WO2022113676A1 - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
WO2022113676A1
WO2022113676A1 PCT/JP2021/040496 JP2021040496W WO2022113676A1 WO 2022113676 A1 WO2022113676 A1 WO 2022113676A1 JP 2021040496 W JP2021040496 W JP 2021040496W WO 2022113676 A1 WO2022113676 A1 WO 2022113676A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna
return conductor
processing apparatus
dielectric tube
Prior art date
Application number
PCT/JP2021/040496
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松尾
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202180064165.3A priority Critical patent/CN116261773A/en
Priority to KR1020237009285A priority patent/KR20230050457A/en
Publication of WO2022113676A1 publication Critical patent/WO2022113676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Abstract

In order to achieve further uniformity of a plasma density distribution by enabling fine adjustment of the plasma density distribution along the longitudinal direction of an antenna, this plasma treatment device comprises: a vacuum container (1); an antenna (2) which is provided outside the vacuum container (1) and through which high-frequency current (IR) flows; and a high-frequency window (9) that closes an opening (10x) formed at a position of the vacuum container (1) facing the antenna (2). The antenna (2) has an outgoing conductor (21) and a returning conductor (22) which are opposite to each other in terms of the direction in which the high-frequency current (IR) flow therethrough. The plasma treatment device further comprises a distance adjustment mechanism (10) for partially adjusting the relative distance between the outgoing conductor (21) and the returning conductor (22).

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマ処理装置に関するものである。 The present invention relates to a plasma processing apparatus.
 従来のプラズマ処理装置としては、特許文献1に示すように、高周波電流が流れるアンテナを、高周波電流の往路となる導体と、往路から折り返されて高周波電流の復路となる導体とから構成したものがある。 As a conventional plasma processing apparatus, as shown in Patent Document 1, an antenna through which a high-frequency current flows is composed of a conductor that is an outward path of the high-frequency current and a conductor that is folded back from the outward path and becomes a return path of the high-frequency current. be.
 このようにアンテナを途中で折り返してなる往復導体により構成することで、往路と復路とに流れる高周波電流が互いに逆向きとなるので、往路に流れる高周波電流により生じる磁場と、復路に流れる高周波電流により生じる磁場とが互いに打ち消し合うことになる。 By constructing the antenna with a reciprocating conductor that is folded back in the middle in this way, the high-frequency currents flowing in the outward path and the return path are opposite to each other. The generated magnetic fields cancel each other out.
 そこで、特許文献1に示すプラズマ処理装置では、アンテナの中央部における往復導体の間隔よりも、両端部における往復導体の間隔を大きくし、アンテナの中央部よりも両端部の実効インピーダンスが相対的に大きくなるようにしている。これにより、アンテナの中央部よりも両端部からプラズマに供給する磁場エネルギーを相対的に大きくし、アンテナの長手方向に沿ったプラズマ密度分布の均一化を図っている。 Therefore, in the plasma processing apparatus shown in Patent Document 1, the distance between the reciprocating conductors at both ends is larger than the distance between the reciprocating conductors at the center of the antenna, and the effective impedance at both ends is relatively larger than the distance between the two ends of the antenna. I'm trying to get bigger. As a result, the magnetic field energy supplied to the plasma from both ends is relatively larger than that at the center of the antenna, and the plasma density distribution along the longitudinal direction of the antenna is made uniform.
 しかしながら、上述した構成では、アンテナの長手方向に沿ったプラズマ密度分布を大まかには均一化できるものの、部分的に細やかに調整することは難しい。 However, with the above configuration, although the plasma density distribution along the longitudinal direction of the antenna can be roughly made uniform, it is difficult to make partial fine adjustments.
特許第4844697号Patent No. 4844697
 そこで、本願発明は、かかる問題を解決するべくなされたものであり、アンテナの長手方向に沿ったプラズマ密度分布を細やかに調整できるようにして、プラズマ密度分布のさらなる均一化を図ることをその主たる課題とするものである。 Therefore, the present invention has been made to solve such a problem, and its main purpose is to make it possible to finely adjust the plasma density distribution along the longitudinal direction of the antenna to further make the plasma density distribution uniform. It is an issue.
 すなわち本発明に係るプラズマ処理装置は、真空容器と、前記真空容器の外部に設けられて高周波電流が流れるアンテナと、前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐ高周波窓とを備え、前記アンテナが、高周波電流の流れる方向が互いに逆向きの往路導体及び復路導体を有し、前記往路導体及び前記復路導体の相対距離を部分的に調整する距離調整機構をさらに備えることを特徴とするものである。 That is, the plasma processing apparatus according to the present invention has a vacuum vessel, an antenna provided outside the vacuum vessel through which a high-frequency current flows, and a high-frequency window that closes an opening formed at a position facing the antenna of the vacuum vessel. A feature of the antenna is that the antenna has an outward conductor and a return conductor in which high-frequency currents flow in opposite directions, and further comprises a distance adjusting mechanism for partially adjusting the relative distance between the outward conductor and the return conductor. Is to be.
 このように構成されたプラズマ処理装置によれば、距離調整機構が、往路導体及び復路導体の相対距離を部分的に調整するので、アンテナの長手方向に沿ったプラズマ密度分布を細やかに調整することができ、プラズマ密度分布のさらなる均一化を図れる。 According to the plasma processing device configured in this way, the distance adjustment mechanism partially adjusts the relative distance between the outward conductor and the return conductor, so that the plasma density distribution along the longitudinal direction of the antenna can be finely adjusted. This makes it possible to further make the plasma density distribution more uniform.
