WO2023133722A1 - 电池的箱体、电池、用电装置、制备电池的方法和装置 - Google Patents

电池的箱体、电池、用电装置、制备电池的方法和装置 Download PDF

Info

Publication number
WO2023133722A1
WO2023133722A1 PCT/CN2022/071536 CN2022071536W WO2023133722A1 WO 2023133722 A1 WO2023133722 A1 WO 2023133722A1 CN 2022071536 W CN2022071536 W CN 2022071536W WO 2023133722 A1 WO2023133722 A1 WO 2023133722A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery
battery cell
pressure relief
relief mechanism
Prior art date
Application number
PCT/CN2022/071536
Other languages
English (en)
French (fr)
Inventor
顾明光
金秋
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CA3227076A priority Critical patent/CA3227076A1/en
Priority to KR1020227019092A priority patent/KR20230110440A/ko
Priority to PCT/CN2022/071536 priority patent/WO2023133722A1/zh
Priority to CN202290000046.1U priority patent/CN218414891U/zh
Priority to EP22737701.7A priority patent/EP4235922A4/en
Priority to JP2022534433A priority patent/JP2024507420A/ja
Priority to US17/860,295 priority patent/US20230223641A1/en
Priority to KR1020247001276A priority patent/KR20240020278A/ko
Priority to CN202280021161.1A priority patent/CN116998054A/zh
Priority to CA3236562A priority patent/CA3236562A1/en
Priority to PCT/CN2022/128748 priority patent/WO2023134273A1/zh
Priority to EP22919907.0A priority patent/EP4369500A1/en
Priority to KR1020247002119A priority patent/KR20240023439A/ko
Priority to CN202280019141.0A priority patent/CN117083759A/zh
Priority to CA3236561A priority patent/CA3236561A1/en
Priority to EP22919952.6A priority patent/EP4358262A1/en
Priority to PCT/CN2022/135647 priority patent/WO2023134319A1/zh
Priority to CN202320565378.0U priority patent/CN219873923U/zh
Priority to CN202320658585.0U priority patent/CN220306441U/zh
Publication of WO2023133722A1 publication Critical patent/WO2023133722A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery box, a battery, an electrical device, and a method and device for preparing the battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application provides a battery box, a battery, an electrical device, a method and a device for preparing the battery, which can enhance the safety of the battery.
  • a battery box including: an electrical chamber for accommodating a battery cell, a pressure relief mechanism is provided on the first wall of the battery cell, and the pressure relief mechanism is used for actuated to vent the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold; a collection chamber for collecting exhaust from the battery cell when the pressure relief mechanism is actuated; a first thermal A management component for containing a fluid to regulate the temperature of the battery cell, the first thermal management component is attached to a second wall of the battery cell, the second wall being different from the first wall.
  • the first thermal management component is attached to the second wall of the battery cell without a pressure relief mechanism.
  • the contact area between the first thermal management component and the battery cell is relatively large.
  • the effect of regulating the temperature of the battery cell is more significant.
  • the second wall to which the first thermal management component is attached is not the first wall on which the battery cell is provided with the pressure relief mechanism, when the battery cell thermal runaway occurs, the discharge of the battery cell discharged through the pressure relief mechanism It will be discharged in a direction away from the first heat management component, therefore, the discharge will not break through the first heat management component, which reduces the risk and enhances the safety of the battery.
  • electrode terminals are disposed on the third wall of the battery cell, the third wall is different from the first wall, and the third wall is different from the second wall.
  • the wall where the pressure relief mechanism is located, the wall where the electrode terminals are located, and the wall where the first heat management component is attached are three different walls on the battery cell.
  • the pressure relief mechanism when the pressure relief mechanism is actuated, the discharge of the battery cells discharged through the pressure relief mechanism will be discharged in a direction away from the first heat management component and the electrode terminal, so the discharge will not break through the first heat management unit. part.
  • it can reduce the impact of the discharge on the electrode terminals, avoid the risk of high-voltage ignition, reduce its danger, and thereby enhance the safety of the battery.
  • the first area of the third wall is provided with the electrode terminals; the box body further includes: a second heat management component for containing fluid to adjust the temperature of the battery cells, so The second thermal management component is attached to a second region of the third wall, the second region being different from the first region.
  • a second thermal management component can also be attached, so that the contact area between the thermal management component and the battery cell is further increased.
  • the battery cell body temperature regulation is more pronounced.
  • the third wall to which the second thermal management component is attached is not the first wall on which the battery cell is provided with the pressure relief mechanism, when the battery cell thermal runaway occurs, the discharge of the battery cell discharged through the pressure relief mechanism It will be discharged in a direction away from the second heat management component and the electrode terminal, therefore, the discharge will not break through the second heat management component, and at the same time, the impact of the discharge on the electrode terminal can be reduced to avoid the risk of high-voltage ignition. Its danger is reduced, so that the safety of the battery can be enhanced.
  • the second region is provided with a protruding portion protruding away from the interior of the battery cell, and the second heat management component is attached to the protruding portion.
  • a protrusion protruding away from the inside of the battery cell is provided on the second area, and the second heat management component is attached to the protrusion, thereby facilitating the attachment of the second heat management component to the battery cell superior.
  • the third wall is opposite to the first wall, and the second wall connects the third wall and the first wall.
  • An electrode terminal is provided on one of the two opposite walls of the battery cell, and a pressure relief mechanism is provided on the other wall, so that when the pressure relief mechanism is actuated, the discharge of the battery cell discharged through the pressure relief mechanism will be The discharge is discharged in a direction away from the electrode terminal. Therefore, the influence of the discharge on the electrode terminal can be further reduced, the risk of high-voltage sparking can be avoided, and its danger is reduced, thereby enhancing the safety of the battery.
  • the second wall is disposed opposite to the first wall, and the third wall connects the second wall and the first wall.
  • electrode terminals are disposed on the second wall.
  • the tank includes: an isolation member for isolating the electrical cavity and the collection cavity, the isolation member being attached to the first wall.
  • the electrical cavity containing the battery cells is separated from the collection cavity that collects the discharge by means of an isolation member.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the discharge of the battery cells enters the collection cavity, but does not enter or enters the electrical cavity in a small amount, so that it will not Affects the electrical connection in the electrical cavity, thus enhancing the safety of the battery.
  • the isolation member is provided with a weakened area adapted to be broken upon actuation of the pressure relief mechanism to allow the discharge to pass through the weakened area into the collection cavity.
  • the discharge can pass through the weak area and enter the collection cavity, preventing the discharge from entering the electrical cavity;
  • the isolation between the electrical chamber and the collection chamber during actuation prevents the contents of the collection chamber from entering the electrical chamber.
  • the weakened area is opposite to the pressure relief mechanism. In this way, when the pressure relief mechanism is actuated, discharges can directly impact the weakened area to open the weakened area.
  • the isolation member is provided with a through hole for the discharge to enter the collection cavity through the through hole when the pressure relief mechanism is actuated.
  • the through hole is disposed opposite to the pressure relief mechanism.
  • a battery including: a plurality of battery cells, a pressure relief mechanism is provided on the first wall of the battery cells, and the pressure relief mechanism is used to reduce the internal pressure of the battery cells Or when the temperature reaches a threshold value, it is activated to release the internal pressure; according to the case according to any one of the first aspect, the plurality of battery cells are accommodated in the case.
  • an electric device including the battery according to the second aspect, the battery is used to provide electric energy for the electric device.
  • a method for preparing a battery comprising: providing a plurality of battery cells, a pressure relief mechanism is provided on the first wall of the battery cells, and the pressure relief mechanism is used for When the internal pressure or temperature of the body reaches a threshold value, the internal pressure is actuated to release the internal pressure; a case is provided, and the case includes an electrical cavity, a collection cavity and a first thermal management component; the plurality of battery cells are accommodated in In the electrical cavity; wherein the collection cavity is used to collect discharge from the battery cells when the pressure relief mechanism is actuated; the first thermal management component is used to contain fluid for the battery A cell regulates temperature, and the first thermal management component is attached to a second wall of the battery cell, the second wall being different from the first wall.
