TWI806253B - Plasma treatment device - Google Patents
Plasma treatment device Download PDFInfo
- Publication number
- TWI806253B TWI806253B TW110143601A TW110143601A TWI806253B TW I806253 B TWI806253 B TW I806253B TW 110143601 A TW110143601 A TW 110143601A TW 110143601 A TW110143601 A TW 110143601A TW I806253 B TWI806253 B TW I806253B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductor
- return conductor
- antenna
- plasma processing
- dielectric tube
- Prior art date
Links
- 238000009832 plasma treatment Methods 0.000 title description 4
- 239000004020 conductor Substances 0.000 claims abstract description 113
- 239000000498 cooling water Substances 0.000 claims description 12
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 23
- 239000000758 substrate Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000004380 ashing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- -1 silicon fluoride nitride Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32522—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
為了可對沿著天線的長邊方向的電漿密度分布進行細微調整,實現電漿密度分布的進一步均勻化,本發明的電漿處理裝置包括:真空容器1;天線2,設置於真空容器1的外部,流通高頻電流IR;以及高頻窗9,將形成於真空容器1的面向天線2的位置的開口1x堵塞,且天線2包括高頻電流IR的流通方向彼此反向的去路導體21及返路導體22,所述電漿處理裝置進而包括距離調整機構10,所述距離調整機構10對去路導體21及返路導體22的相對距離進行局部調整。 In order to finely adjust the plasma density distribution along the long side direction of the antenna, and realize further uniformity of the plasma density distribution, the plasma processing device of the present invention includes: a vacuum container 1; an antenna 2, which is arranged in the vacuum container 1 and the high-frequency window 9 blocks the opening 1x formed in the position of the vacuum vessel 1 facing the antenna 2, and the antenna 2 includes outgoing conductors 21 whose flow directions of the high-frequency current IR are opposite to each other. and the return conductor 22 , the plasma processing apparatus further includes a distance adjustment mechanism 10 , and the distance adjustment mechanism 10 locally adjusts the relative distance between the outward conductor 21 and the return conductor 22 .
Description
本發明是有關於一種電漿處理裝置。 The invention relates to a plasma treatment device.
作為現有的電漿處理裝置,如專利文獻1所示,有由成為高頻電流的去路的導體與自去路折返而成為高頻電流的返路的導體構成流通高頻電流的天線者。
As a conventional plasma processing apparatus, as shown in
如上所述,藉由利用使天線於中途折返而成的往返導體所構成,於去路與返路中流通的高頻電流彼此反向,因此由在去路中流通的高頻電流所產生的磁場與由在返路中流通的高頻電流所產生的磁場互相抵消。 As mentioned above, by using the round-trip conductor formed by turning the antenna back halfway, the high-frequency currents flowing in the outgoing path and the return path are opposite to each other, so the magnetic field generated by the high-frequency current flowing in the outgoing path and the The magnetic fields generated by the high-frequency current flowing in the return path cancel each other out.
因此,於專利文獻1所示的電漿處理裝置中,使天線的兩端部處的往返導體的間隔大於中央部處的往返導體的間隔,而與天線的中央部相比,兩端部的有效阻抗相對較大。藉此,與天線的中央部相比,而使自兩端部供給至電漿的磁場能量相對較大,從而實現沿著天線的長邊方向的電漿密度分布的均勻化。
Therefore, in the plasma processing apparatus shown in
然而,於上述結構中,雖然可使沿著天線的長邊方向的電漿密度分布大致均勻化,但難以局部進行細微調整。 However, in the above configuration, although the plasma density distribution along the longitudinal direction of the antenna can be substantially uniformed, it is difficult to finely adjust it locally.
[現有技術文獻] [Prior art literature]
[專利文獻] [Patent Document]
專利文獻1:日本專利第4844697號 Patent Document 1: Japanese Patent No. 4844697
因此,本申請案發明是為了解決所述問題而完成,其主要課題在於可對沿著天線的長邊方向的電漿密度分布進行細微調整,實現電漿密度分布的進一步均勻化。 Therefore, the invention of the present application was made to solve the above-mentioned problems, and its main subject is to finely adjust the plasma density distribution along the longitudinal direction of the antenna to achieve further uniformity of the plasma density distribution.