 仮に復路導体を設けることなく、往路導体を流れた高周波電流を真空容器等の接地電位の構造物を介して電源へ戻そうとすると、その戻り経路を流れる高周波電流は、発熱による電力損失を生じるに過ぎず、プラズマ生成に有効に用いられない。
 そこで、復路導体を流れる高周波電流を有効に活用するためには、前記距離調整機構が、前記復路導体の位置を調整するものであることが好ましい。
 これならば、復路導体を流れる高周波電流によりプラズマ密度分布を調整できるので、復路導体を流れる高周波電流をプラズマ生成に有効に活用することができる。
If an attempt is made to return the high-frequency current flowing through the outgoing conductor to the power supply via a structure having a ground potential such as a vacuum vessel without providing the return conductor, the high-frequency current flowing through the return path causes power loss due to heat generation. However, it is not effectively used for plasma generation.
Therefore, in order to effectively utilize the high-frequency current flowing through the return conductor, it is preferable that the distance adjusting mechanism adjusts the position of the return conductor.
In this case, since the plasma density distribution can be adjusted by the high frequency current flowing through the return conductor, the high frequency current flowing through the return conductor can be effectively utilized for plasma generation.
 アンテナの長手方向に沿ったプラズマ密度分布をより細やかに調整できるようにするためには、前記距離調整機構が、前記復路導体の複数箇所の位置を調整するものであることが好ましい。 In order to be able to finely adjust the plasma density distribution along the longitudinal direction of the antenna, it is preferable that the distance adjusting mechanism adjusts the positions of a plurality of positions of the return conductor.
 前記往路導体が前記復路導体よりも前記真空容器の近くに配置されていることが好ましい。
 これならば、往路導体から真空容器内までの距離を短くすることができ、往路導体から生じた高周波磁場を効率良く真空容器内に供給することができる。
It is preferable that the outward conductor is arranged closer to the vacuum vessel than the return conductor.
In this case, the distance from the outward conductor to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the outward conductor can be efficiently supplied into the vacuum vessel.
 前記復路導体を被服する誘電体チューブと、前記誘電体チューブ内に設けられて、前記誘電体チューブ内において前記復路導体を位置決めする位置決め部材とをさらに備えることが好ましい。
 これならば、誘電体チューブを外力で容易に変形させることができるので、プラズマ密度分布の部分的な調整を簡単に行うことがでる。
 しかも、復路導体が位置決め部材により誘電体チューブ内で位置決めされているので、往路導体と復路導体との相対距離をより精度良く調整することができ、ひいてはアンテナの長手方向に沿ったプラズマ密度分布をより細かやかに調整することが可能となる。
It is preferable to further include a dielectric tube covering the return conductor and a positioning member provided in the dielectric tube for positioning the return conductor in the dielectric tube.
In this case, since the dielectric tube can be easily deformed by an external force, the plasma density distribution can be easily partially adjusted.
Moreover, since the return conductor is positioned in the dielectric tube by the positioning member, the relative distance between the outward conductor and the return conductor can be adjusted more accurately, and the plasma density distribution along the longitudinal direction of the antenna can be adjusted. It is possible to make finer adjustments.
 復路導体を流れる高周波電流による発熱が誘電体チューブを損傷させる懸念される。
 そこで、前記誘電体チューブ内に冷却水が流れることが好ましい。
 これならば、誘電体チューブによる距離調整の簡素化を担保しつつ、この誘電体チューブの冷却機能をも発揮させることができる。
There is a concern that heat generated by the high-frequency current flowing through the return conductor will damage the dielectric tube.
Therefore, it is preferable that the cooling water flows in the dielectric tube.
In this case, the cooling function of the dielectric tube can be exhibited while ensuring the simplification of the distance adjustment by the dielectric tube.
 より具体的な実施態様としては、前記位置決め部材が、前記誘電体チューブ内の複数箇所に設けられており、前記各位置決め部材は、前記冷却水が流れる流通孔を有している態様を挙げることができる。 As a more specific embodiment, the positioning member is provided at a plurality of locations in the dielectric tube, and each positioning member has a flow hole through which the cooling water flows. Can be done.
 冷却水による冷却効果を向上させるためには、前記冷却水が前記誘電体チューブ内を蛇行しながら流れることが好ましい。 In order to improve the cooling effect of the cooling water, it is preferable that the cooling water flows while meandering in the dielectric tube.
 このように構成した本発明によれば、アンテナの長手方向に沿ったプラズマ密度分布を細やかに調整できるようにして、プラズマ密度分布のさらなる均一化を図れる。 According to the present invention configured in this way, the plasma density distribution along the longitudinal direction of the antenna can be finely adjusted, and the plasma density distribution can be further made uniform.
第1実施形態のプラズマ処理装置の構成を模式的に示す縦断面図。The vertical sectional view schematically showing the structure of the plasma processing apparatus of 1st Embodiment. 同第1実施形態のプラズマ処理装置の構成を模式的に示す横断面図。The cross-sectional view schematically showing the structure of the plasma processing apparatus of the 1st Embodiment. 同第1実施形態における距離調整機構の構成を示す模式図。The schematic diagram which shows the structure of the distance adjustment mechanism in the 1st Embodiment. 第2実施形態における復路導体の構成を示す模式図。The schematic diagram which shows the structure of the return conductor in 2nd Embodiment. 同第2実施形態における位置決め部材の構成を示す模式図。The schematic diagram which shows the structure of the positioning member in the 2nd Embodiment. 同第2実施形態における位置決め部材の構成を示す模式図。The schematic diagram which shows the structure of the positioning member in the 2nd Embodiment.
