WO2023135844A1 - 複合基板の製造方法 - Google Patents
複合基板の製造方法 Download PDFInfo
- Publication number
- WO2023135844A1 WO2023135844A1 PCT/JP2022/030156 JP2022030156W WO2023135844A1 WO 2023135844 A1 WO2023135844 A1 WO 2023135844A1 JP 2022030156 W JP2022030156 W JP 2022030156W WO 2023135844 A1 WO2023135844 A1 WO 2023135844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- substrate
- piezoelectric
- bonding
- composite substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 117
- 239000002131 composite material Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 238000005498 polishing Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 9
- 238000005304 joining Methods 0.000 abstract description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000001994 activation Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000010897 surface acoustic wave method Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007735 ion beam assisted deposition Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
- H03H3/10—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/085—Shaping or machining of piezoelectric or electrostrictive bodies by machining
- H10N30/086—Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02559—Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
Definitions
- the present invention relates to a method for manufacturing a composite substrate.
- a surface acoustic wave (SAW) device is known as an acoustic wave device that uses elastic waves.
- SAW devices are used, for example, as filters in communication equipment such as mobile phones.
- devices having a structure in which a piezoelectric layer is sandwiched between electrodes and a hollow portion is formed between the piezoelectric layer and a supporting substrate have been proposed, as disclosed in Patent Document 1. .
- Such a structure can be obtained, for example, by processing a composite substrate in which a piezoelectric substrate and a supporting substrate are bonded via an intermediate layer.
- a main object of the present invention is to provide a composite substrate having excellent durability.
- a method for manufacturing a composite substrate includes forming a first layer on the lower surface side of a piezoelectric substrate having an upper surface and a lower surface facing each other and having an electrode provided on the lower surface; by setting the waviness of the surface of the first layer to more than 2 nm and 70 nm or less, and bonding a support substrate to the first layer side of the piezoelectric substrate on which the first layer is formed, including.
- the bonding surface of the first layer and the bonding surface on the support substrate side are subjected to an activation treatment.
- the activation treatment is performed by plasma irradiation.
- the manufacturing method further includes polishing the upper surface of the piezoelectric substrate after the bonding.
- the first layer comprises silicon oxide.
- a composite substrate with excellent durability can be provided.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a composite substrate according to one embodiment of the present invention
- FIG. 2B is a continuation of FIG. 2A
- FIG. 2C is a continuation of FIG. 2B
- FIG. 2C is a continuation of FIG. 2C
- FIG. 2C is a continuation of FIG. 2D
- FIG. 3B is a continuation of FIG. 3A
- 4 is a graph showing the state of waviness on the surface of the silicon oxide layer of Example 1.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a composite substrate according to one embodiment of the present invention.
- the composite substrate 100 has a piezoelectric layer 10, an intermediate layer 20, and a support substrate 30 in this order.
- the support substrate 30 is arranged on the second main surface 10b side of the piezoelectric layer 10 having the first main surface 10a and the second main surface 10b facing each other, and the support substrate 30 is placed between the support substrate 30 and the piezoelectric layer 10.
- An intermediate layer 20 is arranged.
- An electrode 41 is provided on the second main surface 10 b of the piezoelectric layer 10 , and the intermediate layer 20 is arranged so as to cover the electrode 41 .
- the intermediate layer 20 is in contact with the electrode 41 and the electrode non-formation region of the piezoelectric layer 10 where the electrode 41 is not formed.
- the composite substrate 100 may further have arbitrary layers.
- the type/function, number, combination, arrangement, etc. of such layers can be appropriately set according to the purpose.
- the composite substrate 100 can be manufactured in any suitable shape. In one embodiment, it can be manufactured in so-called wafer form.
- the size of the composite substrate 100 can be appropriately set according to the purpose.
- the wafer diameter is, for example, 100 mm to 200 mm.
- A-1. Piezoelectric Layer Any suitable piezoelectric material can be used as a material constituting the piezoelectric layer.
- a single crystal with the composition LiAO 3 is preferably used as the piezoelectric material.
- A is one or more elements selected from the group consisting of niobium and tantalum.