  • a device for preparing a battery including: providing a module for: providing a plurality of battery cells, a pressure relief mechanism is provided on the first wall of the battery cells, and the pressure relief mechanism is used actuating to vent the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold; providing an enclosure including an electrical cavity, a collection cavity, and a first thermal management component; mounting a module with receiving the plurality of battery cells within the electrical cavity, wherein the collection cavity is configured to collect exhaust from the battery cells when the pressure relief mechanism is actuated; the first thermal A management component is used to contain a fluid to regulate the temperature of the battery cell, the first thermal management component is attached to a second wall of the battery cell, the second wall being different from the first wall.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural view of a battery disclosed in an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • Fig. 4 is an exploded view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is an exploded view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional view of the structure of the battery case disclosed in an embodiment of the present application.
  • Fig. 7 is an enlarged schematic view of part A of the casing shown in Fig. 6;
  • Fig. 14 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 15 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film can be PP or PE.
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the protection measures include at least the switching element, the selection of an appropriate isolation diaphragm material, and the pressure relief mechanism.
  • the switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive electrode and the negative electrode. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nano-scale) micropores attached to it, so that metal ions cannot pass through the separator and terminate the battery. The internal reaction of the monomer.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, gas valve, pressure relief valve or safety valve, etc., and can specifically use a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, an opening or channel for internal pressure or temperature release is formed.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure and temperature of the battery cells can be released.
  • Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the actuated part as discharge. In this way, the pressure and temperature of the battery cells can be released under the condition of controllable pressure or temperature, so as to avoid potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a short circuit, overcharge, etc. occur, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released to the outside through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the heat management component is usually attached to the wall of the battery cell provided with the pressure relief mechanism.
  • the heat management component can regulate the temperature of the battery cells.
  • the pressure relief mechanism is generally arranged on the wall of the battery cell with a small area, the effect of regulating the temperature of the battery cell is not significant when the battery cell is working normally.
  • the thermal runaway of the battery cell occurs, for example, when the pressure relief mechanism of the battery cell is actuated, the discharge of the battery cell discharged through the pressure relief mechanism may be powerful and destructive, and may even be enough to break through the orientation of thermal management components, causing safety concerns.
  • the present application provides a technical solution to attach the thermal management component to the wall of the battery cell without a pressure relief mechanism.
  • the thermal management component Due to the relatively large contact area between the thermal management component and the battery cell, Under normal working conditions, the effect of regulating the temperature of the battery cell is more significant.
  • the wall to which the thermal management component is attached is not the wall where the battery cell is provided with the pressure relief mechanism, when the battery cell thermal runaway occurs, the discharge of the battery cell discharged through the pressure relief mechanism will move away from the thermal management unit. The direction of the component is discharged so that the discharge does not break through the thermal management component, enhancing the safety of the battery.
  • the thermal management component is used to contain fluid to regulate the temperature of the plurality of battery cells.
  • the fluid here can be liquid or gas, and regulating temperature refers to heating or cooling multiple battery cells.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component can also be called a cooling component, a cooling system or a cooling plate, etc.
  • the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component can also be used for heating to raise the temperature of multiple battery cells, which is not limited in this embodiment of the present application.
  • the fluid may circulate in order to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 disclosed in an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle or a hybrid vehicle. Or extended-range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for starting, navigating, and operating power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • a plurality of battery cells can also be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box body (or called a cover body), and the inside of the box body is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body.
  • the box body may include two parts, referred to here as a first part 111 and a second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of a plurality of battery cells 20 , and each of the first part 111 and the second part 112 can have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked combined to form a box with a closed chamber.
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • FIG. 3 is an example of a battery module.
  • a battery can include a plurality of battery modules, and these battery modules can be connected in series, in parallel or in parallel.
  • FIG. 4 it is a schematic structural view of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the coordinate system shown in FIG. 4 is the same as that in FIG. 3 .
  • the housing 211 and the cover plate 212 form the housing or battery compartment 21 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • the housing 211 when the housing 211 is a hollow cuboid or cube, one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212, and the two electrode terminals 214 are respectively a first electrode terminal 214a and a second electrode terminal 214b.
  • the polarities of the first electrode terminal 214a and the second electrode terminal 214b are opposite.
  • the first electrode terminal 214a is a positive electrode terminal
  • the second electrode terminal 214b is a negative electrode terminal.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also referred to as a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal is connected to the positive electrode tab through one connecting member 23
  • the negative electrode terminal is connected to the negative electrode tab through the other connecting member 23 .
  • the electrode assembly 22 can be set as single or multiple, as shown in FIG. 4 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • FIG. 5 it is a schematic structural diagram of a battery cell 20 including a pressure relief mechanism 213 according to another embodiment of the present application.
  • the housing 211, cover plate 212, electrode assembly 22 and connecting member 23 in FIG. 5 are consistent with the housing 211, cover plate 212, electrode assembly 22 and connecting member 23 in FIG. .
  • a pressure relief mechanism 213 may also be provided on one wall of the battery cell 20 , such as the first wall 21 a shown in FIG. 5 .
  • the first wall 21 a is separated from the housing 211 in FIG. 5 , but this does not limit that the bottom side of the housing 211 has an opening.
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be a part of the first wall 21a, or may be a separate structure from the first wall 21a, and be fixed on the first wall 21a by, for example, welding.
  • the pressure relief mechanism 213 can be formed by setting a notch on the first wall 21a, and the thickness of the first wall 21a corresponding to the notch is smaller than that of the pressure relief mechanism.
  • Mechanism 213 The thickness of other areas except the score.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can A crack occurs at the notch, which leads to communication between the inside and outside of the shell 211 , and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the third wall of the battery cell 20 is provided with electrode terminals 214.
  • the third wall is different from the first wall 21a.
  • the third wall is disposed opposite to the first wall 21a.
  • the first wall 21 a may be the bottom wall of the battery cell 20
  • the third wall may be the top wall of the battery cell 20 , that is, the cover plate 212 .
  • the battery cell 20 may further include a backing plate 24, which is located between the electrode assembly 22 and the bottom wall of the casing 211, and can support the electrode assembly 22. , it can also effectively prevent the electrode assembly 22 from interfering with the rounded corners around the bottom wall of the casing 211 .
  • the backing plate 24 may be provided with one or more through holes, for example, a plurality of evenly arranged through holes may be provided, or, when the pressure relief mechanism 213 is provided on the bottom wall of the housing 211, corresponding to the The position of the pressure relief mechanism 213 is provided with a through hole to facilitate liquid and gas conduction. Specifically, this can make the space between the upper and lower surfaces of the backing plate 24 communicate, and the gas generated inside the battery cell 20 and the electrolyte can pass through freely. Backing plate 24.