100・・・プラズマ処理装置
W  ・・・基板
P  ・・・誘導結合プラズマ
1  ・・・真空容器
10x・・・開口
2  ・・・アンテナ
21 ・・・往路導体
22 ・・・復路導体
23 ・・・誘電体チューブ
24 ・・・位置決め部材
24L・・・流通孔
3  ・・・高周波電源
9  ・・・高周波窓
10 ・・・距離調整機構
100 ... Plasma processing device W ... Substrate P ... Inductively coupled plasma 1 ... Vacuum container 10x ... Opening 2 ... Antenna 21 ... Outward conductor 22 ... Return conductor 23 ...・ Dielectric tube 24 ・ ・ ・ Positioning member 24L ・ ・ ・ Flow hole 3 ・ ・ ・ High frequency power supply 9 ・ ・ ・ High frequency window 10 ・ ・ ・ Distance adjustment mechanism
[第1実施形態]
 以下に、本発明に係るプラズマ処理装置の一実施形態について、図面を参照して説明する。
[First Embodiment]
Hereinafter, an embodiment of the plasma processing apparatus according to the present invention will be described with reference to the drawings.
<装置構成>
 本実施形態のプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板Wに処理を施すものである。ここで、基板Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また、基板Wに施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。
<Device configuration>
The plasma processing apparatus 100 of the present embodiment processes the substrate W using an inductively coupled plasma P. Here, the substrate W is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, and the like. The processing applied to the substrate W is, for example, film formation, etching, ashing, sputtering, or the like by a plasma CVD method.
 なお、このプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はスパッタリング装置とも呼ばれる。 The plasma processing apparatus 100 is also referred to as a plasma CVD apparatus when forming a film by a plasma CVD method, a plasma etching apparatus when performing etching, a plasma ashing apparatus when performing ashing, and a sputtering apparatus when performing sputtering. ..
 具体的にプラズマ処理装置100は、図1及び図2に示すように、真空排気され且つガスGが導入される真空容器1と、真空容器1の内部にプラズマを発生させるプラズマ源200とを具備してなり、プラズマ源200は、真空容器1の外部に設けられたアンテナ2と、アンテナ2に高周波を印加する高周波電源3とを備えたものである。かかる構成において、アンテナ2に高周波電源3から高周波を印加することによりアンテナ2には高周波電流IRが流れて、真空容器1内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIGS. 1 and 2, the plasma processing apparatus 100 includes a vacuum vessel 1 that is evacuated and introduced with gas G, and a plasma source 200 that generates plasma inside the vacuum vessel 1. Therefore, the plasma source 200 includes an antenna 2 provided outside the vacuum vessel 1 and a high frequency power supply 3 for applying a high frequency to the antenna 2. In such a configuration, by applying a high frequency from the high frequency power supply 3 to the antenna 2, a high frequency current IR flows through the antenna 2, an induced electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated.
 真空容器1は、例えば金属製の容器であり、その壁(ここでは上壁1a)には、厚さ方向に貫通する開口1xが形成されている。この真空容器1は、ここでは電気的に接地されており、その内部は真空排気装置4によって真空排気される。 The vacuum container 1 is, for example, a metal container, and an opening 1x penetrating in the thickness direction is formed on the wall thereof (here, the upper wall 1a). The vacuum container 1 is electrically grounded here, and the inside thereof is evacuated by the vacuum exhaust device 4.
 また、真空容器1内には、例えば流量調整器(図示省略)や真空容器1に設けられた1又は複数のガス導入口10Pを経由して、ガスGが導入される。ガスGは、基板Wに施す処理内容に応じたものにすれば良い。例えば、プラズマCVD法によって基板に膜形成を行う場合には、ガスGは、原料ガス又はそれを希釈ガス(例えばH)で希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板上に形成することができる。 Further, the gas G is introduced into the vacuum container 1 via, for example, a flow rate regulator (not shown) or one or a plurality of gas introduction ports 10P provided in the vacuum container 1. The gas G may be set according to the processing content applied to the substrate W. For example, when a film is formed on a substrate by a plasma CVD method, the gas G is a raw material gas or a gas obtained by diluting the raw material gas ( for example, H2). More specifically, when the raw material gas is SiH 4 , a Si film is used, when SiH 4 + NH 3 is used, a SiN film is used, when SiH 4 + O 2 is used, a SiO 2 film is used, and when SiF 4 + N 2 is used, SiN is used. : F film (fluorinated silicon nitride film) can be formed on the substrate respectively.
 この真空容器1の内部には、基板Wを保持する基板ホルダ5が設けられている。この例のように、基板ホルダ5にバイアス電源6からバイアス電圧を印加するようにしても良い。バイアス電圧は、例えば負の直流電圧、負のバイアス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ5内に、基板Wを加熱するヒータ51を設けておいても良い。 Inside the vacuum container 1, a substrate holder 5 for holding the substrate W is provided. As in this example, a bias voltage may be applied to the substrate holder 5 from the bias power supply 6. The bias voltage is, for example, a negative DC voltage, a negative bias voltage, or the like, but is not limited thereto. With such a bias voltage, for example, the energy when the positive ions in the plasma P are incident on the substrate W can be controlled to control the crystallinity of the film formed on the surface of the substrate W. .. A heater 51 for heating the substrate W may be provided in the substrate holder 5.
 アンテナ2は、図1及び図2に示すように、真空容器1に形成された開口1xに臨むように配置されている。なお、アンテナ2の本数は1本に限らず、複数本のアンテナ2を設けても良い。 As shown in FIGS. 1 and 2, the antenna 2 is arranged so as to face the opening 1x formed in the vacuum container 1. The number of antennas 2 is not limited to one, and a plurality of antennas 2 may be provided.
