WO2023013383A1 - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
WO2023013383A1
WO2023013383A1 PCT/JP2022/027816 JP2022027816W WO2023013383A1 WO 2023013383 A1 WO2023013383 A1 WO 2023013383A1 JP 2022027816 W JP2022027816 W JP 2022027816W WO 2023013383 A1 WO2023013383 A1 WO 2023013383A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
magnetic field
processing apparatus
plasma processing
antenna
Prior art date
Application number
PCT/JP2022/027816
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松尾
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to KR1020237032216A priority Critical patent/KR20230147694A/en
Priority to CN202280022236.8A priority patent/CN116998226A/en
Publication of WO2023013383A1 publication Critical patent/WO2023013383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma processing apparatus.
  • Patent Document 1 discloses a metal plate having slits formed thereon, a dielectric plate supported in contact with the metal plate and closing the slits, and a high-frequency magnetic field provided outside the processing chamber so as to face the metal plate.
  • a plasma processing apparatus is disclosed that includes an antenna that produces a .
  • the plasma processing apparatus disclosed in Patent Document 1 can efficiently supply a high-frequency magnetic field generated from an antenna to a processing chamber.
  • Patent Document 1 has a problem that an electrostatically coupled plasma component is generated inside the processing chamber.
  • An object of one aspect of the present invention is to generate plasma in which electrostatic coupling components are suppressed inside a vacuum vessel.
  • a plasma processing apparatus includes a vacuum vessel that accommodates an object to be processed inside; an antenna that is provided outside the vacuum vessel and generates a high-frequency magnetic field; a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel, wherein the magnetic field introduction windows are provided in a plurality of and a dielectric plate on which a metal layer is formed so as to overlap the metal plate so as to cover the plurality of slits, and the metal layer is maintained at a predetermined potential.
  • high-density plasma can be generated inside the vacuum vessel.
  • FIG. 1 It is a cross-sectional view showing a cross-sectional structure near a metal layer formed on a dielectric plate of a magnetic field introduction window provided in the plasma processing apparatus shown in FIG. 1;
  • FIG. 2 It is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus according to Embodiment 2 of the present invention.
  • FIG. 1 is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present invention.
  • the direction in which the antenna 7 extends is the X-axis direction
  • the direction from the vacuum vessel 2 to the antenna 7 is the Z-axis direction
  • the direction orthogonal to both the X-axis direction and the Z-axis direction is the Y-axis direction.
  • the plasma processing apparatus 1 performs plasma processing on an object to be processed W1 such as a substrate using an inductively coupled plasma P1.
  • the substrate is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, or a flexible substrate for a flexible display.
  • the workpiece W1 may be a semiconductor substrate used for various purposes.
  • the object W1 to be processed is not limited to a substrate-like form, such as a tool.
  • the processing applied to the workpiece W1 is, for example, film formation by plasma CVD (Chemical Vapor Deposition) or sputtering, etching by plasma, ashing, coating film removal, and the like.
  • the plasma processing apparatus 1 includes a vacuum vessel 2 , a magnetic field introduction window 3 , an antenna 7 , a high frequency power source 8 and a holding section 9 .
  • a processing chamber 21 evacuated and into which gas is introduced is formed inside the vacuum container 2 .
  • the vacuum vessel 2 is, for example, a metal vessel.
  • a wall surface 22 of the vacuum container 2 is formed with an opening 23 penetrating in the thickness direction.
  • the vacuum vessel 2 is electrically grounded.
  • the gas introduced into the processing chamber 21 may be selected according to the content of processing to be performed on the workpiece W1 accommodated in the processing chamber 21 .
  • the gas is a source gas or a gas diluted with a diluent gas such as H2 . More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film. : An F film (fluorinated silicon nitride film) can be formed on the workpiece W1.
  • the magnetic field introduction window 3 has a metal plate 4 and a dielectric plate 5 .
  • the magnetic field introduction window 3 introduces a high frequency magnetic field generated from the antenna 7 into the processing chamber 21 in order to generate plasma in the processing chamber 21 .
  • a metal plate 4 and a dielectric plate 5 are arranged in order in the Z-axis direction.
  • the metal plate 4 is provided on the wall surface 22 of the vacuum vessel 2 so as to close the opening 23 .
  • a plurality of slits 41 are formed in the metal plate 4 so as to penetrate the metal plate 4 in the Z-axis direction.
  • the multiple slits 41 extend in the Y-axis direction and are arranged in the X-axis direction.
  • the metal plate 4 is arranged so as to be substantially parallel to the surface of the workpiece W1.
  • the dielectric plate 5 is provided in contact with the metal plate 4 from the outside of the vacuum vessel 2 so as to cover the plurality of slits 41 and overlaps the metal plate 4 . Moreover, the dielectric plate 5 is provided on the surface of the metal plate 4 on the antenna 7 side so as to block the plurality of slits 41 from the outside of the vacuum vessel 2 . As a result, the dielectric plate 5 is supported by the metal plate 4, so that deformation of the dielectric plate 5 is suppressed and the strength of the dielectric plate 5 can be substantially improved.
  • the entire dielectric plate 5 is composed of a dielectric material, and the dielectric plate 5 has a flat plate shape.
  • Materials constituting the dielectric plate 5 are ceramics such as alumina, silicon carbide or silicon nitride, inorganic materials such as quartz glass and alkali-free glass, or resin materials such as fluorine resin such as Teflon (registered trademark).
  • a high-frequency magnetic field generated from the antenna 7 passes through the dielectric plate 5, the metal layer 6, and the plurality of slits 41 and is supplied to the processing chamber 21.
  • Metal layer 6 will be described later.
  • the vacuum inside the processing chamber 21 is maintained by the metal plate 4 that closes the opening 23 and the dielectric plate 5 that closes the plurality of slits 41 .
  • the metal layer 6 is formed on the surface of the dielectric plate 5 on the antenna 7 side. That is, the metal layer 6 is formed on the surface of the dielectric plate 5 opposite to the side in contact with the metal plate 4 . Metal layer 6 is formed over the entire surface of dielectric plate 5 . However, the metal layer 6 only needs to be formed on the surface of the dielectric plate 5 so as to cover all of the plurality of slits 41, and is formed on the surface of the dielectric plate 5 except for a part of the surface. good too. Moreover, the dielectric plate 5 is provided in a range except for a part of the surface of the metal plate 4 on the antenna 7 side so as to cover all of the plurality of slits 41 . Thereby, the sizes of the dielectric plate 5 and the metal layer 6 can be reduced, and the manufacturing cost of the plasma processing apparatus 1 can be reduced.
  • the metal layer 6 is maintained at a predetermined potential.
  • the dielectric plate 5 formed with the metal layer 6 maintained at a predetermined potential overlaps the metal plate 4 so as to cover the plurality of slits 41, so that the electric field from the antenna 7 toward the processing chamber 21 is generated by the metal layer. 6 can be blocked. Therefore, electrostatic coupling between the plasma generated in the processing chamber 21 and the antenna 7 can be suppressed.
  • the electric field generated from the antenna 7 can be blocked by the metal layer 6 regardless of the size of the slit 41 formed in the metal plate 4 .