  • Arranging the pressure relief mechanism 213 and the electrode terminal 214 on different walls of the battery cell 20 can make the discharge of the battery cell 20 farther away from the electrode terminal 214 when the pressure relief mechanism 213 is actuated, thereby reducing the impact of the discharge on the electrode.
  • the influence of the terminal 214 and the bus part, therefore, the safety of the battery can be enhanced.
  • the pressure relief mechanism 213 is arranged on the bottom wall of the battery cell 20, so that when the pressure relief mechanism 213 is actuated, the pressure of the battery cell 20 The discharge is discharged to the bottom of the cell 10 .
  • the bottom of the battery 10 is usually away from the user, thereby reducing hazards to the user.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 6 to 14 are schematic diagrams of the case 11 of the battery disclosed in the embodiment of the present application.
  • FIG. 7 is an enlarged schematic view of part A of the box body 11 shown in FIG. 6 .
  • the box body 11 includes an electrical cavity 11 a, a collection cavity 11 b and a first heat management component 12 a.
  • the electrical cavity 11a is used to accommodate the battery cell 20, and the first wall 21a of the battery cell 20 is provided with a pressure relief mechanism 213, and the pressure relief mechanism 213 is used to trigger the battery when the internal pressure or temperature of the battery cell 20 reaches a threshold value. to release this internal pressure.
  • the collection cavity 11b is used to collect the discharge from the battery cells 20 when the pressure relief mechanism 213 is actuated.
  • the first thermal management component 12a is used for containing fluid to adjust the temperature of the battery cell 20 , the first thermal management component 12a is attached to the second wall 21b of the battery cell 20 , and the second wall 21b is different from the first wall 21a.
  • the embodiment of the present application does not limit the number of battery cells 20 accommodated in the electrical cavity 11a. It should be noted that in FIG. 6 , FIG. 10 and FIG. 13 , the number of battery cells 20 is two for example, and in FIG. 8 , FIG. 9 , FIG. 11 , and FIG. 12 the number of battery cells 20 is The description is given as an example, which should not limit the present application.
  • the electrical cavity 11a may be sealed or unsealed, which is not limited in the implementation of this application.
  • the electrical chamber 11 a provides an installation space for the battery cells 20 .
  • a structure for fixing the battery cells 20 may also be provided in the electrical chamber 11a.
  • the shape of the electrical chamber 11a may depend on the battery cells 20 accommodated.
  • the electrical cavity 11a may be square, with six walls. Since the battery cells 20 in the electrical cavity 11a are electrically connected to form a higher voltage output, the electrical cavity can also be called a "high voltage cavity”.
  • the collection cavity 11b is used to collect the discharge, and may be sealed or unsealed, which is not limited in this embodiment of the present application.
  • the collection chamber 11b may contain air or other gases. There is no electrical connection to the voltage output in the collection chamber 11b, corresponding to the "high pressure chamber", the collection chamber 11b may also be called a "low pressure chamber”.
  • the collecting chamber 11b may also contain liquid, such as a cooling medium, or a component containing the liquid may be provided to further reduce the temperature of the effluent entering the collecting chamber 11b. Further optionally, the gas or liquid in the collection chamber 11b circulates.
  • the embodiment of the present application does not limit the number of the second walls 21b.
  • the second wall 21 b includes a wall adjacent to the inner wall of the box body 11 .
  • the second wall 21 b includes a wall adjacent to the inner wall of the box body 11 and a wall adjacent to the two battery cells 20 .
  • the second wall 21b includes walls on the battery cell 20 other than the first wall 21a.
  • the second wall 21b may be the wall with the largest area among the walls of the battery cell 20 except the first wall 21a; or, the first wall 21a may be the wall with the smallest area among all the walls of the battery cell 20, that is, equivalent to the first wall 21a.
  • the second wall 21b is not the wall with the smallest area of the battery cell 20 .
  • the first thermal management component 12a can contain a cooling medium to adjust the temperature of the battery cell 20.
  • the first thermal management component 12a can also be called a cooling component, a cooling system or cooling plate etc.
  • the first thermal management component 12a may also be used for heating, which is not limited in this embodiment of the present application.
  • the fluid contained in the first thermal management component 12a may circulate in order to achieve a better effect of temperature regulation.
  • the embodiment of the present application does not limit the connection manner between the first thermal management component 12 a and the battery cell 20 .
  • the first thermal management component 12a can be fixedly connected to the battery cell 20 by an adhesive.
  • the first thermal management component 12a is attached to the second wall 21b of the battery cell 20 without the pressure relief mechanism 213. In this way, due to the contact area between the first thermal management component 12a and the battery cell 20 Relatively large, when the battery cell 20 works normally, the effect of regulating the temperature of the battery cell 20 is relatively significant.
  • the second wall 21b to which the first thermal management component 12a is attached is not the first wall 21a of the battery cell 20 where the pressure relief mechanism 213 is provided, in this way, when the battery cell 20 suffers from thermal runaway, it will be discharged through the pressure relief mechanism 213 The discharge of the battery cells will be discharged in a direction away from the first thermal management component 12a, therefore, the discharge will not break through the first thermal management component 12a, which enhances the safety of the battery.
  • an electrode terminal 214 is disposed on the third wall 21c of the battery cell 20 .
  • the third wall 21c is different from the first wall 21a
  • the third wall 21c is different from the second wall 21b. That is, the wall where the pressure relief mechanism 213 is located, the wall where the electrode terminal 214 is located, and the wall to which the first heat management member 12a is attached are three different walls on the battery cell 20 .
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated, the discharge of the battery cell 20 discharged through the pressure relief mechanism 213 will be discharged in a direction away from the first heat management component 12a and the electrode terminal 214, so the discharge will not break through The first thermal management component 12a.
  • the impact of the discharge on the electrode terminal 214 can be reduced, avoiding the risk of high-voltage sparking, reducing its danger, thereby enhancing the safety of the battery.
  • the embodiment of the present application does not limit the number of the third walls 21c.
  • the embodiment of the present application does not limit the number of electrode terminals 214 provided on the third wall 21c.
  • two electrode terminals 214 may be provided on the third wall 21c, and the polarities of the two electrode terminals 214 are opposite.
  • the third wall 21c is provided with a first electrode terminal 214a and a second electrode terminal 214b , and the polarities of the first electrode terminal 214a and the second electrode terminal 214b are opposite.
  • the first electrode terminal 214a is a positive electrode terminal
  • the second electrode terminal 214b is a negative electrode terminal.
  • one electrode terminal 214 is disposed on each third wall 21c, and the polarities of the electrode terminals 214 disposed on the two third walls 21c are opposite.
  • electrode terminals 214 are provided on the third wall 21c on the left side
  • electrode terminals 214 are provided on the third wall 21c on the right side
  • electrode terminals 214 are provided on the third wall 21c on the left side.
  • the polarity of the electrode terminal 214 is opposite to that of the electrode terminal 214 provided on the right third wall 21c.
  • two third walls 21c may be disposed adjacently, or, as shown in FIGS. 11 and 12 , two third walls 21c may be disposed opposite.
  • the embodiment of the present application does not limit the positional relationship of the first wall 21a, the second wall 21b and the third wall 21c.
  • the third wall 21c is opposite to the first wall 21a, and the second wall 21b connects the third wall 21c and the first wall 21a, that is, the second wall 21b is disposed adjacent to the first wall 21a and the third wall 21c.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated, the discharge of the battery cell 20 discharged through the pressure relief mechanism 213 will be discharged in a direction away from the electrode terminal 214, therefore, the influence of the discharge on the electrode terminal 214 can be further reduced , to avoid the risk of high-voltage ignition and reduce its danger, thereby enhancing the safety of the battery.
  • the battery cell 20 includes two opposite second walls 21b, and the two second walls 21b are connected to the third wall 21c and the first wall respectively. both ends of the wall 21a.
  • the second wall 21 b is disposed opposite to the first wall 21 a, and the third wall 21 c connects the second wall 21 b and the first wall 21 a.
  • the battery cell 20 includes two second walls 21b, wherein one second wall 21b is opposite to the third wall 21c, and the other second wall 21b is provided opposite to the first wall 21a.
  • the two first thermal management components 12a disposed on the two second walls 21b may be integrally formed.
  • the two first thermal management components 12a may also be formed separately, which is not limited in this embodiment of the present application.
  • the fluid contained in the two first thermal management components 12a may also communicate with each other.
  • the first region 21c - 1 of the third wall 21c is provided with electrode terminals 214 .
