WO2021182638A1 - Sputtering device - Google Patents

Sputtering device Download PDF

Info

Publication number
WO2021182638A1
WO2021182638A1 PCT/JP2021/010234 JP2021010234W WO2021182638A1 WO 2021182638 A1 WO2021182638 A1 WO 2021182638A1 JP 2021010234 W JP2021010234 W JP 2021010234W WO 2021182638 A1 WO2021182638 A1 WO 2021182638A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
antenna
dielectric plate
vacuum vessel
sputtering
Prior art date
Application number
PCT/JP2021/010234
Other languages
French (fr)
Japanese (ja)
Inventor
靖典 安東
大介 東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202180019740.8A priority Critical patent/CN115279938A/en
Priority to KR1020227031047A priority patent/KR20220139362A/en
Publication of WO2021182638A1 publication Critical patent/WO2021182638A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils

Definitions

  • the present invention relates to a sputtering apparatus that uses plasma to sputter a target to form a film on an object to be processed.
  • an antenna is arranged outside the vacuum vessel, and a high-frequency magnetic field generated from the antenna is applied to the inside of the vacuum vessel via a dielectric plate provided on the outer wall of the vacuum vessel.
  • the target is sputtered to form a film on the object to be processed by transmitting the material and generating plasma in the vacuum vessel.
  • the target can be brought closer to the object to be processed as compared with the configuration in which the antenna is arranged inside the vacuum vessel, and the film formation speed and the processing efficiency are improved.
  • sputter particles do not adhere to the antenna, so that dirt and reduction of life can be suppressed, and the mounting structure of the antenna can be simplified. Can produce the effects of.
  • the antenna when the antenna is arranged outside the vacuum vessel, as shown in FIG. 5A, if the antenna is arranged behind the sputtered surface of the target, the high frequency magnetic field spreading from the antenna can be efficiently guided to the sputtered surface. It cannot be done, and the sputtering efficiency deteriorates.
  • the present inventor dents the outer wall of the vacuum vessel outward as shown in FIG. 5 (B) and forms the bottom of the antenna.
  • a configuration in which the target is arranged and the antenna is arranged so as to face the dielectric plate on the side wall thereof was considered intermediately on the way to the present invention. With such a configuration, the antenna can be positioned in front of the target sputtering surface, and the sputtering efficiency can be improved.
  • the present invention has been made to solve the above problems at once, and by arranging an antenna outside the vacuum vessel and shortening the distance from the target to the object to be processed, the film forming speed and the processing efficiency
  • the main task is to make it possible to efficiently sputter the target while improving the above.
  • the sputtering apparatus is a sputtering apparatus that sputters a target using plasma to form a film on an object to be processed, and includes a vacuum vessel that is evacuated and an antenna provided outside the vacuum vessel.
  • a dielectric plate provided on the outer wall of the vacuum vessel at a position facing the antenna and a target holding portion for holding the target in the vacuum vessel are provided, and the target is located at a position where the dielectric plate is sandwiched. It is provided on one or both, and is characterized in that its sputtered surface extends obliquely toward the side opposite to the antenna with respect to the dielectric plate.
  • the sputtering surface of the target extends diagonally toward the side opposite to the antenna with respect to the dielectric plate, so that the high-frequency magnetic field spreading from the antenna is efficiently guided to the sputtering surface. be able to.
  • the target in a configuration in which the antenna is provided outside the vacuum vessel, the target can be efficiently sputtered while improving the film forming speed and the processing efficiency by shortening the distance to the object to be processed.
  • the sputtered surface slanted it is possible to suppress the spread of sputtered particles with respect to the object to be processed, and the sputtered source can be made highly utilized.
  • the targets are provided at both positions where the dielectric plate is sandwiched, and each of the sputter surfaces of the targets is relative to the dielectric plate. It is preferable that it extends diagonally toward the side opposite to the antenna.
  • the inclination angle of the sputtered surface of the target with respect to the dielectric plate is 10 degrees or more and 45 degrees or less.
  • the dielectric plate is placed on a slit plate in which a plurality of slits are formed.
  • the magnetic field transmission window is formed by superimposing the slit plate and the dielectric plate, so that the magnetic field transmission window has a function as a magnetic field transmission window only by the dielectric plate.
  • the thickness can be reduced. As a result, the distance from the antenna to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel.
  • the target can be made more efficient while improving the film formation speed and the processing efficiency. Can be sputtered well.
  • the schematic diagram which shows the structure of the sputtering apparatus of this embodiment The schematic diagram which shows the arrangement of the target of the sputtering apparatus of this embodiment.
  • the target T is sputtered using an inductively coupled plasma P to form a film on an object W to be processed such as a substrate.
  • the object W to be processed is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like.
  • FPD flat panel display
  • the sputtering apparatus 100 holds the vacuum vessel 1 forming the processing chamber S to be evacuated and introduced with gas, and the object W to be processed in the processing chamber S.
  • a substrate holding unit 2 a target holding unit 3 that holds the target T in the processing chamber S, a target bias power supply 4 that applies a bias voltage to the target T, an antenna 5 provided outside the vacuum vessel 1, and a vacuum.
  • It includes a dielectric plate 6 provided on the outer wall of the container 1 at a position facing the antenna, and a high-frequency power source 7 for applying a high frequency to the antenna 5.
  • the vacuum container 1 is, for example, a metal container, and the inside thereof is evacuated by the vacuum exhaust device 8.
  • the vacuum vessel 1 is electrically grounded in this example.
  • Sputtering gas or reactive gas is introduced into the vacuum vessel 1 from a gas supply mechanism 9 having, for example, a flow rate regulator (not shown) via a gas introduction port 10.
  • the sputtering gas and the reactive gas may be those according to the treatment content to be applied to the object W to be processed.
  • the sputtering gas is, for example, an inert gas such as argon (Ar), and the reactive gas is, for example, oxygen (O 2 ) or nitrogen (N 2 ).
  • the substrate holding portion 2 is a holder that holds the flat object W to be processed in the vacuum vessel 1 so as to be in a horizontal state, for example.
  • This holder is electrically grounded in this example.
