WO2023013438A1 - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
WO2023013438A1
WO2023013438A1 PCT/JP2022/028446 JP2022028446W WO2023013438A1 WO 2023013438 A1 WO2023013438 A1 WO 2023013438A1 JP 2022028446 W JP2022028446 W JP 2022028446W WO 2023013438 A1 WO2023013438 A1 WO 2023013438A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
vacuum vessel
dielectric cover
slits
magnetic field
Prior art date
Application number
PCT/JP2022/028446
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松尾
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202280022237.2A priority Critical patent/CN117044406A/en
Priority to KR1020237031833A priority patent/KR20230145471A/en
Publication of WO2023013438A1 publication Critical patent/WO2023013438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma processing apparatus that uses plasma to process an object to be processed.
  • a plasma processing apparatus that generates plasma by passing a high-frequency current through an antenna and uses the plasma to process an object to be processed such as a substrate.
  • the plasma processing apparatus described in Patent Document 1 includes a vacuum vessel having an opening, a metal plate provided so as to block the opening and having a plurality of slits penetrating in the thickness direction, and a metal plate contacting the metal plate. a plate-like dielectric cover that is supported by the support and closes the plurality of slits from the outside of the vacuum vessel; and an antenna that is provided outside the vacuum vessel so as to face the metal plate.
  • a high-frequency electric field and a high-frequency magnetic field are generated by passing a high-frequency current through the antenna, and the high-frequency magnetic field is transmitted into the vacuum vessel through the dielectric cover and the slit of the metal plate. Thereby, an inductively coupled plasma can be generated in the vacuum vessel.
  • particles in the vacuum vessel may move and adhere to and deposit on the inside of the vacuum vessel, the metal plate, and the dielectric cover.
  • the plasma processing apparatus is used as a sputtering apparatus, sputtered particles adhere and accumulate on the dielectric cover or the like.
  • the deposit of the sputtered particles is a conductive metal film
  • the metal film deposited on the dielectric cover may be electrically connected to the metal plate at the slit.
  • the dielectric cover is heated. It is not desirable for the dielectric cover to be heated because it has the role of maintaining the vacuum in the vacuum vessel. Therefore, it is necessary to frequently clean the dielectric cover.
  • An object of one aspect of the present invention is to realize a plasma processing apparatus and the like that can reduce the possibility that sputtered particles and other particles moving in the vacuum vessel adhere to the dielectric cover.
  • a plasma processing apparatus includes a vacuum vessel that accommodates an object to be processed inside; an antenna that is provided outside the vacuum vessel and generates a high-frequency magnetic field; a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel, wherein the magnetic field introduction windows are provided in a plurality of a metal plate having slits formed thereon, a dielectric cover covering the plurality of slits, a gasket provided between the dielectric cover and the metal plate, and covering at least a portion of the plurality of slits and an anti-adhesion plate provided on the metal plate.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to one embodiment of the present invention
  • FIG. It is a top view which shows schematic structure of the magnetic field introduction window in the said plasma processing apparatus.
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. 2;
  • FIG. 3 is a cross-sectional view taken along line BB of FIG. 2;
  • It is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along line CC of FIG. 5;
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus 1 according to this embodiment.
  • the direction in which the antenna 7 extends is the X-axis direction
  • the direction from the vacuum vessel 2 to the antenna 7 is the Z-axis direction
  • the direction orthogonal to both the X-axis direction and the Z-axis direction is the Y-axis direction.
  • the plasma processing apparatus 1 performs plasma processing on an object to be processed W1 such as a substrate using inductively coupled plasma P1.
  • the substrate is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, or a flexible substrate for a flexible display.
  • the workpiece W1 may be a semiconductor substrate used for various purposes.
  • the object W1 to be processed is not limited to a substrate-like form, such as a tool.
  • the processing applied to the workpiece W1 is, for example, film formation by plasma CVD or sputtering, plasma etching, ashing, coating film removal, and the like.
  • the plasma processing apparatus 1 includes a vacuum vessel 2, a magnetic field introduction window 3, an antenna 7, and a holding portion 9.
  • a processing chamber 21 evacuated and into which gas is introduced is formed inside the vacuum container 2 .
  • the vacuum vessel 2 is, for example, a metal vessel.
  • a wall surface 22 (the upper surface in the example of FIG. 1) of the vacuum vessel 2 is formed with an opening 23 penetrating in the thickness direction.
  • the vacuum vessel 2 is electrically grounded.
  • the gas introduced into the processing chamber 21 may be selected according to the content of processing to be performed on the workpiece W1 accommodated in the processing chamber 21 .
  • the gas is a source gas or a gas diluted with a diluent gas such as H2 . More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film.
  • An F film fluorinated silicon nitride film
  • FIG. 2 is a top view showing a schematic configuration of the magnetic field introducing window 3. As shown in FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, and FIG. 4 is a cross-sectional view taken along line BB of FIG. 2 to 4, the antenna 7 is omitted. Furthermore, FIG. 2 omits a dielectric cover 32, which will be described later. Omitted members are indicated by dashed lines.
  • the magnetic field introduction window 3 includes a metal plate 31 and a dielectric cover 32.
  • the magnetic field introduction window 3 introduces a high frequency magnetic field generated from the antenna 7 into the processing chamber 21 in order to generate plasma in the processing chamber 21 .
  • a metal plate 31 and a dielectric cover 32 are provided in this order in the Z-axis direction.
  • the metal plate 31 is provided on the wall surface 22 of the vacuum vessel 2 so as to close the opening 23 .
  • a plurality of slits 311 are formed in the metal plate 31 so as to penetrate the metal plate 31 in the Z-axis direction.
  • the multiple slits 311 extend in the Y-axis direction and are arranged in the X-axis direction.
  • the metal plate 31 is arranged so as to be substantially parallel to the surface of the workpiece W1.
  • the dielectric cover 32 is provided from the outside of the vacuum vessel 2 so as to cover the slits 311 .
  • the dielectric cover 32 is entirely made of a dielectric material and has a flat plate shape.
  • Materials constituting the dielectric cover 32 are ceramics such as alumina, silicon carbide or silicon nitride, inorganic materials such as quartz glass and alkali-free glass, or resin materials such as fluorine resin such as Teflon (registered trademark).
