WO2021210583A1 - Plasma source and plasma processing apparatus - Google Patents

Plasma source and plasma processing apparatus Download PDF

Info

Publication number
WO2021210583A1
WO2021210583A1 PCT/JP2021/015341 JP2021015341W WO2021210583A1 WO 2021210583 A1 WO2021210583 A1 WO 2021210583A1 JP 2021015341 W JP2021015341 W JP 2021015341W WO 2021210583 A1 WO2021210583 A1 WO 2021210583A1
Authority
WO
WIPO (PCT)
Prior art keywords
slit
antenna
recess
plasma
vacuum container
Prior art date
Application number
PCT/JP2021/015341
Other languages
French (fr)
Japanese (ja)
Inventor
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2021210583A1 publication Critical patent/WO2021210583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma source for generating plasma in a vacuum vessel, and a plasma processing apparatus provided with this plasma source.
  • Patent Document 1 states that an antenna is arranged outside the vacuum vessel, and a high-frequency magnetic field generated from the antenna is applied to the inside of the vacuum vessel through a dielectric window provided so as to close the opening of the side wall of the vacuum vessel.
  • a device that generates plasma in a vacuum vessel by allowing it to permeate into a vacuum vessel.
  • the dielectric window is used as a part of the side wall of the vacuum vessel, the dielectric window is sufficient to withstand the differential pressure inside and outside the vacuum vessel when the inside of the vacuum vessel is evacuated. Must have strength.
  • the dielectric material constituting the dielectric window is ceramics or glass having low toughness, it is necessary to sufficiently increase the thickness of the dielectric window in order to have sufficient strength to withstand the above-mentioned differential pressure. Therefore, there is a problem that the distance from the antenna to the processing chamber in the vacuum vessel becomes long, the strength of the induced electric field in the processing chamber becomes weak, and the plasma generation efficiency decreases.
  • the present inventor has a metal slit plate that closes the opening of the vacuum vessel and a dielectric plate that closes the slit formed in the slit plate from the outside of the vacuum vessel.
  • deposits due to plasma generated in the vicinity of the slit and deposits due to wraparound of particles due to sputtering or the like are deposited on the dielectric plate, and such deposits are deposited on the dielectric plate. If it is conductive, the inner surface forming the slit will be conductive through the deposit. Then, the high-frequency magnetic field generated from the antenna causes a high-frequency current to flow in the slit plate along the longitudinal direction of the antenna, and the heat generated by the slit plate and the deposits heats the dielectric plate. As a result, the dielectric plate may be damaged due to thermal strain of the dielectric plate or a decrease in strength due to a chemical reaction between the dielectric plate and the deposit.
  • the surface of the dielectric plate is made conductive, so that the high-frequency magnetic field generated from the antenna is shielded and the high-frequency magnetic field transmitted through the vacuum vessel is generated. It decreases, causing a decrease in plasma density and instability.
  • the present invention has been made to solve such a problem at once, and in a configuration in which the antenna is arranged outside the vacuum container, by using a slit member having a slit formed therein, from the antenna to the inside of the vacuum container.
  • a slit member having a slit formed therein By shortening the distance between the antennas, the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel, and the high-frequency current caused by the deposits on the dielectric plate is suppressed from flowing to the slit member. Is the main issue.
  • the plasma source according to the present invention is a plasma source that causes a high-frequency current to flow through an antenna provided outside the vacuum vessel to generate plasma in the vacuum vessel, and is formed at a position facing the antenna of the vacuum vessel.
  • the slit member includes a slit member in which a plurality of slits are formed along the longitudinal direction of the antenna and a dielectric plate that closes the slits from the outside of the vacuum vessel. It is characterized in that a recess is formed in which a region sandwiched between the slits adjacent to each other is recessed inward on an outward surface facing outward.
  • the dielectric plate is conductive. Even if the deposits of the above are deposited, the recess can at least suppress the high-frequency current along the longitudinal direction of the antenna flowing through the slit member, and the high-frequency current can be blocked depending on the configuration of the recess.
  • the distance from the antenna to the inside of the vacuum container is shortened by using the slit member in which the slit is formed, and the high frequency magnetic field generated from the antenna is efficiently used.
  • the recess is spatially connected to the slit.
  • the dimension of the recess along the longitudinal direction is three times or more the depth dimension of the recess. In this case, the generation of high-frequency current caused by the deposit can be more reliably cut off.
  • a configuration in which the slit extends in a direction orthogonal to the longitudinal direction of the antenna and the recess is formed along the extending direction of the slit can be mentioned. ..
  • the slit member is formed with a second recess in which the region outside the extending direction of the slit on the outward surface is recessed inward.
  • the slit member is interposed between the slit plate in which the plurality of slits are formed along the longitudinal direction of the antenna and the slit plate and the dielectric plate, and at least one of the slits in the slit plate.
  • the seal member has a plurality of openings overlapping the periphery thereof, and the slit and the step generated by the overlap with the opening are formed as the recess. With such a configuration, the recess can be formed while ensuring the airtightness between the slit member and the dielectric plate.
  • a plasma processing apparatus including a vacuum vessel and the above-mentioned plasma source is also one of the present inventions, and such a plasma processing apparatus can exert the same action and effect as the above-mentioned plasma source.
  • the present invention configured in this way, in the configuration in which the antenna is arranged outside the vacuum container, the distance from the antenna to the inside of the vacuum container is shortened by using the slit member in which the slit is formed, thereby shortening the antenna. It is possible to efficiently supply the high-frequency magnetic field generated from the above to the inside of the vacuum vessel, and it is possible to prevent conduction between the slits of the slit member.
  • the plasma processing apparatus 100 of the present embodiment processes the substrate W using an inductively coupled plasma P.
  • the substrate W is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like.
  • the treatment applied to the substrate W is, for example, film formation, etching, ashing, sputtering, etc. by the plasma CVD method.
  • the plasma processing apparatus 100 includes a plasma CVD apparatus when forming a film by a plasma CVD method, a plasma etching apparatus when performing etching, a plasma ashing apparatus when performing ashing, and a plasma sputtering apparatus when performing sputtering. Called.
  • the plasma processing apparatus 100 includes a vacuum vessel 1 that is evacuated and introduced with gas G, and a plasma source 200 that generates plasma inside the vacuum vessel 1. Therefore, the plasma source 200 includes an antenna 2 provided outside the vacuum vessel 1 and a high-frequency power source 3 for applying a high frequency to the antenna 2.
  • a high frequency current IR flows through the antenna 2
  • an inductive electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated.
  • the vacuum container 1 is, for example, a metal container, and an opening 1x penetrating in the thickness direction is formed on the wall (here, the upper wall 1a).
  • the vacuum container 1 is electrically grounded here, and the inside thereof is evacuated by the vacuum exhaust device 4.
  • the gas G is introduced into the vacuum vessel 1 via, for example, a flow rate regulator (not shown) or one or a plurality of gas introduction ports 11 provided in the vacuum vessel 1.
  • the gas G may be set according to the processing content to be applied to the substrate W.
  • the gas G is a gas diluted with the raw material gas or a dilution gas (e.g., H 2). More specifically, when the raw material gas is SiH 4, a Si film is used, when SiH 4 + NH 3 is used, a SiN film is used, when SiH 4 + O 2 is used, a SiO 2 film is used, and when SiF 4 + N 2 is used, a SiN film is used. : F film (fluoride silicon nitride film) can be formed on the substrate respectively.
  • a substrate holder 5 for holding the substrate W is provided inside the vacuum container 1.
  • a bias voltage may be applied to the substrate holder 5 from the bias power supply 6.
  • the bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited thereto.
  • the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. ..
  • a heater 51 for heating the substrate W may be provided in the substrate holder 5.
  • the antenna 2 is arranged so as to face the opening 1x formed in the vacuum container 1.
  • the number of antennas 2 is not limited to one, and a plurality of antennas 2 may be provided.
  • the antenna 2 is connected to a high-frequency power supply 3 via a matching circuit 31 at a feeding end 2a, which is one end thereof, and the terminal 2b, which is the other end, is directly grounded. ing.
  • the terminal portion 2b may be grounded via a capacitor, a coil, or the like.
  • the high-frequency power supply 3 can pass a high-frequency current IR through the matching circuit 31 to the antenna 2.
  • the frequency of the high frequency is, for example, 13.56 MHz, which is generally used, but the frequency is not limited to this and may be changed as appropriate.
  • the plasma source 200 of the present embodiment has a slit member 7 that closes the opening 1x formed in the wall (upper wall 1a) of the vacuum container 1 from the outside of the vacuum container 1 and a slit 7x formed in the slit member 7. Is further provided with a dielectric plate 8 for closing the vacuum container 1 from the outside.
  • the slit member 7 is formed by forming a plurality of slits 7x penetrating in the thickness direction along the longitudinal direction of the antenna 2, and allows a high-frequency magnetic field generated from the antenna 2 to pass through the vacuum vessel 1 and vacuum. This is to prevent an electric field from entering the inside of the vacuum container 1 from the outside of the container 1.
  • the slit member 7 is a flat plate in which a plurality of slits 7x parallel to each other are formed, and preferably has higher mechanical strength than the dielectric plate 8 described later, and is thicker than the dielectric plate 8. Larger dimensions are preferred.