即,本發明的電漿處理裝置的特徵在於包括:真空容器;天線,設置於所述真空容器的外部,流通高頻電流;以及高頻窗,將形成於所述真空容器的面向所述天線的位置的開口堵塞,所述天線包括高頻電流的流通方向彼此反向的去路導體及返路導體,所述電漿處理裝置進而包括距離調整機構,所述距離調整機構對所述去路導體及所述返路導體的相對距離進行局部調整。 That is, the plasma processing apparatus of the present invention is characterized by comprising: a vacuum vessel; an antenna provided outside the vacuum vessel through which a high-frequency current flows; and a high-frequency window formed on a side of the vacuum vessel facing the antenna. The opening at the position is blocked, the antenna includes an outgoing conductor and a return conductor whose flow directions of high-frequency current are opposite to each other, and the plasma processing device further includes a distance adjustment mechanism, and the distance adjustment mechanism controls the outgoing conductor and the return conductor. The relative distance of the return conductors is locally adjusted.
根據以所述方式構成的電漿處理裝置,距離調整機構對去路導體及返路導體的相對距離進行局部調整,因此可對沿著天線的長邊方向的電漿密度分布進行細微調整,實現電漿密度分布的進一步均勻化。 According to the plasma processing apparatus configured as described above, the distance adjustment mechanism locally adjusts the relative distance between the outgoing conductor and the return conductor, so that the plasma density distribution along the long side direction of the antenna can be finely adjusted, and the electric current can be realized. Further homogenization of pulp density distribution.
若假定不設置返路導體,而欲使於去路導體中流通的高頻電流經由真空容器等接地電位的結構物返回電源,則於該返回路徑中流通的高頻電流僅產生發熱引起的功率損耗,無法有效地用於電漿生成。 Assuming that no return conductor is provided, and the high-frequency current flowing in the outgoing conductor is intended to return to the power supply through a structure at ground potential such as a vacuum vessel, the high-frequency current flowing in the return path will only generate power loss due to heat generation , cannot be effectively used for plasma generation.
因此,為了有效利用於返路導體中流通的高頻電流,較佳為 所述距離調整機構對所述返路導體的位置進行調整。 Therefore, in order to effectively utilize the high-frequency current flowing through the return conductor, it is preferable to The distance adjustment mechanism adjusts the position of the return conductor.
藉此,可藉由在返路導體中流通的高頻電流調整電漿密度分布,因此可將於返路導體中流通的高頻電流有效地用於電漿生成。 Thereby, the plasma density distribution can be adjusted by the high-frequency current flowing through the return conductor, so the high-frequency current flowing through the return conductor can be effectively used for plasma generation.
為了可進一步細微調整沿著天線的長邊方向的電漿密度分布,較佳為所述距離調整機構對所述返路導體的多個部位的位置進行調整。 In order to further finely adjust the plasma density distribution along the longitudinal direction of the antenna, it is preferable that the distance adjustment mechanism adjusts the positions of a plurality of positions of the return conductor.
較佳為所述去路導體配置於較所述返路導體更靠近所述真空容器的位置。 Preferably, the outgoing conductor is disposed closer to the vacuum vessel than the return conductor.
藉此,可縮短去路導體至真空容器內的距離,而可將自去路導體產生的高頻磁場高效率地供給至真空容器內。 Thereby, the distance from the outgoing conductor to the inside of the vacuum container can be shortened, and the high-frequency magnetic field generated from the outgoing conductor can be efficiently supplied into the vacuum container.
較佳為進而包括:介電管,包覆所述返路導體;以及定位構件,設置於所述介電管內,於所述介電管內將所述返路導體進行定位。 Preferably, the method further includes: a dielectric tube covering the return conductor; and a positioning member disposed in the dielectric tube to position the return conductor in the dielectric tube.