  • the target holding unit 3 holds the target T facing the object W held by the substrate holding unit 2.
  • the target T of the present embodiment is a flat plate having a rectangular shape in a plan view.
  • the target holding portion 3 is provided on an outer wall (for example, an upper wall) 1a forming the vacuum container 1. Further, an insulating portion 31 having a vacuum sealing function is provided between the target holding portion 3 and the upper wall 1a of the vacuum container 1.
  • a plurality of target holding portions 3 are provided, and specifically, a pair of target holding portions 3 are provided at positions where the antenna 5, which will be described later, is sandwiched.
  • the target bias power supply 4 is connected to the target T via the target holding unit 3, and applies a bias voltage to the target T.
  • This bias voltage is a voltage at which ions in the plasma P are drawn into the target T and sputtered.
  • a common target bias power supply 4 is connected to the pair of targets T here, different target bias power supplies 4 may be connected to each target T.
  • the antenna 5 is for generating plasma P in the processing chamber S, and is, for example, a linear antenna having a length of several tens of centimeters or more.
  • one antenna 5 is arranged between the pair of targets T.
  • the longitudinal direction of the antenna 5 and the longitudinal direction of each target T are the same direction, and the antenna 5 is arranged so that the distances from the respective targets T are equal.
  • each antenna 5 is, for example, copper, aluminum, alloys thereof, stainless steel, etc., but is not limited thereto. It is also possible to make the antenna 5 hollow and allow a refrigerant such as cooling water to flow through the antenna 5 to cool the antenna 5.
  • a high-frequency power supply 7 is connected to one end of the antenna 5 in the longitudinal direction via a matching circuit 71, and the other end in the longitudinal direction is directly grounded.
  • An impedance adjustment circuit such as a variable capacitor or a variable reactor may be provided at one end or the other end of the antenna 5 to adjust the impedance of each antenna 5.
  • a high frequency current can be passed from the high frequency power supply 7 to the antenna 5 via the matching circuit 71.
  • the frequency of the high frequency is, for example, 13.56 MHz, which is common, but is not limited to this.
  • the dielectric plate 6 constitutes a magnetic field transmission window for transmitting a high-frequency magnetic field generated from the antenna 5 into the processing chamber S, and closes an opening formed in the outer wall (here, the upper wall) 1a of the vacuum vessel 1. It is provided as follows.
  • the dielectric plate 6 here has a rectangular shape when viewed from the antenna 5 side, and is arranged so that its longitudinal direction is the same as the longitudinal direction of each target T.
  • ceramics such as alumina, silicon carbide and silicon nitride, inorganic materials such as quartz glass and non-alkali glass, and resin materials such as fluororesin (for example, polytetrafluoroethylene) are used. Can be mentioned.
  • the sputtering surface Ta of the target T extends obliquely with respect to the dielectric plate 6 toward the side opposite to the antenna 5. It is characterized by that.
  • the sputtered surface Ta of the target T is inclined so as to approach the object to be processed W held by the substrate holding portion 2 as the distance from the dielectric plate 6 increases.
  • the inclination angle ⁇ of the sputtering surface Ta of the target T with respect to the dielectric plate 6 is 10 degrees or more and 45 degrees or less.
  • the acute angle ⁇ here is defined as the surface 61 of the sputter surface Ta and the dielectric plate 6 facing the object W to be processed in a configuration in which the sputter surface Ta approaches the object W to be processed as it moves away from the dielectric plate 6. It is an acute angle of the intersection angles of.
  • each of the sputtered surfaces Ta of the pair of targets T extends obliquely toward the side opposite to the antenna 5 with respect to the dielectric plate 6.
  • These pairs of targets T are arranged line-symmetrically with respect to the dielectric plate 6, and specifically, they are arranged in a C shape extending from the dielectric plate 6 side toward the object W side. That is, these pair of targets T are arranged so that their sputtered surfaces Ta face the surface of the object to be processed W while their respective sputtered surfaces Ta are inclined in the direction facing each other.
  • the sputtering apparatus 100 of the present embodiment configured in this way, since the sputtering surface Ta of the target T extends obliquely toward the side opposite to the antenna 5 with respect to the dielectric plate 6, it extends from the antenna 5. A high-frequency magnetic field can be efficiently guided to the sputtering surface Ta. As a result, in a configuration in which the antenna 5 is provided outside the vacuum vessel 1, the target T is efficiently sputtered while improving the film forming speed and the processing efficiency by shortening the distance to the object W to be processed. Can be done. Further, by making the sputtering surface Ta slanted, it is possible to suppress the spread of the sputtering particles with respect to the object W to be processed, and the sputtering source can be made highly utilized.
  • the film forming speed and the processing efficiency can be further improved.
  • the target T is provided at both positions where the dielectric plate 6 is sandwiched, but the target T may be provided only at one of the positions where the dielectric plate 6 is sandwiched.
  • the sputtering apparatus 100 of the above embodiment includes one antenna 5 and a pair of targets T, for example, a plurality of antennas 5 provided in parallel with each other may be provided, or these. A plurality of sets of a pair of targets T may be provided corresponding to the antenna 5.
  • the magnetic field transmission window is formed by the dielectric plate 6, but as shown in FIG. 3, the dielectric plate 6 is placed on the slit plate 11 in which a plurality of slits 11s are formed. Therefore, the magnetic field transmission window may be formed by the slit plate 11 and the dielectric plate 6.
  • the magnetic field transmission window is formed by superimposing the slit plate 11 and the dielectric plate 6, so that the magnetic field is higher than the case where only the dielectric plate 6 functions as the magnetic field transmission window.
  • the thickness of the transparent window can be reduced. As a result, the distance from the antenna 5 to the inside of the vacuum vessel 1 can be shortened, and the high-frequency magnetic field generated from the antenna 5 can be efficiently supplied into the vacuum vessel 1.
  • the sputtering apparatus 100 may include a moving mechanism for transporting the object W to be processed into the vacuum vessel 1 or swinging the object W in the vacuum vessel 1.
  • the vacuum vessel 1 is formed into a tubular shape, and the object W to be processed is rotationally moved around an axis parallel to the axial direction of the vacuum vessel 1. It may be provided with the mechanism 12.
  • the object W to be processed such as a tool can be formed, and the life can be improved by forming a film on the surface of the tool or the like.