  • the magnetic field introduction window 3 further includes a gasket 33 and an anti-adhesion plate 34 .
  • Gasket 33 is provided between metal plate 31 and dielectric cover 32 .
  • the gasket 33 may be an O-ring, and examples of the material of the gasket 33 include Viton.
  • a vacuum is maintained in the processing chamber 21 by the metal plate 31 closing the opening 23 , the dielectric cover 32 covering the plurality of slits 311 , and the gasket 33 .
  • the anti-adhesion plate 34 is provided on the metal plate 31 so as to cover at least part of the plurality of slits 311 .
  • the anti-adhesion plate 34 may be made of the same material as the dielectric cover 32 and may be thinner than the dielectric cover 32 .
  • the gasket 33 separates the metal plate 31 and the dielectric cover 32 from each other.
  • the amount of heat transferred from the metal plate 31 to the dielectric cover 32 can be reduced.
  • the particles moving in the vacuum vessel 2 pass through the plurality of slits 311 in the metal plate 31, some of them adhere to the attachment-preventing plate 34, which reduces the possibility of particles adhering to the dielectric cover 32. be able to.
  • a plurality of anti-adhesion plates 34 covering some slits 311 may be provided on the metal plate 31, and the gaskets 33 may be provided around the plurality of anti-adhesion plates 34. desirable. In this case, since the gasket 33 is also provided between the adjacent anti-adhesion plates 34, the distance between the metal plate 31 and the dielectric cover 32 can be more reliably maintained.
  • each of the plurality of anti-adhesion plates 34 does not block the slit 311 . That is, some slits 311 are partly exposed from the anti-adhesion plate 34 .
  • the space formed by the metal plate 31, the dielectric cover 32, and the gasket 33 communicates with the internal space of the vacuum vessel 2, and the gas in the space is pumped through the internal space by a vacuum pump (Fig. not shown). As a result, it is possible to prevent a pressure difference from occurring between the space and the internal space.
  • a high-frequency magnetic field generated from the antenna 7 passes through the dielectric cover 32 , the anti-adhesion plate 34 , and the plurality of slits 311 and is supplied to the processing chamber 21 . Thereby, an inductively coupled plasma P1 is generated in the processing chamber 21 .
  • the anti-adhesion plate 34 not only reduces the possibility of particles moving inside the vacuum vessel 2 adhering to the dielectric cover 32 , but also maintains the pressure difference between the inside and outside of the vacuum vessel 2 .
  • the pressure from the dielectric cover 32 to the attachment-preventing plate 34 may damage the attachment-preventing plate 34 .
  • the dielectric cover 32 have a predetermined strength so that the dielectric cover 32 and the anti-adhesion plate 34 do not come into contact with each other even if the inside of the vacuum vessel 2 is evacuated.
  • the gasket 33 preferably has a structure that supports the dielectric cover 32 around the attachment prevention plate 34 . In this case, the configuration for reducing the possibility of particles adhering to the dielectric cover 32 and the configuration for maintaining the pressure difference between the inside and outside of the vacuum vessel 2 are separated into the attachment prevention plate 34 and the dielectric cover 32, respectively.
  • FIG. 2 Another embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • FIG. 5 Another embodiment of the present invention will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus 1 according to this embodiment.
  • 6 is a cross-sectional view taken along line CC of FIG. 5.
  • FIG. The plasma processing apparatus 1 of this embodiment differs from the plasma processing apparatus 1 shown in FIGS. 1 to 4 in the shape of the metal plate 31, and the other configurations are the same.
  • the metal plate 31 of this embodiment has a region facing the attachment-preventing plate 34 and between the slits 311, compared to the metal plate 31 shown in FIGS. , is the recessed portion 312, and the rest of the configuration is the same.
  • the anti-adhesion plate 34 is separated from the metal plate 31 at the portion facing the concave portion 312 . Therefore, even if a conductive film is formed by particles adhering to the portion facing the slit 311 , it is difficult for the conductive film to come into contact with the concave portion 312 and conduct. Thereby, it is possible to prevent an induced current from being generated in the metal plate 31 when a high-frequency current is passed through the antenna 7 . As a result, it is possible to prevent the strength of the magnetic field generated by the antenna 7 from being reduced by the induced current.
  • the depth of the concave portion 312 is desirably 2 mm or more. In this case, it takes 150 hours or more for the conductive film to be electrically connected to the concave portion 312 . Therefore, even when the sputtering apparatus is operated continuously, the maintenance of the magnetic field introducing window 3 is required only once a week.
  • the upper limit of the depth of recess 312 is determined by various conditions such as the thickness and strength of metal plate 31 .
  • the anti-adhesion plate 34 is provided on the upper surface of the metal plate 31 , but may be provided on the lower surface of the metal plate 31 . However, in this case, it is necessary to fix the anti-adhesion plate 34 to the metal plate 31 with an adhesive or the like.
  • the dielectric cover 32 is plate-shaped in the above embodiment, it is not limited to this, and may be box-shaped with one side open, for example.
  • a plasma processing apparatus comprises a vacuum vessel containing an object to be processed, an antenna provided outside the vacuum vessel for generating a high-frequency magnetic field, and plasma generated inside the vacuum vessel.
  • a magnetic field introduction window provided on a wall surface of the vacuum container for introducing the high-frequency magnetic field into the interior of the vacuum container, wherein the magnetic field introduction window is a metal plate in which a plurality of slits are formed.
  • a dielectric cover covering the plurality of slits; a gasket provided between the dielectric cover and the metal plate; and a barrier provided on the metal plate so as to cover at least part of the plurality of slits. and a plate attachment.
  • the dielectric cover is separated from the metal plate by the gasket.
  • an attachment prevention plate covers at least a portion of the plurality of slits in the metal plate.
  • a plasma processing apparatus is the plasma processing apparatus according to aspect 1, wherein the magnetic field introduction window includes a plurality of the anti-adhesion plates covering some of the plurality of slits, and the gasket includes a plurality of the It may be provided around each of the anti-adhesion plates. In this case, since the gasket is also provided between the adjoining anti-adhesion plates, the distance between the metal plate and the dielectric cover can be more reliably maintained.
  • the space between the dielectric cover and the anti-adhesion plate communicates with the internal space of the vacuum vessel.
  • the gas in the space can be sucked by a vacuum pump through the internal space of the vacuum container.