  • the size of the slit 41 is large, it is possible to prevent the electric field generated from the antenna 7 from entering the processing chamber 21 . Therefore, a sufficiently large slit 41 can be formed in the metal plate 4, the high-frequency magnetic field generated by the antenna 7 can be efficiently supplied to the processing chamber 21 through the slit 41, and plasma generation efficiency can be improved. can.
  • the metal plate 4 transmits the high-frequency magnetic field generated by the antenna 7 into the processing chamber 21 and reduces the entry of an electric field from the outside of the processing chamber 21 into the processing chamber 21 .
  • the metal layer 6 is not formed on the dielectric plate 5, the electric field generated from the antenna 7 passes through the dielectric plate 5 and the plurality of slits 41, and the plasma generated in the processing chamber 21 and the antenna 7 An electrostatic coupling occurs between them. In other words, if the metal layer 6 is not formed on the dielectric plate 5, the electrostatic coupling cannot be sufficiently suppressed.
  • the metal layer 6 is maintained at a predetermined potential, for example, by being electrically grounded by being connected to the ground G1.
  • the metal layer 6 is electrically grounded, the electric field from the antenna 7 to the processing chamber 21 can be efficiently blocked by the metal layer 6 .
  • the electrostatic coupling E1 is formed between the metal layer 6 and the antenna as shown in FIG. occurs between 7 and Thereby, it is possible to suppress the occurrence of electrostatic coupling between the plasma generated in the processing chamber 21 and the antenna 7 .
  • the metal layer 6 is formed on the surface of the dielectric plate 5, the effect of shielding the electric field from the antenna 7 toward the processing chamber 21 can be made uniform.
  • the metal layer 6 is formed in the form of a film on the surface of the dielectric plate 5 by a vacuum deposition method or a plating method. As a result, the metal layer 6 is uniformly formed on the surface of the dielectric plate 5, so that the effect of shielding the electric field from the antenna 7 toward the processing chamber 21 can be made more uniform.
  • a material other than metal such as an oxide-based transparent conductive film, may be used.
  • the combination of the transparent conductive film and the dielectric plate 5 made of glass makes it possible to check the plasma emission distribution from the antenna 7 side, and to check the plasma density distribution or the progress of plasma processing. For example, the progress of etching can be checked.
  • the thickness T1 of the metal layer 6 is the thickness along the Z-axis direction.
  • the skin depth d is determined by the frequency of the high-frequency power applied to the antenna 7 as well as the material of the metal layer 6, that is, the type of metal.
  • the skin depth d is as shown in the following formula (1).
  • is the electrical resistivity of the conductor of the metal layer 6
  • f is the frequency of the current flowing through the antenna 7;
  • is the magnetic permeability of the metal layer 6 .
  • the relationship between the frequency f and the skin depth d is as follows.
  • the skin depth d is 8.57 mm
  • the skin depth d is 0.66 mm
  • the skin depth is 21 ⁇ m.
  • the skin depth d is the thickness at which the magnetic field penetrates the conductor and the magnetic field strength decreases to 1/e (about 0.37).
  • a high-frequency magnetic field generated by the antenna 7 can penetrate the metal layer 6 .
  • e is the base of the natural logarithm, or Napier's number, and has a value of approximately 2.71828. Since the metal layer 6 does not suppress the inductive coupling between the plasma generated in the processing chamber 21 and the antenna 7, the density of the plasma generated in the processing chamber 21 can be kept high.
  • the thickness T1 of the metal layer 6 is preferably 1 ⁇ m or more regardless of the frequency f.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure near the metal layer 6 formed on the dielectric plate 5 of the magnetic field introduction window 3 provided in the plasma processing apparatus 1 shown in FIG.
  • the metal layer 6 may be supported by a resin sheet 60.
  • resin sheet 60 is attached to the surface of dielectric plate 5 .
  • a conductive sheet is composed of the metal layer 6 and the resin sheet 60 .
  • the resin sheet 60 has resin layers 61 and 62 , and the metal layer 6 is sandwiched between the resin layers 61 and 62 . Since a sufficiently large metal layer 6 can be easily formed on the dielectric plate 5 by using the resin sheet 60 supporting the metal layer 6, the dielectric plate 5 having the sufficiently large metal layer 6 is manufactured. be able to. As a result, the number of dielectric plates 5 to be used can be reduced, and the manufacturing efficiency of the magnetic field introducing window 3 can be improved.
  • the dielectric loss tangent tan ⁇ of the resin sheet 60 supporting the metal layer 6 with respect to the frequency of the high-frequency power applied to the antenna 7 is 0.005 or less.
  • the resin sheet 60 is heated by the high-frequency power. Therefore, if a material having a dielectric loss tangent tan ⁇ of 0.005 or less is used for the resin sheet 60, excessive heat generation of the resin sheet 60 can be suppressed.
  • a polyimide sheet may be used as the resin sheet 60 .
  • the resin sheet 60 is attached to the surface of the dielectric plate 5 with the metal layer 6 supported on the resin sheet 60 , the resin layer 61 faces the antenna 7 and the resin layer 62 contacts the dielectric plate 5 . .
  • the antenna 7 has a linear shape, is provided in plurality outside the vacuum vessel 2 , and is arranged so as to face the magnetic field introduction window 3 . Each antenna 7 is arranged so as to be substantially parallel to the surface of the workpiece W1.
  • the antenna 7 generates a high frequency magnetic field when high frequency power is applied from the high frequency power supply 8 . As a result, an induced electric field is generated in the space inside the processing chamber 21, and an inductively coupled plasma P1 is generated in that space.
  • the holding unit 9 is a stage that is accommodated in the processing chamber 21 and holds the workpiece W1.
  • FIG. 3 is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus 1A according to Embodiment 2 of the present invention.
  • the plasma processing apparatus 1A differs from the plasma processing apparatus 1 according to Embodiment 1 in that the magnetic field introduction window 3 is changed to a magnetic field introduction window 3A.
  • the magnetic field introduction window 3A of the second embodiment differs from the magnetic field introduction window 3 in the location where the metal layer 6 is formed with respect to the dielectric plate 5 .
  • the metal layer 6 is formed on the side of the dielectric plate 5 that contacts the metal plate 4 .
  • the dielectric plate 5 faces the antenna 7
  • the metal layer 6 is arranged between the surface of the metal plate 4 on the antenna 7 side and the dielectric plate 5 .
  • the metal layer 6 is arranged facing the vacuum processing chamber 21, so that the metal layer 6 is less susceptible to atmospheric components.
  • the metal layer 6 is equalizing the electric potential between the slits 41 of the metal plate 4 by the metal layer 6, even when charging occurs due to contamination of the slits 41 and the metal layer 6, discharge inside the slits 41 is prevented. and plasma can be stably generated.
  • the metal layer 6 Since the metal layer 6 is formed in contact with the metal plate 4 , the metal layer 6 comes into contact with the gas inside the processing chamber 21 through the slits 41 .
  • oxidizing gases such as O 2 and NO 2 and etching gases such as CF 4 are introduced into the processing chamber 21. It is preferable to avoid using gases containing halogen-based elements such as .