藉此,可藉由外力容易地使介電管變形,因此可簡單地進行電漿密度分布的局部調整。 Thereby, the dielectric tube can be easily deformed by an external force, so local adjustment of the plasma density distribution can be easily performed.
並且,由於藉由定位構件將返路導體於介電管內定位,故而可進一步精度良好地調整去路導體與返路導體的相對距離,進而可進一步細微地調整沿著天線的長邊方向的電漿密度分布。 In addition, since the return conductor is positioned in the dielectric tube by the positioning member, the relative distance between the outgoing conductor and the return conductor can be further adjusted with good precision, and further finely adjusted the electrical distance along the long side direction of the antenna. Pulp density distribution.
有於返路導體中流通的高頻電流引起的發熱使介電管損傷的擔憂。 There is a concern that the dielectric tube may be damaged by heat generated by the high-frequency current flowing through the return conductor.
因此,較佳為於所述介電管內流動冷卻水。 Therefore, it is preferable to flow cooling water in the dielectric tube.
藉此,可確保利用介電管的距離調整的簡化,並且亦可發揮 該介電管的冷卻功能。 Thereby, the simplification of the distance adjustment using the dielectric tube can be ensured, and the The cooling function of the dielectric tube.
作為更具體的實施形態,可列舉如下形態:所述定位構件設置於所述介電管內的多個部位,各所述定位構件包括供所述冷卻水流動的流通孔。 As a more specific embodiment, a form in which the positioning members are provided at a plurality of places in the dielectric tube, and each of the positioning members includes a flow hole through which the cooling water flows may be mentioned.
為了提高冷卻水的冷卻效果,較佳為所述冷卻水於所述介電管內蜿蜒流動。 In order to improve the cooling effect of the cooling water, preferably, the cooling water flows meanderingly in the dielectric tube.
根據以上述方式構成的本發明,可對沿著天線的長邊方向的電漿密度分布進行細微調整,實現電漿密度分布的進一步均勻化。 According to the present invention constituted as described above, the plasma density distribution along the longitudinal direction of the antenna can be finely adjusted, and further uniformity of the plasma density distribution can be achieved.
1:真空容器 1: Vacuum container
1a:上壁 1a: upper wall
1x:開口 1x: opening
2:天線 2: Antenna
2a:供電端部 2a: Power supply terminal
2b:終端部 2b: terminal part
3:高頻電源 3: High frequency power supply
4:真空排氣裝置 4: Vacuum exhaust device
5:基板保持器 5: Substrate holder
6:偏壓電源 6: Bias power supply
7:狹縫板 7: Slit plate
7x:狹縫 7x: Slit
8:介電板 8: Dielectric board
9:高頻窗 9: High frequency window
10:距離調整機構 10: Distance adjustment mechanism
10P:氣體導入口 10P: Gas inlet port
11:握持部 11: Grip
21:去路導體 21: outgoing conductor
22:返路導體 22: Return conductor
23:介電管 23: Dielectric tube
24:定位構件 24: Positioning components
24L:流通孔 24L: Flow hole
24H:貫通孔 24H: Through hole
25:第二定位構件 25: The second positioning member
31:整合電路 31: integrated circuit
51:加熱器 51: heater
100:電漿處理裝置 100: Plasma treatment device
200:電漿源 200: plasma source
CL:冷卻水 CL: cooling water
G:氣體 G: gas
IR:高頻電流 IR: high frequency current
P:感應耦合電漿 P: inductively coupled plasma
W:基板 W: Substrate
圖1是示意性地表示第一實施形態的電漿處理裝置的結構的縱截面圖。 FIG. 1 is a longitudinal sectional view schematically showing the structure of a plasma processing apparatus according to a first embodiment.
圖2是示意性地表示同一第一實施形態的電漿處理裝置的結構的橫截面圖。 Fig. 2 is a cross-sectional view schematically showing the structure of the plasma processing apparatus according to the first embodiment.
圖3是表示同一第一實施形態中的距離調整機構的結構的示意圖。 Fig. 3 is a schematic diagram showing the configuration of a distance adjusting mechanism in the first embodiment.