  • the metal plate is a portion facing the attachment prevention plate, and a portion between the adjacent slits is a recess.
  • the anti-adhesion plate is separated from the metal plate at the portion facing the recess. Therefore, even if a conductive film is formed by particles adhering to the portion facing the slit, it is difficult for the conductive film to come into contact with the concave portion and conduct. As a result, it is possible to prevent an induced current from being generated in the metal plate when a high-frequency current is passed through the antenna. As a result, it is possible to prevent the strength of the magnetic field generated by the antenna from being reduced by the induced current.
  • the recess has a depth of 2 mm or more. In this case, even if the plasma processing apparatus is operated continuously, maintenance of the magnetic field introduction window is required only once a week.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The present invention decreases the likelihood that particles moving within a vacuum vessel will adhere to a dielectric cover. A magnetic field introduction window (3) provided to a wall surface of a vacuum vessel (2) comprises: a metal plate (31) in which a plurality of slits (311) are formed; a dielectric cover (32) that covers the plurality of slits (311); a gasket (33) provided between the dielectric cover (32) and the metal plate (31); and a deposition preventing plate (34) provided to the metal plate (31) so as to at least partially cover the plurality of slits (311).

Description

プラズマ処理装置Plasma processing equipment
 本発明は、プラズマを用いて被処理物を処理するプラズマ処理装置に関する。 The present invention relates to a plasma processing apparatus that uses plasma to process an object to be processed.
 アンテナに高周波電流を流すことによりプラズマを生成させ、該プラズマを用いて基板等の被処理物に処理を施すプラズマ処理装置が知られている。例えば、特許文献1に記載のプラズマ処理装置は、開口を有する真空容器と、該開口を塞ぐように設けられ、厚さ方向に貫通する複数のスリットを有する金属板と、該金属板に接触して支持され、上記複数のスリットを上記真空容器の外側から塞ぐ板状の誘電体カバーと、上記金属板に対向するように上記真空容器の外部に設けられているアンテナとを備える。上記アンテナに高周波電流を流すことにより、高周波電場および高周波磁場が発生し、該高周波磁場は、上記誘電体カバーと上記金属板のスリットとを透過して上記真空容器内に伝達される。これにより、上記真空容器内に誘導結合プラズマを発生させることができる。 A plasma processing apparatus is known that generates plasma by passing a high-frequency current through an antenna and uses the plasma to process an object to be processed such as a substrate. For example, the plasma processing apparatus described in Patent Document 1 includes a vacuum vessel having an opening, a metal plate provided so as to block the opening and having a plurality of slits penetrating in the thickness direction, and a metal plate contacting the metal plate. a plate-like dielectric cover that is supported by the support and closes the plurality of slits from the outside of the vacuum vessel; and an antenna that is provided outside the vacuum vessel so as to face the metal plate. A high-frequency electric field and a high-frequency magnetic field are generated by passing a high-frequency current through the antenna, and the high-frequency magnetic field is transmitted into the vacuum vessel through the dielectric cover and the slit of the metal plate. Thereby, an inductively coupled plasma can be generated in the vacuum vessel.
日本国特開2020-198282号公報Japanese Patent Application Laid-Open No. 2020-198282
 上記構成のプラズマ処理装置にて各種処理を施す場合、上記真空容器内の粒子が移動して、上記真空容器の内側、上記金属板、および上記誘電体カバーに付着し堆積することがある。例えば、上記プラズマ処理装置をスパッタリング装置として利用する場合、スパッタ粒子が上記誘電体カバー等に付着し堆積する。上記スパッタ粒子の堆積物が導電性の金属膜である場合、上記誘電体カバーに堆積した上記金属膜が、上記スリットにおいて上記金属板と導通する可能性がある。このとき、上記アンテナに高周波電流を流すと、上記金属膜および上記金属板が誘導加熱され、上記誘電体カバーが加熱されることになる。上記誘電体カバーは、上記真空容器内の真空を保持する役割を担っているため、加熱されることは望ましくない。このため、上記誘電体カバーの清掃を頻繁に行う必要があった。 When performing various processes in the plasma processing apparatus having the above configuration, particles in the vacuum vessel may move and adhere to and deposit on the inside of the vacuum vessel, the metal plate, and the dielectric cover. For example, when the plasma processing apparatus is used as a sputtering apparatus, sputtered particles adhere and accumulate on the dielectric cover or the like. If the deposit of the sputtered particles is a conductive metal film, the metal film deposited on the dielectric cover may be electrically connected to the metal plate at the slit. At this time, when a high-frequency current is passed through the antenna, the metal film and the metal plate are induction-heated, and the dielectric cover is heated. It is not desirable for the dielectric cover to be heated because it has the role of maintaining the vacuum in the vacuum vessel. Therefore, it is necessary to frequently clean the dielectric cover.
 本発明の一態様は、スパッタ粒子等、真空容器内を移動する粒子が誘電体カバーに付着する可能性を低減できるプラズマ処理装置等を実現することを目的とする。 An object of one aspect of the present invention is to realize a plasma processing apparatus and the like that can reduce the possibility that sputtered particles and other particles moving in the vacuum vessel adhere to the dielectric cover.
 上記の課題を解決するために、本発明の一態様に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成された金属板と、前記複数のスリットを覆う誘電体カバーと、該誘電体カバーと前記金属板との間に設けられたガスケットと、前記複数のスリットの少なくとも一部を覆うように前記金属板に設けられた防着板と、を備える。 In order to solve the above problems, a plasma processing apparatus according to an aspect of the present invention includes a vacuum vessel that accommodates an object to be processed inside; an antenna that is provided outside the vacuum vessel and generates a high-frequency magnetic field; a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel, wherein the magnetic field introduction windows are provided in a plurality of a metal plate having slits formed thereon, a dielectric cover covering the plurality of slits, a gasket provided between the dielectric cover and the metal plate, and covering at least a portion of the plurality of slits and an anti-adhesion plate provided on the metal plate.
 本発明の一態様によれば、真空容器内を移動する粒子が誘電体カバーに付着する可能性を低減できる。 According to one aspect of the present invention, it is possible to reduce the possibility that particles moving within the vacuum vessel will adhere to the dielectric cover.