  • the slit member 7 is one type selected from the group containing, for example, Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co.
  • a metal material such as a metal or an alloy thereof (for example, a stainless alloy, an aluminum alloy, etc.) is produced by rolling (for example, cold rolling or hot rolling), and has a thickness of, for example, about 5 mm.
  • the manufacturing method and thickness are not limited to this, and may be appropriately changed according to the specifications.
  • the slit member 7 is larger than the opening 1x of the vacuum container in a plan view, and closes the opening 1x while being supported by the upper wall 1a.
  • a sealing member S such as an O-ring or a gasket is interposed between the slit member 7 and the upper wall 1a, and a vacuum seal is provided between them.
  • the dielectric plate 8 is provided on the outward surface 71 (the back surface of the inward surface facing the inside of the vacuum container 1) facing the outside of the vacuum container 1 in the slit member 7, and closes the slit 7x of the slit member 7. be.
  • the dielectric plate 8 has a flat plate shape that is entirely composed of a dielectric material, and is, for example, ceramics such as alumina, silicon carbide, and silicon nitride, inorganic materials such as quartz glass and non-alkali glass, and fluororesin (for example, fluororesin). It is made of a resin material such as Teflon). From the viewpoint of reducing dielectric loss, the material constituting the dielectric plate 8 preferably has a dielectric loss tangent of 0.01 or less, and more preferably 0.005 or less.
  • the thickness of the dielectric plate 8 is made smaller than the thickness of the slit member 7, but the thickness is not limited to this.
  • the vacuum container 1 when the vacuum container 1 is evacuated, the inside and outside of the vacuum container 1 received from the slit 7x. It suffices to have a strength capable of withstanding the differential pressure of the above, and may be appropriately set according to specifications such as the number and length of the slits 7x.
  • the antenna 2 is thin from the viewpoint of shortening the distance between the antenna 2 and the vacuum vessel 1.
  • the slit member 7 and the dielectric plate 8 function as a magnetic field transmission window 9 for transmitting a magnetic field. That is, when a high frequency is applied from the high frequency power source 3 to the antenna 2, the high frequency magnetic field generated from the antenna 2 passes through the magnetic field transmission window 9 composed of the slit member 7 and the dielectric plate 8 and is formed (supplied) in the vacuum vessel 1. Will be done. As a result, an induced electric field is generated in the space inside the vacuum vessel 1, and inductively coupled plasma P is generated.
  • the slit member 7 described above is formed with a recess 72 in which a region sandwiched between the slits 7x adjacent to each other on the outward surface 71 described above is recessed inward.
  • the slit members 7 are provided in, for example, a rectangular frame element 73 and inside the frame element 73 at equal intervals, for example, along the longitudinal direction of the antenna 2. It has a plurality of fence-shaped elements 74, and each of these fence-shaped elements 74 is formed as a slit 7x.
  • the slit 7x extends along a direction orthogonal to the longitudinal direction of the antenna 2, and the recess 72 is a seat formed along the extending direction of the slit 7x (that is, a direction orthogonal to the longitudinal direction of the antenna 2). It is a depression such as a drill, a counterbore, or a notch.
  • the outward surface 71 of the fence-shaped element 74 contacts the dielectric plate 8 and supports the dielectric plate 8 with a contact region 71a and inside the contact region 71a. It is composed of a non-contact region 71b that is recessed and does not come into contact with the dielectric plate 8, and this non-contact region 71b is formed as the bottom surface of the recess 72 described above.
  • the recess 72 of the present embodiment is a stepped portion having a substantially quadrangular cross section surrounded by the non-contact region 71b and the inner side surface 71c extending from the non-contact region 71b to the contact region 71a. It is formed so as to be spatially connected.
  • the recess 72 here is provided in each of the fence-shaped elements 74, and is provided on one side of the antenna 2 in the longitudinal direction with respect to the contact region 71a. That is, in the present embodiment, the slits 7x, the recesses 72, and the contact area 71a are repeatedly arranged along the longitudinal direction of the antenna 2.
  • the dimension along the longitudinal direction of the antenna 2 is set to be three times or more the depth dimension, and the dimension along the direction orthogonal to the longitudinal direction of the antenna 2. However, it is set to be the same as or larger than the dimension of the slit 7x along the same direction.
  • the slit member 7 of the present embodiment is formed with a second recess 75 in which the region outside the extending direction of the slit 7x on the outward surface 71 is recessed inward. There is.
  • the second recess 75 is a counterbore formed on the outward surface 71 of the frame element 73 along a direction orthogonal to the extending direction of the slit 7x (that is, the longitudinal direction of the antenna 2). It is a depression such as a counterbore or a notch.
  • the second recess 75 is formed integrally (continuously) with the recess 72 described above, has the same depth dimension as the recess 72, and is provided corresponding to each slit 7x.
  • the second recess 75 is formed on the outside of one end in the extending direction and the outside of the other end in the extending direction of the slit 7x.
  • One long side and a pair of opposite short sides are surrounded by a recess 72 and a pair of second recesses 75.
  • the recess 72 in which the region sandwiched between the slits 7x adjacent to each other on the outward surface 71 of the slit member 7 is recessed inward. Therefore, even if conductive deposits are deposited on the dielectric plate 8, the recess 72 can at least suppress a high-frequency current along the longitudinal direction of the antenna flowing through the slit member 7. As a result, in the configuration in which the antenna 2 is arranged outside the vacuum container 1, the distance from the antenna 2 to the inside of the vacuum container 1 is shortened by using the slit member 7, and the high frequency magnetic field generated from the antenna 2 is efficiently utilized. It is possible to supply the vacuum container 1 well and suppress the high frequency current due to the deposit on the dielectric plate 8 from flowing to the slit member 7.
  • the dimension of the recess 72 along the longitudinal direction of the antenna 2 is three times or more the depth dimension of the recess 72, even if conductive deposits are deposited on the dielectric plate 8, the deposits are deposited. Does not come into contact with the inner surface 71c forming the recess 72, and the generation of high-frequency current due to the deposit can be blocked.
  • the second recess 75 is formed on the outward surface 71 outside the extending direction of the slit 7x, it is possible to suppress the flow of high-frequency current to the region outside the extending direction of the slit 7x. As a result, the shielding action against the high frequency magnetic field generated from the antenna 2 can be reduced, and the high frequency magnetic field can be more efficiently supplied into the vacuum vessel 1.
  • the recess 72 is provided on one side of the antenna in the longitudinal direction with respect to the contact region 71a, but the recess 72 is the longitudinal direction of the antenna 2 with respect to the contact region 71a as shown in FIG. It may be provided on both sides of the direction.
  • the recess 72 of the above embodiment is spatially connected to the slit 7x, but as shown in FIG. 6, contact regions 71a are formed on both sides of the antenna 2 in the longitudinal direction with respect to the recess 72, and the recess 72 is formed. May be spatially separated from the slit 7x.
  • the recess 72 of the embodiment is a stepped portion having a substantially quadrangular cross section surrounded by the non-contact region 71b and the inner side surface 71c, but as shown in FIG. 7, the non-contact region 71b is inclined.
  • the recess 72 in this case may have a substantially triangular cross section.
  • the non-contact region 71b may be a curved surface, for example, and the shape of the recess 72 may be variously changed.
  • the dielectric plate 8 is provided on the outside of the flat plate-shaped slit member 7, but as the slit member 7, as shown in FIG. 8, a slit plate in which a plurality of slits 7x are formed is formed. It may be composed of 7A and a seal member 7B provided between the slit plate 7A and the dielectric plate 8.
  • the sealing member 7B is, for example, a single sheet, and as shown in FIG. 8, at least one slit 7x in the slit plate 7A and a plurality of overlapping openings 7y are formed around the slit 7x. It was done.
  • the opening 7y here has a larger opening area than one slit 7x, and together with the one slit 7x, overlaps the outside of one long side of the slit 7x and the outside of each of a pair of short sides facing each other. Is formed in. In such a configuration, a step generated by the overlap of the slit 7x and the opening 7y is formed as the recess 72.
  • the above-mentioned seal member 7B has been described as a single sheet, as shown in FIG. 9, the frame body 7B1 and the fence body 7B2 provided in the frame body 7B1 and forming the above-mentioned opening 7y It may be composed of.
  • the recess 72 can be formed while ensuring the airtightness between the slit member 7 and the dielectric plate 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The present invention, by using a slit member in which slits are formed in a configuration in which an antenna is arranged on the outside of a vacuum container, shortens the distance from the antenna to the inside of the vacuum container, and thereby makes it possible to efficiently supply, to the inside of the vacuum container, a high-frequency magnetic field generated from the antenna, and also prevent conduction within the slits of the slit member. A plasma source 200 for making a high-frequency current IR flow through an antenna 2 provided on the outside of a vacuum container 1 and generating plasma P in the vacuum container 1 is equipped with: a slit member 7 which blocks an opening formed at a position facing the antenna 2 of the vacuum container 1 and in which a plurality of slits 7x are formed along the longitudinal direction of the antenna 2; and a dielectric plate 8 for blocking the slits 7x from the outer side of the vacuum container 1. A recess 72 is formed in the slit member 7 by inwardly recessing an area that is on an outward surface 71 facing the outer side and that is sandwiched between adjacent slits 7x.