 アンテナ2は、図2に示すように、その一端部である給電端部2aが、整合回路31を介して高周波電源3が接続されており、他端部である終端部2bが、直接接地されている。なお、終端部2bは、コンデンサ又はコイル等を介して接地されてもよい。 As shown in FIG. 2, the antenna 2 has a feeding end 2a, which is one end thereof, connected to a high frequency power supply 3 via a matching circuit 31, and a terminal 2b, which is the other end, is directly grounded. ing. The terminal portion 2b may be grounded via a capacitor, a coil, or the like.
 高周波電源3は、整合回路31を介してアンテナ2に高周波電流IRを流すことができる。高周波の周波数は例えば一般的な13.56MHzであるが、これに限られるものではなく適宜変更してもよい。 The high frequency power supply 3 can pass a high frequency current IR to the antenna 2 via the matching circuit 31. The frequency of the high frequency is, for example, 13.56 MHz, which is generally used, but the frequency is not limited to this and may be changed as appropriate.
 ここで、本実施形態のプラズマ源200は、真空容器1の壁(上壁1a)に形成された開口1xを真空容器1の外側から塞ぐスリット板7と、スリット板7に形成されたスリット7xを真空容器1の外側から塞ぐ誘電体板8とをさらに備えている。 Here, the plasma source 200 of the present embodiment has a slit plate 7 that closes the opening 1x formed in the wall (upper wall 1a) of the vacuum container 1 from the outside of the vacuum container 1 and a slit 7x formed in the slit plate 7. Further includes a dielectric plate 8 for closing the vacuum container 1 from the outside.
 スリット板7は、その厚み方向に貫通してなるスリット7xが形成されたものであり、アンテナ2から生じた高周波磁場を真空容器1内に透過させるとともに、真空容器1の外部から真空容器1の内部への電界の入り込みを防ぐものである。 The slit plate 7 is formed with a slit 7x penetrating in the thickness direction thereof, and the high-frequency magnetic field generated from the antenna 2 is transmitted into the vacuum vessel 1 and the vacuum vessel 1 is transmitted from the outside of the vacuum vessel 1 to the vacuum vessel 1. It prevents the electric field from entering the inside.
 具体的にこのスリット板7は、図3に示すように、具体的には互いに平行な複数のスリット7xが形成された平板状のものであり、後述する誘電体板よりも機械強度が高いことが好ましく、誘電体板よりも厚み寸法が大きいことが好ましい。 Specifically, as shown in FIG. 3, the slit plate 7 is a flat plate having a plurality of slits 7x parallel to each other, and has higher mechanical strength than the dielectric plate described later. Is preferable, and it is preferable that the thickness dimension is larger than that of the dielectric plate.
 より具体的に説明すると、スリット板7は、例えばCu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W又はCoを含む群から選択される1種の金属又はそれらの合金(例えばステンレス合金、アルミニウム合金等)等の金属材料を圧延加工(例えば冷間圧延や熱間圧延)などにより製造したものであり、例えば厚みが約5mmのものである。ただし、製造方法や厚みはこれに限らず仕様に応じて適宜変更して構わない。 More specifically, the slit plate 7 is one selected from the group containing, for example, Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W or Co. A metal material such as a metal or an alloy thereof (for example, a stainless alloy, an aluminum alloy, etc.) is manufactured by rolling (for example, cold rolling or hot rolling), and has a thickness of, for example, about 5 mm. However, the manufacturing method and thickness are not limited to this, and may be appropriately changed according to the specifications.
 誘電体板8は、スリット板7の外向き面(真空容器1の内部を向く内向き面の裏面)に設けられて、スリット板のスリットを塞ぐものである。 The dielectric plate 8 is provided on the outward surface of the slit plate 7 (the back surface of the inward facing surface facing the inside of the vacuum vessel 1) to close the slit of the slit plate.
 誘電体板8は、全体が誘電体物質で構成された平板状をなすものであり、例えばアルミナ、炭化ケイ素、窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、フッ素樹脂(例えばテフロン)等の樹脂材料等からなる。なお、誘電損を低減する観点から、誘電体板8を構成する材料は、誘電正接が0.01以下のものが好ましく、0.005以下のものがより好ましい。 The dielectric plate 8 has a flat plate shape that is entirely composed of a dielectric material, and is, for example, ceramics such as alumina, silicon carbide, and silicon nitride, inorganic materials such as quartz glass and non-alkali glass, and fluororesins (for example). It is made of a resin material such as Teflon). From the viewpoint of reducing dielectric loss, the material constituting the dielectric plate 8 preferably has a dielectric loss tangent of 0.01 or less, and more preferably 0.005 or less.
 ここでは誘電体板8の板厚をスリット板7の板厚よりも小さくしているが、これに限定されず、例えば真空容器1を真空排気した状態において、スリット7xから受ける真空容器1の内外の差圧に耐え得る強度を備えれば良く、スリット7xの数や長さ等の仕様に応じて適宜設定されてよい。ただし、アンテナ2と真空容器1との間の距離を短くする観点からは薄い方が好ましい。 Here, the plate thickness of the dielectric plate 8 is made smaller than the plate thickness of the slit plate 7, but the plate thickness is not limited to this. It suffices to have a strength that can withstand the differential pressure of the above, and may be appropriately set according to specifications such as the number and length of the slits 7x. However, it is preferable that the antenna 2 is thin from the viewpoint of shortening the distance between the antenna 2 and the vacuum vessel 1.