本発明の一実施形態に係るプラズマ処理装置の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to one embodiment of the present invention; FIG. 上記プラズマ処理装置における磁場導入窓の概略構成を示す上面図である。It is a top view which shows schematic structure of the magnetic field introduction window in the said plasma processing apparatus. 図2のA-A線における断面図である。FIG. 3 is a cross-sectional view taken along line AA of FIG. 2; 図2のB-B線における断面図である。FIG. 3 is a cross-sectional view taken along line BB of FIG. 2; 本発明の別の実施形態に係るプラズマ処理装置の概略構成を示す断面図である。It is a cross-sectional view showing a schematic configuration of a plasma processing apparatus according to another embodiment of the present invention. 図5のC-C線における断面図である。FIG. 6 is a cross-sectional view taken along line CC of FIG. 5;
 以下、本発明の実施の形態について、詳細に説明する。なお、説明の便宜上、各実施形態に示した部材と同一の機能を有する部材については、同一の符号を付記し、適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. For convenience of explanation, members having the same functions as members shown in each embodiment are denoted by the same reference numerals, and descriptions thereof are omitted as appropriate.
 〔実施形態1〕
 本発明の一実施形態について、図1~図4を参照して説明する。
[Embodiment 1]
One embodiment of the present invention will be described with reference to FIGS. 1-4.
 <プラズマ処理装置1の構成>
 図1は、本実施形態に係るプラズマ処理装置1の概略構成を示す断面図である。図1において、アンテナ7が延伸する方向をX軸方向、真空容器2からアンテナ7に向かう方向をZ軸方向、X軸方向及びZ軸方向の両方の方向に直交する方向をY軸方向とする。
<Configuration of Plasma Processing Apparatus 1>
FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma processing apparatus 1 according to this embodiment. In FIG. 1, the direction in which the antenna 7 extends is the X-axis direction, the direction from the vacuum vessel 2 to the antenna 7 is the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction is the Y-axis direction. .
 図1に示すように、プラズマ処理装置1は、誘導結合プラズマP1を用いて基板等の被処理物W1にプラズマ処理を施すものである。ここで基板は、例えば液晶ディスプレイもしくは有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、またはフレキシブルディスプレイ用のフレキシブル基板等である。また、被処理物W1は、各種用途に用いられる半導体基板であり得る。さらに被処理物W1は、例えば工具等のように、基板状の形態には限られない。被処理物W1に施す処理は、例えば、プラズマCVD法あるいはスパッタ法による膜形成、プラズマによるエッチング、アッシング、被覆膜除去等である。 As shown in FIG. 1, the plasma processing apparatus 1 performs plasma processing on an object to be processed W1 such as a substrate using inductively coupled plasma P1. Here, the substrate is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic EL display, or a flexible substrate for a flexible display. Moreover, the workpiece W1 may be a semiconductor substrate used for various purposes. Furthermore, the object W1 to be processed is not limited to a substrate-like form, such as a tool. The processing applied to the workpiece W1 is, for example, film formation by plasma CVD or sputtering, plasma etching, ashing, coating film removal, and the like.
 プラズマ処理装置1は、真空容器2と、磁場導入窓3と、アンテナ7と、保持部9と、を備える。真空容器2の内部には、真空排気され、かつ、ガスが導入される処理室21が形成される。真空容器2は例えば金属製の容器である。真空容器2の壁面22(図1の例では上面)には、厚さ方向に貫通する開口部23が形成されている。真空容器2は電気的に接地されている。 The plasma processing apparatus 1 includes a vacuum vessel 2, a magnetic field introduction window 3, an antenna 7, and a holding portion 9. A processing chamber 21 evacuated and into which gas is introduced is formed inside the vacuum container 2 . The vacuum vessel 2 is, for example, a metal vessel. A wall surface 22 (the upper surface in the example of FIG. 1) of the vacuum vessel 2 is formed with an opening 23 penetrating in the thickness direction. The vacuum vessel 2 is electrically grounded.
 処理室21に導入されるガスは、処理室21に収容される被処理物W1に施す処理内容に応じたものにすればよい。例えば、プラズマCVD(Chemical Vapor Deposition)法によって被処理物W1に膜形成を行う場合には、ガスは、原料ガスまたはそれをH等の希釈ガスで希釈したガスである。より具体例を挙げると、原料ガスがSiHの場合はSi膜を、SiH+NHの場合はSiN膜を、SiH+Oの場合はSiO膜を、SiF+Nの場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ被処理物W1上に形成することができる。 The gas introduced into the processing chamber 21 may be selected according to the content of processing to be performed on the workpiece W1 accommodated in the processing chamber 21 . For example, when forming a film on the workpiece W1 by plasma CVD (Chemical Vapor Deposition), the gas is a source gas or a gas diluted with a diluent gas such as H2 . More specifically, when the source gas is SiH 4 , the Si film is formed, when the source gas is SiH 4 +NH 3 , the SiN film is formed, when SiH 4 +O 2 is the SiO 2 film, and when SiF 4 +N 2 is the SiN film. : An F film (fluorinated silicon nitride film) can be formed on the workpiece W1.
 <磁場導入窓3の構成>
 図2は、磁場導入窓3の概略構成を示す上面図である。図3は、図2のA-A線における断面図であり、図4は、図2のB-B線における断面図である。なお、図2~図4では、アンテナ7を省略している。さらに、図2では、後述する誘電体カバー32を省略している。省略した部材は一点鎖線で示している。
<Configuration of Magnetic Field Introduction Window 3>
FIG. 2 is a top view showing a schematic configuration of the magnetic field introducing window 3. As shown in FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, and FIG. 4 is a cross-sectional view taken along line BB of FIG. 2 to 4, the antenna 7 is omitted. Furthermore, FIG. 2 omits a dielectric cover 32, which will be described later. Omitted members are indicated by dashed lines.
 磁場導入窓3は、金属板31と、誘電体カバー32と、を備える。磁場導入窓3は、処理室21でプラズマを発生させるために、アンテナ7から生じた高周波磁場を処理室21に導入させる。Z軸方向に向かって、金属板31および誘電体カバー32が順に設けられる。 The magnetic field introduction window 3 includes a metal plate 31 and a dielectric cover 32. The magnetic field introduction window 3 introduces a high frequency magnetic field generated from the antenna 7 into the processing chamber 21 in order to generate plasma in the processing chamber 21 . A metal plate 31 and a dielectric cover 32 are provided in this order in the Z-axis direction.