Description

プラズマ源及びプラズマ処理装置Plasma source and plasma processing equipment
  本発明は、真空容器内にプラズマを発生させるためのプラズマ源、及び、このプラズマ源を備えたプラズマ処理装置に関するものである。 The present invention relates to a plasma source for generating plasma in a vacuum vessel, and a plasma processing apparatus provided with this plasma source.
  アンテナに高周波電流を流し、それによって生じる誘導電界によって誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板等の被処理物に処理を施すプラズマ処理装置が従来から提案されている。このようなプラズマ処理装置として、特許文献1には、アンテナを真空容器の外部に配置し、真空容器の側壁の開口を塞ぐように設けた誘電体窓を通じてアンテナから生じた高周波磁場を真空容器内に透過させることで、真空容器内にプラズマを発生させるものが開示されている。 Conventionally, a plasma processing device that applies a high-frequency current to an antenna, generates inductively coupled plasma (abbreviated as ICP) by an induced electric field generated by the high-frequency current, and processes an object to be processed such as a substrate by using this inductively coupled plasma. Proposed by. As such a plasma processing apparatus, Patent Document 1 states that an antenna is arranged outside the vacuum vessel, and a high-frequency magnetic field generated from the antenna is applied to the inside of the vacuum vessel through a dielectric window provided so as to close the opening of the side wall of the vacuum vessel. Disclosed is a device that generates plasma in a vacuum vessel by allowing it to permeate into a vacuum vessel.
特開2017-004665号公報JP-A-2017-004665
  ところが、上述のプラズマ処理装置では、誘電体窓を真空容器の側壁の一部として用いるため、誘電体窓は真空容器内を真空排気した際に真空容器の内外の差圧に耐えられるよう十分な強度を有する必要がある。特に誘電体窓を構成する誘電体材料は靭性が低いセラミックスやガラスであるので、上述した差圧に耐えられる十分な強度を備えるためには誘電体窓の厚みを十分に大きくする必要がある。それ故、アンテナから真空容器内の処理室までの距離が遠くなってしまい、処理室における誘導電界の強度が弱くなり、プラズマの生成効率が低下するという問題がある。 However, in the above-mentioned plasma processing apparatus, since the dielectric window is used as a part of the side wall of the vacuum vessel, the dielectric window is sufficient to withstand the differential pressure inside and outside the vacuum vessel when the inside of the vacuum vessel is evacuated. Must have strength. In particular, since the dielectric material constituting the dielectric window is ceramics or glass having low toughness, it is necessary to sufficiently increase the thickness of the dielectric window in order to have sufficient strength to withstand the above-mentioned differential pressure. Therefore, there is a problem that the distance from the antenna to the processing chamber in the vacuum vessel becomes long, the strength of the induced electric field in the processing chamber becomes weak, and the plasma generation efficiency decreases.
  そこで、本発明者は、本発明の開発にあたって、図10に示すように、真空容器の開口を塞ぐ金属製のスリット板と、スリット板に形成されたスリットを真空容器の外側から塞ぐ誘電体板とを備えたプラズマ源を中間的に考えた。
  このような構成であれば、金属製のスリット板と、このスリット板に重ね合わせた誘電体板とに磁場透過窓としての機能を担わせているので、誘電体板のみに磁場透過窓としての機能を担わせる場合に比べて磁場透過窓の厚みを小さくすることができる。これにより、アンテナから真空容器内までの距離を短くすることができ、アンテナから生じた高周波磁場を効率良く真空容器内に供給することができる。
Therefore, in developing the present invention, as shown in FIG. 10, the present inventor has a metal slit plate that closes the opening of the vacuum vessel and a dielectric plate that closes the slit formed in the slit plate from the outside of the vacuum vessel. A plasma source equipped with and was considered in the middle.
With such a configuration, since the metal slit plate and the dielectric plate superposed on the slit plate have a function as a magnetic field transmission window, only the dielectric plate can be used as a magnetic field transmission window. The thickness of the magnetic field transmission window can be reduced as compared with the case where the function is carried out. As a result, the distance from the antenna to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel.
  しかしながら、上述した構成であると、図11に示すように、スリット近傍に生成されたプラズマによる堆積物やスパッタ等による粒子の回り込みによる堆積物が誘電体板に堆積してしまい、そうした堆積物が導電性であると、スリットを形成する内側面が堆積物を介して導電してしまう。そうすると、アンテナから生じる高周波磁場により、スリット板にもアンテナの長手方向に沿った高周波電流が流れてしまい、スリット板や堆積物の発熱により誘電体板が加熱される。その結果、誘電体板の熱歪みが生じたり、誘電体板と堆積物との化学反応による強度低下が生じたりして、誘電体板が破損する恐れなどが生じる。 However, with the above-described configuration, as shown in FIG. 11, deposits due to plasma generated in the vicinity of the slit and deposits due to wraparound of particles due to sputtering or the like are deposited on the dielectric plate, and such deposits are deposited on the dielectric plate. If it is conductive, the inner surface forming the slit will be conductive through the deposit. Then, the high-frequency magnetic field generated from the antenna causes a high-frequency current to flow in the slit plate along the longitudinal direction of the antenna, and the heat generated by the slit plate and the deposits heats the dielectric plate. As a result, the dielectric plate may be damaged due to thermal strain of the dielectric plate or a decrease in strength due to a chemical reaction between the dielectric plate and the deposit.
  しかも、上述したようにスリット間が堆積物により導電すると、誘電体板の表面が導電化されることになるので、アンテナから生じる高周波磁場がシールドされてしまい、真空容器内に透過する高周波磁場が低下し、プラズマ密度の低下や不安定性を引き起こす。 Moreover, as described above, when the space between the slits is made conductive by the deposit, the surface of the dielectric plate is made conductive, so that the high-frequency magnetic field generated from the antenna is shielded and the high-frequency magnetic field transmitted through the vacuum vessel is generated. It decreases, causing a decrease in plasma density and instability.
  そこで、本発明は、かかる問題を一挙に解決するべくなされたものであり、真空容器の外部にアンテナを配置する構成において、スリットが形成されたスリット部材を用いることで、アンテナから真空容器内までの距離を短くし、これによりアンテナから生じた高周波磁場を効率良く真空容器内に供給できるようにするとともに、誘電体板への堆積物に起因した高周波電流がスリット部材に流れることを抑制することをその主たる課題とするものである。 Therefore, the present invention has been made to solve such a problem at once, and in a configuration in which the antenna is arranged outside the vacuum container, by using a slit member having a slit formed therein, from the antenna to the inside of the vacuum container. By shortening the distance between the antennas, the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel, and the high-frequency current caused by the deposits on the dielectric plate is suppressed from flowing to the slit member. Is the main issue.
  すなわち本発明に係るプラズマ源は、真空容器の外部に設けられたアンテナに高周波電流を流して前記真空容器内にプラズマを発生させるプラズマ源であって、前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐとともに、前記アンテナの長手方向に沿って複数のスリットが形成されたスリット部材と、前記スリットを前記真空容器の外側から塞ぐ誘電体板とを具備し、前記スリット部材には、外側を向く外向き面において互いに隣り合う前記スリットに挟まれた領域を内側に向かって凹ませた凹部が形成されていることを特徴とするものである。 That is, the plasma source according to the present invention is a plasma source that causes a high-frequency current to flow through an antenna provided outside the vacuum vessel to generate plasma in the vacuum vessel, and is formed at a position facing the antenna of the vacuum vessel. The slit member includes a slit member in which a plurality of slits are formed along the longitudinal direction of the antenna and a dielectric plate that closes the slits from the outside of the vacuum vessel. It is characterized in that a recess is formed in which a region sandwiched between the slits adjacent to each other is recessed inward on an outward surface facing outward.
  このように構成されたプラズマ源であれば、スリット部材の外向き面において互いに隣り合うスリットに挟まれた領域を内側に向かって凹ませた凹部を形成しているので、誘電体板に導電性の付着物が堆積したとしても、この凹部がスリット部材に流れるアンテナの長手方向に沿った高周波電流を少なくとも抑制し、凹部の構成によっては高周波電流を遮断することができる。
  これにより、真空容器の外部にアンテナを配置する構成において、スリットが形成されたスリット部材を用いることで、アンテナから真空容器内までの距離を短くし、これによりアンテナから生じた高周波磁場を効率良く真空容器内に供給できるようにするとともに、誘電体板への堆積物に起因した高周波電流がスリット部材に流れることを抑制することができる。
In the plasma source configured in this way, since the region sandwiched between the slits adjacent to each other on the outward surface of the slit member is recessed inward, the dielectric plate is conductive. Even if the deposits of the above are deposited, the recess can at least suppress the high-frequency current along the longitudinal direction of the antenna flowing through the slit member, and the high-frequency current can be blocked depending on the configuration of the recess.
As a result, in the configuration in which the antenna is arranged outside the vacuum container, the distance from the antenna to the inside of the vacuum container is shortened by using the slit member in which the slit is formed, and the high frequency magnetic field generated from the antenna is efficiently used. In addition to being able to supply the vacuum container, it is possible to suppress the flow of high-frequency current due to deposits on the dielectric plate to the slit member.
  より具体的な態様としては、前記凹部が、前記スリットと空間的につながっていることが好ましい。
  このような構成であれば、誘電体板に導電性の付着物が堆積したとしても、その堆積物がスリット部材の凹部を形成する内側面に接触しなければ、堆積物と内側面との間には電流が流れないので、堆積物に起因した高周波電流を遮断することができる。
As a more specific embodiment, it is preferable that the recess is spatially connected to the slit.
With such a configuration, even if conductive deposits are deposited on the dielectric plate, if the deposits do not come into contact with the inner surface forming the recess of the slit member, the space between the deposits and the inner side surface. Since no current flows through, the high frequency current caused by the deposits can be cut off.