 かかる構成により、スリット板7及び誘電体板8は、磁場を透過させる高周波窓(磁場透過窓)9として機能を担う。すなわち、高周波電源3からアンテナ2に高周波を印加すると、アンテナ2から発生した高周波磁場が、スリット板7及び誘電体板8からなる高周波窓9を透過して真空容器1内に形成(供給)される。これにより、真空容器1内の空間に誘導電界が発生し、誘導結合型のプラズマPが生成される。 With this configuration, the slit plate 7 and the dielectric plate 8 function as a high-frequency window (magnetic field transmission window) 9 for transmitting a magnetic field. That is, when a high frequency is applied from the high frequency power supply 3 to the antenna 2, the high frequency magnetic field generated from the antenna 2 passes through the high frequency window 9 composed of the slit plate 7 and the dielectric plate 8 and is formed (supplied) in the vacuum vessel 1. To. As a result, an induced electric field is generated in the space inside the vacuum vessel 1, and an inductively coupled plasma P is generated.
 然して、本実施形態では、図1~図3に示すように、アンテナ2が、高周波電流IRの流れる方向が互いに逆向きの往路導体21及び復路導体22を有し、プラズマ処理装置100が、図3に示すように、往路導体21及び復路導体22の相対距離を部分的に調整する距離調整機構10をさらに備えている。 However, in the present embodiment, as shown in FIGS. 1 to 3, the antenna 2 has an outward conductor 21 and a return conductor 22 in which the directions in which the high-frequency current IR flows are opposite to each other, and the plasma processing apparatus 100 is a diagram. As shown in 3, the distance adjusting mechanism 10 for partially adjusting the relative distance between the outward conductor 21 and the return conductor 22 is further provided.
 まず、往路導体21及び復路導体22について説明する。
 本実施形態の往路導体21及び復路導体22は、互いに電気的に接続されており、共通の高周波電源3に接続されている。具体的には、往路導体21は、整合回路31を介して高周波電源3に接続される上述の給電端部2aを有し、復路導体22は、直接接地される上述の終端部2bを有する。
First, the outward conductor 21 and the return conductor 22 will be described.
The outward conductor 21 and the return conductor 22 of the present embodiment are electrically connected to each other and are connected to a common high frequency power source 3. Specifically, the outward conductor 21 has the above-mentioned feeding end portion 2a connected to the high-frequency power supply 3 via the matching circuit 31, and the return conductor 22 has the above-mentioned termination portion 2b to be directly grounded.
 本実施形態では、往路導体21及び復路導体22が上下方向に、すなわち真空容器1の開口10xに対して垂直な方向に沿って離間して配置されており、ここでは往路導体21が復路導体22よりも真空容器1の開口10x近くに配置されている。 In the present embodiment, the outward conductor 21 and the return conductor 22 are arranged vertically, that is, separated from each other along the direction perpendicular to the opening 10x of the vacuum vessel 1, where the outward conductor 21 is the return conductor 22. It is arranged closer to the opening 10x of the vacuum container 1 than the vacuum container 1.
 往路導体21は、真空容器1の開口10xに対して平行に延びるものであり、ここではパイプ状の導体である。また、復路導体22は、往路導体21とは逆向きの高周波電流IRが流れるように配置されており、ここではパイプ状の導体である。 The outward conductor 21 extends parallel to the opening 10x of the vacuum vessel 1, and is a pipe-shaped conductor here. Further, the return conductor 22 is arranged so that a high frequency current IR in the direction opposite to that of the outward conductor 21 flows, and is a pipe-shaped conductor here.
 次に、距離調整機構10について説明する。
 距離調整機構10は、往路導体21及び復路導体22の離間方向に沿った離間距離、すなわちここでは往路導体21及び復路導体22の上下方向に沿った離間距離を部分的に調整するものである。
Next, the distance adjusting mechanism 10 will be described.
The distance adjusting mechanism 10 partially adjusts the separation distance along the separation direction of the outward conductor 21 and the return conductor 22, that is, here, the separation distance along the vertical direction of the outward conductor 21 and the return conductor 22.
 本実施形態の距離調整機構10は、復路導体22の位置を調整することにより上述した離間距離を部分的に調整するものであり、具体的には復路導体22の長手方向に沿った一部分又は複数部分の位置を調整可能に構成されている。 The distance adjusting mechanism 10 of the present embodiment partially adjusts the above-mentioned separation distance by adjusting the position of the return conductor 22, and specifically, a part or a plurality of the distance adjustment mechanism 10 along the longitudinal direction of the return conductor 22. The position of the part is adjustable.
 より具体的に説明すると、距離調整機構10は、復路導体22の複数箇所を把持しながら往路導体21に対して進退可能な複数の把持部11と、これらの把持部11を独立して移動させるモータ等の図示しない駆動源とを備えている。 More specifically, the distance adjusting mechanism 10 independently moves the plurality of grips 11 capable of advancing and retreating with respect to the outward conductor 21 while gripping the plurality of points of the return conductor 22 and these grips 11. It is equipped with a drive source (not shown) such as a motor.
 複数の把持部11は、復路導体22とは電気的に絶縁された絶縁物であり、ここでは上下方向に移動可能なものである。これらの把持部11のうちの1つは、図3に示すように、真空容器1の開口10xの中央部の直上に配置されており、この把持部11に対して復路導体22の長手方向に沿った対称的な位置に別の把持部11が設けられている。また、本実施形態では、複数の把持部11が等間隔に配置されており、これらは何れも、真空容器1の開口10xに直交する方向から視て、開口10xの内側に設けられている。 The plurality of grip portions 11 are insulators that are electrically insulated from the return conductor 22, and are movable in the vertical direction here. As shown in FIG. 3, one of these grip portions 11 is arranged directly above the central portion of the opening 10x of the vacuum vessel 1, and is arranged in the longitudinal direction of the return conductor 22 with respect to the grip portion 11. Another grip portion 11 is provided at a symmetrical position along the line. Further, in the present embodiment, a plurality of grip portions 11 are arranged at equal intervals, and all of them are provided inside the opening 10x when viewed from a direction orthogonal to the opening 10x of the vacuum container 1.