  • a plasma processing apparatus comprises a vacuum vessel containing an object to be processed, an antenna provided outside the vacuum vessel for generating a high-frequency magnetic field, and plasma generated inside the vacuum vessel.
  • a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high-frequency magnetic field into the interior of the vacuum vessel, wherein the magnetic field introduction window is a metal plate in which a plurality of slits are formed. and a dielectric plate on which a metal layer is formed so as to overlap the metal plate so as to cover the plurality of slits, and the metal layer is maintained at a predetermined potential.
  • the metal layer may be electrically grounded.
  • a plasma processing apparatus may be configured such that, in aspect 1 or 2, the metal layer is formed on the surface of the dielectric plate.
  • a plasma processing apparatus is a plasma processing apparatus according to any one of aspects 1 to 3, wherein the metal layer is supported by a resin sheet, and the resin sheet is attached to the dielectric plate. may be
  • the dielectric loss tangent of the resin sheet with respect to the frequency of the high-frequency power applied to the antenna may be 0.001 or less.
  • a plasma processing apparatus is the plasma processing apparatus according to any one of aspects 1 to 5, wherein the thickness of the metal layer is determined by the frequency of the high-frequency power applied to the antenna and the electrical resistivity of the metal layer. and below the skin depth determined by .
  • a plasma processing apparatus is the plasma processing apparatus according to any one of aspects 1 to 6, wherein the metal layer is formed on the side of the dielectric plate opposite to the side in contact with the metal plate. good too.
  • a plasma processing apparatus may be configured such that, in any one of aspects 1 to 6, the metal layer is formed on the side of the dielectric plate that is in contact with the metal plate.
  • Reference Signs List 1 1A, 1B plasma processing apparatus 2 vacuum vessel 3, 3A, 3B magnetic field introduction window 4 metal plate 5 dielectric plate 6 metal layer 7 antenna 21 processing chamber 22 wall surface 41 slit 60 resin sheet P1 plasma tan ⁇ dielectric loss tangent W1 object to be processed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

This plasma treatment device generates plasma with suppressed electrostatic coupling components inside a vacuum container. A plasma treatment device (1) comprises a vacuum container (2), an antenna (7) generating a high-frequency magnetic field, and a magnetic field introduction window (3) introducing the high-frequency magnetic field into the vacuum container (2). The magnetic field introduction window (3) includes a metal plate (4) on which a plurality of slits (41) are formed, and a dielectric plate (5) overlaid on the metal plate (4) to cover the plurality of slits (41) and on which a metal layer (6) is formed, the metal layer (6) being maintained at a predetermined potential.

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus.
 特許文献1には、スリットが形成されている金属板と、金属板に接触して支持され、スリットを塞ぐ誘電体板と、金属板に対向するように処理室の外部に設けられ、高周波磁場を生じさせるアンテナと、を備えるプラズマ処理装置が開示されている。特許文献1に開示のプラズマ処理装置は、アンテナから生じた高周波磁場を処理室に効率良く供給することができる。 Patent Document 1 discloses a metal plate having slits formed thereon, a dielectric plate supported in contact with the metal plate and closing the slits, and a high-frequency magnetic field provided outside the processing chamber so as to face the metal plate. A plasma processing apparatus is disclosed that includes an antenna that produces a . The plasma processing apparatus disclosed in Patent Document 1 can efficiently supply a high-frequency magnetic field generated from an antenna to a processing chamber.
日本国公開特許公報「特開2020-198282号公報」Japanese Patent Publication "JP 2020-198282"
 しかしながら、特許文献1に開示のプラズマ処理装置では、処理室の内部に静電結合性のプラズマ成分が生じるという問題がある。 However, the plasma processing apparatus disclosed in Patent Document 1 has a problem that an electrostatically coupled plasma component is generated inside the processing chamber.
 本発明の一態様は、真空容器の内部に静電結合性成分を抑制したプラズマを生成することを目的とする。 An object of one aspect of the present invention is to generate plasma in which electrostatic coupling components are suppressed inside a vacuum vessel.
 上記の課題を解決するために、本発明の一態様に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成される金属板と、前記複数のスリットを覆うように前記金属板に重なるとともに、金属層が形成される誘電体板と、を有し、前記金属層は、所定の電位に維持される。 In order to solve the above problems, a plasma processing apparatus according to an aspect of the present invention includes a vacuum vessel that accommodates an object to be processed inside; an antenna that is provided outside the vacuum vessel and generates a high-frequency magnetic field; a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel, wherein the magnetic field introduction windows are provided in a plurality of and a dielectric plate on which a metal layer is formed so as to overlap the metal plate so as to cover the plurality of slits, and the metal layer is maintained at a predetermined potential. be done.
 本発明の一態様によれば、真空容器の内部に高密度のプラズマを生成することができる。 According to one aspect of the present invention, high-density plasma can be generated inside the vacuum vessel.
本発明の実施形態1に係るプラズマ処理装置の断面構成を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the cross-sectional structure of the plasma processing apparatus which concerns on Embodiment 1 of this invention. 図1に示すプラズマ処理装置が備える磁場導入窓の誘電体板に形成された金属層付近の断面構成を示す断面図である。2 is a cross-sectional view showing a cross-sectional structure near a metal layer formed on a dielectric plate of a magnetic field introduction window provided in the plasma processing apparatus shown in FIG. 1; FIG. 本発明の実施形態2に係るプラズマ処理装置の断面構成を示す断面図である。It is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus according to Embodiment 2 of the present invention.
 〔実施形態1〕
 <プラズマ処理装置1の構成>
 図1は、本発明の実施形態1に係るプラズマ処理装置1の断面構成を示す断面図である。図1において、アンテナ7が延伸する方向をX軸方向、真空容器2からアンテナ7に向かう方向をZ軸方向、X軸方向及びZ軸方向の両方の方向に直交する方向をY軸方向とする。
[Embodiment 1]
<Configuration of Plasma Processing Apparatus 1>
FIG. 1 is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus 1 according to Embodiment 1 of the present invention. In FIG. 1, the direction in which the antenna 7 extends is the X-axis direction, the direction from the vacuum vessel 2 to the antenna 7 is the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction is the Y-axis direction. .
 図1に示すように、プラズマ処理装置1は、誘導結合型のプラズマP1を用いて基板等の被処理物W1にプラズマ処理を施すものである。ここで基板は、例えば液晶ディスプレイもしくは有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、またはフレキシブルディスプレイ用のフレキシブル基板等である。また、被処理物W1は、各種用途に用いられる半導体基板であり得る。さらに被処理物W1は、例えば工具等のように、基板状の形態には限られない。被処理物W1に施す処理は、例えば、プラズマCVD(Chemical Vapor Deposition)法あるいはスパッタ法による膜形成、プラズマによるエッチング、アッシング、被覆膜除去等である。 As shown in FIG. 1, the plasma processing apparatus 1 performs plasma processing on an object to be processed W1 such as a substrate using an inductively coupled plasma P1. Here, the substrate is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, or a flexible substrate for a flexible display. Moreover, the workpiece W1 may be a semiconductor substrate used for various purposes. Furthermore, the object W1 to be processed is not limited to a substrate-like form, such as a tool. The processing applied to the workpiece W1 is, for example, film formation by plasma CVD (Chemical Vapor Deposition) or sputtering, etching by plasma, ashing, coating film removal, and the like.