Abstract

In the present invention, a target can be efficiently sputtered while improving film formation rate and treatment efficiency by placing an antenna outside a vacuum vessel and reducing the distance from the target to a workpiece. This sputtering device 100 is for forming a film on a workpiece W by means of sputtering of a target T with plasma P, said device being provided with a vacuum vessel 1 to be evacuated, an antenna 5 disposed outside the vacuum vessel 1, a dielectric plate 6 disposed on an outer wall 1a of the vacuum vessel 1 at a position facing the antenna 5, and a target holding part 3 for holding the target T inside the vacuum vessel 1, and being configured such that the target T is disposed on one or both positions sandwiching the dielectric plate 6, with a sputter surface Ta thereof obliquely extending toward the opposite side from the antenna 5 with respect to the dielectric plate 6.

Description

スパッタリング装置Sputtering equipment
  本発明は、プラズマを用いてターゲットをスパッタリングして被処理物に成膜するスパッタリング装置に関するものである。 The present invention relates to a sputtering apparatus that uses plasma to sputter a target to form a film on an object to be processed.
  従来のスパッタリング装置としては、特許文献1に示すように、アンテナを真空容器の外部に配置し、このアンテナから生じた高周波磁場を真空容器の外壁に設けた誘電体板を介して真空容器内に透過させ、これにより真空容器内にプラズマを発生させることで、ターゲットをスパッタリングして被処理物に成膜するものがある。 As a conventional sputtering apparatus, as shown in Patent Document 1, an antenna is arranged outside the vacuum vessel, and a high-frequency magnetic field generated from the antenna is applied to the inside of the vacuum vessel via a dielectric plate provided on the outer wall of the vacuum vessel. In some cases, the target is sputtered to form a film on the object to be processed by transmitting the material and generating plasma in the vacuum vessel.
  このようにアンテナを真空容器の外部に配置する構成は、アンテナを真空容器の内部に配置する構成に比べて、ターゲットを被処理物に近づけることができ、成膜速度の向上や処理効率の向上を図れる。また、アンテナを真空容器の外部に配置することで、アンテナにスパッタ粒子が付着しないので、汚れや寿命の低減を抑制することができるし、さらにはアンテナの取り付け構造の簡素化を図れるなどといった種々の作用効果を奏し得る。 In the configuration in which the antenna is arranged outside the vacuum vessel in this way, the target can be brought closer to the object to be processed as compared with the configuration in which the antenna is arranged inside the vacuum vessel, and the film formation speed and the processing efficiency are improved. Can be planned. In addition, by arranging the antenna outside the vacuum container, sputter particles do not adhere to the antenna, so that dirt and reduction of life can be suppressed, and the mounting structure of the antenna can be simplified. Can produce the effects of.
  しかしながら、アンテナを真空容器の外部に配置する場合、図5(A)に示すように、アンテナをターゲットのスパッタ面よりも後方に配置すると、アンテナから拡がる高周波磁場をスパッタ面に効率良く導くことができず、スパッタ効率が悪くなる。 However, when the antenna is arranged outside the vacuum vessel, as shown in FIG. 5A, if the antenna is arranged behind the sputtered surface of the target, the high frequency magnetic field spreading from the antenna can be efficiently guided to the sputtered surface. It cannot be done, and the sputtering efficiency deteriorates.
  そこで、本発明者は、アンテナを真空容器の外部に配置しつつもスパッタ効率の向上を図るべく、図5(B)に示すように、真空容器の外壁を外側に凹ませて、その底部にターゲットを配置するとともに、その側壁部の誘電体板に臨むようにアンテナを配置する構成を、本発明に到る途中に中間的に考えた。このような構成であれば、ターゲットのスパッタ面よりも前方にアンテナを位置させることができ、スパッタ効率の向上を図れる。 Therefore, in order to improve the sputter efficiency while arranging the antenna outside the vacuum vessel, the present inventor dents the outer wall of the vacuum vessel outward as shown in FIG. 5 (B) and forms the bottom of the antenna. A configuration in which the target is arranged and the antenna is arranged so as to face the dielectric plate on the side wall thereof was considered intermediately on the way to the present invention. With such a configuration, the antenna can be positioned in front of the target sputtering surface, and the sputtering efficiency can be improved.
  ところが、この図5(B)に示す構成は、ターゲットから被処理物までの距離が長くなるので、成膜速度や処理効率が低下してしまい、アンテナを真空容器の外部に配置したことによるメリットが希薄化される。 However, in the configuration shown in FIG. 5 (B), since the distance from the target to the object to be processed becomes long, the film formation speed and the processing efficiency decrease, and there is an advantage that the antenna is arranged outside the vacuum vessel. Is diluted.
特開2000-226655号公報Japanese Unexamined Patent Publication No. 2000-226655
  そこで本発明は、上記問題点を一挙に解決すべくなされたものであり、真空容器の外部にアンテナを配置してターゲットから被処理物までの距離を短くすることで、成膜速度や処理効率の向上を図りつつ、ターゲットを効率良くスパッタできるようにすることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above problems at once, and by arranging an antenna outside the vacuum vessel and shortening the distance from the target to the object to be processed, the film forming speed and the processing efficiency The main task is to make it possible to efficiently sputter the target while improving the above.
  すなわち本発明に係るスパッタリング装置は、プラズマを用いてターゲットをスパッタリングして被処理物に成膜するスパッタリング装置であって、真空排気される真空容器と、前記真空容器の外部に設けられたアンテナと、前記真空容器の外壁における前記アンテナに臨む位置に設けられた誘電体板と、前記ターゲットを前記真空容器内に保持するターゲット保持部とを備え、前記ターゲットが、前記誘電体板を挟み込む位置の一方又は両方に設けられており、そのスパッタ面が、前記誘電体板に対して前記アンテナとは反対側に向かって斜めに延びていることを特徴とするものである。 That is, the sputtering apparatus according to the present invention is a sputtering apparatus that sputters a target using plasma to form a film on an object to be processed, and includes a vacuum vessel that is evacuated and an antenna provided outside the vacuum vessel. A dielectric plate provided on the outer wall of the vacuum vessel at a position facing the antenna and a target holding portion for holding the target in the vacuum vessel are provided, and the target is located at a position where the dielectric plate is sandwiched. It is provided on one or both, and is characterized in that its sputtered surface extends obliquely toward the side opposite to the antenna with respect to the dielectric plate.
  このように構成されたスパッタリング装置によれば、ターゲットのスパッタ面が誘電体板に対してアンテナとは反対側に向かって斜めに延びているので、アンテナから拡がる高周波磁場をスパッタ面に効率良く導くことができる。
  これにより、真空容器の外部にアンテナを設けた構成において、被処理物までの距離を短くすることで、成膜速度や処理効率の向上を図りつつ、ターゲットを効率良くスパッタすることができる。
  さらに、スパッタ面を斜めにすることで、被処理物に対するスパッタ粒子の拡がりを抑えることができ、スパッタ源を利用率の高いものにすることができる。