圖4是表示第二實施形態中的返路導體的結構的示意圖。 Fig. 4 is a schematic diagram showing the structure of a return conductor in the second embodiment.
圖5是表示同一第二實施形態中的定位構件的結構的示意圖。 Fig. 5 is a schematic diagram showing the structure of a positioning member in the second embodiment.
圖6是表示同一第二實施形態中的定位構件的結構的示意圖。 Fig. 6 is a schematic diagram showing the structure of a positioning member in the second embodiment.
[第一實施形態] [First Embodiment]
以下,參照圖式對本發明的電漿處理裝置的一實施形態進行說明。 Hereinafter, an embodiment of the plasma processing apparatus of the present invention will be described with reference to the drawings.
<裝置結構> <device structure>
本實施形態的電漿處理裝置100使用感應耦合型的電漿P對基板W實施處理。此處,基板W例如為液晶顯示器或有機電致發光(electroluminescent,EL)顯示器等平板顯示器(Flat Panel Display,FPD)用的基板、柔性顯示器用的柔性基板等。又,對基板W實施的處理例如為利用電漿化學氣相沈積(Chemical Vapor Deposition,CVD)法的膜形成、蝕刻、灰化、濺鍍等。
The
再者,該電漿處理裝置100於藉由電漿CVD法進行膜形成的情形時亦稱為電漿CVD裝置,於進行蝕刻的情形時亦稱為電漿蝕刻裝置,於進行灰化的情形時亦稱為電漿灰化裝置,於進行濺鍍的情形時亦稱為濺鍍裝置。
In addition, this
具體而言,如圖1及圖2所示,電漿處理裝置100包括:真空容器1,經真空排氣,且被導入氣體G;以及電漿源200,使真空容器1的內部產生電漿,電漿源200包括設置於真空容器1的外部的天線2、及對天線2施加高頻的高頻電源3。於所述結構中,藉由自高頻電源3對天線2施加高頻,而於天線2中流通高頻電流IR,於真空容器1內產生感應電場,而生成感應耦合型的電漿P。
Specifically, as shown in FIG. 1 and FIG. 2 , the
真空容器1例如為金屬製的容器,於其壁(此處為上壁
1a)上形成有沿著厚度方向貫通的開口1x。此處,該真空容器1電性接地,其內部藉由真空排氣裝置4進行真空排氣。
The
又,例如經由設置於流量調整器(省略圖示)或真空容器1的一個或多個氣體導入口10P向真空容器1內導入氣體G。氣體G設為與對基板W實施的處理內容相應的氣體即可。例如,於藉由電漿CVD法對基板進行膜形成的情形時,氣體G為原料氣體或利用稀釋氣體(例如H2)將其稀釋所得的氣體。若進一步列舉具體例子,則於原料氣體為SiH4的情形時,可於基板上形成Si膜,於為SiH4+NH3的情形時,可於基板上形成SiN膜,於為SiH4+O2的情形時,可於基板上形成SiO2膜,於為SiF4+N2的情形時,可於基板上形成SiN:F膜(氮氟化矽膜)。
In addition, the gas G is introduced into the
於該真空容器1的內部設置有保持基板W的基板保持器5。如所述例子,亦可自偏壓電源6對基板保持器5施加偏壓電壓。偏壓電壓例如為負的直流電壓、負的偏壓電壓等,但不限於此。藉由此種偏壓電壓,例如可控制電漿P中的正離子入射至基板W時的能量,從而可進行形成於基板W的表面的膜的結晶度的控制等。可於基板保持器5內預先設置加熱基板W的加熱器51。
A
如圖1及圖2所示,天線2以面向形成於真空容器1的開口1x的方式配置。再者,天線2的根數不限於一根,亦可設置多根天線2。
As shown in FIGS. 1 and 2 , the
如圖2所示,天線2的作為其一端部的供電端部2a經由整合電路31連接高頻電源3,作為另一端部的終端部2b直接接
地。再者,終端部2b亦可經由電容器或線圈等接地。
As shown in FIG. 2, the
高頻電源3可經由整合電路31於天線2中流通高頻電流IR。高頻的頻率例如為通常的13.56MHz,但不限於此,可適當變更。
The high-
此處,本實施形態的電漿源200進而包括:狹縫板7,自真空容器1的外側堵塞形成於真空容器1的壁(上壁1a)上的開口1x;以及介電板8,自真空容器1的外側堵塞形成於狹縫板7的狹縫7x。