  • the box body 11 further includes a second heat management component 12b.
  • the second thermal management component 12b is used to contain fluid to adjust the temperature of the battery cell 20, the second thermal management component 12b is attached to the second region 21c-2 of the third wall 21c, the second region 21c-2 and the second region 21c-2 A region 21c-1 is different. That is, the second heat management member 12b is provided on a region where the electrode terminal 214 is not provided on the third wall 21c.
  • the contact area between the thermal management component and the battery cell 20 is further increased, and the temperature regulation effect on the battery cell 20 is more significant when the battery cell is working normally.
  • the third wall 21c to which the second thermal management component 12b is attached is not the first wall 21a of the battery cell 20 where the pressure relief mechanism 213 is provided, in this way, when the battery cell 20 suffers thermal runaway, it will be discharged through the pressure relief mechanism 213
  • the discharge of the battery cell 20 will be discharged in a direction away from the second thermal management component 12b and the electrode terminal 214, therefore, the discharge will not break through the second thermal management component 12b, and at the same time, the impact of the discharge on the electrodes can be reduced.
  • the impact of the terminal 214 avoids the risk of high-voltage ignition and reduces its danger, thereby enhancing the safety of the battery.
  • the second thermal management component 12b and the first thermal management component 12a may be integrally formed for the convenience of processing the thermal management component.
  • the second thermal management component 12b and the first thermal management component 12a may also be formed separately, which is not limited in this embodiment of the present application.
  • the fluid contained in the second thermal management component 12b and the fluid contained in the first thermal management component 12a may communicate with each other.
  • the numbers of the electrode terminals 214 and the first regions 21c-1 are equal. 6 to 10, the third wall 21c is provided with a first electrode terminal 214a and a second electrode terminal 214b, the first electrode terminal 214a corresponds to a first region 21c-1, and the second electrode terminal 214b corresponds to a first electrode terminal 214b. A region 21c-1.
  • the embodiment of the present application does not limit the number of the second regions 21c-2.
  • electrode terminals 214 are disposed on the second wall 21b.
  • the embodiment of the present application does not limit the number of electrode terminals 214 disposed on the second wall 21b.
  • an electrode terminal 214 may be disposed on the second wall 21b. At this time, another electrode terminal 214 may be provided on a wall of the battery cell 20 other than the second wall 21b, or another electrode terminal 214 may be provided on a wall of the battery cell 20 other than the second wall 21b and the first wall 21a. outside the wall.
  • two electrode terminals 214 may be disposed on the second wall 21b.
  • the third region of the second wall 21b may be provided with electrode terminals 214 .
  • the box body 11 also includes the above-mentioned second heat management component 12b.
  • the second thermal management component 12b is used to contain fluid to adjust the temperature of the battery cell 20, the second thermal management component 12b is attached to the fourth area of the second wall 21b, and the third area and the fourth area are different. That is, the second heat management member 12b is provided on a region where the electrode terminal 214 is not provided on the second wall 21b.
  • the numbers of the electrode terminals 214 and the third regions are equal.
  • the fourth region is provided with a protrusion protruding away from the interior of the battery cell 20 , and the second heat management component 12 b is attached to the protrusion.
  • the embodiment of the present application does not limit the number of the fourth regions.
  • the box body 11 further includes an isolation component 13 attached to the first wall 21a.
  • the isolation member 13 can serve as the bottom wall of the box body 11 , that is, the isolation member 13 is used to isolate the electrical chamber 11a and the collection chamber 11b. In this way, when the pressure relief mechanism 213 is actuated, the discharge of the battery cells 20 enters the collection chamber 11b, but does not enter or enters the electrical chamber 11a in a small amount, so as not to affect the electrical connection in the electrical chamber 11a, thereby enhancing the battery life. safety.
  • the isolation part 13 and the bottom wall 1121 of the box body 11 are independently provided, that is, one side of the isolation part 13 is attached to the first wall 21a, and the other side is attached to the first wall 21a.
  • the bottom wall 1121 of the box body 11 that is, by setting the isolation member 13 , there is a gap between the first wall 21 a of the battery cell 20 and the bottom wall 1121 of the case 11 , and the gap can provide enough space for the actuation of the pressure relief mechanism 213 .
  • the isolation member 13 is provided with a weakened area, which can be broken when the pressure relief mechanism 213 is actuated, so that the discharge can pass through the weakened area and enter the collection chamber 11b. In this way, when the pressure relief mechanism 213 is actuated, the discharge can directly hit the weak area to open the weak area, and enter the collection chamber 11b.
  • the weakened area is opposite to the pressure relief mechanism 213 .
  • the discharge can directly impact the weakened area to open the weakened area.
  • the isolation member 13 may be provided with a through hole 131 .
  • the through hole 131 is used for discharge to enter the collection chamber 11b through the through hole 131 when the pressure relief mechanism 213 is actuated.
  • the electrical chamber 11 a communicates with the collection chamber 11 b through the through hole 131 .
  • the function of the isolation member 13 is also to isolate the electrical chamber 11a and the collection chamber 11b.
  • the through hole 131 is disposed opposite to the pressure relief mechanism 213 . In this way, when the pressure relief mechanism 213 is activated, the discharge can directly enter the collection chamber 11b through the through hole 131 .
  • the box body 11 further includes a protective member 14 .
  • the protection member 14 is used to protect the isolation part 13, and the protection member 14 and the isolation part 13 form a collection cavity 11b.
  • the collecting cavity 11b formed by the protective member 14 and the isolation part 13 can effectively collect and buffer the discharge, reducing its danger.
  • the embodiment of the present application does not limit the connection manner between the isolation member 13 and the battery cell 20 .
  • the isolation member 13 and the battery cell 20 can be fixedly connected by an adhesive.
  • FIG. 14 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • the battery 10 includes a plurality of battery cells 20 and the case 11 described above. Among them, a plurality of battery cells 20 are accommodated in the case 11 .
  • the battery cell 20 may be the battery cell 20 as described in FIGS. 6 to 13 .
  • the battery 10 further includes a current flow component 15 .
  • the bus component 15 is used to realize the electrical connection of a plurality of battery cells 20 .
  • the first thermal management component 12a and/or the second thermal management component 12b can also be used to adjust the temperature of the flow-flow component 15 (mainly for cooling).
  • the embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments.
  • the electrical device may be a vehicle 1 , a ship or a spacecraft.
  • the battery 10 and the electrical device of the embodiment of the present application are described above, and the method and device for preparing the battery of the embodiment of the present application will be described below, and the parts that are not described in detail can be referred to the foregoing embodiments.
  • FIG. 15 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 15, the method 300 may include:
  • the first wall 21a of the battery cells 20 is provided with a pressure relief mechanism 213, and the pressure relief mechanism 213 is used for when the internal pressure or temperature of the battery cells 20 reaches actuating to relieve the internal pressure at a threshold;
  • S320 providing a box body 11, the box body 11 comprising an electrical cavity 11a, a collection cavity 11b, and a first heat management component 12a;
  • the first thermal management component 12a is used to contain fluid to adjust the temperature of the battery cell 20, the first thermal management component 12a is attached to the second wall 21b of the battery cell 20, the first thermal management component 12a is attached to the second wall 21b of the battery cell 20, The second wall 21b is different from the first wall 21a.
  • FIG. 16 shows a schematic block diagram of a device 400 for preparing a battery according to an embodiment of the present application.
  • the device 400 for preparing a battery may include: a providing module 410 and an installing module 420 .
  • a module 410 is provided, configured to: provide a plurality of battery cells 20, the first wall 21a of the battery cells 20 is provided with a pressure relief mechanism 213, and the pressure relief mechanism 213 is used for actuate to release the internal pressure when the internal pressure or temperature reaches a threshold value; provide a box body 11, the box body 11 includes an electrical chamber 11a, a collection chamber 11b and a first thermal management component 12a;
  • the installation module 420 is used for accommodating the plurality of battery cells 20 in the electrical chamber 11a, wherein the collection chamber 11b is used for collecting 20 discharge; the first thermal management component 12a is used to contain fluid to adjust the temperature of the battery cell 20, and the first thermal management component 12a is attached to the second wall 21b of the battery cell 20 , the second wall 21b is different from the first wall 21a.