According to the sputtering apparatus configured in this way, the sputtering surface of the target extends diagonally toward the side opposite to the antenna with respect to the dielectric plate, so that the high-frequency magnetic field spreading from the antenna is efficiently guided to the sputtering surface. be able to.
As a result, in a configuration in which the antenna is provided outside the vacuum vessel, the target can be efficiently sputtered while improving the film forming speed and the processing efficiency by shortening the distance to the object to be processed.
Further, by making the sputtered surface slanted, it is possible to suppress the spread of sputtered particles with respect to the object to be processed, and the sputtered source can be made highly utilized.
  成膜速度や処理効率のさらなる向上を図るためには、前記ターゲットが、前記誘電体板を挟み込む位置の両方に設けられており、それらのターゲットのスパッタ面それぞれが、前記誘電体板に対して前記アンテナとは反対側に向かって斜めに延びていることが好ましい。 In order to further improve the film forming speed and the processing efficiency, the targets are provided at both positions where the dielectric plate is sandwiched, and each of the sputter surfaces of the targets is relative to the dielectric plate. It is preferable that it extends diagonally toward the side opposite to the antenna.
  上述した作用効果をより顕著に発揮させるためには、前記ターゲットのスパッタ面の前記誘電体板に対する傾斜角度が、10度以上45度以下であることが好ましい。 In order to exert the above-mentioned action and effect more remarkably, it is preferable that the inclination angle of the sputtered surface of the target with respect to the dielectric plate is 10 degrees or more and 45 degrees or less.
  前記誘電体板が、複数のスリットが形成されてなるスリット板に載置されていることが好ましい。
  このような構成であれば、スリット板と誘電体板とを重ね合わせて磁場透過窓が形成されるので、誘電体板のみに磁場透過窓としての機能を担わせる場合に比べて磁場透過窓の厚みを小さくすることができる。これにより、アンテナから真空容器内までの距離を短くすることができ、アンテナから生じた高周波磁場を効率良く真空容器内に供給することができる。
It is preferable that the dielectric plate is placed on a slit plate in which a plurality of slits are formed.
With such a configuration, the magnetic field transmission window is formed by superimposing the slit plate and the dielectric plate, so that the magnetic field transmission window has a function as a magnetic field transmission window only by the dielectric plate. The thickness can be reduced. As a result, the distance from the antenna to the inside of the vacuum vessel can be shortened, and the high-frequency magnetic field generated from the antenna can be efficiently supplied into the vacuum vessel.
  このように構成した本発明によれば、真空容器の外部にアンテナを配置してターゲットから被処理物までの距離を短くすることで、成膜速度や処理効率の向上を図りつつ、ターゲットを効率良くスパッタすることができる。 According to the present invention configured in this way, by arranging the antenna outside the vacuum vessel and shortening the distance from the target to the object to be processed, the target can be made more efficient while improving the film formation speed and the processing efficiency. Can be sputtered well.
本実施形態のスパッタリング装置の構成を示す模式図。The schematic diagram which shows the structure of the sputtering apparatus of this embodiment. 本実施形態のスパッタリング装置のターゲットの配置を示す模式図。The schematic diagram which shows the arrangement of the target of the sputtering apparatus of this embodiment. その他の実施形態におけるスパッタリング装置の構成を示す模式図。The schematic diagram which shows the structure of the sputtering apparatus in another embodiment. その他の実施形態におけるスパッタリング装置の構成を示す模式図。The schematic diagram which shows the structure of the sputtering apparatus in another embodiment. 本発明に到る途中に中間的に検討した構成を示す模式図。The schematic diagram which shows the structure examined intermediately on the way to this invention.
  以下に、本発明に係るスパッタリング装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the sputtering apparatus according to the present invention will be described with reference to the drawings.
<装置構成>
  本実施形態のスパッタリング装置100は、誘導結合型のプラズマPを用いてターゲットTをスパッタリングして基板等の被処理物Wに成膜するものである。ここで、被処理物Wは、例えば、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。
<Device configuration>
In the sputtering apparatus 100 of the present embodiment, the target T is sputtered using an inductively coupled plasma P to form a film on an object W to be processed such as a substrate. Here, the object W to be processed is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, a flexible substrate for a flexible display, or the like.
  具体的にスパッタリング装置100は、図1及び図2に示すように、真空排気され且つガスが導入される処理室Sを形成する真空容器1と、処理室S内で被処理物Wを保持する基板保持部2と、処理室S内にターゲットTを保持するターゲット保持部3と、ターゲットTにバイアス電圧を印加するターゲットバイアス電源4と、真空容器1の外部に設けられたアンテナ5と、真空容器1の外壁におけるアンテナに臨む位置に設けられた誘電体板6と、アンテナ5に高周波を印加する高周波電源7と、を備えている。かかる構成により、アンテナ5に高周波電源7から高周波を印加することにより複数のアンテナ5には高周波電流が流れて、真空容器1内に誘導電界が発生して誘導結合型のプラズマPが生成される。 Specifically, as shown in FIGS. 1 and 2, the sputtering apparatus 100 holds the vacuum vessel 1 forming the processing chamber S to be evacuated and introduced with gas, and the object W to be processed in the processing chamber S. A substrate holding unit 2, a target holding unit 3 that holds the target T in the processing chamber S, a target bias power supply 4 that applies a bias voltage to the target T, an antenna 5 provided outside the vacuum vessel 1, and a vacuum. It includes a dielectric plate 6 provided on the outer wall of the container 1 at a position facing the antenna, and a high-frequency power source 7 for applying a high frequency to the antenna 5. With this configuration, by applying a high frequency from the high frequency power supply 7 to the antenna 5, a high frequency current flows through the plurality of antennas 5, an inductive electric field is generated in the vacuum vessel 1, and an inductively coupled plasma P is generated. ..
  真空容器1は、例えば金属製の容器であり、その内部は真空排気装置8によって真空排気される。真空容器1はこの例では電気的に接地されている。 The vacuum container 1 is, for example, a metal container, and the inside thereof is evacuated by the vacuum exhaust device 8. The vacuum vessel 1 is electrically grounded in this example.
  真空容器1内に、例えば流量調整器(図示省略)等を有するガス供給機構9からガス導入口10を経由して、スパッタ用ガス又は反応性ガスが導入される。スパッタ用ガス及び反応性ガスは、被処理物Wに施す処理内容に応じたものにすれば良い。スパッタ用ガスとしては、例えばアルゴン(Ar)等の不活性ガスであり、反応性ガスとしては、例えば酸素(O)や窒素(N)等である。 Sputtering gas or reactive gas is introduced into the vacuum vessel 1 from a gas supply mechanism 9 having, for example, a flow rate regulator (not shown) via a gas introduction port 10. The sputtering gas and the reactive gas may be those according to the treatment content to be applied to the object W to be processed. The sputtering gas is, for example, an inert gas such as argon (Ar), and the reactive gas is, for example, oxygen (O 2 ) or nitrogen (N 2 ).