Here, the
狹縫板7形成有沿著其厚度方向貫通而成的狹縫7x,使由天線2產生的高頻磁場於真空容器1內透過,並且防止電場自真空容器1的外部進入真空容器1的內部。
The
具體而言,如圖3所示,該狹縫板7具體而言為形成有互相平行的多條狹縫7x的平板狀者,較佳為機械強度高於下文所述的介電板,且較佳為厚度尺寸大於介電板。
Specifically, as shown in FIG. 3 , the
若更具體地進行說明,則狹縫板7是藉由將例如選自包括Cu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W或Co的群中的一種金屬或其等的合金(例如不鏽鋼合金、鋁合金等)等金屬材料進行軋製加工(例如冷軋或熱軋)等所製造,例如厚度約為5mm。但製造方法或厚度不限於此,可根據規格適當變更。
If described more specifically, the
介電板8設置於狹縫板7的外向面(朝向真空容器1的內部的內向面的背面),堵塞狹縫板的狹縫。
The
介電板8整體包含介電物質,呈平板狀,例如包含氧化
鋁、碳化矽、氮化矽等陶瓷、石英玻璃、無鹼玻璃等無機材料、氟樹脂(例如鐵氟龍)等樹脂材料等。再者,就減少介電損失的觀點而言,構成介電板8的材料較佳為介電損耗因數為0.01以下者,更佳為0.005以下者。
The
此處使介電板8的板厚小於狹縫板7的板厚,但不限定於此,例如於將真空容器1進行真空排氣的狀態下,具有可承受自狹縫7x受到的真空容器1的內外的差壓的強度即可,可根據狹縫7x的條數或長度等規格適當設定。但就縮短天線2與真空容器1之間的距離的觀點而言,較佳為較薄。
Here, the thickness of the
藉由所述結構,狹縫板7及介電板8作為使磁場透過的高頻窗(磁場透過窗)9發揮功能。即,若自高頻電源3對天線2施加高頻,則由天線2產生的高頻磁場透過包括狹縫板7及介電板8的高頻窗9而形成(供給)於真空容器1內。藉此,於真空容器1內的空間產生感應電場,生成感應耦合型的電漿P。
With the above configuration, the
並且,於本實施形態中,如圖1~圖3所示,天線2包括高頻電流IR的流通方向彼此反向的去路導體21及返路導體22,如圖3所示,電漿處理裝置100進而包括對去路導體21及返路導體22的相對距離進行局部調整的距離調整機構10。
And, in this embodiment, as shown in FIGS. 1 to 3 , the
首先,對去路導體21及返路導體22進行說明。
First, the
本實施形態的去路導體21及返路導體22彼此電性連接,連接於共通的高頻電源3。具體而言,去路導體21包括經由整合電路31連接於高頻電源3的上述供電端部2a,返路導體22包括直
接接地的上述終端部2b。
The
於本實施形態中,去路導體21及返路導體22沿著上下方向、即垂直於真空容器1的開口1x的方向分開配置,此處,去路導體21配置於較返路導體22更靠近真空容器1的開口1x的位置。
In this embodiment, the
去路導體21平行於真空容器1的開口1x而延伸,此處為管狀的導體。又,返路導體22以流通與去路導體21反向的高頻電流IR的方式配置,此處為管狀的導體。
The
其次,對距離調整機構10進行說明。
Next, the
距離調整機構10對去路導體21及返路導體22的沿著分離方向的相隔距離、即此處為去路導體21及返路導體22的沿著上下方向的相隔距離進行局部調整。
The
本實施形態的距離調整機構10藉由調整返路導體22的位置而對上述相隔距離進行局部調整,具體而言,以可調整沿著返路導體22的長邊方向的一部分或多部分的位置的方式構成。
The
若更具體地進行說明,則距離調整機構10包括:多個握持部11,握持返路導體22的多個部位,使其可相對於去路導體21而進退;以及馬達等未圖示的驅動源,使該些握持部11獨立移動。
If described more specifically, the
多個握持部11是與返路導體22電性絕緣的絕緣物,此處可沿著上下方向移動。如圖3所示,該些握持部11中的一個配置於真空容器1的開口1x的中央部的正上方,於相對於該握持部
11而沿著返路導體22的長邊方向的對稱的位置設置有另一個握持部11。又,於本實施形態中,多個握持部11等間隔配置,自與真空容器1的開口1x正交的方向觀察,該些均設置於開口1x的內側。
The plurality of holding
<第一實施形態的效果> <Effect of the first embodiment>
根據以上述方式構成的本實施形態的電漿處理裝置100,由於距離調整機構10對去路導體21及返路導體22的相對距離進行局部調整,故而可對沿著天線2的長邊方向的電漿密度分布進行細微調整,從而實現電漿密度分布的進一步均勻化。