<第1実施形態の効果>
 このように構成した本実施形態のプラズマ処理装置100によれば、距離調整機構10が、往路導体21及び復路導体22の相対距離を部分的に調整するので、アンテナ2の長手方向に沿ったプラズマ密度分布を細やかに調整することができ、プラズマ密度分布のさらなる均一化を図れる。
<Effect of the first embodiment>
According to the plasma processing apparatus 100 of the present embodiment configured as described above, since the distance adjusting mechanism 10 partially adjusts the relative distance between the outward conductor 21 and the inbound conductor 22, plasma along the longitudinal direction of the antenna 2. The density distribution can be finely adjusted, and the plasma density distribution can be further made uniform.
 また、距離調整機構10が、復路導体22の位置を調整するので、この復路導体22を流れる高周波電流IRによりプラズマ密度分布を調整でき、復路導体22を流れる高周波電流IRをプラズマ生成に有効に活用することができる。 Further, since the distance adjusting mechanism 10 adjusts the position of the return conductor 22, the plasma density distribution can be adjusted by the high frequency current IR flowing through the return conductor 22, and the high frequency current IR flowing through the return conductor 22 can be effectively used for plasma generation. can do.
 さらに、距離調整機構10が、復路導体22の複数箇所の位置を調整するので、アンテナ2の長手方向に沿ったプラズマ密度分布をより細やかに調整することができる。 Further, since the distance adjusting mechanism 10 adjusts the positions of the return conductor 22 at a plurality of locations, the plasma density distribution along the longitudinal direction of the antenna 2 can be finely adjusted.
 そのうえ、往路導体21が復路導体22よりも真空容器1の近くに配置されているので、往路導体21から真空容器1内までの距離を短くすることができ、往路導体21から生じた高周波磁場を効率良く真空容器1内に供給することができる。 Moreover, since the outward conductor 21 is arranged closer to the vacuum vessel 1 than the inbound conductor 22, the distance from the outward conductor 21 to the inside of the vacuum vessel 1 can be shortened, and the high-frequency magnetic field generated from the outward conductor 21 can be reduced. It can be efficiently supplied into the vacuum vessel 1.
[第2実施形態]
 次に、本発明に係るプラズマ処理装置の第2実施形態について、図面を参照して説明する。
[Second Embodiment]
Next, a second embodiment of the plasma processing apparatus according to the present invention will be described with reference to the drawings.
 本実施形態では、復路導体22やその周辺構造が、前記第1実施形態とは相違するので、この相違点について述べる。 In the present embodiment, the return conductor 22 and its peripheral structure are different from the first embodiment, and this difference will be described.
 本実施形態の復路導体22は、図4に示すように、往路導体21とは逆向きの高周波電流IRが流れるように配置されており、ここでは線状の導体である。 As shown in FIG. 4, the return conductor 22 of the present embodiment is arranged so that a high-frequency current IR in the direction opposite to that of the outward conductor 21 flows, and is a linear conductor here.
 そして、この復路導体22は、同図4に示すように、誘電体チューブ23により被覆されている。 Then, as shown in FIG. 4, the return conductor 22 is covered with the dielectric tube 23.
 誘電体チューブ23は、可撓性を有する誘電体からなり、具体的には例えばテフロンやナイロン等からなるチューブである。 The dielectric tube 23 is made of a flexible dielectric, specifically, for example, a tube made of Teflon, nylon, or the like.
 誘電体チューブ23の内部には、図5及び図6に示すように、誘電体チューブ23内において復路導体22を位置決めする位置決め部材24が設けられている。 As shown in FIGS. 5 and 6, a positioning member 24 for positioning the return conductor 22 in the dielectric tube 23 is provided inside the dielectric tube 23.
 位置決め部材24は、誘電体からなるものであり、ここでは復路導体22を誘電体チューブ23の中心軸上に位置決めするものである。具体的にこの位置決め部材24は、誘電体チューブ23内にガタ無く嵌め入れられる柱状のものであり、その中心に復路導体22が貫通する貫通孔24Hが形成されている。 The positioning member 24 is made of a dielectric, and here, the return conductor 22 is positioned on the central axis of the dielectric tube 23. Specifically, the positioning member 24 is a columnar one that can be fitted into the dielectric tube 23 without play, and a through hole 24H through which the return conductor 22 penetrates is formed in the center thereof.
 また、誘電体チューブ23の内部には、図5に示すように、誘電体チューブ23内において復路導体22を位置決めする第2の位置決め部材25が設けられている。この第2の位置決め部材25は、誘電体からなるものであり、復路導体22を誘電体チューブ23の中心軸上に位置決めするものである。具体的にこの第2の位置決め部材25は、誘電体チューブの中心軸に沿って延びる長尺状のものであり、その中心に復路導体22が貫通する貫通孔が形成されている。 Further, as shown in FIG. 5, a second positioning member 25 for positioning the return conductor 22 in the dielectric tube 23 is provided inside the dielectric tube 23. The second positioning member 25 is made of a dielectric and positions the return conductor 22 on the central axis of the dielectric tube 23. Specifically, the second positioning member 25 has a long shape extending along the central axis of the dielectric tube, and a through hole through which the return conductor 22 penetrates is formed in the center thereof.
 本実施形態では、誘電体チューブ23内に冷却水が流れるように構成されている。具体的には、図5に示すように、誘電体チューブ23内の軸方向に沿った複数箇所に位置決め部材24が設けられており、各位置決め部材24は、冷却水が流れる流通孔24Lを有している。 In this embodiment, the cooling water is configured to flow in the dielectric tube 23. Specifically, as shown in FIG. 5, positioning members 24 are provided at a plurality of locations along the axial direction in the dielectric tube 23, and each positioning member 24 has a flow hole 24L through which cooling water flows. is doing.