  堆積物が凹部を形成する内側面により確実に接触しないようにするためには、前記凹部の前記長手方向に沿った寸法が、当該凹部の深さ寸法の3倍以上であることが好ましい。
  これならば、堆積物に起因した高周波電流の発生をより確実に遮断することができる。
In order to ensure that the deposit does not come into contact with the inner surface forming the recess, it is preferable that the dimension of the recess along the longitudinal direction is three times or more the depth dimension of the recess.
In this case, the generation of high-frequency current caused by the deposit can be more reliably cut off.
  より具体的な実施態様としては、前記スリットが、前記アンテナの長手方向と直交する方向に延びており、前記凹部が、前記スリットの延在方向に沿って形成されている構成を挙げることができる。 As a more specific embodiment, a configuration in which the slit extends in a direction orthogonal to the longitudinal direction of the antenna and the recess is formed along the extending direction of the slit can be mentioned. ..
  前記スリット部材には、前記外向き面における前記スリットの延在方向外側の領域を内側に向かって凹ませた第2凹部が形成されていることが好ましい。
  このような構成であれば、スリットの延在方向外側の領域に高周波電流が流れることをも抑制することができる。これにより、アンテナから生じた高周波磁場に対するシールド作用を低減することができ、高周波磁場をより効率良く真空容器内に供給することが可能となる。
It is preferable that the slit member is formed with a second recess in which the region outside the extending direction of the slit on the outward surface is recessed inward.
With such a configuration, it is possible to suppress the flow of high-frequency current in the region outside the extending direction of the slit. As a result, the shielding action against the high frequency magnetic field generated from the antenna can be reduced, and the high frequency magnetic field can be more efficiently supplied into the vacuum vessel.
  前記スリット部材が、前記複数のスリットが前記アンテナの長手方向に沿って形成されたスリット板と、前記スリット板と前記誘電体板との間に介在し、前記スリット板における少なくとも1つの前記スリットとその周囲とに重なり合う開口が複数形成されたシール部材とを有し、前記スリット及び前記開口との重なりにより生じる段差が前記凹部として形成されていることが好ましい。
  このような構成であれば、スリット部材と誘電体板との間の気密性を担保しつつ、凹部を形成することができる。
The slit member is interposed between the slit plate in which the plurality of slits are formed along the longitudinal direction of the antenna and the slit plate and the dielectric plate, and at least one of the slits in the slit plate. It is preferable that the seal member has a plurality of openings overlapping the periphery thereof, and the slit and the step generated by the overlap with the opening are formed as the recess.
With such a configuration, the recess can be formed while ensuring the airtightness between the slit member and the dielectric plate.
  また、真空容器と、上述したプラズマ源とを備えるプラズマ処理装置も本発明の1つであり、かかるプラズマ処理装置であれば、上述したプラズマ源と同様の作用効果を奏し得る。 Further, a plasma processing apparatus including a vacuum vessel and the above-mentioned plasma source is also one of the present inventions, and such a plasma processing apparatus can exert the same action and effect as the above-mentioned plasma source.
  このように構成した本発明によれば、真空容器の外部にアンテナを配置する構成において、スリットが形成されたスリット部材を用いることで、アンテナから真空容器内までの距離を短くし、これによりアンテナから生じた高周波磁場を効率良く真空容器内に供給できるようにするとともに、スリット部材のスリット間が導電されてしまうことを防ぐことができる。 According to the present invention configured in this way, in the configuration in which the antenna is arranged outside the vacuum container, the distance from the antenna to the inside of the vacuum container is shortened by using the slit member in which the slit is formed, thereby shortening the antenna. It is possible to efficiently supply the high-frequency magnetic field generated from the above to the inside of the vacuum vessel, and it is possible to prevent conduction between the slits of the slit member.
一実施形態のプラズマ処理装置の構成を模式的に示す縦断面図。The vertical sectional view which shows typically the structure of the plasma processing apparatus of one Embodiment. 同実施形態のプラズマ処理装置の構成を模式的に示す横断面図。The cross-sectional view which shows typically the structure of the plasma processing apparatus of the same embodiment. 同実施形態におけるスリット部材の構成を模式的に示す断面図。The cross-sectional view which shows typically the structure of the slit member in the same embodiment. 同実施形態におけるスリット部材の構成を模式的に示す平面図。The plan view which shows typically the structure of the slit member in the same embodiment. その他の実施形態におけるスリット部材の構成を模式的に示す断面図。The cross-sectional view which shows typically the structure of the slit member in other embodiment. その他の実施形態におけるスリット部材の構成を模式的に示す断面図。The cross-sectional view which shows typically the structure of the slit member in other embodiment. その他の実施形態におけるスリット部材の構成を模式的に示す断面図。The cross-sectional view which shows typically the structure of the slit member in other embodiment. その他の実施形態におけるスリット部材の構成を模式的に示す断面図。The cross-sectional view which shows typically the structure of the slit member in other embodiment. その他の実施形態におけるシール部材の構成を模式的に示す平面図。The plan view which shows typically the structure of the seal member in other embodiments. 本発明の開発にあたり中間的に検討されたプラズマ処理装置の構成を示す模式図。The schematic diagram which shows the structure of the plasma processing apparatus which was examined intermediately in the development of this invention. 本発明の開発にあたり中間的に検討された構成による課題を示す模式図。The schematic diagram which shows the problem by the structure examined intermediately in the development of this invention.
  以下に、本発明に係るプラズマ源及びプラズマ処理装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the plasma source and the plasma processing apparatus according to the present invention will be described with reference to the drawings.
<装置構成>
  本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。
<Device configuration>
The plasma processing apparatus 100 of the present embodiment processes the substrate W using an inductively coupled plasma P. Here, the substrate W is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like. The treatment applied to the substrate W is, for example, film formation, etching, ashing, sputtering, etc. by the plasma CVD method.
  なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。 The plasma processing apparatus 100 includes a plasma CVD apparatus when forming a film by a plasma CVD method, a plasma etching apparatus when performing etching, a plasma ashing apparatus when performing ashing, and a plasma sputtering apparatus when performing sputtering. Called.
  具体的にプラズマ処理装置100は、図1及び図2に示すように、真空排気され且つガスGが導入される真空容器1と、真空容器1の内部にプラズマを発生させるプラズマ源200とを具備してなり、プラズマ源200は、真空容器1の外部に設けられたアンテナ2と、アンテナ2に高周波を印加する高周波電源3とを備えたものである。かかる構成において、アンテナ2に高周波電源3から高周波を印加することによりアンテナ2には高周波電流IRが流れて、真空容器1内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIGS. 1 and 2, the plasma processing apparatus 100 includes a vacuum vessel 1 that is evacuated and introduced with gas G, and a plasma source 200 that generates plasma inside the vacuum vessel 1. Therefore, the plasma source 200 includes an antenna 2 provided outside the vacuum vessel 1 and a high-frequency power source 3 for applying a high frequency to the antenna 2. In such a configuration, by applying a high frequency from the high frequency power supply 3 to the antenna 2, a high frequency current IR flows through the antenna 2, an inductive electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated.
  真空容器1は、例えば金属製の容器であり、その壁(ここでは上壁1a)には、厚さ方向に貫通する開口1xが形成されている。この真空容器1は、ここでは電気的に接地されており、その内部は真空排気装置4によって真空排気される。 The vacuum container 1 is, for example, a metal container, and an opening 1x penetrating in the thickness direction is formed on the wall (here, the upper wall 1a). The vacuum container 1 is electrically grounded here, and the inside thereof is evacuated by the vacuum exhaust device 4.
  また、真空容器1内には、例えば流量調整器(図示省略)や真空容器1に設けられた1又は複数のガス導入口11を経由して、ガスGが導入される。ガスGは、基板Wに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板に膜形成を行う場合には、ガスGは、原料ガス又はそれを希釈ガス(例えばH)で希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板上に形成することができる。 Further, the gas G is introduced into the vacuum vessel 1 via, for example, a flow rate regulator (not shown) or one or a plurality of gas introduction ports 11 provided in the vacuum vessel 1. The gas G may be set according to the processing content to be applied to the substrate W. For example, when performing film formation on a substrate by plasma CVD, the gas G is a gas diluted with the raw material gas or a dilution gas (e.g., H 2). More specifically, when the raw material gas is SiH 4, a Si film is used, when SiH 4 + NH 3 is used, a SiN film is used, when SiH 4 + O 2 is used, a SiO 2 film is used, and when SiF 4 + N 2 is used, a SiN film is used. : F film (fluoride silicon nitride film) can be formed on the substrate respectively.
  この真空容器1の内部には、基板Wを保持する基板ホルダ5が設けられている。この例のように、基板ホルダ5にバイアス電源6からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のバイアス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ5内に、基板Wを加熱するヒータ51を設けておいても良い。 Inside the vacuum container 1, a substrate holder 5 for holding the substrate W is provided. As in this example, a bias voltage may be applied to the substrate holder 5 from the bias power supply 6. The bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. .. A heater 51 for heating the substrate W may be provided in the substrate holder 5.