 金属板31は、開口部23を塞ぐように真空容器2の壁面22に設けられる。金属板31には、金属板31をZ軸方向に貫通する複数のスリット311が形成される。複数のスリット311は、Y軸方向に延伸し、かつ、X軸方向に並ぶ。金属板31は、被処理物W1の表面と実質的に平行になるように配置されている。 The metal plate 31 is provided on the wall surface 22 of the vacuum vessel 2 so as to close the opening 23 . A plurality of slits 311 are formed in the metal plate 31 so as to penetrate the metal plate 31 in the Z-axis direction. The multiple slits 311 extend in the Y-axis direction and are arranged in the X-axis direction. The metal plate 31 is arranged so as to be substantially parallel to the surface of the workpiece W1.
 誘電体カバー32は、複数のスリット311を覆うように真空容器2の外部側から設けられる。誘電体カバー32は、全体が誘電体物質で構成されており、平板状を成すものである。誘電体カバー32を構成する材料は、アルミナ、炭化ケイ素もしくは窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、または、テフロン(登録商標)等のフッ素樹脂のような樹脂材料であってもよい。 The dielectric cover 32 is provided from the outside of the vacuum vessel 2 so as to cover the slits 311 . The dielectric cover 32 is entirely made of a dielectric material and has a flat plate shape. Materials constituting the dielectric cover 32 are ceramics such as alumina, silicon carbide or silicon nitride, inorganic materials such as quartz glass and alkali-free glass, or resin materials such as fluorine resin such as Teflon (registered trademark). may
 本実施形態では、磁場導入窓3は、ガスケット33と、防着板34と、をさらに備える。ガスケット33は、金属板31と誘電体カバー32との間に設けられる。ガスケット33は、Oリングであってもよく、ガスケット33の材質としては、バイトン等が挙げられる。開口部23を塞ぐ金属板31と、複数のスリット311を覆う誘電体カバー32と、ガスケット33とによって、処理室21内の真空が保持される。 In this embodiment, the magnetic field introduction window 3 further includes a gasket 33 and an anti-adhesion plate 34 . Gasket 33 is provided between metal plate 31 and dielectric cover 32 . The gasket 33 may be an O-ring, and examples of the material of the gasket 33 include Viton. A vacuum is maintained in the processing chamber 21 by the metal plate 31 closing the opening 23 , the dielectric cover 32 covering the plurality of slits 311 , and the gasket 33 .
 防着板34は、複数のスリット311の少なくとも一部を覆うように金属板31に設けられる。防着板34は、誘電体カバー32と同様の材質であってもよく、誘電体カバー32よりも薄くてもよい。 The anti-adhesion plate 34 is provided on the metal plate 31 so as to cover at least part of the plurality of slits 311 . The anti-adhesion plate 34 may be made of the same material as the dielectric cover 32 and may be thinner than the dielectric cover 32 .
 上記の構成によると、ガスケット33により、金属板31と誘電体カバー32とは離間する。これにより、金属板31にて誘導加熱が発生しても、金属板31から誘電体カバー32に伝達される熱量を低減することができる。また、真空容器2内を移動する粒子が、金属板31における複数のスリット311を通過しても、一部が防着板34に付着するので、誘電体カバー32に付着する可能性を低減することができる。その結果、上記粒子が誘電体カバー32に付着し堆積することにより誘電体カバー32が加熱される可能性を低減できる。 According to the above configuration, the gasket 33 separates the metal plate 31 and the dielectric cover 32 from each other. As a result, even if induction heating occurs in the metal plate 31, the amount of heat transferred from the metal plate 31 to the dielectric cover 32 can be reduced. In addition, even if the particles moving in the vacuum vessel 2 pass through the plurality of slits 311 in the metal plate 31, some of them adhere to the attachment-preventing plate 34, which reduces the possibility of particles adhering to the dielectric cover 32. be able to. As a result, it is possible to reduce the possibility that the dielectric cover 32 will be heated due to the particles adhering and accumulating on the dielectric cover 32 .
 なお、図1・図2に示すように、幾つかのスリット311を覆う防着板34が金属板31に複数個設けられ、ガスケット33は、複数の防着板34の周囲に設けられることが望ましい。この場合、隣り合う防着板34の間にもガスケット33が設けられることになるので、金属板31と誘電体カバー32との距離をより確実に維持することができる。 1 and 2, a plurality of anti-adhesion plates 34 covering some slits 311 may be provided on the metal plate 31, and the gaskets 33 may be provided around the plurality of anti-adhesion plates 34. desirable. In this case, since the gasket 33 is also provided between the adjacent anti-adhesion plates 34, the distance between the metal plate 31 and the dielectric cover 32 can be more reliably maintained.
 また、図1・図2に示すように、複数の防着板34のそれぞれは、スリット311を閉塞していないことが望ましい。すなわち、幾つかのスリット311は、一部が防着板34から露出している。これにより、金属板31、誘電体カバー32、およびガスケット33によって形成される空間が真空容器2の内部空間と連通することになり、上記空間のガスを、上記内部空間を介して真空ポンプ(図示せず)にて吸引することができる。その結果、上記空間と上記内部空間との間で圧力差が発生することを防止できる。 Also, as shown in FIGS. 1 and 2, it is desirable that each of the plurality of anti-adhesion plates 34 does not block the slit 311 . That is, some slits 311 are partly exposed from the anti-adhesion plate 34 . As a result, the space formed by the metal plate 31, the dielectric cover 32, and the gasket 33 communicates with the internal space of the vacuum vessel 2, and the gas in the space is pumped through the internal space by a vacuum pump (Fig. not shown). As a result, it is possible to prevent a pressure difference from occurring between the space and the internal space.
 アンテナ7から生じた高周波磁場は、誘電体カバー32、防着板34、および複数のスリット311を透過して処理室21に供給される。これにより、処理室21に誘導結合プラズマP1が生成される。 A high-frequency magnetic field generated from the antenna 7 passes through the dielectric cover 32 , the anti-adhesion plate 34 , and the plurality of slits 311 and is supplied to the processing chamber 21 . Thereby, an inductively coupled plasma P1 is generated in the processing chamber 21 .