- LiAO 3 may be lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or a lithium niobate-lithium tantalate solid solution.
- the piezoelectric layer extends from the Y-axis to the Z-axis when the X-axis (crystal axis) of the piezoelectric material is the propagation direction (X 1 ) of the surface acoustic wave.
- the direction rotated 32° to 55° corresponds to the direction (X 3 ) perpendicular to the main surface of the piezoelectric layer, specifically (180°, 58° to 35° in Euler angles). °, 180°).
- the piezoelectric layer When the piezoelectric material is lithium niobate, the piezoelectric layer extends from the Z-axis to the ⁇ Y-axis when the X-axis (crystal axis) of the piezoelectric material is the propagation direction (X 1 ) of the surface acoustic wave.
- the direction rotated by 0° to 40° corresponds to the direction (X 3 ) perpendicular to the main surface of the piezoelectric layer, specifically (0°, 0 ° to 40°, 0°).
- the piezoelectric layer may also extend from the Y-axis to the Z-axis when the X-axis (crystal axis) of the piezoelectric material is the propagation direction (X 1 ) of the surface acoustic wave. corresponds to the direction (X 3 ) perpendicular to the main surface of the piezoelectric layer, specifically (180°, 50° to 25°, 180° ) is preferred.
- the thickness of the piezoelectric layer can be set to any suitable thickness depending on the usage and application of the composite substrate.
- the thickness of the piezoelectric layer is, for example, 0.2 ⁇ m or more and 30 ⁇ m or less.
- Electrodes may be composed of metals such as Au, Ag, Al, Pt, Mo, and Ru. These may be used alone or in combination of two or more.
- the thickness of the electrode is, for example, 0.1 ⁇ m to 1 ⁇ m.
- Electrodes are typically formed by patterning a metal film deposited on a piezoelectric body by sputtering, vacuum deposition, or the like.
- intermediate layer examples of materials that constitute the intermediate layer include silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), niobium oxide (Nb 2 O 5 ), and silicon (PVD-Si). Silicon oxide is preferably used.
- the thickness of the intermediate layer (including the thickness in the region facing the electrode) is, for example, 1 ⁇ m or more and 6 ⁇ m or less, preferably 2 ⁇ m or more and 3 ⁇ m or less.
- the intermediate layer can be deposited by any suitable method.
- it can be deposited by sputtering, physical vapor deposition such as ion beam assisted deposition (IAD), chemical vapor deposition, or atomic layer deposition (ALD).
- IAD ion beam assisted deposition
- ALD atomic layer deposition
- the support substrate may be composed of a single crystal, a polycrystal, or a combination thereof. Materials constituting the support substrate are preferably selected from the group consisting of silicon, sapphire, glass, quartz, crystal and alumina.
- the above silicon may be monocrystalline silicon with a polycrystalline layer or amorphous layer formed on its surface, or may be high resistance silicon.
- the sapphire is a single crystal with a composition of Al 2 O 3 and the alumina is a polycrystal with a composition of Al 2 O 3 .
- Alumina is preferably translucent alumina.
- the thermal expansion coefficient of the material forming the support substrate is preferably smaller than the thermal expansion coefficient of the material forming the piezoelectric layer.
- Such a supporting substrate can suppress changes in the shape and size of the piezoelectric layer when the temperature changes, and can suppress changes in the frequency characteristics of the obtained surface acoustic wave device, for example.
- the thickness of the support substrate is, for example, 100 ⁇ m to 1000 ⁇ m.
- Manufacturing method A method for manufacturing a composite substrate according to one embodiment of the present invention comprises forming a first layer on the lower surface side of a piezoelectric substrate having an upper surface and a lower surface facing each other and having an electrode provided on the lower surface; Planarizing the surface of the first layer and bonding a support substrate to the first layer side of the piezoelectric substrate.
- FIGS. 2A to 2E are diagrams showing an example of a manufacturing process for a composite substrate according to one embodiment.
- FIG. 2A shows a state in which the formation of the electrode 41 is completed on the lower surface 12b of the piezoelectric substrate 12 having the upper surface 12a and the lower surface 12b facing each other
- FIG. It shows a state where the The film formation of the first layer 21 can be performed by the method for forming the intermediate layer described above.