  アンテナ2は、図1及び図2に示すように、真空容器1に形成された開口1xに臨むように配置されている。なお、アンテナ2の本数は1本に限らず、複数本のアンテナ2を設けても良い。 As shown in FIGS. 1 and 2, the antenna 2 is arranged so as to face the opening 1x formed in the vacuum container 1. The number of antennas 2 is not limited to one, and a plurality of antennas 2 may be provided.
  アンテナ2は、図2に示すように、その一端部である給電端部2aが、整合回路31を介して高周波電源3が接続されており、他端部である終端部2bが、直接接地されている。なお、終端部2bは、コンデンサ又はコイル等を介して接地されてもよい。 As shown in FIG. 2, the antenna 2 is connected to a high-frequency power supply 3 via a matching circuit 31 at a feeding end 2a, which is one end thereof, and the terminal 2b, which is the other end, is directly grounded. ing. The terminal portion 2b may be grounded via a capacitor, a coil, or the like.
  高周波電源3は、整合回路31を介してアンテナ2に高周波電流IRを流すことができる。高周波の周波数は例えば一般的な13.56MHzであるが、これに限られるものではなく適宜変更してもよい。 The high-frequency power supply 3 can pass a high-frequency current IR through the matching circuit 31 to the antenna 2. The frequency of the high frequency is, for example, 13.56 MHz, which is generally used, but the frequency is not limited to this and may be changed as appropriate.
  ここで、本実施形態のプラズマ源200は、真空容器1の壁(上壁1a)に形成された開口1xを真空容器1の外側から塞ぐスリット部材7と、スリット部材7に形成されたスリット7xを真空容器1の外側から塞ぐ誘電体板8とをさらに備えている。 Here, the plasma source 200 of the present embodiment has a slit member 7 that closes the opening 1x formed in the wall (upper wall 1a) of the vacuum container 1 from the outside of the vacuum container 1 and a slit 7x formed in the slit member 7. Is further provided with a dielectric plate 8 for closing the vacuum container 1 from the outside.
  スリット部材7は、その厚み方向に貫通してなるスリット7xがアンテナ2の長手方向に沿って複数形成されたものであり、アンテナ2から生じた高周波磁場を真空容器1内に透過させるとともに、真空容器1の外部から真空容器1の内部への電界の入り込みを防ぐものである。 The slit member 7 is formed by forming a plurality of slits 7x penetrating in the thickness direction along the longitudinal direction of the antenna 2, and allows a high-frequency magnetic field generated from the antenna 2 to pass through the vacuum vessel 1 and vacuum. This is to prevent an electric field from entering the inside of the vacuum container 1 from the outside of the container 1.
  具体的にこのスリット部材7は、互いに平行な複数のスリット7xが形成された平板状のものであり、後述する誘電体板8よりも機械強度が高いことが好ましく、誘電体板8よりも厚み寸法が大きいことが好ましい。 Specifically, the slit member 7 is a flat plate in which a plurality of slits 7x parallel to each other are formed, and preferably has higher mechanical strength than the dielectric plate 8 described later, and is thicker than the dielectric plate 8. Larger dimensions are preferred.
  より具体的に説明すると、スリット部材7は、例えばCu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W又はCoを含む群から選択される1種の金属又はそれらの合金(例えばステンレス合金、アルミニウム合金等)等の金属材料を圧延加工(例えば冷間圧延や熱間圧延)などにより製造したものであり、例えば厚みが約5mmのものである。ただし、製造方法や厚みはこれに限らず仕様に応じて適宜変更して構わない。 More specifically, the slit member 7 is one type selected from the group containing, for example, Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co. A metal material such as a metal or an alloy thereof (for example, a stainless alloy, an aluminum alloy, etc.) is produced by rolling (for example, cold rolling or hot rolling), and has a thickness of, for example, about 5 mm. However, the manufacturing method and thickness are not limited to this, and may be appropriately changed according to the specifications.
  このスリット部材7は、平面視において真空容器の開口1xよりも大きいものであり、上壁1aに支持された状態で開口1xを塞いでいる。スリット部材7と上壁1aとの間には、Oリングやガスケット等のシール部材S(図1及び図2参照)が介在しており、これらの間は真空シールされている。 The slit member 7 is larger than the opening 1x of the vacuum container in a plan view, and closes the opening 1x while being supported by the upper wall 1a. A sealing member S (see FIGS. 1 and 2) such as an O-ring or a gasket is interposed between the slit member 7 and the upper wall 1a, and a vacuum seal is provided between them.
  誘電体板8は、スリット部材7において真空容器1の外側を向く外向き面71(真空容器1の内部を向く内向き面の裏面)に設けられて、スリット部材7のスリット7xを塞ぐものである。 The dielectric plate 8 is provided on the outward surface 71 (the back surface of the inward surface facing the inside of the vacuum container 1) facing the outside of the vacuum container 1 in the slit member 7, and closes the slit 7x of the slit member 7. be.
  誘電体板8は、全体が誘電体物質で構成された平板状をなすものであり、例えばアルミナ、炭化ケイ素、窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、フッ素樹脂(例えばテフロン)等の樹脂材料等からなる。なお、誘電損を低減する観点から、誘電体板8を構成する材料は、誘電正接が0.01以下のものが好ましく、0.005以下のものがより好ましい。 The dielectric plate 8 has a flat plate shape that is entirely composed of a dielectric material, and is, for example, ceramics such as alumina, silicon carbide, and silicon nitride, inorganic materials such as quartz glass and non-alkali glass, and fluororesin (for example, fluororesin). It is made of a resin material such as Teflon). From the viewpoint of reducing dielectric loss, the material constituting the dielectric plate 8 preferably has a dielectric loss tangent of 0.01 or less, and more preferably 0.005 or less.
  ここでは誘電体板8の板厚をスリット部材7の板厚よりも小さくしているが、これに限定されず、例えば真空容器1を真空排気した状態において、スリット7xから受ける真空容器1の内外の差圧に耐え得る強度を備えれば良く、スリット7xの数や長さ等の仕様に応じて適宜設定されてよい。ただし、アンテナ2と真空容器1との間の距離を短くする観点からは薄い方が好ましい。 Here, the thickness of the dielectric plate 8 is made smaller than the thickness of the slit member 7, but the thickness is not limited to this. For example, when the vacuum container 1 is evacuated, the inside and outside of the vacuum container 1 received from the slit 7x. It suffices to have a strength capable of withstanding the differential pressure of the above, and may be appropriately set according to specifications such as the number and length of the slits 7x. However, it is preferable that the antenna 2 is thin from the viewpoint of shortening the distance between the antenna 2 and the vacuum vessel 1.
  かかる構成により、スリット部材7及び誘電体板8は、磁場を透過させる磁場透過窓9として機能を担う。すなわち、高周波電源3からアンテナ2に高周波を印加すると、アンテナ2から発生した高周波磁場が、スリット部材7及び誘電体板8からなる磁場透過窓9を透過して真空容器1内に形成(供給)される。これにより、真空容器1内の空間に誘導電界が発生し、誘導結合型のプラズマPが生成される。 With this configuration, the slit member 7 and the dielectric plate 8 function as a magnetic field transmission window 9 for transmitting a magnetic field. That is, when a high frequency is applied from the high frequency power source 3 to the antenna 2, the high frequency magnetic field generated from the antenna 2 passes through the magnetic field transmission window 9 composed of the slit member 7 and the dielectric plate 8 and is formed (supplied) in the vacuum vessel 1. Will be done. As a result, an induced electric field is generated in the space inside the vacuum vessel 1, and inductively coupled plasma P is generated.
  然して、上述したスリット部材7には、図3に示すように、上述した外向き面71において互いに隣り合うスリット7xに挟まれた領域を内側に向かって凹ませた凹部72が形成されている。 Therefore, as shown in FIG. 3, the slit member 7 described above is formed with a recess 72 in which a region sandwiched between the slits 7x adjacent to each other on the outward surface 71 described above is recessed inward.
  より具体的に説明すると、スリット部材7は、図4に示すように、例えば矩形状の枠要素73と、この枠要素73の内側にアンテナ2の長手方向に沿って例えば等間隔に設けられた複数の柵状要素74とを有し、これらの柵状要素74の間それぞれがスリット7xとして形成されている。 More specifically, as shown in FIG. 4, the slit members 7 are provided in, for example, a rectangular frame element 73 and inside the frame element 73 at equal intervals, for example, along the longitudinal direction of the antenna 2. It has a plurality of fence-shaped elements 74, and each of these fence-shaped elements 74 is formed as a slit 7x.
  スリット7xは、アンテナ2の長手方向と直交する方向に沿って延びており、凹部72は、スリット7xの延在方向(すなわち、アンテナ2の長手方向と直交する方向)に沿って形成された座ぐりや座掘りや切り欠きなどの窪みである。 The slit 7x extends along a direction orthogonal to the longitudinal direction of the antenna 2, and the recess 72 is a seat formed along the extending direction of the slit 7x (that is, a direction orthogonal to the longitudinal direction of the antenna 2). It is a depression such as a drill, a counterbore, or a notch.
  本実施形態では、図3に示すように、柵状要素74の外向き面71が、誘電体板8に接触して該誘電体板8を支持する接触領域71aと、接触領域71aよりも内側に窪んで誘電体板8とは接触しない非接触領域71bとからなり、この非接触領域71bが、上述した凹部72の底面として形成されている。 In the present embodiment, as shown in FIG. 3, the outward surface 71 of the fence-shaped element 74 contacts the dielectric plate 8 and supports the dielectric plate 8 with a contact region 71a and inside the contact region 71a. It is composed of a non-contact region 71b that is recessed and does not come into contact with the dielectric plate 8, and this non-contact region 71b is formed as the bottom surface of the recess 72 described above.
  すなわち、本実施形態の凹部72は、非接触領域71bと、この非接触領域71bから接触領域71aに延びる内側面71cとに囲まれた断面略四角形状の段差部であり、ここではスリット7xと空間的につながるように形成されている。 That is, the recess 72 of the present embodiment is a stepped portion having a substantially quadrangular cross section surrounded by the non-contact region 71b and the inner side surface 71c extending from the non-contact region 71b to the contact region 71a. It is formed so as to be spatially connected.
  ここでの凹部72は、図3及び図4に示すように、柵状要素74それぞれに設けられており、接触領域71aに対してアンテナ2の長手方向片側に設けられている。すなわち、本実施形態では、アンテナ2の長手方向に沿って、スリット7x、凹部72、及び接触領域71aが繰り返し配列されている。 As shown in FIGS. 3 and 4, the recess 72 here is provided in each of the fence-shaped elements 74, and is provided on one side of the antenna 2 in the longitudinal direction with respect to the contact region 71a. That is, in the present embodiment, the slits 7x, the recesses 72, and the contact area 71a are repeatedly arranged along the longitudinal direction of the antenna 2.