 (付記事項)
 ところで、真空容器2内が真空排気されると、誘電体カバー32には、真空容器2の内外の圧力差により金属板31の方への圧力が印加される。これにより、ガスケット33が圧縮されて誘電体カバー32が金属板31の方へ移動する。また、誘電体カバー32は、ガスケット33による支持の無い部分が金属板31の方へ撓むことになる。
(Additional notes)
By the way, when the inside of the vacuum vessel 2 is evacuated, pressure is applied to the dielectric cover 32 toward the metal plate 31 due to the pressure difference between the inside and outside of the vacuum vessel 2 . This compresses the gasket 33 and moves the dielectric cover 32 toward the metal plate 31 . Also, the dielectric cover 32 bends toward the metal plate 31 at the portion not supported by the gasket 33 .
 このとき、誘電体カバー32と防着板34とが接触すると、誘電体カバー32から防着板34へ圧力が印加されることになる。このことから、防着板34は、真空容器2内を移動する粒子が誘電体カバー32に付着する可能性を低減するだけでなく、真空容器2の内外の圧力差を維持することになる。しかしながら、この場合、誘電体カバー32から防着板34への圧力により、防着板34が破損する可能性が考えられる。 At this time, when the dielectric cover 32 and the attachment prevention plate 34 come into contact with each other, pressure is applied from the dielectric cover 32 to the attachment prevention plate 34 . As a result, the anti-adhesion plate 34 not only reduces the possibility of particles moving inside the vacuum vessel 2 adhering to the dielectric cover 32 , but also maintains the pressure difference between the inside and outside of the vacuum vessel 2 . However, in this case, the pressure from the dielectric cover 32 to the attachment-preventing plate 34 may damage the attachment-preventing plate 34 .
 そこで、真空容器2内が真空排気されても、誘電体カバー32と防着板34とが接触しないように、誘電体カバー32は所定の強度を有することが望ましい。また、ガスケット33は、図2に示すように、防着板34の周囲で誘電体カバー32を支持する構造とすることが望ましい。この場合、上記粒子が誘電体カバー32に付着する可能性を低減する構成と、真空容器2の内外の圧力差を維持する構成とは、それぞれ、防着板34と誘電体カバー32とに分離されることになる。 Therefore, it is desirable that the dielectric cover 32 have a predetermined strength so that the dielectric cover 32 and the anti-adhesion plate 34 do not come into contact with each other even if the inside of the vacuum vessel 2 is evacuated. Moreover, as shown in FIG. 2, the gasket 33 preferably has a structure that supports the dielectric cover 32 around the attachment prevention plate 34 . In this case, the configuration for reducing the possibility of particles adhering to the dielectric cover 32 and the configuration for maintaining the pressure difference between the inside and outside of the vacuum vessel 2 are separated into the attachment prevention plate 34 and the dielectric cover 32, respectively. will be
 〔実施形態2〕
 本発明の別の実施形態について、図5・図6を参照して説明する。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG.
 図5は、本実施形態に係るプラズマ処理装置1の概略構成を示す断面図である。図6は、図5のC-C線における断面図である。本実施形態のプラズマ処理装置1は、図1~図4に示すプラズマ処理装置1に比べて、金属板31の形状が異なり、その他の構成は同様である。 FIG. 5 is a cross-sectional view showing a schematic configuration of the plasma processing apparatus 1 according to this embodiment. 6 is a cross-sectional view taken along line CC of FIG. 5. FIG. The plasma processing apparatus 1 of this embodiment differs from the plasma processing apparatus 1 shown in FIGS. 1 to 4 in the shape of the metal plate 31, and the other configurations are the same.
 図5・図6に示すように、本実施形態の金属板31は、図1~図4に示す金属板31に比べて、防着板34と対向する領域であって、スリット311どうしの間の領域が凹部312となっている点が異なり、その他の構成は同様である。 As shown in FIGS. 5 and 6, the metal plate 31 of this embodiment has a region facing the attachment-preventing plate 34 and between the slits 311, compared to the metal plate 31 shown in FIGS. , is the recessed portion 312, and the rest of the configuration is the same.
 上記の構成によると、防着板34は、凹部312と対向する部分では金属板31から離間することになる。従って、防着板34は、スリット311と対向する部分において粒子が付着し導電膜が形成されたとしても、該導電膜が凹部312と接触し導通することが困難となる。これにより、アンテナ7に高周波電流を流した場合に金属板31にて誘導電流が発生することを防止できる。その結果、アンテナ7による磁場の強度が、誘導電流によって低減することを防止できる。 According to the above configuration, the anti-adhesion plate 34 is separated from the metal plate 31 at the portion facing the concave portion 312 . Therefore, even if a conductive film is formed by particles adhering to the portion facing the slit 311 , it is difficult for the conductive film to come into contact with the concave portion 312 and conduct. Thereby, it is possible to prevent an induced current from being generated in the metal plate 31 when a high-frequency current is passed through the antenna 7 . As a result, it is possible to prevent the strength of the magnetic field generated by the antenna 7 from being reduced by the induced current.
 なお、量産ラインで使用するスパッタリング装置の成膜速度が、200nm/min程度であることを考慮すると、凹部312の深さは2mm以上であることが望ましい。この場合、上記導電膜が凹部312と導通するまでに150時間以上が必要となる。従って、上記スパッタリング装置を連続稼働させた場合でも、磁場導入窓3のメンテナンスは、1週間に1回程度で済むことになる。なお、凹部312の深さの上限は、金属板31の厚さおよび強度など、種々の条件によって決定される。 Considering that the deposition rate of the sputtering apparatus used in the mass production line is about 200 nm/min, the depth of the concave portion 312 is desirably 2 mm or more. In this case, it takes 150 hours or more for the conductive film to be electrically connected to the concave portion 312 . Therefore, even when the sputtering apparatus is operated continuously, the maintenance of the magnetic field introducing window 3 is required only once a week. The upper limit of the depth of recess 312 is determined by various conditions such as the thickness and strength of metal plate 31 .