  基板保持部2は、真空容器1において平板状をなす被処理物Wを例えば水平状態となるように保持するホルダである。このホルダはこの例では電気的に接地されている。 The substrate holding portion 2 is a holder that holds the flat object W to be processed in the vacuum vessel 1 so as to be in a horizontal state, for example. This holder is electrically grounded in this example.
  ターゲット保持部3は、基板保持部2に保持された被処理物Wと対向してターゲットTを保持するものである。本実施形態のターゲットTは、平面視において矩形状をなす平板状のものである。このターゲット保持部3は、真空容器1を形成する外壁(例えば上壁)1aに設けられている。また、ターゲット保持部3と真空容器1の上壁1aとの間には、真空シール機能を有する絶縁部31が設けられている。 The target holding unit 3 holds the target T facing the object W held by the substrate holding unit 2. The target T of the present embodiment is a flat plate having a rectangular shape in a plan view. The target holding portion 3 is provided on an outer wall (for example, an upper wall) 1a forming the vacuum container 1. Further, an insulating portion 31 having a vacuum sealing function is provided between the target holding portion 3 and the upper wall 1a of the vacuum container 1.
  本実施形態では、ターゲット保持部3が複数設けられており、具体的には一対のターゲット保持部3が、後述するアンテナ5を挟み込む位置に設けられている。 In the present embodiment, a plurality of target holding portions 3 are provided, and specifically, a pair of target holding portions 3 are provided at positions where the antenna 5, which will be described later, is sandwiched.
  ターゲットバイアス電源4は、ターゲット保持部3を介してターゲットT接続されており、ターゲットTに対してバイアス電圧を印加する。このバイアス電圧は、プラズマP中のイオンをターゲットTに引き込んでスパッタさせる電圧である。なお、ここでは一対のターゲットTに共通のターゲットバイアス電源4が接続されているが、それぞれのターゲットTに別々のターゲットバイアス電源4を接続しても良い。 The target bias power supply 4 is connected to the target T via the target holding unit 3, and applies a bias voltage to the target T. This bias voltage is a voltage at which ions in the plasma P are drawn into the target T and sputtered. Although a common target bias power supply 4 is connected to the pair of targets T here, different target bias power supplies 4 may be connected to each target T.
  アンテナ5は、処理室S内にプラズマPを生成するためのものであり、例えば長さが数十cm以上の直線状のものである。本実施形態では、図1に示すように、一対のターゲットTの間に1本のアンテナ5が配置されている。ここでは、アンテナ5の長手方向と各ターゲットTの長手方向とは同一方向であり、アンテナ5は各々のターゲットTからの距離が等しくなるように配置されている。 The antenna 5 is for generating plasma P in the processing chamber S, and is, for example, a linear antenna having a length of several tens of centimeters or more. In this embodiment, as shown in FIG. 1, one antenna 5 is arranged between the pair of targets T. Here, the longitudinal direction of the antenna 5 and the longitudinal direction of each target T are the same direction, and the antenna 5 is arranged so that the distances from the respective targets T are equal.
  また、各アンテナ5の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等であるが、これに限られるものではない。なお、アンテナ5を中空にして、その中に冷却水等の冷媒を流し、アンテナ5を冷却するようにしても良い。 The material of each antenna 5 is, for example, copper, aluminum, alloys thereof, stainless steel, etc., but is not limited thereto. It is also possible to make the antenna 5 hollow and allow a refrigerant such as cooling water to flow through the antenna 5 to cool the antenna 5.
  アンテナ5の長手方向一端部には、整合回路71を介して高周波電源7が接続されており、長手方向他端部は直接接地されている。なお、アンテナ5の一端部又は他端部に、可変コンデンサ又は可変リアクトル等のインピーダンス調整回路を設けて、各アンテナ5のインピーダンスを調整するように構成しても良い。このように各アンテナ5のインピーダンスを調整することによって、アンテナ5の長手方向におけるプラズマPの密度分布を均一化することができ、アンテナ5の長手方向の膜厚を均一化することができる。 A high-frequency power supply 7 is connected to one end of the antenna 5 in the longitudinal direction via a matching circuit 71, and the other end in the longitudinal direction is directly grounded. An impedance adjustment circuit such as a variable capacitor or a variable reactor may be provided at one end or the other end of the antenna 5 to adjust the impedance of each antenna 5. By adjusting the impedance of each antenna 5 in this way, the density distribution of plasma P in the longitudinal direction of the antenna 5 can be made uniform, and the film thickness of the antenna 5 in the longitudinal direction can be made uniform.
  上記構成によって、高周波電源7から、整合回路71を介して、アンテナ5に高周波電流を流すことができる。高周波の周波数は、例えば、一般的な13.56MHzであるが、これに限られるものではない。 With the above configuration, a high frequency current can be passed from the high frequency power supply 7 to the antenna 5 via the matching circuit 71. The frequency of the high frequency is, for example, 13.56 MHz, which is common, but is not limited to this.
  誘電体板6は、アンテナ5から生じた高周波磁場を処理室S内に透過させる磁場透過窓を構成するものであり、真空容器1の外壁(ここでは上壁)1aに形成された開口を塞ぐように設けられている。 The dielectric plate 6 constitutes a magnetic field transmission window for transmitting a high-frequency magnetic field generated from the antenna 5 into the processing chamber S, and closes an opening formed in the outer wall (here, the upper wall) 1a of the vacuum vessel 1. It is provided as follows.
  ここでの誘電体板6は、アンテナ5側から視て矩形状であり、その長手方向が各ターゲットTの長手方向とは同一方向となるように配置されている。なお、誘電体板6を構成する材料としては、アルミナ、炭化ケイ素、窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、フッ素樹脂(例えばポリテトラフルオロエチレン)等の樹脂材料等を挙げることができる。 The dielectric plate 6 here has a rectangular shape when viewed from the antenna 5 side, and is arranged so that its longitudinal direction is the same as the longitudinal direction of each target T. As the material constituting the dielectric plate 6, ceramics such as alumina, silicon carbide and silicon nitride, inorganic materials such as quartz glass and non-alkali glass, and resin materials such as fluororesin (for example, polytetrafluoroethylene) are used. Can be mentioned.
  そして、本実施形態のスパッタリング装置100は、図1及び図2に示すように、ターゲットTのスパッタ面Taが、誘電体板6に対してアンテナ5とは反対側に向かって斜めに延びていることを特徴とするものである。 Then, in the sputtering apparatus 100 of the present embodiment, as shown in FIGS. 1 and 2, the sputtering surface Ta of the target T extends obliquely with respect to the dielectric plate 6 toward the side opposite to the antenna 5. It is characterized by that.