  凹部72の寸法について述べると、ここではアンテナ2の長手方向に沿った寸法が、深さ寸法の3倍以上となるようにしてあり、また、アンテナ2の長手方向と直交する方向に沿った寸法が、同方向に沿ったスリット7xの寸法と同じ或いはそれ以上になるようにしてある。 Regarding the dimensions of the recess 72, here, the dimension along the longitudinal direction of the antenna 2 is set to be three times or more the depth dimension, and the dimension along the direction orthogonal to the longitudinal direction of the antenna 2. However, it is set to be the same as or larger than the dimension of the slit 7x along the same direction.
  ここで、本実施形態のスリット部材7には、図4に示すように、外向き面71におけるスリット7xの延在方向外側の領域を内側に向かって凹ませた第2凹部75が形成されている。 Here, as shown in FIG. 4, the slit member 7 of the present embodiment is formed with a second recess 75 in which the region outside the extending direction of the slit 7x on the outward surface 71 is recessed inward. There is.
  より具体的に説明すると、この第2凹部75は、スリット7xの延在方向と直交する方向(すなわち、アンテナ2の長手方向)に沿って枠要素73の外向き面71に形成された座ぐりや座掘りや切り欠きなどの窪みである。 More specifically, the second recess 75 is a counterbore formed on the outward surface 71 of the frame element 73 along a direction orthogonal to the extending direction of the slit 7x (that is, the longitudinal direction of the antenna 2). It is a depression such as a counterbore or a notch.
  この第2凹部75は、ここでは上述した凹部72と一体的(連続的)に形成されており、凹部72と同じ深さ寸法であって、それぞれのスリット7xに対応して設けられている。 The second recess 75 is formed integrally (continuously) with the recess 72 described above, has the same depth dimension as the recess 72, and is provided corresponding to each slit 7x.
  本実施形態では、スリット7xの延在方向一端部の外側及び延在方向他端部の外側それぞれに第2凹部75が形成されており、かかる構成により、スリット7xの3辺、すなわちスリット7xの一方の長辺及び対向する一対の短辺が、凹部72及び一対の第2凹部75により囲われている。 In the present embodiment, the second recess 75 is formed on the outside of one end in the extending direction and the outside of the other end in the extending direction of the slit 7x. One long side and a pair of opposite short sides are surrounded by a recess 72 and a pair of second recesses 75.
<本実施形態の効果>
  このように構成した本実施形態のプラズマ処理装置100及びプラズマ源200によれば、スリット部材7の外向き面71において互いに隣り合うスリット7xに挟まれた領域を内側に向かって凹ませた凹部72を形成しているので、誘電体板8に導電性の付着物が堆積したとしても、この凹部72がスリット部材7に流れるアンテナの長手方向に沿った高周波電流を少なくとも抑制することができる。
  これにより、真空容器1の外部にアンテナ2を配置する構成において、スリット部材7を用いることで、アンテナ2から真空容器1内までの距離を短くし、これによりアンテナ2から生じた高周波磁場を効率良く真空容器1内に供給できるようにするとともに、誘電体板8への堆積物に起因した高周波電流がスリット部材7に流れることを抑制することができる。
<Effect of this embodiment>
According to the plasma processing apparatus 100 and the plasma source 200 of the present embodiment configured in this way, the recess 72 in which the region sandwiched between the slits 7x adjacent to each other on the outward surface 71 of the slit member 7 is recessed inward. Therefore, even if conductive deposits are deposited on the dielectric plate 8, the recess 72 can at least suppress a high-frequency current along the longitudinal direction of the antenna flowing through the slit member 7.
As a result, in the configuration in which the antenna 2 is arranged outside the vacuum container 1, the distance from the antenna 2 to the inside of the vacuum container 1 is shortened by using the slit member 7, and the high frequency magnetic field generated from the antenna 2 is efficiently utilized. It is possible to supply the vacuum container 1 well and suppress the high frequency current due to the deposit on the dielectric plate 8 from flowing to the slit member 7.
  また、アンテナ2の長手方向に沿った凹部72の寸法が、当該凹部72の深さ寸法の3倍以上であるので、誘電体板8に導電性の付着物が堆積したとしても、その堆積物が凹部72を形成する内側面71cに接触せず、堆積物に起因した高周波電流の発生を遮断することができる。 Further, since the dimension of the recess 72 along the longitudinal direction of the antenna 2 is three times or more the depth dimension of the recess 72, even if conductive deposits are deposited on the dielectric plate 8, the deposits are deposited. Does not come into contact with the inner surface 71c forming the recess 72, and the generation of high-frequency current due to the deposit can be blocked.
  さらに、第2凹部75が外向き面71におけるスリット7xの延在方向外側に形成されているので、スリット7xの延在方向外側の領域に高周波電流が流れることをも抑制することができる。これにより、アンテナ2から生じた高周波磁場に対するシールド作用を低減することができ、高周波磁場をより効率良く真空容器1内に供給することができる。 Further, since the second recess 75 is formed on the outward surface 71 outside the extending direction of the slit 7x, it is possible to suppress the flow of high-frequency current to the region outside the extending direction of the slit 7x. As a result, the shielding action against the high frequency magnetic field generated from the antenna 2 can be reduced, and the high frequency magnetic field can be more efficiently supplied into the vacuum vessel 1.
<その他の変形実施形態>
  なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
  例えば、前記実施形態では、凹部72が接触領域71aに対してアンテナの長手方向片側に設けられていたが、凹部72は、図5に示すように、接触領域71aに対してアンテナ2の長手方方向両側に設けられていても良い。 For example, in the above embodiment, the recess 72 is provided on one side of the antenna in the longitudinal direction with respect to the contact region 71a, but the recess 72 is the longitudinal direction of the antenna 2 with respect to the contact region 71a as shown in FIG. It may be provided on both sides of the direction.
  また、前記実施形態の凹部72は、スリット7xと空間的につながっていたが、図6に示すように、凹部72に対してアンテナ2の長手方向両側に接触領域71aを形成して、凹部72をスリット7xから空間的に隔てても良い。 Further, the recess 72 of the above embodiment is spatially connected to the slit 7x, but as shown in FIG. 6, contact regions 71a are formed on both sides of the antenna 2 in the longitudinal direction with respect to the recess 72, and the recess 72 is formed. May be spatially separated from the slit 7x.
  さらに、前記実施形態の凹部72は、非接触領域71bと内側面71cとに囲まれた断面略四角形状の段差部であったが、図7に示すように、非接触領域71bは傾斜していても良く、この場合の凹部72は断面略三角形状のものとなる。また、非接触領域71bは例えば曲面であっても良いし、凹部72の形状も種々変更して構わない。 Further, the recess 72 of the embodiment is a stepped portion having a substantially quadrangular cross section surrounded by the non-contact region 71b and the inner side surface 71c, but as shown in FIG. 7, the non-contact region 71b is inclined. The recess 72 in this case may have a substantially triangular cross section. Further, the non-contact region 71b may be a curved surface, for example, and the shape of the recess 72 may be variously changed.
  加えて、前記実施形態では平板状のスリット部材7の外側に誘電体板8が設けられていたが、スリット部材7としては、図8に示すように、複数のスリット7xが形成されたスリット板7Aと、このスリット板7Aと誘電体板8との間に設けられたシール部材7Bとから構成されていても良い。 In addition, in the above-described embodiment, the dielectric plate 8 is provided on the outside of the flat plate-shaped slit member 7, but as the slit member 7, as shown in FIG. 8, a slit plate in which a plurality of slits 7x are formed is formed. It may be composed of 7A and a seal member 7B provided between the slit plate 7A and the dielectric plate 8.
  より具体的に説明すると、このシール部材7Bは例えば単体のシート状のものであり、同図8に示すように、スリット板7Aにおける少なくとも1つのスリット7xとその周囲とに重なり合う開口7yが複数形成されたものである。ここでの開口7yは、1つのスリット7xよりも開口面積が大きく、1つのスリット7xとともに、該スリット7xの一方の長辺の外側と、互いに対向する一対の短辺それぞれの外側とに重なり合うように形成されている。
  かかる構成において、スリット7xと開口7yとの重なりにより生じる段差が凹部72として形成されている。
More specifically, the sealing member 7B is, for example, a single sheet, and as shown in FIG. 8, at least one slit 7x in the slit plate 7A and a plurality of overlapping openings 7y are formed around the slit 7x. It was done. The opening 7y here has a larger opening area than one slit 7x, and together with the one slit 7x, overlaps the outside of one long side of the slit 7x and the outside of each of a pair of short sides facing each other. Is formed in.
In such a configuration, a step generated by the overlap of the slit 7x and the opening 7y is formed as the recess 72.
  また、上述したシール部材7Bは単体のシート状のものとして説明したが、図9に示すように、枠体7B1と、枠体7B1内に設けられて上述した開口7yを形成する柵体7B2とから構成されていても良い。 Further, although the above-mentioned seal member 7B has been described as a single sheet, as shown in FIG. 9, the frame body 7B1 and the fence body 7B2 provided in the frame body 7B1 and forming the above-mentioned opening 7y It may be composed of.
  このようにシール部材7Bを用いてスリット部材7を構成することにより、スリット部材7と誘電体板8との間の気密性を担保しつつ、凹部72を形成することができる。 By constructing the slit member 7 using the seal member 7B in this way, the recess 72 can be formed while ensuring the airtightness between the slit member 7 and the dielectric plate 8.
  その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
100・・・プラズマ処理装置
W    ・・・基板
P    ・・・誘導結合プラズマ
2    ・・・真空容器
3    ・・・アンテナ
7    ・・・スリット部材
7x  ・・・スリット
71  ・・・外向き面
71a・・・接触領域
71b・・・非接触領域
71c・・・内側面
72  ・・・凹部
73  ・・・枠要素
74  ・・・柵状要素
75  ・・・第2凹部
8    ・・・誘電体板
9    ・・・磁場透過窓
100 ・ ・ ・ Plasma processing device W ・ ・ ・ Substrate P ・ ・ ・ Inductively coupled plasma 2 ・ ・ ・ Vacuum container 3 ・ ・ ・ Antenna 7 ・ ・ ・ Slit member 7x ・ ・ ・ Slit 71 ・ ・ ・ Outward surface 71a ・・ ・ Contact area 71b ・ ・ ・ Non-contact area 71c ・ ・ ・ Inner side surface 72 ・ ・ ・ Recessed 73 ・ ・ ・ Frame element 74 ・ ・ ・ Fence-shaped element 75 ・ ・ ・ Second recess 8 ・ ・ ・ Dielectric plate 9・ ・ ・ Magnetic field transmission window