 プラズマ処理装置1は、真空容器2と、磁場導入窓3と、アンテナ7と、高周波電源8と、保持部9と、を備える。真空容器2の内部には、真空排気され、かつ、ガスが導入される処理室21が形成される。真空容器2は例えば金属製の容器である。真空容器2の壁面22には、厚さ方向に貫通する開口部23が形成されている。真空容器2は電気的に接地されている。 The plasma processing apparatus 1 includes a vacuum vessel 2 , a magnetic field introduction window 3 , an antenna 7 , a high frequency power source 8 and a holding section 9 . A processing chamber 21 evacuated and into which gas is introduced is formed inside the vacuum container 2 . The vacuum vessel 2 is, for example, a metal vessel. A wall surface 22 of the vacuum container 2 is formed with an opening 23 penetrating in the thickness direction. The vacuum vessel 2 is electrically grounded.
 処理室21に導入されるガスは、処理室21に収容される被処理物W1に施す処理内容に応じたものにすればよい。例えば、プラズマCVD法によって被処理物W1に膜形成を行う場合には、ガスは、原料ガスまたはそれをH等の希釈ガスで希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ被処理物W1上に形成することができる。 The gas introduced into the processing chamber 21 may be selected according to the content of processing to be performed on the workpiece W1 accommodated in the processing chamber 21 . For example, when forming a film on the object W1 to be processed by plasma CVD, the gas is a source gas or a gas diluted with a diluent gas such as H2 . More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film. : An F film (fluorinated silicon nitride film) can be formed on the workpiece W1.
 <磁場導入窓3の構成>
 磁場導入窓3は、金属板4と、誘電体板5と、を有する。磁場導入窓3は、処理室21でプラズマを発生させるために、アンテナ7から生じた高周波磁場を処理室21に導入させる。Z軸方向に向かって、金属板4及び誘電体板5が順に配置される。
<Configuration of Magnetic Field Introduction Window 3>
The magnetic field introduction window 3 has a metal plate 4 and a dielectric plate 5 . The magnetic field introduction window 3 introduces a high frequency magnetic field generated from the antenna 7 into the processing chamber 21 in order to generate plasma in the processing chamber 21 . A metal plate 4 and a dielectric plate 5 are arranged in order in the Z-axis direction.
 金属板4は、開口部23を塞ぐように真空容器2の壁面22に設けられる。金属板4には、金属板4をZ軸方向に貫通する複数のスリット41が形成される。複数のスリット41は、Y軸方向に延伸し、かつ、X軸方向に並ぶ。金属板4は、被処理物W1の表面と実質的に平行になるように配置されている。 The metal plate 4 is provided on the wall surface 22 of the vacuum vessel 2 so as to close the opening 23 . A plurality of slits 41 are formed in the metal plate 4 so as to penetrate the metal plate 4 in the Z-axis direction. The multiple slits 41 extend in the Y-axis direction and are arranged in the X-axis direction. The metal plate 4 is arranged so as to be substantially parallel to the surface of the workpiece W1.
 誘電体板5は、複数のスリット41を覆うように真空容器2の外部側から金属板4に接して設けられるとともに、金属板4に重なる。また、誘電体板5は、複数のスリット41を真空容器2の外部側から塞ぐように、金属板4のアンテナ7側の表面に設けられる。これにより、誘電体板5が金属板4によって支持されることになり、誘電体板5が変形することを抑制し、誘電体板5の強度を実質的に向上することができる。 The dielectric plate 5 is provided in contact with the metal plate 4 from the outside of the vacuum vessel 2 so as to cover the plurality of slits 41 and overlaps the metal plate 4 . Moreover, the dielectric plate 5 is provided on the surface of the metal plate 4 on the antenna 7 side so as to block the plurality of slits 41 from the outside of the vacuum vessel 2 . As a result, the dielectric plate 5 is supported by the metal plate 4, so that deformation of the dielectric plate 5 is suppressed and the strength of the dielectric plate 5 can be substantially improved.
 誘電体板5の全体は、誘電体物質で構成されており、誘電体板5は、平板状を成すものである。誘電体板5を構成する材料は、アルミナ、炭化ケイ素もしくは窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、または、テフロン(登録商標)等のフッ素樹脂のような樹脂材料であってもよい。 The entire dielectric plate 5 is composed of a dielectric material, and the dielectric plate 5 has a flat plate shape. Materials constituting the dielectric plate 5 are ceramics such as alumina, silicon carbide or silicon nitride, inorganic materials such as quartz glass and alkali-free glass, or resin materials such as fluorine resin such as Teflon (registered trademark). may
 アンテナ7から生じた高周波磁場は、誘電体板5、金属層6及び複数のスリット41を透過して処理室21に供給される。金属層6については後述する。なお、開口部23を塞ぐ金属板4と、複数のスリット41を塞ぐ誘電体板5と、によって、処理室21内の真空が保持される。 A high-frequency magnetic field generated from the antenna 7 passes through the dielectric plate 5, the metal layer 6, and the plurality of slits 41 and is supplied to the processing chamber 21. Metal layer 6 will be described later. The vacuum inside the processing chamber 21 is maintained by the metal plate 4 that closes the opening 23 and the dielectric plate 5 that closes the plurality of slits 41 .
 <金属層6の構成>
 金属層6は、誘電体板5のアンテナ7側の表面に形成される。つまり、金属層6は、誘電体板5の金属板4と接する側とは反対側の表面に形成される。金属層6は、誘電体板5の表面全体に亘って形成される。ただし、金属層6は、複数のスリット41の全てを覆うように、誘電体板5の表面に形成されていればよく、誘電体板5の表面のうち一部を除く範囲に形成されていてもよい。また、誘電体板5は、複数のスリット41の全てを覆うように、金属板4のアンテナ7側の表面のうち一部を除く範囲に設けられている。これにより、誘電体板5及び金属層6のサイズを小さくすることができ、プラズマ処理装置1の製造コストを削減することができる。
<Structure of metal layer 6>
The metal layer 6 is formed on the surface of the dielectric plate 5 on the antenna 7 side. That is, the metal layer 6 is formed on the surface of the dielectric plate 5 opposite to the side in contact with the metal plate 4 . Metal layer 6 is formed over the entire surface of dielectric plate 5 . However, the metal layer 6 only needs to be formed on the surface of the dielectric plate 5 so as to cover all of the plurality of slits 41, and is formed on the surface of the dielectric plate 5 except for a part of the surface. good too. Moreover, the dielectric plate 5 is provided in a range except for a part of the surface of the metal plate 4 on the antenna 7 side so as to cover all of the plurality of slits 41 . Thereby, the sizes of the dielectric plate 5 and the metal layer 6 can be reduced, and the manufacturing cost of the plasma processing apparatus 1 can be reduced.