 より具体的に説明すると、図6に示すように、各位置決め部材24は、複数の流通孔24Lを有しており、これらの流通孔24Lは例えば周方向に沿って等間隔に配置されている。そして、互いに隣り合う位置決め部材24の流通孔24Lは、誘電体チューブ23の軸方向から視て重なり合うことなく、ここでは周方向にずれて配置されている。これにより、冷却水は、誘電体チューブ23内を蛇行しながら流れる。 More specifically, as shown in FIG. 6, each positioning member 24 has a plurality of flow holes 24L, and these flow holes 24L are arranged at equal intervals, for example, along the circumferential direction. .. The flow holes 24L of the positioning members 24 adjacent to each other are arranged so as to be offset in the circumferential direction without overlapping when viewed from the axial direction of the dielectric tube 23. As a result, the cooling water meanders through the dielectric tube 23.
<第2実施形態の効果>
 このように構成した本実施形態のプラズマ処理装置100によれば、復路導体22を線状のものとし、その復路導体22を誘電体チューブ23により被覆しているので、復路導体22や誘電体チューブ23を外力で容易に変形させることができ、プラズマ密度分布の部分的な調整を簡単に行うことがでる。
<Effect of the second embodiment>
According to the plasma processing apparatus 100 of the present embodiment configured as described above, since the return conductor 22 is linear and the return conductor 22 is covered with the dielectric tube 23, the return conductor 22 and the dielectric tube are covered. 23 can be easily deformed by an external force, and partial adjustment of the plasma density distribution can be easily performed.
 しかも、復路導体22が位置決め部材24により誘電体チューブ23内で位置決めされているので、往路導体21と復路導体22との相対距離をより精度良く調整することができ、ひいてはアンテナ2の長手方向に沿ったプラズマ密度分布をより細かやかに調整することが可能となる。 Moreover, since the return conductor 22 is positioned in the dielectric tube 23 by the positioning member 24, the relative distance between the outward conductor 21 and the return conductor 22 can be adjusted more accurately, and by extension, in the longitudinal direction of the antenna 2. It becomes possible to finely adjust the plasma density distribution along the line.
 さらに、冷却水が誘電体チューブ23内を蛇行しながら流れるので、誘電体チューブ23による距離調整の簡素化を担保しつつ、この誘電体チューブ23の冷却機能をも発揮させることができる。 Further, since the cooling water meanders in the dielectric tube 23, the cooling function of the dielectric tube 23 can be exhibited while ensuring the simplification of the distance adjustment by the dielectric tube 23.
[その他の変形実施形態]
 なお、本発明は前記実施形態に限られるものではない。
[Other Modifications]
The present invention is not limited to the above embodiment.
 例えば、前記実施形態では往路導体21及び復路導体22が電気的に接続されている場合について説明したが、これらは必ずしも電気的に接続されている必要はなく、互いに逆向きに高周波電流IRが流れるものであれば、例えば往路導体21及び復路導体22を別々の高周波電源3に接続しても良い。 For example, in the above embodiment, the case where the outward conductor 21 and the return conductor 22 are electrically connected has been described, but they do not necessarily have to be electrically connected, and high-frequency current IR flows in opposite directions to each other. If it is, for example, the outward conductor 21 and the return conductor 22 may be connected to separate high frequency power supplies 3.
 さらに、前記実施形態の距離調整機構10は、復路導体22の位置を調整するものであったが、往路導体21の位置を調整するものであっても良い。 Further, although the distance adjusting mechanism 10 of the above embodiment adjusts the position of the return conductor 22, it may adjust the position of the outward conductor 21.
 加えて、前記実施形態では往路導体21及び復路導体22が上下方向に離間して設けられていたが、例えば真空容器1の開口10Xと平行な方向に沿って離間していても良い。 In addition, in the above-described embodiment, the outward conductor 21 and the return conductor 22 are provided apart in the vertical direction, but may be separated along a direction parallel to the opening 10X of the vacuum vessel 1, for example.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
 本発明によれば、アンテナの長手方向に沿ったプラズマ密度分布を細やかに調整できるようにして、プラズマ密度分布のさらなる均一化を図れる。
 
According to the present invention, the plasma density distribution along the longitudinal direction of the antenna can be finely adjusted, and the plasma density distribution can be further made uniform.

Claims (8)

  1.  真空容器と、
     前記真空容器の外部に設けられて高周波電流が流れるアンテナと、
     前記真空容器の前記アンテナに臨む位置に形成された開口を塞ぐ高周波窓とを備え、
     前記アンテナが、
     高周波電流の流れる方向が互いに逆向きの往路導体及び復路導体を有し、
     前記往路導体及び前記復路導体の相対距離を部分的に調整する距離調整機構をさらに備える、プラズマ処理装置。
    With a vacuum container,
    An antenna provided outside the vacuum vessel and through which a high-frequency current flows,
    The vacuum vessel is provided with a high-frequency window that closes an opening formed at a position facing the antenna.
    The antenna
    It has an outward conductor and a return conductor in which the directions of high-frequency current flow are opposite to each other.
    A plasma processing apparatus further comprising a distance adjusting mechanism for partially adjusting the relative distance between the outward conductor and the return conductor.
  2.  前記距離調整機構が、前記復路導体の位置を調整するものである、請求項1記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the distance adjusting mechanism adjusts the position of the return conductor.
  3.  前記距離調整機構が、前記復路導体の複数箇所の位置を調整するものである、請求項2記載のプラズマ処理装置。 The plasma processing apparatus according to claim 2, wherein the distance adjusting mechanism adjusts the positions of a plurality of locations of the return conductor.
  4.  前記往路導体が前記復路導体よりも前記真空容器の近くに配置されている、請求項1乃至3のうち何れか一項に記載のプラズマ処理装置。 The plasma processing apparatus according to any one of claims 1 to 3, wherein the outward conductor is arranged closer to the vacuum container than the return conductor.
  5.  前記復路導体を被服する誘電体チューブと、
     前記誘電体チューブ内に設けられて、前記誘電体チューブ内において前記復路導体を位置決めする位置決め部材とをさらに備える、請求項1乃至4のうち何れか一項に記載のプラズマ処理装置。
    A dielectric tube covering the return conductor and
    The plasma processing apparatus according to any one of claims 1 to 4, further comprising a positioning member provided in the dielectric tube and positioning the return conductor in the dielectric tube.
  6.  前記誘電体チューブ内に冷却水が流れる、請求項5記載のプラズマ処理装置。 The plasma processing apparatus according to claim 5, wherein cooling water flows in the dielectric tube.
  7.  前記位置決め部材が、前記誘電体チューブ内の複数箇所に設けられており、
     前記各位置決め部材は、前記冷却水が流れる流通孔を有している、請求項6記載のプラズマ処理装置。
    The positioning member is provided at a plurality of locations in the dielectric tube, and the positioning member is provided at a plurality of locations.
    The plasma processing apparatus according to claim 6, wherein each of the positioning members has a flow hole through which the cooling water flows.
  8.  前記冷却水が前記誘電体チューブ内を蛇行しながら流れる、請求項7記載のプラズマ処理装置。 The plasma processing apparatus according to claim 7, wherein the cooling water flows while meandering in the dielectric tube.
PCT/JP2021/040496 2020-11-27 2021-11-04 Plasma treatment device WO2022113676A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180064165.3A CN116261773A (en) 2020-11-27 2021-11-04 Plasma processing apparatus
KR1020237009285A KR20230050457A (en) 2020-11-27 2021-11-04 plasma processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196606A JP2022085103A (en) 2020-11-27 2020-11-27 Plasma processing apparatus
JP2020-196606 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113676A1 true WO2022113676A1 (en) 2022-06-02

Family

ID=81754411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040496 WO2022113676A1 (en) 2020-11-27 2021-11-04 Plasma treatment device

Country Status (5)

Country Link
JP (1) JP2022085103A (en)
KR (1) KR20230050457A (en)
CN (1) CN116261773A (en)
TW (1) TWI806253B (en)
WO (1) WO2022113676A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing
JP2011096687A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method
JP2012033960A (en) * 2011-10-27 2012-02-16 Panasonic Corp Plasma etching apparatus
JP2013020871A (en) * 2011-07-13 2013-01-31 Nissin Electric Co Ltd Plasma processing apparatus
US20160079042A1 (en) * 2014-09-11 2016-03-17 Varian Semiconductor Equipment Associates, Inc. Uniformity Control using Adjustable Internal Antennas
JP2020181656A (en) * 2019-04-24 2020-11-05 株式会社プラズマイオンアシスト Inductively-coupled antenna unit and plasma processing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844697B1 (en) 1970-01-28 1973-12-26
JP7061257B2 (en) * 2017-03-17 2022-04-28 日新電機株式会社 Sputtering equipment
US11515122B2 (en) * 2019-03-19 2022-11-29 Tokyo Electron Limited System and methods for VHF plasma processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing
JP2011096687A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Plasma processing apparatus and method
JP2013020871A (en) * 2011-07-13 2013-01-31 Nissin Electric Co Ltd Plasma processing apparatus
JP2012033960A (en) * 2011-10-27 2012-02-16 Panasonic Corp Plasma etching apparatus
US20160079042A1 (en) * 2014-09-11 2016-03-17 Varian Semiconductor Equipment Associates, Inc. Uniformity Control using Adjustable Internal Antennas
JP2020181656A (en) * 2019-04-24 2020-11-05 株式会社プラズマイオンアシスト Inductively-coupled antenna unit and plasma processing device

Also Published As

Publication number Publication date
KR20230050457A (en) 2023-04-14
CN116261773A (en) 2023-06-13
TW202222103A (en) 2022-06-01
JP2022085103A (en) 2022-06-08
TWI806253B (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP5631088B2 (en) Plasma processing apparatus and plasma processing method
US20030141820A1 (en) Method and apparatus for substrate processing
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
WO2004108979A1 (en) Thin film forming device and thin film forming method
WO2003086032A1 (en) Ecr plasma source and ecr plasma device
US9601330B2 (en) Plasma processing device, and plasma processing method
JP2017033788A (en) Plasma processing apparatus
KR20210150561A (en) plasma processing device
WO2022113676A1 (en) Plasma treatment device
WO2021182638A1 (en) Sputtering device
TWI770144B (en) Plasma processing device
JP7232410B2 (en) Plasma processing equipment
JP7302338B2 (en) Plasma processing equipment
JP2020198282A (en) Plasma processing apparatus
WO2012008525A1 (en) Plasma processing device and plasma processing method
JP7303980B2 (en) Plasma processing equipment
JP2018156864A (en) Plasma processing apparatus
JP2022023394A (en) Plasma processing apparatus
JP7403052B2 (en) Plasma source and plasma processing equipment
WO2016129437A1 (en) Plasma processing device
WO2012008523A1 (en) Plasma treatment device
JP2001210628A (en) Plasma treatment apparatus
JP2021098876A (en) Plasma treatment apparatus
WO2021181531A1 (en) Antenna mechanism and plasma processing device
WO2023136008A1 (en) Plasma treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237009285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897652

Country of ref document: EP

Kind code of ref document: A1