  より詳細に説明すると、ターゲットTのスパッタ面Taは、誘電体板6から離れるに連れて、基板保持部2に保持されている被処理物Wに近づくように傾いており、具体的には図2に示すように、ターゲットTのスパッタ面Taの誘電体板6に対する傾斜角度θが、10度以上45度以下である。なお、ここでの傾斜角度θは、スパッタ面Taが誘電体板6から離れるに連れて被処理物Wに近づく構成において、スパッタ面Taと誘電体板6の被処理物Wを向く面61との交差角度のうちの鋭角である。 More specifically, the sputtered surface Ta of the target T is inclined so as to approach the object to be processed W held by the substrate holding portion 2 as the distance from the dielectric plate 6 increases. As shown in 2, the inclination angle θ of the sputtering surface Ta of the target T with respect to the dielectric plate 6 is 10 degrees or more and 45 degrees or less. The acute angle θ here is defined as the surface 61 of the sputter surface Ta and the dielectric plate 6 facing the object W to be processed in a configuration in which the sputter surface Ta approaches the object W to be processed as it moves away from the dielectric plate 6. It is an acute angle of the intersection angles of.
  本実施形態では、一対のターゲットTのスパッタ面Taそれぞれが、誘電体板6に対してアンテナ5とは反対側に向かって斜めに延びている。これら一対のターゲットTは、誘電体板6に対して線対称に配置されており、具体的には誘電体板6側から被処理物W側に向かって拡がるハ字状に配置されている。すなわち、これら一対のターゲットTは、それぞれのスパッタ面Taが互いに向き合う方向に傾斜しつつ、それらのスパッタ面Taが被処理物Wの表面を向くように配置されている。 In the present embodiment, each of the sputtered surfaces Ta of the pair of targets T extends obliquely toward the side opposite to the antenna 5 with respect to the dielectric plate 6. These pairs of targets T are arranged line-symmetrically with respect to the dielectric plate 6, and specifically, they are arranged in a C shape extending from the dielectric plate 6 side toward the object W side. That is, these pair of targets T are arranged so that their sputtered surfaces Ta face the surface of the object to be processed W while their respective sputtered surfaces Ta are inclined in the direction facing each other.
<本実施形態の効果>
  このように構成した本実施形態のスパッタリング装置100によれば、ターゲットTのスパッタ面Taが誘電体板6に対してアンテナ5とは反対側に向かって斜めに延びているので、アンテナ5から拡がる高周波磁場をスパッタ面Taに効率良く導くことができる。
  これにより、真空容器1の外部にアンテナ5を設けた構成において、被処理物Wまでの距離を短くすることで、成膜速度や処理効率の向上を図りつつ、ターゲットTを効率良くスパッタすることができる。
  さらに、スパッタ面Taを斜めにすることで、被処理物Wに対するスパッタ粒子の拡がりを抑えることができ、スパッタ源を利用率の高いものにすることができる。
<Effect of this embodiment>
According to the sputtering apparatus 100 of the present embodiment configured in this way, since the sputtering surface Ta of the target T extends obliquely toward the side opposite to the antenna 5 with respect to the dielectric plate 6, it extends from the antenna 5. A high-frequency magnetic field can be efficiently guided to the sputtering surface Ta.
As a result, in a configuration in which the antenna 5 is provided outside the vacuum vessel 1, the target T is efficiently sputtered while improving the film forming speed and the processing efficiency by shortening the distance to the object W to be processed. Can be done.
Further, by making the sputtering surface Ta slanted, it is possible to suppress the spread of the sputtering particles with respect to the object W to be processed, and the sputtering source can be made highly utilized.
  また、誘電体板6を挟む位置の両方にターゲットTが保持されているので、成膜速度や処理効率のさらなる向上を図れる。 Further, since the target T is held at both positions sandwiching the dielectric plate 6, the film forming speed and the processing efficiency can be further improved.
<その他の変形実施形態>
  なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
  例えば、前記実施形態では、ターゲットTが誘電体板6を挟み込む位置の両方に設けられていたが、誘電体板6を挟み込む位置の一方にのみターゲットTを設けても良い。 For example, in the above-described embodiment, the target T is provided at both positions where the dielectric plate 6 is sandwiched, but the target T may be provided only at one of the positions where the dielectric plate 6 is sandwiched.
  また、前記実施形態のスパッタリング装置100は、1本のアンテナ5と一対のターゲットTを備えるものであったが、例えば互いに平行に設けられた複数本のアンテナ5を備えても良いし、これらのアンテナ5に対応させて一対のターゲットTを複数組備えていてもよい。 Further, although the sputtering apparatus 100 of the above embodiment includes one antenna 5 and a pair of targets T, for example, a plurality of antennas 5 provided in parallel with each other may be provided, or these. A plurality of sets of a pair of targets T may be provided corresponding to the antenna 5.
  さらに、前記実施形態では、誘電体板6により磁場透過窓を形成していたが、図3に示すように、複数のスリット11sが形成されてなるスリット板11に誘電体板6を載置して、これらのスリット板11及び誘電体板6により磁場透過窓を形成しても良い。
  このような構成であれば、スリット板11と誘電体板6とを重ね合わせて磁場透過窓が形成されるので、誘電体板6のみに磁場透過窓としての機能を担わせる場合に比べて磁場透過窓の厚みを小さくすることができる。これにより、アンテナ5から真空容器1内までの距離を短くすることができ、アンテナ5から生じた高周波磁場を効率良く真空容器1内に供給することができる。
Further, in the above-described embodiment, the magnetic field transmission window is formed by the dielectric plate 6, but as shown in FIG. 3, the dielectric plate 6 is placed on the slit plate 11 in which a plurality of slits 11s are formed. Therefore, the magnetic field transmission window may be formed by the slit plate 11 and the dielectric plate 6.
With such a configuration, the magnetic field transmission window is formed by superimposing the slit plate 11 and the dielectric plate 6, so that the magnetic field is higher than the case where only the dielectric plate 6 functions as the magnetic field transmission window. The thickness of the transparent window can be reduced. As a result, the distance from the antenna 5 to the inside of the vacuum vessel 1 can be shortened, and the high-frequency magnetic field generated from the antenna 5 can be efficiently supplied into the vacuum vessel 1.
  加えて、スパッタリング装置100としては、被処理物Wを真空容器1内に搬送する或いは真空容器1内で揺動させる移動機構を備えていても良い。 In addition, the sputtering apparatus 100 may include a moving mechanism for transporting the object W to be processed into the vacuum vessel 1 or swinging the object W in the vacuum vessel 1.
  また、スパッタリング装置100としては、図4に示すように、例えば真空容器1を筒状のものとして、処理中の被処理物Wを真空容器1の軸方向と平行な軸周りに回転移動させる移動機構12を備えるものであっても良い。
  かかる構成であれば、例えば工具等の被処理物Wとすることができ、工具等の表面に成膜することで寿命の向上等を図れる。
Further, as shown in FIG. 4, as the sputtering apparatus 100, for example, the vacuum vessel 1 is formed into a tubular shape, and the object W to be processed is rotationally moved around an axis parallel to the axial direction of the vacuum vessel 1. It may be provided with the mechanism 12.
With such a configuration, for example, the object W to be processed such as a tool can be formed, and the life can be improved by forming a film on the surface of the tool or the like.
  その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.
100・・・スパッタリング装置
W    ・・・被処理物
T    ・・・ターゲット
Ta  ・・・スパッタ面
1    ・・・真空容器
3    ・・・ターゲット保持部
5    ・・・アンテナ
6    ・・・誘電体板
θ    ・・・傾斜角度
S    ・・・スリット
11  ・・・スリット板
100 ・ ・ ・ Sputtering device W ・ ・ ・ Target T ・ ・ ・ Target Ta ・ ・ ・ Sputtering surface 1 ・ ・ ・ Vacuum container 3 ・ ・ ・ Target holding part 5 ・ ・ ・ Antenna 6 ・ ・ ・ Dielectric plate θ・ ・ ・ Tilt angle S ・ ・ ・ Slit 11 ・ ・ ・ Slit plate