- the thickness of the first layer 21 can be set to a thickness that can sufficiently cover the electrodes 41, for example.
- the thickness of the first layer 21 is, for example, 2 ⁇ m or more and 6 ⁇ m or less.
- FIG. 2C shows a state in which planarization processing (for example, lapping and/or chemical-mechanical polishing) of the surface 21a of the first layer 21 has been completed.
- planarization processing for example, lapping and/or chemical-mechanical polishing
- the undulation of the surface 21a of the first layer 21 preferably exceeds 2 nm, more preferably 3 nm or more, and still more preferably 5 nm or more.
- the waviness of the surface 21a of the first layer 21 is preferably 70 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less.
- the waviness (surface shape) of the surface can be measured by a step meter.
- the waviness of the surface 21a of the first layer 21 can be controlled by adjusting the planarization process. For example, the waviness value can be controlled by adjusting the polishing amount of lap polishing and the polishing amount of chemical mechanical polishing.
- FIG. 2D shows a step of bonding (directly bonding) the piezoelectric substrate 12 on which the first layer 21 is formed and the support substrate 30 . Specifically, the bonding surface 21a of the first layer 21 and the bonding surface 30a of the support substrate 30 are brought into contact with each other and bonded. In this way, as shown in FIG. 2E, a composite substrate 110 in which the piezoelectric substrate 12 and the support substrate 30 are bonded via the intermediate layer 20 is obtained.
- a second layer is formed on the side of the support substrate 30 to which the piezoelectric substrate 12 is bonded, and is formed between the bonding surface 21a of the first layer 21 formed on the piezoelectric substrate 12 and the support substrate 30. It may be bonded by contacting the bonded surface of the second layer coated with the film.
- the intermediate layer is formed by joining the first layer and the second layer.
- the material comprising the first layer 21 and the material comprising the second layer are substantially the same.
- the first layer 21 and the second layer are formed by sputtering under the same conditions using the same target (eg, Si target). Any appropriate material can be selected as the material forming the first layer 1 and the material forming the second layer, as long as the bonding can be performed.
- the bonding surface on the piezoelectric substrate 12 side and the bonding surface on the support substrate 30 side are subjected to an activation treatment in advance.
- the activation treatment is performed by plasma irradiation.
- Gases contained in the atmosphere during the activation process include, for example, oxygen, nitrogen, hydrogen, and argon. These may be used alone or in combination of two or more (as a mixed gas). Nitrogen is preferably used.
- the atmospheric pressure during activation treatment by plasma irradiation is preferably 10 kPa to 100 kPa, more preferably 50 kPa to 80 kPa.
- the energy during plasma irradiation is preferably 30W to 150W, more preferably 60W to 120W.
- the duration of plasma irradiation is preferably 5 to 30 seconds.
- the bonded body is heated.
- the heating can further improve the bonding strength between the piezoelectric substrate 12 and the support substrate 30 .
- the heating temperature is, for example, 100.degree. C. to 400.degree.
- the heating time is, for example, 1 hour to 25 hours.
- the contact and heating may be performed under an atmosphere of an inert gas such as nitrogen or argon, or may be performed in the air.
- heating includes a first heating step and a second heating (annealing) step in this order.
- first heating step the joined body is heated from room temperature to temperature T1 (for example, 100° C. to 150° C.).
- the second heating step the joined body is placed under conditions of temperature T2 for a predetermined time (for example, 3 to 25 hours).
- the temperature T2 is, for example, 180° C. or higher, may be 200° C. or higher, may be 230° C. or higher, may be 250° C. or higher, or may be 270° C. or higher.
- the temperature T2 is preferably 350° C. or lower, more preferably 300° C. or lower, from the viewpoint of preventing damage to the joined body.
- the joined body is typically allowed to cool naturally.
- the surface arithmetic mean roughness Ra of each layer is preferably 1 nm or less, more preferably 0.3 nm or less. Such Ra can be achieved, for example, by mirror polishing by chemical mechanical polishing (CMP).