Claims (7)

  1.   真空容器の外部に設けられたアンテナに高周波電流を流して前記真空容器内にプラズマを発生させるプラズマ源であって、
      前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐとともに、前記アンテナの長手方向に沿って複数のスリットが形成されたスリット部材と、
      前記スリットを前記真空容器の外側から塞ぐ誘電体板とを具備し、
      前記スリット部材には、外側を向く外向き面において互いに隣り合う前記スリットに挟まれた領域を内側に向かって凹ませた凹部が形成されている、プラズマ源。
    A plasma source that generates plasma in the vacuum vessel by passing a high-frequency current through an antenna provided outside the vacuum vessel.
    A slit member in which a plurality of slits are formed along the longitudinal direction of the antenna while closing an opening formed in the vacuum container at a position facing the antenna.
    A dielectric plate that closes the slit from the outside of the vacuum vessel is provided.
    A plasma source in which the slit member is formed with a recess in which a region sandwiched between the slits adjacent to each other on an outward facing surface is recessed inward.
  2.   前記凹部が、前記スリットと空間的につながっている請求項1記載のプラズマ源。 The plasma source according to claim 1, wherein the recess is spatially connected to the slit.
  3.   前記凹部の前記長手方向に沿った寸法が、当該凹部の深さ寸法の3倍以上である、請求項2記載のプラズマ源。 The plasma source according to claim 2, wherein the dimension of the recess along the longitudinal direction is three times or more the depth dimension of the recess.
  4.   前記スリットが、前記アンテナの長手方向と直交する方向に延びており、
      前記凹部が、前記スリットの延在方向に沿って形成されている、請求項1乃至3のうち何れか一項に記載のプラズマ源。
    The slit extends in a direction orthogonal to the longitudinal direction of the antenna.
    The plasma source according to any one of claims 1 to 3, wherein the recess is formed along the extending direction of the slit.
  5.   前記スリット部材には、前記外向き面における前記スリットの延在方向外側の領域を内側に向かって凹ませた第2凹部が形成されている、請求項4記載のプラズマ源。 The plasma source according to claim 4, wherein the slit member is formed with a second recess in which a region outside the extending direction of the slit on the outward surface is recessed inward.
  6.   前記スリット部材が、
      前記複数のスリットが前記アンテナの長手方向に沿って形成されたスリット板と、
      前記スリット板と前記誘電体板との間に介在し、前記スリット板における少なくとも1つの前記スリットとその周囲とに重なり合う開口が複数形成されたシール部材とを有し、
      前記スリット及び前記開口との重なりにより生じる段差が前記凹部として形成されている、請求項1乃至5のうち何れか一項に記載のプラズマ源。
    The slit member
    A slit plate in which the plurality of slits are formed along the longitudinal direction of the antenna,
    It has a sealing member that is interposed between the slit plate and the dielectric plate and has a plurality of openings that overlap with at least one slit in the slit plate and its periphery.
    The plasma source according to any one of claims 1 to 5, wherein a step generated by overlapping the slit and the opening is formed as the recess.
  7.   前記真空容器と、
      請求項1乃至6のうち何れか一項に記載のプラズマ源とを備える、プラズマ処理装置。
    With the vacuum container
    A plasma processing apparatus comprising the plasma source according to any one of claims 1 to 6.
PCT/JP2021/015341 2020-04-13 2021-04-13 Plasma source and plasma processing apparatus WO2021210583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020071545A JP7469625B2 (en) 2020-04-13 2020-04-13 Plasma source and plasma processing device
JP2020-071545 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021210583A1 true WO2021210583A1 (en) 2021-10-21