 金属層6は、所定の電位に維持される。これにより、所定の電位に維持される金属層6が形成される誘電体板5が、複数のスリット41を覆うように金属板4に重なるため、アンテナ7から処理室21に向かう電界を金属層6により遮断することができる。よって、処理室21に発生するプラズマとアンテナ7との間に静電結合が生じることを抑制することができる。 The metal layer 6 is maintained at a predetermined potential. As a result, the dielectric plate 5 formed with the metal layer 6 maintained at a predetermined potential overlaps the metal plate 4 so as to cover the plurality of slits 41, so that the electric field from the antenna 7 toward the processing chamber 21 is generated by the metal layer. 6 can be blocked. Therefore, electrostatic coupling between the plasma generated in the processing chamber 21 and the antenna 7 can be suppressed.
 静電結合が生じることを抑制できるため、静電結合性成分を抑制したプラズマを生成することができる。このように、静電結合によるプラズマの発生が抑制され、誘導結合によるプラズマに、静電結合によるプラズマが混成することを抑制できる。よって、静電結合によって発生するプラズマと磁場導入窓3との間の電位勾配による荷電粒子の流れと、その流れによる真空容器2の内壁でのエネルギー損失を軽減でき、処理室21に高密度のプラズマを生成できる。また、当該電位勾配で運動エネルギーを付与される荷電粒子を減少させることができ、被処理物W1の表面への不要なエネルギーの流入が減少し、成膜やエッチング時において被処理物W1の表面の損傷を減少させることが可能となる。 Since it is possible to suppress the occurrence of electrostatic coupling, it is possible to generate plasma with suppressed electrostatic coupling components. Thus, generation of plasma due to electrostatic coupling is suppressed, and mixing of plasma due to inductive coupling and plasma due to electrostatic coupling can be suppressed. Therefore, the flow of charged particles due to the potential gradient between the plasma generated by electrostatic coupling and the magnetic field introduction window 3 and the energy loss due to the flow on the inner wall of the vacuum chamber 2 can be reduced. Can generate plasma. In addition, the charged particles to which kinetic energy is imparted by the potential gradient can be reduced, the influx of unnecessary energy to the surface of the object to be processed W1 is reduced, and the surface of the object to be processed W1 is reduced during film formation or etching. It is possible to reduce the damage of
 また、誘電体板5に金属層6が形成されることにより、金属板4に形成されるスリット41のサイズに関係なく、金属層6によりアンテナ7から生じた電界を遮断することができる。これにより、スリット41のサイズが大きい場合でも、アンテナ7から生じた電界が処理室21に入り込むことを防ぐことができる。このため、金属板4に十分大きいスリット41を形成することができ、アンテナ7から生じた高周波磁場をスリット41から処理室21に効率良く供給することができ、プラズマの生成効率を向上することができる。 Also, by forming the metal layer 6 on the dielectric plate 5 , the electric field generated from the antenna 7 can be blocked by the metal layer 6 regardless of the size of the slit 41 formed in the metal plate 4 . Thereby, even if the size of the slit 41 is large, it is possible to prevent the electric field generated from the antenna 7 from entering the processing chamber 21 . Therefore, a sufficiently large slit 41 can be formed in the metal plate 4, the high-frequency magnetic field generated by the antenna 7 can be efficiently supplied to the processing chamber 21 through the slit 41, and plasma generation efficiency can be improved. can.
 なお、金属板4は、アンテナ7から生じた高周波磁場を処理室21内に透過させるとともに、処理室21の外部から処理室21の内部への電界の入り込みを低減するものである。しかし、金属層6が誘電体板5に形成されていない場合、アンテナ7から生じた電界が誘電体板5及び複数のスリット41を透過して、処理室21に発生するプラズマとアンテナ7との間に静電結合が生じる。つまり、金属層6が誘電体板5に形成されていない場合、当該静電結合を十分に抑制することができない。 The metal plate 4 transmits the high-frequency magnetic field generated by the antenna 7 into the processing chamber 21 and reduces the entry of an electric field from the outside of the processing chamber 21 into the processing chamber 21 . However, if the metal layer 6 is not formed on the dielectric plate 5, the electric field generated from the antenna 7 passes through the dielectric plate 5 and the plurality of slits 41, and the plasma generated in the processing chamber 21 and the antenna 7 An electrostatic coupling occurs between them. In other words, if the metal layer 6 is not formed on the dielectric plate 5, the electrostatic coupling cannot be sufficiently suppressed.
 さらに、金属層6は、例えば、グランドG1と接続されて電気的に接地されることにより、所定の電位に維持される。金属層6が電気的に接地される場合、アンテナ7から処理室21に向かう電界を金属層6により効率良く遮断することができる。 Furthermore, the metal layer 6 is maintained at a predetermined potential, for example, by being electrically grounded by being connected to the ground G1. When the metal layer 6 is electrically grounded, the electric field from the antenna 7 to the processing chamber 21 can be efficiently blocked by the metal layer 6 .
 上述した通り、金属層6が、誘電体板5の金属板4と接する側とは反対側の表面に形成されることにより、図1に示すように、静電結合E1が金属層6とアンテナ7との間に生じる。これにより、処理室21に発生するプラズマとアンテナ7との間に静電結合が生じることを抑制することができる。 As described above, by forming the metal layer 6 on the surface of the dielectric plate 5 opposite to the side in contact with the metal plate 4, the electrostatic coupling E1 is formed between the metal layer 6 and the antenna as shown in FIG. occurs between 7 and Thereby, it is possible to suppress the occurrence of electrostatic coupling between the plasma generated in the processing chamber 21 and the antenna 7 .
 また、金属層6は、誘電体板5の表面に形成されるため、アンテナ7から処理室21に向かう電界に対する遮断効果を均一にすることができる。具体的には、金属層6は、真空蒸着法またはメッキ法により誘電体板5の表面に膜状に形成されている。これにより、金属層6が誘電体板5の表面に一様に形成されるため、アンテナ7から処理室21に向かう電界に対する遮断効果をより均一にすることができる。 Also, since the metal layer 6 is formed on the surface of the dielectric plate 5, the effect of shielding the electric field from the antenna 7 toward the processing chamber 21 can be made uniform. Specifically, the metal layer 6 is formed in the form of a film on the surface of the dielectric plate 5 by a vacuum deposition method or a plating method. As a result, the metal layer 6 is uniformly formed on the surface of the dielectric plate 5, so that the effect of shielding the electric field from the antenna 7 toward the processing chamber 21 can be made more uniform.
 なお、金属層6の代わりに、金属ではない材質のもの、例えば、酸化物系の透明導電膜を用いてもよい。その場合、当該透明導電膜とガラス製の誘電体板5との組み合わせにより、アンテナ7側からプラズマ発光分布の確認が可能になり、プラズマ密度分布またはプラズマ処理の進行状況の確認も可能になる。例えば、エッチングの進行状況を確認することができる。 Instead of the metal layer 6, a material other than metal, such as an oxide-based transparent conductive film, may be used. In this case, the combination of the transparent conductive film and the dielectric plate 5 made of glass makes it possible to check the plasma emission distribution from the antenna 7 side, and to check the plasma density distribution or the progress of plasma processing. For example, the progress of etching can be checked.