- the arithmetic mean roughness Ra is a value measured with an atomic force microscope (AFM) in a field of view of 10 ⁇ m ⁇ 10 ⁇ m.
- abrasive residue for example, abrasive residue, process-affected layer, and the like.
- cleaning methods include wet cleaning, dry cleaning, and scrub cleaning.
- scrub cleaning is preferred because it allows simple and efficient cleaning.
- a cleaning agent for example, Sun Wash series manufactured by Lion Corporation
- a solvent for example, a mixed solution of acetone and isopropyl alcohol (IPA)
- IPA isopropyl alcohol
- the upper surface 12a of the piezoelectric substrate 12 of the obtained composite substrate 110 is subjected to processing such as grinding and polishing so that the piezoelectric layer has the desired thickness.
- the composite substrate 100 shown in FIG. 1 can be obtained.
- Composite substrate 110 can be excellent in durability by adjusting the bonding surface to have the predetermined undulation. For example, it can have excellent durability during processing such as grinding and polishing. Specifically, it is possible to suppress the occurrence of peeling of the composite substrate (specifically, peeling at the bonding interface) due to processing such as grinding and polishing. As a result, it is possible to obtain a high-quality composite substrate without peeling.
- FIG. 3A is a diagram showing a state in which formation of the second electrode (surface electrode) 42 on the surface of the composite substrate 100 (the first main surface 10a of the piezoelectric layer 10) is completed. After that, through holes (not shown) are formed in the piezoelectric layer 10 to reach the intermediate layer 20 , and the intermediate layer 20 is partially etched by, for example, a wet etching method using an etchant to form a hollow portion 24 .
- the bonding strength between the piezoelectric layer 10 (intermediate layer 20) and the support substrate 30 can be excellent, so the hollow portion 24 can be formed satisfactorily.
- Example 1 A black lithium niobate (LN) substrate having a diameter of 150 mm and a thickness of 0.5 mm with mirror-polished front and back surfaces was prepared. Also, a silicon substrate having a diameter of 150 mm and a thickness of 0.5 mm and having a high resistance (>2 k ⁇ cm) was prepared.
- LN lithium niobate
- the obtained Au film was patterned by lithography (pattern width: 30 ⁇ m) to form an electrode.
- a silicon oxide layer (first layer) having a thickness of 5 ⁇ m was formed on the pattern formation surface side of the LN substrate.
- the silicon oxide layer was formed by sputtering using a Si target (output: 4 kW) in a carousel method.
- the surface of the silicon oxide layer was planarized by lapping to a thickness of 2 ⁇ m and then by CMP to a thickness of 0.5 ⁇ m.
- the surface undulation is measured by a step meter (stylus profiling system, manufactured by BRUKER, model number “DektakXT (registered trademark)”) using a measuring needle with a diameter of 12.5 ⁇ m along the orientation flat (OF). It is the difference between the maximum value and the minimum value of height when measured in the range of 800 ⁇ m in the direction.
- the activation treatment was performed at room temperature for 10 seconds with nitrogen gas plasma (energy: 100 W). After that, these substrates were subjected to ultrasonic cleaning using pure water and spin-dried to remove particles adhering to the activated surface. Then, the substrates were aligned, and the activated surfaces of both substrates were overlapped at room temperature in the atmosphere to obtain a bonded body.
- the resulting joined body was placed in an oven (130°C) in a nitrogen atmosphere and heated for 4 hours. After that, the LN substrate of the bonded body (composite substrate) taken out from the oven was ground and lap-polished, and then subjected to CMP processing to a thickness of 1 ⁇ m to obtain a composite substrate.
- Example 2 A composite substrate was obtained in the same manner as in Example 1, except that the processing conditions for the planarization treatment of the silicon oxide layer on the LN substrate were changed to set the surface waviness to 5 nm.
- Example 3 A composite substrate was obtained in the same manner as in Example 1, except that the processing conditions for the planarization treatment of the silicon oxide layer on the LN substrate were changed to set the surface waviness to 50 nm.