Abstract

本申请实施例提供一种电池的箱体、电池、用电装置制备电池的方法和装置。所述箱体包括:电气腔,用于容纳电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;收集腔,用于在所述泄压机构致动时收集来自所述电池单体的排放物,所述收集腔与所述电气腔隔离;第一热管理部件,用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。本申请实施例的技术方案,能够增强电池的安全性。

Description

电池的箱体、电池、用电装置、制备电池的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池的箱体、电池、用电装置、制备电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池的箱体、电池、用电设备、制备电池的方法和装置,能够增强电池的安全性。
第一方面,提供了一种电池的箱体,包括:电气腔,用于容纳电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;收集腔,用于在所述泄压机构致动时收集来自所述电池单体的排放物;第一热管理部件,用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
本申请实施例的技术方案,将第一热管理部件附接于电池单体未设置泄压机构的第二壁,这样,第一热管理部件与电池单体的接触面积比较大,在电池单体正常工作的情况下,对电池单体温度调节的效果比较显著。此外,由于第一热管理部件附接的第二壁不是电池单体设置泄压机构的第一壁,这样,当电池单体发生热失控时,经泄压机构排出的电池单体的排放物会向远离该第一热管理部件的方向排放,因此,排放物不会冲破该第一热管理部件,降低了危险性,增强了电池的安全性。
在一些实施例中,所述电池单体的第三壁上设置有电极端子,所述第三壁和所述第一壁不同,且所述第三壁和所述第二壁不同。
泄压机构所在的壁、电极端子所在的壁和第一热管理部件所附接的壁是电池单体上三个不同的壁。这样,在泄压机构致动时,经泄压机构排出的电池单体的排放物会向远离该第一热管理部件和电极端子的方向排放,因此,排放物不会冲破该第一热管理部件。同时,可以减小排放物对电极端子的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
在一些实施例中,所述第三壁的第一区域设置有所述电极端子;所述箱体还包括:第二热管理部件,用于容纳流体以给所述电池单体调节温度,所述第二热管理部件附接于所述第三壁的第二区域,所述第二区域和所述第一区域不同。
在第三壁未设置电极端子的区域还可以附接设置第二热管理部件,这样,进一步增加了热管理部件与电池单体的接触面积,在电池单体正常工作的情况下,对电池单体温度调节的效果更加显著。此外,由于第二热管理部件附接的第三壁不是电池单体设置泄压机构的第一壁,这样,当电池单体发生热失控时,经泄压机构排出的电池单体的排放物会向远离该第二热管理部件和电极端子的方向排放,因此,排放物不会冲破该第二热管理部件,同时,可以减小排放物对电极端子的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
在一些实施例中,所述第二区域设置有向远离所述电池单体的内部的方向凸出的凸出部,所述第二热管理部件附接于所述凸出部。
在第二区域上设置向远离电池单体的内部的方向凸出的凸出部,并第二热管理部件附接于该凸出部,进而可以便于第二热管理部件附接于电池单体上。
在一些实施例中,所述第三壁和所述第一壁相对设置,所述第二壁连接所述第三壁和所述第一壁。
在电池单体相对的两个壁中的一个壁上设置电极端子,另一个壁上设置泄压机构,这样,在泄压机构致动时,经泄压机构排出的电池单体的排放物会向远离该电极端子的方向排放,因此,可以进一步减小排放物对电极端子的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
在一些实施例中,所述第二壁与所述第一壁相对设置,所述第三壁连接所述第二壁和所述第一壁。
在一些实施例中,所述第二壁上设置有电极端子。
在一些实施例中,所述箱体包括:隔离部件,用于隔离所述电气腔和所述收集腔,所述隔离部件附接于所述第一壁。
利用隔离部件将容纳电池单体的电气腔与收集排放物的收集腔分离,在泄压机构致动时,电池单体的排放物进入收集腔,而不进入或少量进入电气腔,从而不会影响电气腔中的电连接,因此能够增强电池的安全性。
在一些实施例中,所述隔离部件设置有薄弱区,所述薄弱区用于在所述泄压机 构致动时能够被破坏,以使所述排放物穿过所述薄弱区而进入所述收集腔。
通过在隔离部件上设置薄弱区,一方面可以使得在泄压机构致动时排放物能够穿过薄弱区而进入收集腔,避免排放物进入电气腔;另一方面又可以保证在泄压机构未致动时电气腔与收集腔之间的隔绝,避免收集腔内的物质进入电气腔。
在一些实施例中,所述薄弱区与所述泄压机构相对设置。这样,当泄压机构致动时,排放物可以直接冲击薄弱区而打开薄弱区。
在一些实施例中,所述隔离部件设置有通孔,所述通孔用于在所述泄压机构致动时所述排放物能够经过所述通孔进入所述收集腔。
在一些实施例中,所述通孔与所述泄压机构相对设置。
第二方面,提供了一种电池,包括:多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;如第一方面中任一项所述的箱体,所述多个电池单体容纳于所述箱体。
第三方面,提供了一种用电装置,包括如第二方面所述的电池,所述电池用于为所述用电装置提供电能。
第四方面,提供了一种制备电池的方法,包括:提供多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供箱体,所述箱体包括电气腔、收集腔和第一热管理部件;将所述多个电池单体容纳于所述电气腔内;其中,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体的排放物;所述第一热管理部件用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
第五方面,提供了一种制备电池的装置,包括:提供模块,用于:提供多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供箱体,所述箱体包括电气腔、收集腔和第一热管理部件;安装模块,用于将所述多个电池单体容纳于所述电气腔内,其中,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体的排放物;所述第一热管理部件用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图 获得其他的附图。
图1是本申请一实施例公开的车辆的结构示意图;
图2是本申请一实施例公开的电池的结构示意图;
图3是本申请一实施例公开的电池模块的结构示意图;
图4是本申请一实施例公开的电池单体的分解图;
图5是本申请一实施例公开的电池单体的分解图;
图6是本申请一实施例公开的电池的箱体的结构的剖面示意图;
图7是图6所示的箱体的A部分的放大示意图;
图8至图13是本申请另一实施例公开的电池的箱体的结构的剖面示意图;
图14是本申请一实施例公开的电池的结构示意图;
图15是本申请一实施例公开的制备电池的方法的示意性流程图;
图16是本申请一实施例公开的制备电池的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相 连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、 放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极片和负极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
目前在电池的组装方案中,通常将热管理部件附接于电池单体设置有泄压机构的壁。这样,当电池单体正常工作时,热管理部件可以对电池单体调节温度。但是,由于泄压机构一般设置在电池单体面积较小的壁上,因此,在电池单体正常工作的情 况下,对电池单体温度调节的效果不显著。此外,当电池单体发生热失控时,例如电池单体的泄压机构致动时,经泄压机构排出的电池单体的排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的热管理部件,造成安全问题。
鉴于此,本申请提供了一种技术方案,将热管理部件附接于电池单体未设置泄压机构的壁,这样,由于热管理部件与电池单体的接触面积比较大,在电池单体正常工作的情况下,对电池单体温度调节的效果比较显著。此外,由于热管理部件附接的壁不是电池单体设置泄压机构的壁,这样,当电池单体发生热失控时,经泄压机构排出的电池单体的排放物会向远离该热管理部件的方向排放,因此,排放物不会冲破该热管理部件,增强了电池的安全性。
热管理部件是用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例公开的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需 求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体也可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例公开的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体),箱体内部为中空结构,多个电池单体20容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模块的一个示例。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。如图4所示,为本申请一个实施例的 一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。图4中所示的坐标系与图3中的相同。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为第一电极端子214a和第二电极端子214b。第一电极端子214a和第二电极端子214b的极性相反。例如,当第一电极端子214a为正电极端子时,第二电极端子214b为负电极端子。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子通过一个连接构件23与正极极耳连接,负电极端子通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
如图5所示,为本申请另一实施例的包括泄压机构213的电池单体20的结构示意图。
图5中的壳体211、盖板212、电极组件22以及连接构件23与图4中的壳体211、盖板212、电极组件22以及连接构件23的一致,为了简洁,在此不再赘述。
电池单体20的一个壁,如图5所示的第一壁21a上还可设置泄压机构213。为了便于展示,图5中将第一壁21a与壳体211分离,但这并不限定壳体211的底侧具有开口。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
该泄压机构213可以为第一壁21a的一部分,也可以与第一壁21a为分体式结构,通过例如焊接的方式固定在第一壁21a上。当泄压机构213为第一壁21a的一部分时,例如,泄压机构213可以通过在第一壁21a上设置刻痕的方式形成,与该刻痕的对应的第一壁21a厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
可选地,在本申请一个实施例中,如图5所示,在泄压机构213设置于电池单体20的第一壁21a的情况下,电池单体20的第三壁设置有电极端子214,第三壁不同于第一壁21a。
可选地,第三壁与第一壁21a相对设置。例如,第一壁21a可以为电池单体20的底壁,第三壁可以为电池单体20的顶壁,即盖板212。