Claims (4)

  1.   プラズマを用いてターゲットをスパッタリングして被処理物に成膜するスパッタリング装置であって、
      真空排気される真空容器と、
      前記真空容器の外部に設けられたアンテナと、
      前記真空容器の外壁における前記アンテナに臨む位置に設けられた誘電体板と、
      前記ターゲットを前記真空容器内に保持するターゲット保持部とを備え、
      前記ターゲットが、前記誘電体板を挟み込む位置の一方又は両方に設けられており、そのスパッタ面が、前記誘電体板に対して前記アンテナとは反対側に向かって斜めに延びている、スパッタリング装置。
    A sputtering device that sputters a target using plasma to form a film on an object to be processed.
    A vacuum container that is evacuated and
    An antenna provided outside the vacuum vessel and
    A dielectric plate provided on the outer wall of the vacuum vessel at a position facing the antenna, and
    A target holding portion for holding the target in the vacuum vessel is provided.
    A sputtering apparatus in which the target is provided at one or both of the positions where the dielectric plate is sandwiched, and the sputtering surface thereof extends obliquely toward the side opposite to the antenna with respect to the dielectric plate. ..
  2.   前記ターゲットが、前記誘電体板を挟み込む位置の両方に設けられており、それらのターゲットのスパッタ面それぞれが、前記誘電体板に対して前記アンテナとは反対側に向かって斜めに延びている、請求項1記載のスパッタリング装置。 The targets are provided at both positions sandwiching the dielectric plate, and each of the sputtered surfaces of the targets extends obliquely with respect to the dielectric plate toward the side opposite to the antenna. The sputtering apparatus according to claim 1.
  3.   前記ターゲットのスパッタ面の前記誘電体板に対する傾斜角度が、10度以上45度以下である、請求項1又は2記載のスパッタリング装置。 The sputtering apparatus according to claim 1 or 2, wherein the inclination angle of the sputtering surface of the target with respect to the dielectric plate is 10 degrees or more and 45 degrees or less.
  4.   前記誘電体板が、複数のスリットが形成されてなるスリット板に載置されている、請求項1乃至3のうち何れか一項に記載のスパッタリング装置。 The sputtering apparatus according to any one of claims 1 to 3, wherein the dielectric plate is placed on a slit plate in which a plurality of slits are formed.
PCT/JP2021/010234 2020-03-13 2021-03-12 Sputtering device WO2021182638A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180019740.8A CN115279938A (en) 2020-03-13 2021-03-12 Sputtering device
KR1020227031047A KR20220139362A (en) 2020-03-13 2021-03-12 sputtering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044107 2020-03-13
JP2020044107A JP2021143409A (en) 2020-03-13 2020-03-13 Sputtering apparatus

Publications (1)

Publication Number Publication Date
WO2021182638A1 true WO2021182638A1 (en) 2021-09-16

Family

ID=77672099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010234 WO2021182638A1 (en) 2020-03-13 2021-03-12 Sputtering device

Country Status (4)

Country Link
JP (1) JP2021143409A (en)
KR (1) KR20220139362A (en)
CN (1) CN115279938A (en)
WO (1) WO2021182638A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023113083A (en) * 2022-02-02 2023-08-15 日新電機株式会社 Sputtering device
JP2023114390A (en) * 2022-02-04 2023-08-17 日新電機株式会社 Sputtering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294395A (en) * 1999-04-12 2000-10-20 Kenichi Takagi Plasma treatment device
JP2001192805A (en) * 1999-10-28 2001-07-17 Akt Kk Inclined sputtering target with shield for blocking contaminant
JP2012201971A (en) * 2011-03-28 2012-10-22 Shibaura Mechatronics Corp Film deposition device
WO2014064768A1 (en) * 2012-10-23 2014-05-01 株式会社シンクロン Thin film formation apparatus, sputtering cathode, and method of forming thin film
JP2019206750A (en) * 2018-04-06 2019-12-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for forming metal silicon compound layer, and metal silicon compound layer formed therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226655A (en) * 1999-02-02 2000-08-15 Matsushita Electric Ind Co Ltd Sputtering device
US20100078309A1 (en) * 2007-01-26 2010-04-01 Osaka Vacuum, Ltd. Sputtering method and sputtering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294395A (en) * 1999-04-12 2000-10-20 Kenichi Takagi Plasma treatment device
JP2001192805A (en) * 1999-10-28 2001-07-17 Akt Kk Inclined sputtering target with shield for blocking contaminant
JP2012201971A (en) * 2011-03-28 2012-10-22 Shibaura Mechatronics Corp Film deposition device
WO2014064768A1 (en) * 2012-10-23 2014-05-01 株式会社シンクロン Thin film formation apparatus, sputtering cathode, and method of forming thin film
JP2019206750A (en) * 2018-04-06 2019-12-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method for forming metal silicon compound layer, and metal silicon compound layer formed therefrom

Also Published As

Publication number Publication date
JP2021143409A (en) 2021-09-24
CN115279938A (en) 2022-11-01
KR20220139362A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2021182638A1 (en) Sputtering device
JP3150058B2 (en) Plasma processing apparatus and plasma processing method
KR20040070103A (en) Plasma processing apparatus
JP2021502688A (en) Radiofrequency plasma ion source of linearized energy
JP5969856B2 (en) Sputtering equipment
EP2538432A2 (en) Plasma processing apparatus
WO2011111712A1 (en) Sputtering device
US20080180030A1 (en) Plasma processing apparatus
US20210020484A1 (en) Aperture design for uniformity control in selective physical vapor deposition
JP6468521B2 (en) Inductively coupled antenna unit and plasma processing apparatus
JP2018101463A5 (en)
WO2011058608A1 (en) Plasma processing apparatus
US20210351024A1 (en) Tilted magnetron in a pvd sputtering deposition chamber
JP7415155B2 (en) sputtering equipment
JPH07226383A (en) Plasma generating device and plasma treatment device using this plasma generating device
WO2020188809A1 (en) Plasma treatment device
JP2018154861A (en) Sputtering apparatus
TWI839097B (en) Sputtering device
JP7302338B2 (en) Plasma processing equipment
WO2023112155A1 (en) Sputtering apparatus
JP2022023394A (en) Plasma processing apparatus
WO2023149320A1 (en) Sputtering device
JP4214806B2 (en) Sputtering equipment
JP7419114B2 (en) Sputtering equipment and sputtering method
WO2023149321A1 (en) Sputtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031047

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767450

Country of ref document: EP

Kind code of ref document: A1