- Example 1 A composite substrate was obtained in the same manner as in Example 1, except that the processing conditions for the planarization treatment of the silicon oxide layer on the LN substrate were changed to set the surface waviness to 2 nm.
- Example 2 A composite substrate was obtained in the same manner as in Example 1, except that the processing conditions for the planarization treatment of the silicon oxide layer on the LN substrate were changed to set the surface waviness to 80 nm.
- Comparative Example 1 peeling of 10% was confirmed due to the processing load of thinning the LN substrate.
- SEM scanning electron microscope
- a composite substrate according to an embodiment of the present invention can typically be suitably used for an acoustic wave device.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
1つの実施形態においては、上記接合時に、上記第一の層の接合面および上記支持基板側の接合面は活性化処理が施されている。
1つの実施形態においては、プラズマ照射により上記活性化処理を行う。
1つの実施形態においては、上記製造方法は、上記接合後に、上記圧電基板の上記上面を研磨することをさらに含む。
1つの実施形態においては、上記第一の層は酸化ケイ素を含む。
図1は、本発明の1つの実施形態に係る複合基板の概略の構成を示す模式的な断面図である。複合基板100は、圧電層10と中間層20と支持基板30とをこの順に有する。具体的には、互いに対向する第一主面10aおよび第二主面10bを有する圧電層10の第二主面10b側に支持基板30が配置され、支持基板30と圧電層10との間に中間層20が配置されている。圧電層10の第二主面10bには電極41が設けられており、電極41を覆うように中間層20が配置されている。具体的には、中間層20は、電極41および電極41が形成されない圧電層10の電極非形成領域に接している。
上記圧電層を構成する材料としては、任意の適切な圧電性材料が用いられ得る。圧電性材料としては、好ましくは、LiAO3の組成を有する単結晶が用いられる。ここで、Aは、ニオブおよびタンタルからなる群から選択される一種以上の元素である。具体的には、LiAO3は、ニオブ酸リチウム(LiNbO3)であってもよく、タンタル酸リチウム(LiTaO3)であってもよく、ニオブ酸リチウム-タンタル酸リチウム固溶体であってもよい。
上記電極は、例えば、Au、Ag、Al、Pt、Mo、Ru等の金属で構成され得る。これらは、単独で、または、二種以上組み合わせて用いられ得る。電極の厚みは、例えば0.1μm~1μmである。
上記中間層を構成する材料としては、例えば、酸化ケイ素(SiO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)、シリコン(PVD-Si)が用いられる。好ましくは、酸化ケイ素が用いられる。中間層の厚み(電極と対向する領域における厚みも含む)は、例えば1μm以上6μm以下であり、好ましくは2μm以上3μm以下である。
上記支持基板としては、任意の適切な基板が用いられ得る。支持基板は、単結晶体で構成されてもよく、多結晶体で構成されてもよく、これらの組み合わせにより構成されていてもよい。支持基板を構成する材料としては、好ましくは、シリコン、サファイア、ガラス、石英、水晶およびアルミナからなる群から選択される。
本発明の1つの実施形態に係る複合基板の製造方法は、互いに対向する上面および下面を有し、下面に電極が設けられた圧電基板の下面側に第一の層を形成すること、第一の層の表面を平坦化すること、および、圧電基板の第一の層側に支持基板を接合すること、を含む。
本発明の実施形態による複合基板は、代表的には、弾性波デバイスに用いられる。図3Aから図3Bは、1つの実施形態に係る弾性波デバイスの製造工程例を示す図である。図3Aは、複合基板100の表面(圧電層10の第一主面10a)に第二電極(表面電極)42の形成が完了した状態を示す図である。その後、圧電層10に中間層20に通じる貫通孔を形成し(図示せず)、例えば、エッチング液を使用するウェットエッチング法により中間層20を部分的にエッチングして中空部24を形成する。本発明の実施形態による複合基板によれば、例えば、圧電層10(中間層20)と支持基板30との接合強度に優れ得ることから、中空部24を良好に形成することができる。
直径150mmで、表面および裏面が鏡面研磨された厚み0.5mmのブラックニオブ酸リチウム(LN)基板を用意した。
また、直径150mmで厚み0.5mmの高抵抗(>2kΩ・cm)のシリコン基板を用意した。
次いで、LN基板のパターン形成面側に厚み5μmの酸化ケイ素層(第一の層)を成膜した。酸化ケイ素層の成膜は、カルーセル方式にて、Siターゲットを用いたスパッタリング(出力:4kW)により行った。