可选地,如图5所示,该电池单体20还可以包括垫板24,该垫板24位于电极组件22与壳体211的底壁之间,可以对电极组件22起到承托作用,还可以有效防止电极组件22与壳体211的底壁四周的圆角发生干涉。另外,该垫板24上可以设置有一个或者多个通孔,例如,可以设置多个均匀排列的通孔,或者,也可以在泄压机构213设置在壳体211的底壁时,对应该泄压机构213的位置设置通孔,以便于导液和导气,具体的,这样可以使得垫板24上下表面的空间连通,电池单体20内部产生的气体以及电解液都能够自由地穿过垫板24。
将泄压机构213和电极端子214设置于电池单体20的不同壁上,可以使得泄压机构213致动时,电池单体20的排放物更加远离电极端子214,从而减小排放物对电极端子214和汇流部件的影响,因此能够增强电池的安全性。
进一步地,在电极端子214设置于电池单体20的盖板212上时,将泄压机构213设置于电池单体20的底壁,可以使得泄压机构213致动时,电池单体20的排放物 向电池10底部排放。电池10底部通常会远离用户,从而能够降低对用户的危害。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图6至图14为本申请实施例公开的电池的箱体11的示意图。其中,图7为图6所示的箱体11的A部分的放大示意图。
例如,如图6至图14所示,箱体11包括电气腔11a,收集腔11b以及第一热管理部件12a。其中,电气腔11a用于容纳电池单体20,电池单体20的第一壁21a上设置有泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放该内部压力。收集腔11b,用于在泄压机构213致动时收集来自电池单体20的排放物。第一热管理部件12a,用于容纳流体以给电池单体20调节温度,第一热管理部件12a附接于电池单体20的第二壁21b,第二壁21b和第一壁21a不同。
本申请实施例对电气腔11a内容纳的电池单体20的个数不作限定。需要说明的是,图6、图10和图13中以电池单体20的个数为两个为例进行描述,图8、图9、图11、图12中以电池单体20的个数为一个为例进行描述,其不应对本申请构成限制。
电气腔11a可以是密封或非密封的,本申请实施对此不作限定。
电气腔11a提供电池单体20的安装空间。在一些实施例中,电气腔11a中还可以设置用于固定电池单体20的结构。电气腔11a的形状可以根据所容纳的电池单体20而定。
在一些实施例中,电气腔11a可以为方形,具有六个壁。由于电气腔11a内的电池单体20通过电连接形成较高的电压输出,电气腔也可以称为“高压腔”。
收集腔11b用于收集排放物,可以是密封或非密封的,本申请实施例对此不作限定。
在一些实施例中,收集腔11b内可以包含空气,或者其他气体。收集腔11b内没有连接至电压输出的电连接,对应于“高压腔”,收集腔11b也可以称为“低压腔”。
可选地,或附加地,收集腔11b内也可以包含液体,比如冷却介质,或者,设置容纳该液体的部件,以对进入收集腔11b的排放物进一步降温。进一步可选地,收 集腔11b内的气体或者液体是循环流动的。
本申请实施例对第二壁21b的个数不作限定。
示例性地,若电池单体20呈长方体形状的情况下,例如,如图6、图10和图13所示,第二壁21b包括与箱体11的内壁相邻的壁。又例如,第二壁21b包括与箱体11的内壁相邻的壁和两个电池单体20之间相邻的壁。又例如,第二壁21b包括电池单体20上除第一壁21a之外的壁。
可选地,在一些实施例中,为了增加第一热管理部件12a与电池单体20的接触面积,使得第一热管理部件12a对电池单体20温度调节的效果更显著,该第二壁21b可以是电池单体20除第一壁21a之外的壁中面积最大的壁;或者,该第一壁21a可以是电池单体20的所有壁中面积最小的壁,也即相当于,第二壁21b不是电池单体20面积最小的壁。
在给电池单体20降温的情况下,该第一热管理部件12a可以容纳冷却介质以给电池单体20调节温度,此时,第一热管理部件12a也可以称为冷却部件、冷却系统或冷却板等。
另外,可选地,第一热管理部件12a也可以用于加热,本申请实施例对此并不限定。
可选地,第一热管理部件12a中容纳的流体可以是循环流动的,以达到更好的温度调节的效果。
本申请实施例对第一热管理部件12a与电池单体20的连接方式不作限定。例如,可以通过粘接剂将第一热管理部件12a与电池单体20固定连接。
在本申请实施例中,将第一热管理部件12a附接于电池单体20未设置泄压机构213的第二壁21b,这样,由于第一热管理部件12a与电池单体20的接触面积比较大,在电池单体20正常工作的情况下,对电池单体20温度调节的效果比较显著。
此外,由于第一热管理部件12a附接的第二壁21b不是电池单体20设置泄压机构213的第一壁21a,这样,当电池单体20发生热失控时,经泄压机构213排出的电池单体的排放物会向远离该第一热管理部件12a的方向排放,因此,排放物不会冲破该第一热管理部件12a,增强了电池的安全性。
可选地,在一些实施例中,电池单体20的第三壁21c上设置有电极端子214。其中,第三壁21c和第一壁21a不同,且第三壁21c和第二壁21b不同。也就是说,泄 压机构213所在的壁、电极端子214所在的壁和第一热管理部件12a所附接的壁是电池单体20上三个不同的壁。这样,在泄压机构213致动时,经泄压机构213排出的电池单体20的排放物会向远离该第一热管理部件12a和电极端子214的方向排放,因此,排放物不会冲破该第一热管理部件12a。同时,可以减小排放物对电极端子214的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
本申请实施例对第三壁21c的个数不作限定。
本申请实施例对第三壁21c上设置的电极端子214的个数不作限定。
在第三壁21c的个数为一个的情况下,第三壁21c上可以设置两个电极端子214,且这两个电极端子214的极性相反。
例如,如图8至图10所示,第三壁21c上设置有第一电极端子214a和第二电极端子214b,且第一电极端子214a和第二电极端子214b的极性相反。例如,当第一电极端子214a为正电极端子时,第二电极端子214b为负电极端子。
在第三壁21c的个数为两个的情况下,每个第三壁21c上设置一个电极端子214,且这两个第三壁21c上设置的电极端子214的极性相反。
例如,如图11和图12所示,左侧的第三壁21c上设置有电极端子214,右侧的第三壁21c上设置有电极端子214,且左侧的第三壁21c上设置的电极端子214与右侧的第三壁21c上设置的电极端子214的极性相反。
需要说明的是,在第三壁21c的个数为两个的情况下,本申请实施例对两个第三壁21c的位置关系不作限定。例如,两个第三壁21c可以相邻设置,或者,如图11和图12所示,两个第三壁21c可以相对设置。
本申请实施例对第一壁21a、第二壁21b和第三壁21c的位置关系不作限定。
示例性地,在一些实施例中,如图6、图8、图10和图14所示,第三壁21c和第一壁21a相对设置,第二壁21b连接第三壁21c和第一壁21a,即第二壁21b与第一壁21a和第三壁21c均相邻设置。这样,在泄压机构213致动时,经泄压机构213排出的电池单体20的排放物会向远离该电极端子214的方向排放,因此,可以进一步减小排放物对电极端子214的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
进一步地,可选地,在一些实施例中,如图8所示,电池单体20包括两个相对设置的第二壁21b,两个第二壁21b分别连接于第三壁21c和第一壁21a的两端。
示例性地,在另一些实施例中,如图9、图11和图12所示,第二壁21b与第一壁21a相对设置,第三壁21c连接第二壁21b与第一壁21a。
进一步地,可选地,在一些实施例中,如图9所示,电池单体20包括两个第二壁21b,其中一个第二壁21b与第三壁21c相对设置,另一个第二壁21b与第一壁21a相对设置。
可选地,在一些实施例中,为了方便加工热管理部件,该两个第二壁21b上设置的两个第一热管理部件12a可以一体成型。当然,该两个第一热管理部件12a也可以分体成型,本申请实施例对此不作限定。
可选地,在该两个第一热管理部件12a是一体成型的情况下该,两个第一热管理部件12a中容纳的流体也可以相互连通。
可选地,在一些实施例中,如图6至图14所示,第三壁21c的第一区域21c-1设置有电极端子214。进一步地,如图10和图12所示,箱体11还包括第二热管理部件12b。其中,第二热管理部件12b用于容纳流体以给电池单体20调节温度,第二热管理部件12b附接于第三壁21c的第二区域21c-2,第二区域21c-2和第一区域21c-1不同。也就是说,在第三壁21c上未设置电极端子214的区域上设置第二热管理部件12b。这样,进一步增加了热管理部件与电池单体20的接触面积,在电池单体正常工作的情况下,对电池单体20温度调节的效果更加显著。此外,由于第二热管理部件12b附接的第三壁21c不是电池单体20设置泄压机构213的第一壁21a,这样,当电池单体20发生热失控时,经泄压机构213排出的电池单体20的排放物会向远离该第二热管理部件12b和电极端子214的方向排放,因此,排放物不会冲破该第二热管理部件12b,同时,可以减小排放物对电极端子214的影响,避免造成高压打火风险,降低了其危险性,从而能够增强电池的安全性。
可选地,在第三壁21c和第二壁21b相邻的情况下,为了方便加工热管理部件,第二热管理部件12b和第一热管理部件12a可以一体成型。当然,第二热管理部件12b和第一热管理部件12a也可以分体成型,本申请实施例对此不作限定。
可选地,在第二热管理部件12b和第一热管理部件12a是一体成型的情况下,第二热管理部件12b中容纳的流体和第一热管理部件12a中容纳的流体可以相互连通。
需要说明的是,电极端子214和第一区域21c-1的数量相等。如图6至图10所示,第三壁21c上设置有第一电极端子214a和第二电极端子214b,第一电极端子214a 对应一个第一区域21c-1,第二电极端子214b对应一个第一区域21c-1。
本申请实施例对第二区域21c-2的个数不作限定。
可选地,在一些实施例中,如图10所示,为了便于第二热管理部件12b附接于电池单体20上,第二区域21c-2设置有向远离电池单体20的内部的方向凸出的凸出部21c-3,第二热管理部件12b附接于凸出部21c-3。
可选地,在一些实施例中,第二壁21b上设置有电极端子214。
本申请实施例对第二壁21b上设置的电极端子214的个数不作限定。
在一个示例中,第二壁21b上可以设置一个电极端子214。此时,另一个电极端子214可以设置在电池单体20除第二壁21b之外的壁上,或者,另一个电极端子214可以设置在电池单体20除第二壁21b和第一壁21a之外的壁上。
在另一个示例中,第二壁21b上可以设置两个电极端子214。
可选地,在一些实施例中,第二壁21b的第三区域可以设置电极端子214。进一步地,箱体11还包括上文所述的第二热管理部件12b。其中,第二热管理部件12b用于容纳流体以给电池单体20调节温度,第二热管理部件12b附接于第二壁21b的第四区域,第三区域和第四区域不同。也就是说,在第二壁21b上未设置电极端子214的区域上设置第二热管理部件12b。
需要说明的是,电极端子214和第三区域的数量相等。
进一步地,可选地,在一些实施例中,第四区域设置有向远离电池单体20的内部的方向凸出的凸出部,第二热管理部件12b附接于凸出部。
本申请实施例对第四区域的个数不作限定。
可选地,在一些实施例中,例如,图6至图13所示,箱体11还包括隔离部件13,隔离部件13附接于第一壁21a。
在一些实施例中,例如,图6至图12所示,隔离部件13可以充当箱体11的底壁,即隔离部件13用于隔离电气腔11a和收集腔11b。这样,在泄压机构213致动时,电池单体20的排放物进入收集腔11b,而不进入或少量进入电气腔11a,从而不会影响电气腔11a中的电连接,因此能够增强电池的安全性。
在另一些实施例中,例如,如图13所示,隔离部件13和箱体11的底壁1121是独立设置的,即隔离部件13的一面附接于第一壁21a,另一面附接于箱体11的底壁1121。即通过设置隔离部件13,使得电池单体20的第一壁21a与箱体11的底壁1121 之间具有间隙,该间隙可给泄压机构213的致动提供足够的空间。