 図1に示す金属層6の厚さT1は、高周波電源8によってアンテナ7に印加される高周波電力の周波数と、金属層6の電気抵抗率と、によって定められる表皮深さd以下である。金属層6の厚さT1は、Z軸方向に沿った厚さである。金属層6を薄くすることで、金属層6に流れる誘導電流を低減させることができ、磁場導入窓3における高周波磁場の導入効率を向上することができる。また、より具体的には、表皮深さdは、アンテナ7に印加される高周波電力の周波数に加えて、金属層6の材質、つまり、金属の種類によって定められる。 The thickness T1 of the metal layer 6 shown in FIG. The thickness T1 of the metal layer 6 is the thickness along the Z-axis direction. By making the metal layer 6 thinner, the induced current flowing through the metal layer 6 can be reduced, and the introduction efficiency of the high-frequency magnetic field in the magnetic field introduction window 3 can be improved. More specifically, the skin depth d is determined by the frequency of the high-frequency power applied to the antenna 7 as well as the material of the metal layer 6, that is, the type of metal.
 表皮深さdは、以下の式(1)の通りである。式(1)において、ρは、金属層6の導体の電気抵抗率であり、ωは、アンテナ7に流れる電流の角周波数であり、ω=2πfである。fはアンテナ7に流れる電流の周波数である。μは、金属層6の透磁率である。 The skin depth d is as shown in the following formula (1). In equation (1), ρ is the electrical resistivity of the conductor of the metal layer 6, ω is the angular frequency of the current flowing through the antenna 7, and ω=2πf. f is the frequency of the current flowing through the antenna 7; μ is the magnetic permeability of the metal layer 6 .
Figure JPOXMLDOC01-appb-M000001
 ここで、金属層6の材質が銅である場合、周波数fと表皮深さdとの関係は、以下の通りとなる。例えば、周波数fが60Hzである場合、表皮深さdは、8.57mmとなり、周波数fが10kHzである場合、表皮深さdは、0.66mmとなり、周波数fが10MHzである場合、表皮深さdは、21μmとなる。
Figure JPOXMLDOC01-appb-M000001
Here, when the material of the metal layer 6 is copper, the relationship between the frequency f and the skin depth d is as follows. For example, when the frequency f is 60 Hz, the skin depth d is 8.57 mm, when the frequency f is 10 kHz, the skin depth d is 0.66 mm, and when the frequency f is 10 MHz, the skin depth The thickness d is 21 μm.
 表皮深さdは、磁場が導体に侵入し、1/e(約0.37)に磁場強度が低下する厚さであり、金属層6の厚さT1が表皮深さd以下であれば、アンテナ7から生じた高周波磁場は、金属層6を透過することができる。eは自然対数の底つまりネイピア数であり、約2.71828の値をもつ。これにより、処理室21に発生するプラズマとアンテナ7との間に生じる誘導結合は、金属層6によって抑制されないため、処理室21の内部に生成されるプラズマの密度を高く維持することができる。なお、金属層6が誘電体板5の表面に均一に形成されるために、金属層6の厚さT1は、周波数fに関わらず、1μm以上であることが好ましい。 The skin depth d is the thickness at which the magnetic field penetrates the conductor and the magnetic field strength decreases to 1/e (about 0.37). A high-frequency magnetic field generated by the antenna 7 can penetrate the metal layer 6 . e is the base of the natural logarithm, or Napier's number, and has a value of approximately 2.71828. Since the metal layer 6 does not suppress the inductive coupling between the plasma generated in the processing chamber 21 and the antenna 7, the density of the plasma generated in the processing chamber 21 can be kept high. In order to uniformly form the metal layer 6 on the surface of the dielectric plate 5, the thickness T1 of the metal layer 6 is preferably 1 μm or more regardless of the frequency f.
 <金属層6の断面構成>
 図2は、図1に示すプラズマ処理装置1が備える磁場導入窓3の誘電体板5に形成された金属層6付近の断面構成を示す断面図である。図2に示すように、金属層6は、樹脂シート60に担持されていてもよい。この場合、樹脂シート60は、誘電体板5の表面に貼り付けられる。金属層6及び樹脂シート60によって導電性シートが構成される。
<Cross-sectional configuration of metal layer 6>
FIG. 2 is a cross-sectional view showing a cross-sectional structure near the metal layer 6 formed on the dielectric plate 5 of the magnetic field introduction window 3 provided in the plasma processing apparatus 1 shown in FIG. As shown in FIG. 2, the metal layer 6 may be supported by a resin sheet 60. As shown in FIG. In this case, resin sheet 60 is attached to the surface of dielectric plate 5 . A conductive sheet is composed of the metal layer 6 and the resin sheet 60 .
 具体的には、樹脂シート60は樹脂層61,62を有し、金属層6は、樹脂層61,62の間に挟み込まれている。金属層6が担持された樹脂シート60を用いることにより、誘電体板5に十分に大きい金属層6を容易に形成することができるため、金属層6が十分に大きい誘電体板5を製造することができる。これにより、使用される誘電体板5の枚数を減らすことができ、磁場導入窓3の製造効率を向上することができる。 Specifically, the resin sheet 60 has resin layers 61 and 62 , and the metal layer 6 is sandwiched between the resin layers 61 and 62 . Since a sufficiently large metal layer 6 can be easily formed on the dielectric plate 5 by using the resin sheet 60 supporting the metal layer 6, the dielectric plate 5 having the sufficiently large metal layer 6 is manufactured. be able to. As a result, the number of dielectric plates 5 to be used can be reduced, and the manufacturing efficiency of the magnetic field introducing window 3 can be improved.
 また、アンテナ7に印加される高周波電力の周波数に対する、金属層6が担持された樹脂シート60の誘電正接tanδは、0.005以下である。樹脂シート60を挟んでアンテナ7と磁場導入窓3とが対向する状態では、高周波電力により樹脂シート60が加熱される。そこで、誘電正接tanδが0.005以下の素材を樹脂シート60に用いると、樹脂シート60の過度な発熱を抑制することができる。 Also, the dielectric loss tangent tan δ of the resin sheet 60 supporting the metal layer 6 with respect to the frequency of the high-frequency power applied to the antenna 7 is 0.005 or less. In a state in which the antenna 7 faces the magnetic field introduction window 3 with the resin sheet 60 interposed therebetween, the resin sheet 60 is heated by the high-frequency power. Therefore, if a material having a dielectric loss tangent tan δ of 0.005 or less is used for the resin sheet 60, excessive heat generation of the resin sheet 60 can be suppressed.
 樹脂シート60としては、例えば、ポリイミドシートが用いられてもよい。樹脂シート60に金属層6が担持された状態で、樹脂シート60が誘電体板5の表面に貼り付けられる場合、樹脂層61はアンテナ7と対向し、樹脂層62は誘電体板5と接する。 For example, a polyimide sheet may be used as the resin sheet 60 . When the resin sheet 60 is attached to the surface of the dielectric plate 5 with the metal layer 6 supported on the resin sheet 60 , the resin layer 61 faces the antenna 7 and the resin layer 62 contacts the dielectric plate 5 . .