酸化ケイ素層の表面を、ラップ研磨加工により2μm、さらには、CMP加工により0.5μm研磨することで平坦化処理を行い、図4に示すように、表面のうねりを18.5nmとした。ここで、表面のうねりは、段差計(触針式プロファイリングシステム、BRUKER社製、型番「DektakXT(登録商標)」)により、直径12.5μmの測定針を用いて、オリエンテーションフラット(OF)に沿う方向に800μmの範囲で測定した際の高さの最大値と最小値の差である。
LN基板上の酸化ケイ素層の平坦化処理の加工条件を変更し、表面のうねりを5nmとしたこと以外は実施例1と同様にして、複合基板を得た。
LN基板上の酸化ケイ素層の平坦化処理の加工条件を変更し、表面のうねりを50nmとしたこと以外は実施例1と同様にして、複合基板を得た。
LN基板上の酸化ケイ素層の平坦化処理の加工条件を変更し、表面のうねりを2nmとしたこと以外は実施例1と同様にして、複合基板を得た。
LN基板上の酸化ケイ素層の平坦化処理の加工条件を変更し、表面のうねりを80nmとしたこと以外は実施例1と同様にして、複合基板を得た。
実施例および比較例について下記の評価を行った。評価結果を表1にまとめる。
1.ボンディングウェーブ
活性化処理後のシリコン基板とLN基板とを重ね合わせ、部分的に両基板を押し付けることにより、基板同士の密着が押付け部から自発的に広がる様子(いわゆるボンディングウェーブ)を観察した。
2.剥離の発生の確認
得られた複合基板をLN基板側からデジタルカメラにより撮影し、得られた写真から剥離が生じている領域(目視判断可能)が占める割合を求めた。
比較例2では、ボンディングウェーブが広がらずボイドが発生した箇所において、LN基板の薄化の加工負荷により、剥離が確認された。
12 圧電基板
20 中間層
21 第一の層(中間層)
30 支持基板
41 電極
100 複合基板
Claims (5)
- 互いに対向する上面および下面を有し、前記下面に電極が設けられた圧電基板の前記下面側に第一の層を形成すること、
平坦化処理により、前記第一の層の表面のうねりを2nmを超え70nm以下とすること、および、
前記第一の層が形成された前記圧電基板の前記第一の層側に支持基板を接合すること、を含む、
複合基板の製造方法。 - 前記接合時に、前記第一の層の接合面および前記支持基板側の接合面は活性化処理が施されている、請求項1に記載の製造方法。
- プラズマ照射により前記活性化処理を行う、請求項2に記載の製造方法。
- 前記接合後に、前記圧電基板の前記上面を研磨することをさらに含む、請求項1から3のいずれかに記載の製造方法。
- 前記第一の層は酸化ケイ素を含む、請求項1から4のいずれかに記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023573827A JPWO2023135844A1 (ja) | 2022-01-17 | 2022-08-05 | |
KR1020247020774A KR20240108517A (ko) | 2022-01-17 | 2022-08-05 | 복합 기판의 제조 방법 |
DE112022005215.5T DE112022005215T5 (de) | 2022-01-17 | 2022-08-05 | Verfahren zur Herstellung eines Verbundsubstrats |
CN202280085524.8A CN118476156A (zh) | 2022-01-17 | 2022-08-05 | 复合基板的制造方法 |
US18/736,691 US20240322777A1 (en) | 2022-01-17 | 2024-06-07 | Method for producing composite substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-005286 | 2022-01-17 | ||
JP2022005286 | 2022-01-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/736,691 Continuation US20240322777A1 (en) | 2022-01-17 | 2024-06-07 | Method for producing composite substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023135844A1 true WO2023135844A1 (ja) | 2023-07-20 |
Family
ID=87278749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030156 WO2023135844A1 (ja) | 2022-01-17 | 2022-08-05 | 複合基板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240322777A1 (ja) |
JP (1) | JPWO2023135844A1 (ja) |
KR (1) | KR20240108517A (ja) |
CN (1) | CN118476156A (ja) |
DE (1) | DE112022005215T5 (ja) |
WO (1) | WO2023135844A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003165795A (ja) * | 2001-11-29 | 2003-06-10 | Shin Etsu Chem Co Ltd | 酸化物単結晶ウエーハ及びその製造方法並びに評価方法 |