可选地,在一些实施例中,隔离部件13设置有薄弱区,该薄弱区用于在泄压机构213致动时能够被破坏,以使排放物穿过薄弱区而进入收集腔11b。这样,泄压机构213致动时,排放物可以直接冲击薄弱区而打开薄弱区,并进入收集腔11b。
可选地,在一些实施例中,薄弱区与泄压机构213相对设置。这样,当泄压机构213致动时,排放物可以直接冲击薄弱区而打开薄弱区。
这里所谓的“隔离”指分离,可以不是密封的。例如,在另一些实施例中,如图6至图13示,隔离部件13可以设置有通孔131。通孔131用于在泄压机构213致动时排放物能够经过通孔131进入收集腔11b。此时,电气腔11a和收集腔11b通过该通孔131连通。隔离部件13的作用同样也是用于隔离电气腔11a和收集腔11b。
可选地,在一些实施例中,通孔131与泄压机构213相对设置。这样,泄压机构213致动时,排放物可以直接通过通孔131进入收集腔11b。
可选地,在一些实施例中,如图6至图13示,箱体11还包括防护构件14。该防护构件14用于防护隔离部件13,防护构件14与隔离部件13形成收集腔11b。防护构件14与隔离部件13形成的收集腔11b,可以有效地收集和缓冲排放物,降低其危险性。
本申请实施例对隔离部件13与电池单体20的连接方式不作限定。例如,可以通过粘接剂将隔离部件13与电池单体20固定连接。
图14本申请一个实施例提供的一种电池的结构示意图。
如图14示,电池10包括多个电池单体20和上文所述的箱体11。其中,多个电池单体20容纳于箱体11中。电池单体20可以是如图6至图13述的电池单体20。
关于箱体11和电池单体20的相关描述可以参考上文的描述,这里不再赘述。
可选地,在一些实施例中,电池10还包括汇流部件15。汇流部件15用于实现多个电池单体20的电连接。
可选地,第一热管理部件12a和/或第二热管理部件12b还可以用来调节汇流部件15的温度(主要是冷却)。
本申请实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10。可选地,用电装置可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池10和用电装置,下面将描述本申请实施例的 制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图15出了本申请一个实施例的制备电池的方法300的示意性流程图。如图15示,该方法300可以包括:
S310,提供多个电池单体20,所述电池单体20的第一壁21a上设置有泄压机构213,所述泄压机构213用于在所述电池单体20的内部压力或温度达到阈值时致动以泄放所述内部压力;
S320,提供箱体11,所述箱体11包括电气腔11a、收集腔11b和第一热管理部件12a;
S330,将所述多个电池单体20容纳于所述电气腔11a内;其中,所述收集腔11b用于在所述泄压机构213致动时收集来自所述电池单体20的排放物;所述第一热管理部件12a用于容纳流体以给所述电池单体20调节温度,所述第一热管理部件12a附接于所述电池单体20的第二壁21b,所述第二壁21b和所述第一壁21a不同。
图16出了本申请一个实施例的制备电池的装置400的示意性框图。如图16示,制备电池的装置400可以包括:提供模块410和安装模块420。
提供模块410,用于:提供多个电池单体20,所述电池单体20的第一壁21a上设置有泄压机构213,所述泄压机构213用于在所述电池单体20的内部压力或温度达到阈值时致动以泄放所述内部压力;提供箱体11,所述箱体11包括电气腔11a、收集腔11b和第一热管理部件12a;
安装模块420,用于将所述多个电池单体20容纳于所述电气腔11a内,其中,所述收集腔11b用于在所述泄压机构213致动时收集来自所述电池单体20的排放物;所述第一热管理部件12a用于容纳流体以给所述电池单体20调节温度,所述第一热管理部件12a附接于所述电池单体20的第二壁21b,所述第二壁21b和所述第一壁21a不同。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池的箱体,其特征在于,包括:
    电气腔,用于容纳电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    收集腔,用于在所述泄压机构致动时收集来自所述电池单体的排放物;
    第一热管理部件,用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
  2. 根据权利要求1所述的箱体,其中,所述电池单体的第三壁上设置有电极端子,所述第三壁和所述第一壁不同,且所述第三壁和所述第二壁不同。
  3. 根据权利要求2所述的箱体,其中,所述第三壁的第一区域设置有所述电极端子;
    所述箱体还包括:第二热管理部件,用于容纳流体以给所述电池单体调节温度,所述第二热管理部件附接于所述第三壁的第二区域,所述第二区域和所述第一区域不同。
  4. 根据权利要求3所述的箱体,其中,所述第二区域设置有向远离所述电池单体的内部的方向凸出的凸出部,所述第二热管理部件附接于所述凸出部。
  5. 根据权利要求2-4中任一项所述的箱体,其中,所述第三壁和所述第一壁相对设置,所述第二壁连接所述第三壁和所述第一壁;或者
    所述第二壁与所述第一壁相对设置,所述第三壁连接所述第二壁和所述第一壁。
  6. 根据权利要求1所述的箱体,其中,所述第二壁上设置有电极端子。
  7. 根据权利要求1至6中任一项所述的箱体,其中,所述箱体包括:
    隔离部件,用于隔离所述电气腔和所述收集腔,所述隔离部件附接于所述第一壁。
  8. 根据权利要求7所述的箱体,其中,所述隔离部件设置有薄弱区,所述薄弱区用于在所述泄压机构致动时能够被破坏,以使所述排放物穿过所述薄弱区而进入所述收集腔。
  9. 根据权利要求8所述的箱体,其中,所述薄弱区与所述泄压机构相对设置。
  10. 根据权利要求7所述的箱体,其中,所述隔离部件设置有通孔,所述通孔用于在所述泄压机构致动时所述排放物能够经过所述通孔进入所述收集腔。
  11. 根据权利要求10所述的箱体,其中,所述通孔与所述泄压机构相对设置。
  12. 一种电池,其特征在于,包括:
    多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    如权利要求1至11中任一项所述的箱体,所述多个电池单体容纳于所述箱体。
  13. 一种用电装置,其特征在于,包括如权利要求12所述的电池,所述电池用于为所述用电装置提供电能。
  14. 一种制备电池的方法,其特征在于,包括:
    提供多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供箱体,所述箱体包括电气腔、收集腔和第一热管理部件;
    将所述多个电池单体容纳于所述电气腔内;其中,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体的排放物;所述第一热管理部件用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
  15. 一种制备电池的装置,其特征在于,包括:
    提供模块,用于:
    提供多个电池单体,所述电池单体的第一壁上设置有泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供箱体,所述箱体包括电气腔、收集腔和第一热管理部件;
    安装模块,用于将所述多个电池单体容纳于所述电气腔内,其中,所述收集腔用于在所述泄压机构致动时收集来自所述电池单体的排放物;所述第一热管理部件用于容纳流体以给所述电池单体调节温度,所述第一热管理部件附接于所述电池单体的第二壁,所述第二壁和所述第一壁不同。
PCT/CN2022/071536 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置 WO2023133722A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
CA3227076A CA3227076A1 (en) 2022-01-12 2022-01-12 Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
KR1020227019092A KR20230110440A (ko) 2022-01-12 2022-01-12 배터리의 박스 본체, 배터리, 전기 장치, 배터리 제조 방법 및 장치
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置
CN202290000046.1U CN218414891U (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置和制备电池的装置
EP22737701.7A EP4235922A4 (en) 2022-01-12 2022-01-12 BATTERY COMPARTMENT, BATTERY, ELECTRICAL DEVICE, METHOD AND DEVICE FOR PREPARING BATTERY
JP2022534433A JP2024507420A (ja) 2022-01-12 2022-01-12 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
US17/860,295 US20230223641A1 (en) 2022-01-12 2022-07-08 Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
KR1020247001276A KR20240020278A (ko) 2022-01-12 2022-10-31 전지 및 전기 기기
CN202280021161.1A CN116998054A (zh) 2022-01-12 2022-10-31 电池和用电设备
CA3236562A CA3236562A1 (en) 2022-01-12 2022-10-31 Battery and electrical apparatus
PCT/CN2022/128748 WO2023134273A1 (zh) 2022-01-12 2022-10-31 电池和用电设备
EP22919907.0A EP4369500A1 (en) 2022-01-12 2022-10-31 Battery and electrical device
KR1020247002119A KR20240023439A (ko) 2022-01-12 2022-11-30 배터리 및 전기 기기
CN202280019141.0A CN117083759A (zh) 2022-01-12 2022-11-30 电池和用电设备
CA3236561A CA3236561A1 (en) 2022-01-12 2022-11-30 Battery and electrical device
EP22919952.6A EP4358262A1 (en) 2022-01-12 2022-11-30 Battery and electrical device
PCT/CN2022/135647 WO2023134319A1 (zh) 2022-01-12 2022-11-30 电池和用电设备
CN202320565378.0U CN219873923U (zh) 2022-01-12 2023-03-21 电池和用电设备
CN202320658585.0U CN220306441U (zh) 2022-01-12 2023-03-29 一种电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/860,295 Continuation US20230223641A1 (en) 2022-01-12 2022-07-08 Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery

Publications (1)

Publication Number Publication Date
WO2023133722A1 true WO2023133722A1 (zh) 2023-07-20

Family

ID=85008553

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/071536 WO2023133722A1 (zh) 2022-01-12 2022-01-12 电池的箱体、电池、用电装置、制备电池的方法和装置
PCT/CN2022/128748 WO2023134273A1 (zh) 2022-01-12 2022-10-31 电池和用电设备
PCT/CN2022/135647 WO2023134319A1 (zh) 2022-01-12 2022-11-30 电池和用电设备

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/128748 WO2023134273A1 (zh) 2022-01-12 2022-10-31 电池和用电设备
PCT/CN2022/135647 WO2023134319A1 (zh) 2022-01-12 2022-11-30 电池和用电设备

Country Status (7)

Country Link
US (1) US20230223641A1 (zh)
EP (3) EP4235922A4 (zh)
JP (1) JP2024507420A (zh)
KR (3) KR20230110440A (zh)
CN (5) CN218414891U (zh)
CA (3) CA3227076A1 (zh)
WO (3) WO2023133722A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117352947B (zh) * 2023-12-04 2024-04-16 宁德时代新能源科技股份有限公司 一种电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN214898695U (zh) * 2021-04-02 2021-11-26 宁德时代新能源科技股份有限公司 电池和用电装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197531B (zh) * 2009-07-17 2013-11-20 松下电器产业株式会社 电池模组和使用它的电池组
US11011783B2 (en) * 2013-10-25 2021-05-18 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
TWI489674B (zh) * 2014-01-13 2015-06-21 新普科技股份有限公司 散熱件及其組成之電池模組
US20150263397A1 (en) * 2014-03-13 2015-09-17 Ford Global Technologies, Llc Side mounted traction battery thermal plate
CN104300162B (zh) * 2014-09-12 2017-01-18 南京信息工程大学 一种电池组自动装配设备
US11302973B2 (en) * 2015-05-19 2022-04-12 Ford Global Technologies, Llc Battery assembly with multi-function structural assembly
WO2018023050A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc High-density battery pack
DE102017219176A1 (de) * 2017-10-26 2019-05-02 Bayerische Motoren Werke Aktiengesellschaft Batteriemodul für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie sowie Kraftfahrzeug
JP7107119B2 (ja) * 2018-09-13 2022-07-27 株式会社デンソー 電池ユニット
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN110190212B (zh) * 2018-12-29 2020-02-04 比亚迪股份有限公司 动力电池包及车辆
CN113113707A (zh) * 2018-12-29 2021-07-13 宁德时代新能源科技股份有限公司 电池包
CN209249567U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模组
CN110048184A (zh) * 2019-03-25 2019-07-23 力神动力电池系统有限公司 一种电动汽车用方形电池水冷模组
KR20200143976A (ko) * 2019-06-17 2020-12-28 주식회사 엘지화학 냉각부재를 구비한 배터리 모듈 및 배터리 팩 및 전력 저장장치
CN112331992B (zh) * 2019-11-08 2021-12-03 宁德时代新能源科技股份有限公司 电池包及装置
CN210607415U (zh) * 2019-12-10 2020-05-22 北京车和家信息技术有限公司 电池模组壳体、电池模组、电池包及车辆
CN212659613U (zh) * 2020-06-02 2021-03-05 北京新能源汽车股份有限公司蓝谷动力系统分公司 用于车辆的电池模组、电池包和车辆
CN212209699U (zh) * 2020-06-04 2020-12-22 北京罗克维尔斯科技有限公司 一种液冷框架、电池模组及车辆
CN212991189U (zh) * 2020-07-10 2021-04-16 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN214313319U (zh) * 2020-12-24 2021-09-28 江苏塔菲尔动力系统有限公司 一种无模组式的电池系统结构、电池包及电动车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213584016U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN214898695U (zh) * 2021-04-02 2021-11-26 宁德时代新能源科技股份有限公司 电池和用电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235922A4 *

Also Published As

Publication number Publication date
JP2024507420A (ja) 2024-02-20
WO2023134273A1 (zh) 2023-07-20
CN220306441U (zh) 2024-01-05
KR20240023439A (ko) 2024-02-21
KR20230110440A (ko) 2023-07-24
EP4235922A4 (en) 2024-04-17
EP4235922A1 (en) 2023-08-30
EP4358262A1 (en) 2024-04-24
US20230223641A1 (en) 2023-07-13
CN117083759A (zh) 2023-11-17
CA3227076A1 (en) 2023-07-20
CN116998054A (zh) 2023-11-03
WO2023134319A1 (zh) 2023-07-20
EP4369500A1 (en) 2024-05-15
CA3236562A1 (en) 2023-07-20
CN218414891U (zh) 2023-01-31
CN219873923U (zh) 2023-10-20
KR20240020278A (ko) 2024-02-14
CA3236561A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
US11699829B2 (en) Box of battery, battery, power consumpiion apparatus, method for producing battery and apparatus for producing battery
JP2022542779A (ja) 電池、電力消費装置、電池製造方法及び装置
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
US20230231260A1 (en) Battery housing, battery, electrical apparatus, method and device for manufacturing battery
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023179192A1 (zh) 电池和用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023004660A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023010516A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
KR20230008110A (ko) 전지, 전기 장치, 전지 제조 방법 및 장치
WO2023028748A1 (zh) 电池、用电装置以及制备电池的方法和装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023134547A1 (zh) 箱体、电池、用电装置以及制备电池的方法和装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022534433

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022737701

Country of ref document: EP

Effective date: 20220720

WWE Wipo information: entry into national phase

Ref document number: 2401000404

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 3227076

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2024102176

Country of ref document: RU