According to the
又,由於距離調整機構10對返路導體22的位置進行調整,故而可藉由在該返路導體22中流通的高頻電流IR調整電漿密度分布,而可將於返路導體22中流通的高頻電流IR有效地用於電漿生成。
Moreover, since the
進而,由於距離調整機構10對返路導體22的多個部位的位置進行調整,故而可對沿著天線2的長邊方向的電漿密度分布進一步進行細微調整。
Furthermore, since the
並且,由於將去路導體21配置於較返路導體22更靠近真空容器1的位置,故而可縮短去路導體21至真空容器1內的距離,從而可將由去路導體21產生的高頻磁場高效率地供給至真空容器1內。
In addition, since the
[第二實施形態] [Second Embodiment]
繼而,參照圖式對本發明的電漿處理裝置的第二實施形態進 行說明。 Next, the second embodiment of the plasma treatment device of the present invention will be described with reference to the drawings. line description.
於本實施形態中,返路導體22或其周邊結構不同於所述第一實施形態,因此對該不同點進行說明。
In this embodiment, the structure of the
如圖4所示,本實施形態的返路導體22以流通與去路導體21反向的高頻電流IR的方式配置,此處為線狀的導體。
As shown in FIG. 4, the
並且,如同一圖4所示,該返路導體22由介電管23所包覆。
Furthermore, as shown in FIG. 4 , the
介電管23包括具有可撓性的介電體,具體而言,例如為包含鐵氟龍或尼龍等的管。
The
如圖5及圖6所示,於介電管23的內部設置有於介電管23內將返路導體22進行定位的定位構件24。
As shown in FIGS. 5 and 6 , a positioning
定位構件24包括介電體,此處將返路導體22定位於介電管23的中心軸上。具體而言,該定位構件24為不晃動地嵌入介電管23內的柱狀者,於其中心形成有供返路導體22貫通的貫通孔24H。
The positioning
又,如圖5所示,於介電管23的內部設置有於介電管23內將返路導體22進行定位的第二定位構件25。該第二定位構件25包括介電體,將返路導體22定位於介電管23的中心軸上。具體而言,該第二定位構件25為沿著介電管的中心軸延伸的長條狀者,於其中心形成有供返路導體22貫通的貫通孔。
Moreover, as shown in FIG. 5 , a
於本實施形態中,以於介電管23內流通冷卻水CL的方式構成。具體而言,如圖5所示,於介電管23內的沿著軸方向的
多個部位設置有定位構件24,各定位構件24包括供冷卻水CL流動的流通孔24L。
In the present embodiment, the cooling water CL is configured to flow through the
若更具體地進行說明,則如圖6所示,各定位構件24包括多個流通孔24L,該些流通孔24L例如沿著周方向等間隔配置。並且,自介電管23的軸方向觀察,彼此相鄰的定位構件24的流通孔24L不重合,此處為沿著周方向錯開配置。藉此,冷卻水CL於介電管23內蜿蜒流動。
More specifically, as shown in FIG. 6 , each positioning
<第二實施形態的效果> <Effect of the second embodiment>
根據以上述方式構成的本實施形態的電漿處理裝置100,由於將返路導體22設為線狀,並藉由介電管23包覆該返路導體22,故而可藉由外力容易地使返路導體22或介電管23變形,而可簡單地進行電漿密度分布的局部調整。
According to the
並且,由於藉由定位構件24於介電管23內將返路導體22進行定位,故而可進一步精度良好地調整去路導體21與返路導體22的相對距離,進而可進一步細微地調整沿著天線2的長邊方向的電漿密度分布。
Moreover, since the
進而,由於冷卻水CL於介電管23內蜿蜒流動,故而可確保利用介電管23的距離調整的簡化,並且可發揮該介電管23的冷卻功能。
Furthermore, since the cooling water CL meanders in the
[其他變形實施形態] [Other modified embodiments]
再者,本發明並不限於所述實施形態。 In addition, this invention is not limited to the said embodiment.