JP2009524955A (ja) * | 2006-01-26 | 2009-07-02 | エプコス アクチエンゲゼルシャフト | 電子音響部材 |
JP2015050653A (ja) * | 2013-09-02 | 2015-03-16 | 日本碍子株式会社 | 弾性波デバイス用複合基板、その製法及び弾性波デバイス |
JP2020057952A (ja) * | 2018-10-03 | 2020-04-09 | 新日本無線株式会社 | 弾性表面波装置およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023089Y2 (ja) | 1979-09-22 | 1985-07-09 | 宇部興産株式会社 | 竪型射出装置 |
JP5650553B2 (ja) | 2011-02-04 | 2015-01-07 | 太陽誘電株式会社 | 弾性波デバイスの製造方法 |
-
2022
- 2022-08-05 KR KR1020247020774A patent/KR20240108517A/ko unknown
- 2022-08-05 DE DE112022005215.5T patent/DE112022005215T5/de active Pending
- 2022-08-05 CN CN202280085524.8A patent/CN118476156A/zh active Pending
- 2022-08-05 WO PCT/JP2022/030156 patent/WO2023135844A1/ja active Application Filing
- 2022-08-05 JP JP2023573827A patent/JPWO2023135844A1/ja active Pending
-
2024
- 2024-06-07 US US18/736,691 patent/US20240322777A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003165795A (ja) * | 2001-11-29 | 2003-06-10 | Shin Etsu Chem Co Ltd | 酸化物単結晶ウエーハ及びその製造方法並びに評価方法 |
JP2009524955A (ja) * | 2006-01-26 | 2009-07-02 | エプコス アクチエンゲゼルシャフト | 電子音響部材 |
JP2015050653A (ja) * | 2013-09-02 | 2015-03-16 | 日本碍子株式会社 | 弾性波デバイス用複合基板、その製法及び弾性波デバイス |
JP2020057952A (ja) * | 2018-10-03 | 2020-04-09 | 新日本無線株式会社 | 弾性表面波装置およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112022005215T5 (de) | 2024-08-14 |
KR20240108517A (ko) | 2024-07-09 |
US20240322777A1 (en) | 2024-09-26 |
JPWO2023135844A1 (ja) | 2023-07-20 |
CN118476156A (zh) | 2024-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI672839B (zh) | 接合方法 | |
JP6427712B2 (ja) | 接合方法 | |
TWI668958B (zh) | 接合體及彈性波元件 | |
TWI780103B (zh) | 彈性波元件及其製造方法 | |
CN111066243A (zh) | 弹性波元件及其制造方法 | |
KR20210006995A (ko) | 접합체 및 탄성파 소자 | |
TW201941938A (zh) | 接合體及彈性波元件 | |
WO2023135844A1 (ja) | 複合基板の製造方法 | |
JP7455205B2 (ja) | 複合基板および複合基板の製造方法 | |
WO2022259591A1 (ja) | 複合基板および複合基板の製造方法 | |
WO2024004333A1 (ja) | 複合基板および複合基板の製造方法 | |
WO2022259627A1 (ja) | 複合基板および複合基板の製造方法 | |
JP6935573B1 (ja) | 複合基板および弾性表面波素子 | |
WO2024203566A1 (ja) | 複合基板 | |
JPWO2018203430A1 (ja) | 弾性波素子およびその製造方法 | |
TW201943107A (zh) | 接合體及彈性波元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920368 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023573827 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20247020774 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247020774 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022005215 Country of ref document: DE |