 (付記事項)
 なお、上記実施形態では、防着板34は、金属板31の上面に設けられているが、金属板31の下面に設けられていてもよい。しかしながら、この場合、接着材等で防着板34を金属板31に固定する必要がある。また、上記実施形態では、誘電体カバー32は板状であるが、これに限定されるものではなく、例えば、一面が開口した箱型であってもよい。
(Additional notes)
In addition, in the above embodiment, the anti-adhesion plate 34 is provided on the upper surface of the metal plate 31 , but may be provided on the lower surface of the metal plate 31 . However, in this case, it is necessary to fix the anti-adhesion plate 34 to the metal plate 31 with an adhesive or the like. In addition, although the dielectric cover 32 is plate-shaped in the above embodiment, it is not limited to this, and may be box-shaped with one side open, for example.
 〔まとめ〕
 本発明の態様1に係るプラズマ処理装置は、被処理物を内部に収容する真空容器と、前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、前記磁場導入窓は、複数のスリットが形成された金属板と、前記複数のスリットを覆う誘電体カバーと、該誘電体カバーと前記金属板との間に設けられたガスケットと、前記複数のスリットの少なくとも一部を覆うように前記金属板に設けられた防着板と、を備える構成である。
〔summary〕
A plasma processing apparatus according to aspect 1 of the present invention comprises a vacuum vessel containing an object to be processed, an antenna provided outside the vacuum vessel for generating a high-frequency magnetic field, and plasma generated inside the vacuum vessel. a magnetic field introduction window provided on a wall surface of the vacuum container for introducing the high-frequency magnetic field into the interior of the vacuum container, wherein the magnetic field introduction window is a metal plate in which a plurality of slits are formed. a dielectric cover covering the plurality of slits; a gasket provided between the dielectric cover and the metal plate; and a barrier provided on the metal plate so as to cover at least part of the plurality of slits. and a plate attachment.
 上記の構成によると、誘電体カバーは、ガスケットによって金属板から離間することになる。また、防着板が前記金属板における複数のスリットの少なくとも一部を覆っている。これにより、真空容器内を移動する粒子が、前記金属板における複数のスリットを通過しようとすると、前記防着板に付着するので、前記誘電体カバーに付着する可能性を低減することができる。その結果、前記粒子が前記誘電体カバーに付着し堆積することにより前記誘電体カバーが加熱される可能性を低減できる。 According to the above configuration, the dielectric cover is separated from the metal plate by the gasket. In addition, an attachment prevention plate covers at least a portion of the plurality of slits in the metal plate. As a result, when particles moving in the vacuum vessel attempt to pass through the plurality of slits in the metal plate, they adhere to the anti-adhesion plate, thereby reducing the possibility of the particles adhering to the dielectric cover. As a result, it is possible to reduce the possibility that the dielectric cover is heated by the particles adhering and accumulating on the dielectric cover.
 本発明の態様2に係るプラズマ処理装置は、上記態様1において、前記磁場導入窓は、前記複数のスリットの幾つかを覆う前記防着板を複数個備えており、前記ガスケットは、複数の前記防着板のそれぞれの周囲に設けられていてもよい。この場合、隣り合う前記防着板の間にも前記ガスケットが設けられることになるので、前記金属板と前記誘電体カバーとの距離をより確実に維持することができる。 A plasma processing apparatus according to aspect 2 of the present invention is the plasma processing apparatus according to aspect 1, wherein the magnetic field introduction window includes a plurality of the anti-adhesion plates covering some of the plurality of slits, and the gasket includes a plurality of the It may be provided around each of the anti-adhesion plates. In this case, since the gasket is also provided between the adjoining anti-adhesion plates, the distance between the metal plate and the dielectric cover can be more reliably maintained.
 本発明の態様3に係るプラズマ処理装置は、上記態様1・2において、前記誘電体カバーと前記防着板との間の空間は、前記真空容器の内部空間と連通していることが好ましい。この場合、前記空間のガスを、前記真空容器の内部空間を介して真空ポンプにて吸引することができる。その結果、前記空間と前記真空容器の内部との間で圧力差が発生することを防止できる。 In the plasma processing apparatus according to Aspect 3 of the present invention, in Aspects 1 and 2, it is preferable that the space between the dielectric cover and the anti-adhesion plate communicates with the internal space of the vacuum vessel. In this case, the gas in the space can be sucked by a vacuum pump through the internal space of the vacuum container. As a result, it is possible to prevent a pressure difference from occurring between the space and the interior of the vacuum vessel.
 本発明の態様4に係るプラズマ処理装置は、上記態様1~3において、前記金属板は、前記防着板と対向する部分であって、隣り合う前記スリットどうしの間の部分が凹部となっていてもよい。 In the plasma processing apparatus according to aspect 4 of the present invention, in aspects 1 to 3, the metal plate is a portion facing the attachment prevention plate, and a portion between the adjacent slits is a recess. may
 この場合、前記防着板は、前記凹部と対向する部分では前記金属板から離間することになる。従って、前記防着板は、前記スリットと対向する部分において粒子が付着し導電膜が形成されたとしても、該導電膜が前記凹部と接触し導通することが困難となる。これにより、前記アンテナに高周波電流を流した場合に前記金属板にて誘導電流が発生することを防止できる。その結果、前記アンテナによる磁場の強度が、誘導電流によって低減することを防止できる。 In this case, the anti-adhesion plate is separated from the metal plate at the portion facing the recess. Therefore, even if a conductive film is formed by particles adhering to the portion facing the slit, it is difficult for the conductive film to come into contact with the concave portion and conduct. As a result, it is possible to prevent an induced current from being generated in the metal plate when a high-frequency current is passed through the antenna. As a result, it is possible to prevent the strength of the magnetic field generated by the antenna from being reduced by the induced current.