例如,於所述實施形態中,已對去路導體21及返路導
體22電性連接的情形進行了說明,但該些無需一定電性連接,只要彼此反向地流通高頻電流IR,則例如亦可將去路導體21及返路導體22連接於不同的高頻電源3。
For example, in the above embodiment, the
進而,所述實施形態的距離調整機構10是對返路導體22的位置進行調整,但亦可對去路導體21的位置進行調整。
Furthermore, the
並且,於所述實施形態中,去路導體21及返路導體22是沿著上下方向分離設置,但例如亦可沿著與真空容器1的開口1x平行的方向分離。
In addition, in the above-mentioned embodiment, the
除此以外,本發明並不限於所述實施形態,當然可於不脫離其主旨的範圍內進行各種變形。 In addition, this invention is not limited to the said embodiment, Of course, a various deformation|transformation is possible in the range which does not deviate from the summary.
[產業上的可利用性] [industrial availability]
根據本發明,可對沿著天線的長邊方向的電漿密度分布進行細微調整,實現電漿密度分布的進一步均勻化。 According to the present invention, the plasma density distribution along the long side direction of the antenna can be finely adjusted to achieve further uniformity of the plasma density distribution.
1x:開口 1x: opening
2:天線 2: Antenna
7:狹縫板 7: Slit plate
7x:狹縫 7x: Slit
8:介電板 8: Dielectric board
9:高頻窗 9: High frequency window
10:距離調整機構 10: Distance adjustment mechanism
11:握持部 11: Grip
21:去路導體 21: outgoing conductor
22:返路導體 22: Return conductor
IR:高頻電流 IR: high frequency current
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020196606A JP7568915B2 (en) | 2020-11-27 | 2020-11-27 | Plasma Processing Equipment |
JP2020-196606 | 2020-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202222103A TW202222103A (en) | 2022-06-01 |
TWI806253B true TWI806253B (en) | 2023-06-21 |
Family
ID=81754411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110143601A TWI806253B (en) | 2020-11-27 | 2021-11-23 | Plasma treatment device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7568915B2 (en) |
KR (1) | KR20230050457A (en) |
CN (1) | CN116261773A (en) |
TW (1) | TWI806253B (en) |
WO (1) | WO2022113676A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024121148A (en) * | 2023-02-27 | 2024-09-06 | 日新電機株式会社 | Plasma Processing Equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844697B1 (en) * | 1970-01-28 | 1973-12-26 | ||
US6028285A (en) * | 1997-11-19 | 2000-02-22 | Board Of Regents, The University Of Texas System | High density plasma source for semiconductor processing |
TW201841265A (en) * | 2017-03-17 | 2018-11-16 | 日商日新電機股份有限公司 | Sputtering device |
TW202003913A (en) * | 2018-04-20 | 2020-01-16 | 美商應用材料股份有限公司 | Modular high-frequency source with integrated gas distribution |
US20200303164A1 (en) * | 2019-03-19 | 2020-09-24 | Tokyo Electron Limited | System and methods for vhf plasma processing |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5592098B2 (en) | 2009-10-27 | 2014-09-17 | 東京エレクトロン株式会社 | Plasma processing apparatus and plasma processing method |
JP2013020871A (en) | 2011-07-13 | 2013-01-31 | Nissin Electric Co Ltd | Plasma processing apparatus |
JP5310821B2 (en) | 2011-10-27 | 2013-10-09 | パナソニック株式会社 | Plasma etching equipment |
US9613777B2 (en) | 2014-09-11 | 2017-04-04 | Varian Semiconductor Equipment Associates, Inc. | Uniformity control using adjustable internal antennas |
