apparatus, plasma treatment method and slow-wave plate
WO2006092985A1 (en) * 2005-03-04 2006-09-08 Tokyo Electron Limited Microwave plasma processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498802B2 (en) 2020-06-10 2024-06-12 アプライド マテリアルズ インコーポレイテッド Cleaning unit for chamber exhaust cleaning

Also Published As

Publication number Publication date
JP2010177065A (en) 2010-08-12
TW201119521A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5189999B2 (en) Microwave plasma processing apparatus and microwave power supply method for microwave plasma processing apparatus
KR101317018B1 (en) Plasma treatment apparatus
WO2010086950A1 (en) Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board
US7728251B2 (en) Plasma processing apparatus with dielectric plates and fixing member wavelength dependent spacing
KR100927913B1 (en) Substrate Mounting Mechanism and Substrate Processing Equipment
JP4694596B2 (en) Microwave plasma processing apparatus and microwave power feeding method
KR101258005B1 (en) Plasma processing apparatus
JP3496560B2 (en) Plasma processing equipment
US6953908B2 (en) Plasma processing apparatus
KR100794806B1 (en) Plasma processing apparatus and method, and slot antenna
JP3549739B2 (en) Plasma processing equipment
KR101256850B1 (en) Microwave plasma processing apparatus
JP2006244891A (en) Microwave plasma processing device
KR20090127219A (en) Microwave plasma processing apparatus
JP5411136B2 (en) Microwave plasma processing apparatus and cooling jacket manufacturing method
JP2003168681A (en) Microwave plasma treatment device and treatment method
KR102004037B1 (en) Microwave plasma processing apparatus and microwave plasma processing method
JP2007059782A (en) Spacer member and plasma processing device
WO2010016423A1 (en) Dielectric window, dielectric window manufacturing method, and plasma treatment apparatus
JP2010027588A (en) Microwave plasma processing apparatus, and method of supplying microwaves
JP2007129268A (en) Plasma processing device
JP2947020B2 (en) Thin film forming equipment
KR20230001336A (en) Apparatus and method for processing substrate
JPH10233294A (en) Plasma treatment device
JPH10284294A (en) Plasma processing method, plasma processing device, manufacture of semiconductor device and microwave dispersion plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839142

Country of ref document: EP

Kind code of ref document: A1