 アンテナ7は、直線状を成し、真空容器2の外部に複数本設けられており、磁場導入窓3と対向するように配置されている。各アンテナ7は、被処理物W1の表面と実質的に平行になるように配置されている。アンテナ7は、高周波電源8から高周波電力が印加されると、高周波磁場を生じさせる。これにより、処理室21内の空間に誘導電界が発生し、その空間に誘導結合型のプラズマP1が生成される。保持部9は、処理室21内に収容され、被処理物W1を保持するステージである。 The antenna 7 has a linear shape, is provided in plurality outside the vacuum vessel 2 , and is arranged so as to face the magnetic field introduction window 3 . Each antenna 7 is arranged so as to be substantially parallel to the surface of the workpiece W1. The antenna 7 generates a high frequency magnetic field when high frequency power is applied from the high frequency power supply 8 . As a result, an induced electric field is generated in the space inside the processing chamber 21, and an inductively coupled plasma P1 is generated in that space. The holding unit 9 is a stage that is accommodated in the processing chamber 21 and holds the workpiece W1.
 〔実施形態2〕
 本発明の実施形態2について、以下に説明する。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。図3は、本発明の実施形態2に係るプラズマ処理装置1Aの断面構成を示す断面図である。
[Embodiment 2]
A second embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as the members explained in the first embodiment are denoted by the same reference numerals, and the explanation thereof will not be repeated. FIG. 3 is a cross-sectional view showing a cross-sectional configuration of a plasma processing apparatus 1A according to Embodiment 2 of the present invention.
 図3に示すように、プラズマ処理装置1Aは、実施形態1に係るプラズマ処理装置1とは、磁場導入窓3が磁場導入窓3Aに変更されている点が異なる。実施形態2の磁場導入窓3Aは、磁場導入窓3に比べて、誘電体板5に対して金属層6が形成される場所が異なる。具体的には、磁場導入窓3Aでは、金属層6は、誘電体板5の金属板4と接する側に形成されている。この場合、誘電体板5はアンテナ7と対向し、金属層6は、金属板4のアンテナ7側の表面と誘電体板5との間に配置される。 As shown in FIG. 3, the plasma processing apparatus 1A differs from the plasma processing apparatus 1 according to Embodiment 1 in that the magnetic field introduction window 3 is changed to a magnetic field introduction window 3A. The magnetic field introduction window 3A of the second embodiment differs from the magnetic field introduction window 3 in the location where the metal layer 6 is formed with respect to the dielectric plate 5 . Specifically, in the magnetic field introducing window 3</b>A, the metal layer 6 is formed on the side of the dielectric plate 5 that contacts the metal plate 4 . In this case, the dielectric plate 5 faces the antenna 7 , and the metal layer 6 is arranged between the surface of the metal plate 4 on the antenna 7 side and the dielectric plate 5 .
 これにより、真空状態である処理室21に面して金属層6が配置されるため、金属層6は、大気成分による影響を受けにくくなる。また、金属層6により金属板4のスリット41間での電位を同一にすることで、スリット41の部分及び金属層6の汚れによる帯電が生じた場合において、スリット41の内部での放電を防止することができ、プラズマを安定して生成することができる。 As a result, the metal layer 6 is arranged facing the vacuum processing chamber 21, so that the metal layer 6 is less susceptible to atmospheric components. In addition, by equalizing the electric potential between the slits 41 of the metal plate 4 by the metal layer 6, even when charging occurs due to contamination of the slits 41 and the metal layer 6, discharge inside the slits 41 is prevented. and plasma can be stably generated.
 金属層6が金属板4と接するように形成されているため、金属層6がスリット41を介して処理室21内のガスに触れる。金属層6が処理室21内のガスから影響を受けることを回避するため、処理室21に導入されるガスとして、O及びNO等の酸化性ガス、並びに、CF等のエッチング用ガスのようなハロゲン系の元素を含むガスを使用することを避けることが好ましい。 Since the metal layer 6 is formed in contact with the metal plate 4 , the metal layer 6 comes into contact with the gas inside the processing chamber 21 through the slits 41 . In order to prevent the metal layer 6 from being affected by the gas in the processing chamber 21, oxidizing gases such as O 2 and NO 2 and etching gases such as CF 4 are introduced into the processing chamber 21. It is preferable to avoid using gases containing halogen-based elements such as .
 〔まとめ〕
 本発明の態様1に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成される金属板と、前記複数のスリットを覆うように前記金属板に重なるとともに、金属層が形成される誘電体板と、を有し、前記金属層は、所定の電位に維持される構成である。
〔summary〕
A plasma processing apparatus according to aspect 1 of the present invention comprises a vacuum vessel containing an object to be processed, an antenna provided outside the vacuum vessel for generating a high-frequency magnetic field, and plasma generated inside the vacuum vessel. a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high-frequency magnetic field into the interior of the vacuum vessel, wherein the magnetic field introduction window is a metal plate in which a plurality of slits are formed. and a dielectric plate on which a metal layer is formed so as to overlap the metal plate so as to cover the plurality of slits, and the metal layer is maintained at a predetermined potential.
 本発明の態様2に係るプラズマ処理装置は、上記の態様1において、前記金属層は、電気的に接地される構成としてもよい。 In the plasma processing apparatus according to aspect 2 of the present invention, in aspect 1 above, the metal layer may be electrically grounded.
 本発明の態様3に係るプラズマ処理装置は、上記の態様1または2において、前記金属層は、前記誘電体板の表面に形成されている構成としてもよい。 A plasma processing apparatus according to aspect 3 of the present invention may be configured such that, in aspect 1 or 2, the metal layer is formed on the surface of the dielectric plate.
 本発明の態様4に係るプラズマ処理装置は、上記の態様1から3のいずれかにおいて、前記金属層は樹脂シートに担持されており、前記樹脂シートは前記誘電体板に貼り付けられている構成としてもよい。 A plasma processing apparatus according to aspect 4 of the present invention is a plasma processing apparatus according to any one of aspects 1 to 3, wherein the metal layer is supported by a resin sheet, and the resin sheet is attached to the dielectric plate. may be
 本発明の態様5に係るプラズマ処理装置は、上記の態様4において、前記アンテナに印加される高周波電力の周波数に対する、前記樹脂シートの誘電正接は、0.001以下である構成としてもよい。 In the plasma processing apparatus according to aspect 5 of the present invention, in the above aspect 4, the dielectric loss tangent of the resin sheet with respect to the frequency of the high-frequency power applied to the antenna may be 0.001 or less.
 本発明の態様6に係るプラズマ処理装置は、上記の態様1から5のいずれかにおいて、前記金属層の厚さは、前記アンテナに印加される高周波電力の周波数と、前記金属層の電気抵抗率と、によって定められる表皮深さ以下である構成としてもよい。 A plasma processing apparatus according to aspect 6 of the present invention is the plasma processing apparatus according to any one of aspects 1 to 5, wherein the thickness of the metal layer is determined by the frequency of the high-frequency power applied to the antenna and the electrical resistivity of the metal layer. and below the skin depth determined by .
 本発明の態様7に係るプラズマ処理装置は、上記の態様1から6のいずれかにおいて、前記金属層は、前記誘電体板の前記金属板と接する側とは反対側に形成されている構成としてもよい。 A plasma processing apparatus according to aspect 7 of the present invention is the plasma processing apparatus according to any one of aspects 1 to 6, wherein the metal layer is formed on the side of the dielectric plate opposite to the side in contact with the metal plate. good too.
 本発明の態様8に係るプラズマ処理装置は、上記の態様1から6のいずれかにおいて、前記金属層は、前記誘電体板の前記金属板と接する側に形成されている構成としてもよい。 A plasma processing apparatus according to aspect 8 of the present invention may be configured such that, in any one of aspects 1 to 6, the metal layer is formed on the side of the dielectric plate that is in contact with the metal plate.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 1、1A、1B プラズマ処理装置
 2 真空容器
 3、3A、3B 磁場導入窓
 4 金属板
 5 誘電体板
 6 金属層
 7 アンテナ
 21 処理室
 22 壁面
 41 スリット
 60 樹脂シート
 P1 プラズマ
 tanδ 誘電正接
 W1 被処理物
Reference Signs List 1, 1A, 1B plasma processing apparatus 2 vacuum vessel 3, 3A, 3B magnetic field introduction window 4 metal plate 5 dielectric plate 6 metal layer 7 antenna 21 processing chamber 22 wall surface 41 slit 60 resin sheet P1 plasma tan δ dielectric loss tangent W1 object to be processed

Claims (8)

  1.  被処理物を内部に収容する真空容器と、
     前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、
     前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、
     前記磁場導入窓は、
      複数のスリットが形成される金属板と、
      前記複数のスリットを覆うように前記金属板に重なるとともに、金属層が形成される誘電体板と、を有し、
     前記金属層は、所定の電位に維持されることを特徴とするプラズマ処理装置。
    a vacuum vessel containing an object to be processed;
    An antenna that is provided outside the vacuum vessel and that generates a high-frequency magnetic field;
    a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high-frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel;
    The magnetic field introduction window is
    a metal plate in which a plurality of slits are formed;
    a dielectric plate on which a metal layer is formed so as to overlap the metal plate so as to cover the plurality of slits;
    The plasma processing apparatus, wherein the metal layer is maintained at a predetermined potential.
  2.  前記金属層は、電気的に接地されることを特徴とする請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the metal layer is electrically grounded.
  3.  前記金属層は、前記誘電体板の表面に形成されていることを特徴とする請求項1または2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 1, wherein the metal layer is formed on the surface of the dielectric plate.
  4.  前記金属層は樹脂シートに担持されており、前記樹脂シートは前記誘電体板に貼り付けられていることを特徴とする請求項1から3のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3, wherein the metal layer is carried on a resin sheet, and the resin sheet is attached to the dielectric plate.
  5.  前記アンテナに印加される高周波電力の周波数に対する、前記樹脂シートの誘電正接は、0.001以下であることを特徴とする請求項4に記載のプラズマ処理装置。 5. The plasma processing apparatus according to claim 4, wherein the dielectric loss tangent of the resin sheet to the frequency of the high-frequency power applied to the antenna is 0.001 or less.
  6.  前記金属層の厚さは、前記アンテナに印加される高周波電力の周波数と、前記金属層の電気抵抗率と、によって定められる表皮深さ以下であることを特徴とする請求項1から5のいずれか1項に記載のプラズマ処理装置。 6. The thickness of the metal layer is equal to or less than the skin depth determined by the frequency of the high-frequency power applied to the antenna and the electrical resistivity of the metal layer. 1. The plasma processing apparatus according to claim 1.
  7.  前記金属層は、前記誘電体板の前記金属板と接する側とは反対側に形成されていることを特徴とする請求項1から6のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein the metal layer is formed on the side of the dielectric plate opposite to the side in contact with the metal plate.
  8.  前記金属層は、前記誘電体板の前記金属板と接する側に形成されていることを特徴とする請求項1から6のいずれか1項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 6, wherein the metal layer is formed on a side of the dielectric plate that contacts the metal plate.
PCT/JP2022/027816 2021-08-03 2022-07-15 Plasma treatment device WO2023013383A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237032216A KR20230147694A (en) 2021-08-03 2022-07-15 plasma processing device
CN202280022236.8A CN116998226A (en) 2021-08-03 2022-07-15 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-127697 2021-08-03
JP2021127697A JP2023022687A (en) 2021-08-03 2021-08-03 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2023013383A1 true WO2023013383A1 (en) 2023-02-09

Family

ID=85155949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027816 WO2023013383A1 (en) 2021-08-03 2022-07-15 Plasma treatment device

Country Status (5)

Country Link
JP (1) JP2023022687A (en)
KR (1) KR20230147694A (en)
CN (1) CN116998226A (en)
TW (1) TWI844062B (en)
WO (1) WO2023013383A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153209A (en) * 2002-11-01 2004-05-27 Kyocera Corp Member for plasma processing device and its manufacturing method
JP2008109155A (en) * 2007-12-19 2008-05-08 Applied Materials Inc Plasma apparatus
JP2010251064A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2021012861A (en) * 2019-07-09 2021-02-04 日新電機株式会社 Plasma processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153209A (en) * 2002-11-01 2004-05-27 Kyocera Corp Member for plasma processing device and its manufacturing method
JP2008109155A (en) * 2007-12-19 2008-05-08 Applied Materials Inc Plasma apparatus
JP2010251064A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2021012861A (en) * 2019-07-09 2021-02-04 日新電機株式会社 Plasma processing apparatus

Also Published As

Publication number Publication date
JP2023022687A (en) 2023-02-15
TWI844062B (en) 2024-06-01
CN116998226A (en) 2023-11-03
KR20230147694A (en) 2023-10-23
TW202308470A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
KR100900595B1 (en) Method and apparatus to confine plasma and to enhance flow conductance
US9202675B2 (en) Plasma processing apparatus and electrode for same
US20100078129A1 (en) Mounting table for plasma processing apparatus
US20040149741A1 (en) Plasma processing apparatus
KR20080106427A (en) Methods and apparatus for selective pre-coating of a plasma processing chamber
WO2002052628A1 (en) Plasma processing method and plasma processor
JP5204476B2 (en) Plasma device
TWI632716B (en) Manufacturing method of organic component, manufacturing device of organic component, and organic component
JP3423186B2 (en) Processing method
EP0841838A1 (en) Plasma treatment apparatus and plasma treatment method
US6092486A (en) Plasma processing apparatus and plasma processing method
JPH10284299A (en) High frequency introducing member and plasma device
WO2023013383A1 (en) Plasma treatment device
EP0749148B1 (en) Plasma processing apparatus
TW202131371A (en) Apparatus and method for etching
TWI837749B (en) Plasma treatment device
CN110770880B (en) Plasma processing apparatus
TWI637660B (en) Plasma processing device
JP2023104093A (en) Plasma processing apparatus
TWI842027B (en) Plasma treatment equipment
KR101408643B1 (en) Plasma Processing Apparatus
JP4347986B2 (en) Plasma processing equipment
TW200302694A (en) Etching method and etching device
JP3373466B2 (en) Plasma processing apparatus and plasma processing method
KR200426498Y1 (en) Process kit for using in a plasma processing chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022236.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032216

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032216

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852807

Country of ref document: EP

Kind code of ref document: A1