JP6709478B1 (en) | 2019-04-24 | 2020-06-17 | 株式会社プラズマイオンアシスト | Inductively coupled antenna unit and plasma processing apparatus |
-
2020
- 2020-11-27 JP JP2020196606A patent/JP7568915B2/en active Active
-
2021
- 2021-11-04 CN CN202180064165.3A patent/CN116261773A/en active Pending
- 2021-11-04 WO PCT/JP2021/040496 patent/WO2022113676A1/en active Application Filing
- 2021-11-04 KR KR1020237009285A patent/KR20230050457A/en unknown
- 2021-11-23 TW TW110143601A patent/TWI806253B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4844697B1 (en) * | 1970-01-28 | 1973-12-26 | ||
US6028285A (en) * | 1997-11-19 | 2000-02-22 | Board Of Regents, The University Of Texas System | High density plasma source for semiconductor processing |
TW201841265A (en) * | 2017-03-17 | 2018-11-16 | 日商日新電機股份有限公司 | Sputtering device |
TW202003913A (en) * | 2018-04-20 | 2020-01-16 | 美商應用材料股份有限公司 | Modular high-frequency source with integrated gas distribution |
US20200303164A1 (en) * | 2019-03-19 | 2020-09-24 | Tokyo Electron Limited | System and methods for vhf plasma processing |
Also Published As
Publication number | Publication date |
---|---|
KR20230050457A (en) | 2023-04-14 |
TW202222103A (en) | 2022-06-01 |
JP2022085103A (en) | 2022-06-08 |
JP7568915B2 (en) | 2024-10-17 |
CN116261773A (en) | 2023-06-13 |
WO2022113676A1 (en) | 2022-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7217850B2 (en) | Induction coil structure and inductively coupled plasma generator | |
KR19990072649A (en) | High-frequency discharge method and device thereof and high-frequency processing device | |
TWI806253B (en) | Plasma treatment device | |
WO2021210583A1 (en) | Plasma source and plasma processing apparatus | |
JP7238613B2 (en) | Plasma processing equipment | |
KR100845890B1 (en) | Large area inductive coupled plasma reactor | |
JP7232410B2 (en) | Plasma processing equipment | |
CN113841218A (en) | Plasma processing apparatus | |
WO2003086032A1 (en) | Ecr plasma source and ecr plasma device | |
TWI770144B (en) | Plasma processing device | |
JP7488464B2 (en) | Plasma Processing Equipment | |
WO2023136008A1 (en) | Plasma treatment device | |
KR100625762B1 (en) | Plasma treatment apparatus, matching box | |
JP7303980B2 (en) | Plasma processing equipment | |
JP2018156864A (en) | Plasma processing apparatus | |
JP2021009790A (en) | Plasma processing apparatus | |
TWI584343B (en) | Plasma processing device | |
WO2021181531A1 (en) | Antenna mechanism and plasma processing device | |
JP2021098876A (en) | Plasma treatment apparatus | |
JP2024080184A (en) | Plasma processing apparatus | |
JP7440746B2 (en) | Plasma source and plasma processing equipment | |
TWI840035B (en) | Antenna and plasma processing equipment | |
TW202422622A (en) | Plasma treatment device and method for assembling same | |
JP2017228422A (en) | Plasma generating device | |
JP2020123446A (en) | Plasma processing apparatus |