Family

ID=78079805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015341 WO2021210583A1 (en) 2020-04-13 2021-04-13 Plasma source and plasma processing apparatus

Country Status (2)

Country Link
JP (1) JP7469625B2 (en)
WO (1) WO2021210583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101024A1 (en) * 2022-11-07 2024-05-16 日新電機株式会社 Plasma processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023104093A (en) * 2022-01-17 2023-07-28 日新電機株式会社 Plasma processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254188A (en) * 2000-03-10 2001-09-18 Samco International Inc Inductively coupled plasma treatment apparatus
JP2013129897A (en) * 2011-12-22 2013-07-04 Samco Inc Mask member of inductive coupling type plasma processing apparatus
US20140097752A1 (en) * 2012-10-09 2014-04-10 Varian Semiconductor Equipment Associates, Inc. Inductively Coupled Plasma ION Source Chamber with Dopant Material Shield
JP2016143616A (en) * 2015-02-04 2016-08-08 パナソニックIpマネジメント株式会社 Plasma processing apparatus
JP2020004534A (en) * 2018-06-26 2020-01-09 東京エレクトロン株式会社 Plasma processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254188A (en) * 2000-03-10 2001-09-18 Samco International Inc Inductively coupled plasma treatment apparatus
JP2013129897A (en) * 2011-12-22 2013-07-04 Samco Inc Mask member of inductive coupling type plasma processing apparatus
US20140097752A1 (en) * 2012-10-09 2014-04-10 Varian Semiconductor Equipment Associates, Inc. Inductively Coupled Plasma ION Source Chamber with Dopant Material Shield
JP2016143616A (en) * 2015-02-04 2016-08-08 パナソニックIpマネジメント株式会社 Plasma processing apparatus
JP2020004534A (en) * 2018-06-26 2020-01-09 東京エレクトロン株式会社 Plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101024A1 (en) * 2022-11-07 2024-05-16 日新電機株式会社 Plasma processing device

Also Published As

Publication number Publication date
JP7469625B2 (en) 2024-04-17
JP2021168276A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2021210583A1 (en) Plasma source and plasma processing apparatus
US5211825A (en) Plasma processing apparatus and the method of the same
JP3940095B2 (en) Substrate processing equipment
JP7232410B2 (en) Plasma processing equipment
TW201724326A (en) Plate element, wafer boat and plasma processing apparatus
US7485204B2 (en) ECR plasma source and ECR plasma device
JP7238613B2 (en) Plasma processing equipment
WO2020246523A1 (en) Plasma processing apparatus
WO2023136008A1 (en) Plasma treatment device
CN112017938A (en) Dovetail groove processing method and substrate processing apparatus
JP7303980B2 (en) Plasma processing equipment
KR20080029844A (en) Microwave plasma processing apparatus, integral slot forming member, method of manufacturing and using a microwave plasma processing apparatus
JP4575998B2 (en) Thin film forming apparatus and thin film forming method
JP7403052B2 (en) Plasma source and plasma processing equipment
TWI523972B (en) Plasma processing apparatus and method
JP7440746B2 (en) Plasma source and plasma processing equipment
KR101020075B1 (en) Inductively coupled plasma reactor
JP7398630B2 (en) plasma processing equipment
JP2023001990A (en) Plasma source and plasma processing device
TWI806253B (en) Plasma treatment device
WO2024101024A1 (en) Plasma processing device
CN115053398B (en) Antenna mechanism and plasma processing apparatus
WO2023013383A1 (en) Plasma treatment device
TWI842027B (en) Plasma treatment equipment
WO2023013438A1 (en) Plasma treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788361

Country of ref document: EP

Kind code of ref document: A1