 本発明の態様5に係るプラズマ処理装置は、上記態様4において、前記凹部は、深さが2mm以上であることが好ましい。この場合、プラズマ処理装置を連続稼働したとしても、前記磁場導入窓のメンテナンスは、1週間に1回程度で済むことになる。 In the plasma processing apparatus according to aspect 5 of the present invention, in aspect 4, it is preferable that the recess has a depth of 2 mm or more. In this case, even if the plasma processing apparatus is operated continuously, maintenance of the magnetic field introduction window is required only once a week.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 1 プラズマ処理装置
 2 真空容器
 3 磁場導入窓
 7 アンテナ
 9 保持部
21 処理室
22 壁面
23 開口部
31 金属板
32 誘電体カバー
33 ガスケット
34 防着板
311 スリット
312 凹部
REFERENCE SIGNS LIST 1 plasma processing apparatus 2 vacuum chamber 3 magnetic field introduction window 7 antenna 9 holder 21 processing chamber 22 wall surface 23 opening 31 metal plate 32 dielectric cover 33 gasket 34 anti-adhesion plate 311 slit 312 recess

Claims (5)

  1.  被処理物を内部に収容する真空容器と、
     前記真空容器の外部に設けられ、高周波磁場を生じさせるアンテナと、
     前記真空容器の内部でプラズマを発生させるために、前記高周波磁場を前記真空容器の内部に導入させる、前記真空容器の壁面に設けられた磁場導入窓と、を備え、
     前記磁場導入窓は、
      複数のスリットが形成された金属板と、
      前記複数のスリットを覆う誘電体カバーと、
      該誘電体カバーと前記金属板との間に設けられたガスケットと、
      前記複数のスリットの少なくとも一部を覆うように前記金属板に設けられた防着板と、を備えるプラズマ処理装置。
    a vacuum vessel containing an object to be processed;
    An antenna that is provided outside the vacuum vessel and that generates a high-frequency magnetic field;
    a magnetic field introduction window provided on a wall surface of the vacuum vessel for introducing the high-frequency magnetic field into the interior of the vacuum vessel in order to generate plasma inside the vacuum vessel;
    The magnetic field introduction window is
    a metal plate having a plurality of slits;
    a dielectric cover covering the plurality of slits;
    a gasket provided between the dielectric cover and the metal plate;
    and an anti-adhesion plate provided on the metal plate so as to cover at least part of the plurality of slits.
  2.  前記磁場導入窓は、前記複数のスリットの幾つかを覆う前記防着板を複数個備えており、
     前記ガスケットは、複数の前記防着板のそれぞれの周囲に設けられている、請求項1に記載のプラズマ処理装置。
    The magnetic field introduction window includes a plurality of the anti-adhesion plates covering some of the plurality of slits,
    2. The plasma processing apparatus according to claim 1, wherein said gasket is provided around each of said plurality of anti-adhesion plates.
  3.  前記誘電体カバーと前記防着板との間の空間は、前記真空容器の内部空間と連通している、請求項1または2に記載のプラズマ処理装置。 3. The plasma processing apparatus according to claim 1, wherein the space between the dielectric cover and the anti-adhesion plate communicates with the internal space of the vacuum vessel.
  4.  前記金属板は、前記防着板と対向する部分であって、隣り合う前記スリットどうしの間の部分が凹部となっている、請求項1から3の何れか1項に記載のプラズマ処理装置。 4. The plasma processing apparatus according to any one of claims 1 to 3, wherein said metal plate faces said deposition-preventing plate and has a concave portion between said adjacent slits.
  5.  前記凹部は、深さが2mm以上である、請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the recess has a depth of 2 mm or more.
PCT/JP2022/028446 2021-08-04 2022-07-22 Plasma treatment device WO2023013438A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280022237.2A CN117044406A (en) 2021-08-04 2022-07-22 Plasma processing apparatus
KR1020237031833A KR20230145471A (en) 2021-08-04 2022-07-22 plasma processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-128450 2021-08-04
JP2021128450A JP2023023176A (en) 2021-08-04 2021-08-04 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2023013438A1 true WO2023013438A1 (en) 2023-02-09

Family

ID=85155599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028446 WO2023013438A1 (en) 2021-08-04 2022-07-22 Plasma treatment device

Country Status (4)

Country Link
JP (1) JP2023023176A (en)
KR (1) KR20230145471A (en)
CN (1) CN117044406A (en)
WO (1) WO2023013438A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264172A (en) * 2002-03-07 2003-09-19 New Japan Radio Co Ltd Plasma processor
WO2020246523A1 (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus
JP2021009790A (en) * 2019-07-01 2021-01-28 日新電機株式会社 Plasma processing apparatus
KR20210042562A (en) * 2019-10-10 2021-04-20 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238613B2 (en) 2019-06-05 2023-03-14 日新電機株式会社 Plasma processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264172A (en) * 2002-03-07 2003-09-19 New Japan Radio Co Ltd Plasma processor
WO2020246523A1 (en) * 2019-06-05 2020-12-10 日新電機株式会社 Plasma processing apparatus
JP2021009790A (en) * 2019-07-01 2021-01-28 日新電機株式会社 Plasma processing apparatus
KR20210042562A (en) * 2019-10-10 2021-04-20 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus

Also Published As

Publication number Publication date
JP2023023176A (en) 2023-02-16
KR20230145471A (en) 2023-10-17
CN117044406A (en) 2023-11-10
TW202319571A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US20030097987A1 (en) Plasma CVD apparatus conducting self-cleaning and method of self-cleaning
TW200805556A (en) Substrate placing stage and substrate processing apparatus
US10676817B2 (en) Flip edge shadow frame
CN100557075C (en) Handle the method for substrate
US20180023193A1 (en) A method and system for high temperature clean
WO2023013438A1 (en) Plasma treatment device
JPH06196421A (en) Plasma device
WO2021210583A1 (en) Plasma source and plasma processing apparatus
EP0841838A1 (en) Plasma treatment apparatus and plasma treatment method
TWI837749B (en) Plasma treatment device
WO2023136008A1 (en) Plasma treatment device
CN115279938A (en) Sputtering device
TW200415250A (en) Plasma processing apparatus having protection members
TWI637660B (en) Plasma processing device
WO2023013383A1 (en) Plasma treatment device
JP7440746B2 (en) Plasma source and plasma processing equipment
WO2023013384A1 (en) Plasma processing device
KR100627785B1 (en) Induction coupling type plasma processing apparatus
WO2024101024A1 (en) Plasma processing device
JP2019046658A (en) Plasma processing apparatus and plasma processing method
CN111316421B (en) Process for reducing plasma-induced damage
US20180350571A1 (en) Selective in-situ cleaning of high-k films from processing chamber using reactive gas precursor
JPH04318175A (en) Bias ecr plasma cvd device
TW202124766A (en) Method for depositing a barrier layer and thin film encapsulation structure using the same
KR20070032050A (en) Protective coating on a substrate and method of making thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031833

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280022237.2

Country of ref document: CN

Ref document number: 1020237031833

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE