WO2022082391A1 - 电池、用电装置、制备电池的方法和设备 - Google Patents

电池、用电装置、制备电池的方法和设备 Download PDF

Info

Publication number
WO2022082391A1
WO2022082391A1 PCT/CN2020/121994 CN2020121994W WO2022082391A1 WO 2022082391 A1 WO2022082391 A1 WO 2022082391A1 CN 2020121994 W CN2020121994 W CN 2020121994W WO 2022082391 A1 WO2022082391 A1 WO 2022082391A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
plate
battery cell
pressure relief
Prior art date
Application number
PCT/CN2020/121994
Other languages
English (en)
French (fr)
Inventor
梁成都
胡浪超
黄小腾
洪家荣
杨海奇
汪文礼
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to PCT/CN2020/121994 priority Critical patent/WO2022082391A1/zh
Priority to KR1020237001494A priority patent/KR102646203B1/ko
Priority to JP2023503004A priority patent/JP7350211B2/ja
Priority to EP20828247.5A priority patent/EP4009433B1/en
Priority to EP23176973.8A priority patent/EP4235950A3/en
Priority to US17/139,735 priority patent/US11888177B2/en
Publication of WO2022082391A1 publication Critical patent/WO2022082391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/10Containers destroyed or opened by flames or heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of energy storage devices, and more particularly, to a battery, an electrical device, and a method and device for preparing a battery.
  • the embodiments of the present application provide a battery, an electrical device, and a method and device for preparing a battery, which can enhance the safety of the battery.
  • a battery comprising: a battery cell, the battery cell including a pressure relief mechanism for actuating when the internal pressure or temperature of the battery cell reaches a threshold value to venting the internal pressure; a fire fighting conduit for containing a fire fighting medium, and the fire fighting conduit is configured to discharge the fire fighting medium towards the battery cell when the pressure relief mechanism is actuated; a accommodating portion for The fire fighting medium discharged from the fire fighting pipeline is contained to cool the battery cells.
  • the battery includes a accommodating portion for accommodating a fire-fighting medium.
  • the fire-fighting medium can flow in addition to the occurrence of thermal runaway.
  • part of the fire-fighting medium can also be stored in the accommodating part, so that the fire-fighting medium discharged from the fire-fighting pipeline can be fully and effectively used, avoiding the problem of wasting fire-fighting medium, so that the battery cell can be quickly reduced.
  • the temperature can suppress the danger caused by abnormal battery cells at the first time, reduce the possibility of battery explosion, and enhance the safety of the battery. Further, if thermal runaway occurs in the battery cells at a later time, the fire-fighting medium stored in the accommodating portion can continue to cool down the thermally runaway battery cells, which can further increase the safety of the battery.
  • the pressure relief mechanism is provided on a first wall of the battery cell, the receiving portion includes a first receiving portion, and the first receiving portion is attached to the first wall of the battery cell. Two walls, the second wall is perpendicular to the first wall, and the first accommodating part is used for collecting the fire fighting medium diffused from the first wall.
  • the battery cell when the battery cell is thermally out of control, a part of the fire-fighting medium discharged from the fire-fighting pipeline can flow into the battery cell, and another part of the fire-fighting medium diffused from the first wall can be collected in the first accommodating part, so that the The fire-fighting medium collected in the first receptacle can continuously cool the battery cells.
  • the first receiving portion includes a first plate, a second plate and at least two baffles, the second plate and the first plate intersect, the first plate and the second plate Walls intersect, and each of the at least two baffles intersects the first and second plates.
  • the first plate is parallel to the first wall
  • the second plate is parallel to the second wall
  • the at least two baffles are perpendicular to the first plate and the first plate Second board.
  • the first plate is the bottom plate of the battery case.
  • the second plate is a side plate of the battery case or a beam of the case.
  • the first accommodating part can save the production cost of the battery by reusing the box body, the side plate or the beam of the battery.
  • two of the at least two baffles and the first plate, the second plate and the N second walls of the battery cells are used to form a housing for the fire protection
  • the accommodating space of the medium, the accommodating space has an opening facing the first wall, and N is a positive integer.
  • N is equal to 1, 2 or 3.
  • the fire-fighting medium can not only cool the temperature of the battery cell that has thermal runaway, but also cool the battery cell adjacent to the battery cell, so as to have the effect of blocking thermal diffusion.
  • the at least two baffles have the same length in a first direction, the first direction being a direction perpendicular to the first wall.
  • the first plate is coplanar with a third wall of the battery cell, the third wall being parallel to the first wall.
  • the first plate and the third wall are located on the same plane, so that the accommodating space formed by the first accommodating part and the second wall can be maximized, so that more fire fighting medium can be stored.
  • the first plate is located between the first wall and a third wall of the battery cell, the third wall being parallel to the first wall.
  • the end of the second plate proximate the third wall is flush with the third wall.
  • other baffles except the two baffles located at both ends of the second plate are embedded between two adjacent battery cells.
  • the connection stability between the first accommodating portion and the second wall can be improved.
  • the first plate is attached to the second wall by a connector.
  • the first accommodating part includes a connecting plate extending along a first direction at an end of the first plate connected to the second wall, and the connecting plate passes through the connecting piece Attached to the second wall, the first direction is a direction perpendicular to the first wall.
  • the connecting plate By arranging the connecting plate, the first accommodating part and the second wall have a larger connection area, thereby increasing the connection strength and the heat conduction area.
  • the connecting member is thermally conductive glue.
  • the pressure relief mechanism is disposed on a first wall of the battery cell
  • the receiving portion includes a second receiving portion disposed on the first wall
  • the pressure relief mechanism is disposed on the first wall.
  • the bottom wall of the second accommodating part is used for collecting the fire fighting medium flowing into the battery cell when the pressure relief mechanism is actuated.
  • the second accommodating portion By arranging the second accommodating portion on the first wall of the battery cell, when the thermal runaway occurs in the battery cell, in addition to the fire-fighting medium flowing into the battery cell, a part of the fire-fighting medium can also remain in the second accommodating portion, so that More fire-fighting medium can be used to cool down the battery cells. Further, when the flow rate of the fire-fighting medium is small, the fire-fighting medium can more easily remain in the second accommodating part, and then flow into the battery cells, so that the battery cells that have thermal runaway can be cooled down; when the flow rate of the fire-fighting medium is large In addition to cooling the battery cells that have thermal runaway at the first moment, the fire-fighting medium can also be stored in the second accommodating part. In this case, the fire-fighting medium can also cool other battery cells, which can further Enhance battery safety.
  • the opening of the second accommodating portion faces the outside of the battery cell, and the area of the opening of the second accommodating portion is larger than the area of the area where the pressure relief mechanism is located.
  • the area of the opening of the second accommodating part is greater than or equal to the area of the surface of the bottom wall of the second accommodating part facing the outside of the battery cell.
  • the larger the area of the opening of the second accommodating part the larger the area of the second accommodating part for collecting the fire-fighting medium, so that the efficiency of collecting the fire-fighting medium in the second accommodating part can be improved.
  • the thickness of the bottom wall of the second receiving portion is uniform.
  • a surface of the bottom wall of the second accommodating portion facing the outside of the battery cell is an inclined surface inclined toward the inside of the second accommodating portion from the periphery to the center.
  • a surface of the first wall close to the interior of the battery cell includes a first area and a second area, the first area is an area corresponding to the second accommodating portion, and the The second area is an area other than the first area on the surface of the first wall close to the inside of the battery cell, and the first area and the second area are located on the same plane.
  • a surface of the first wall close to the interior of the battery cell includes a first area and a second area, the first area is an area corresponding to the second accommodating portion, and the The second area is an area other than the first area on the surface of the first wall close to the inside of the battery cell, and the plane where the first area is located is compared to the plane where the second area is located close to the interior of the battery cell.
  • the fire-fighting medium can flow better into the second receptacle.
  • the bottom wall of the second accommodating part is provided with a partition rib, and the partition rib divides the bottom wall of the second accommodating part into at least two regions.
  • the strength of the second accommodating portion can be increased.
  • the pressure relief mechanism is located in one of the at least two regions.
  • a bottom wall of the second accommodating portion is provided with a through hole, and the pressure relief mechanism covers the through hole.
  • the battery further includes: a protective sheet for protecting the pressure relief mechanism, located on a side of the pressure relief mechanism facing the outside of the battery cell and covering the pressure relief mechanism.
  • a surface of the bottom wall of the second accommodating portion facing the outside of the battery cell is provided with a protrusion extending toward the outside of the battery cell in a surrounding area of the pressure relief mechanism,
  • the protection sheet is fixed on the protrusion to cover the pressure relief mechanism. The bulges add strength around the pressure relief mechanism.
  • a protruding height of the protrusion relative to a surface of the bottom wall of the second receiving portion facing the outside of the battery cell is smaller than a depth of the second receiving portion.
  • an electrical device including: the battery of the first aspect.
  • the powered device is a vehicle, a ship or a spacecraft.
  • a method for preparing a battery comprising: providing a battery cell, the battery cell includes a pressure relief mechanism, and the pressure relief mechanism is used for when the internal pressure or temperature of the battery cell reaches a threshold value when actuated to relieve the internal pressure; a fire fighting conduit is provided for containing a fire fighting medium, and the fire fighting conduit is configured to discharge the pressure towards the battery cells when the pressure relief mechanism is actuated
  • the fire fighting medium is provided; an accommodating part is provided for accommodating the fire fighting medium discharged from the fire fighting pipeline to cool the battery cells.
  • the pressure relief mechanism is provided on a first wall of the battery cell
  • the receiving portion includes a first receiving portion attached to a second wall of the battery cell
  • the second wall is perpendicular to the first wall
  • the first receiving part is used for collecting the fire fighting medium diffused from the first wall.
  • the first receiving portion includes a first plate, a second plate and at least two baffles, the second plate and the first plate intersect, the first plate and the second plate Walls intersect, and each of the at least two baffles intersects the first and second plates.
  • the accommodating portion includes a second accommodating portion disposed on the first wall, the pressure relief mechanism is disposed on a bottom wall of the second accommodating portion, and the second accommodating portion is used for The fire fighting medium flowing into the battery cells is collected upon actuation of the pressure relief mechanism.
  • the opening of the second accommodating portion faces the outside of the battery cell, and the area of the opening of the second accommodating portion is larger than the area of the area where the pressure relief mechanism is located.
  • an apparatus for preparing a battery including a module for performing the method of the third aspect above.
  • FIG. 1 is a schematic diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • FIG. 4 is an exploded view of a battery cell according to an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIGS. 6-9 are schematic structural diagrams of the first accommodating portion according to some embodiments of the present application.
  • FIG. 13 and 14 are top views of batteries according to some embodiments of the present application.
  • 15 and 16 are cross-sectional views of batteries according to some embodiments of the present application.
  • 17 and 18 are schematic structural diagrams of batteries according to some embodiments of the present application.
  • FIG. 19 is a schematic flowchart of a method for preparing a battery according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of an apparatus for preparing a battery according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square-shaped battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell may include an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be graphite, carbon or silicon, etc.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • protection measures include at least switch elements, selection of appropriate isolation diaphragm materials, and pressure relief mechanisms.
  • the switching element refers to an element that can stop the charging or discharging of the battery when the temperature or resistance in the battery cell reaches a certain threshold.
  • the separator is used to separate the positive electrode sheet and the negative electrode sheet. When the temperature rises to a certain value, the micro-scale (or even nano-scale) micropores attached to it can be automatically dissolved, so that the metal ions cannot pass through the separator and terminate the battery. Internal reactions of monomers.
  • the pressure relief mechanism refers to an element or component that is actuated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to different design requirements.
  • the threshold value may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, a gas valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is damaged, an opening or channel for releasing the internal pressure or temperature is formed.
  • the "actuation" mentioned in this application means that the pressure relief mechanism is actuated or activated to a certain state, so that the internal pressure and temperature of the battery cell can be released.
  • Actions produced by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism being ruptured, shattered, torn or opened, and the like.
  • the emissions from the battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high temperature and high pressure gas generated by the reaction, flames, and the like.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a short circuit, overcharge, etc. occurs, it may cause thermal runaway inside the battery cell, resulting in a sudden rise in pressure or temperature. Prevent battery cell explosion and fire.
  • the main focus is to release the high pressure and high heat inside the battery cell, that is, to discharge the exhaust to the outside of the battery cell.
  • High-temperature and high-pressure discharges are discharged toward the direction in which the pressure relief mechanism is provided for the battery cells, and may be discharged more specifically in the direction of the area where the pressure relief mechanism is actuated. Enough to break through one or more structures in that direction, creating further safety concerns.
  • high voltage and high heat inside the battery cell may continue to be generated, resulting in continued safety hazards.
  • a fire protection system can be installed in the battery box, and the fire protection pipeline of the fire protection system is arranged above the wall of the battery cell where the pressure relief mechanism is arranged.
  • the fire-fighting pipeline discharges the fire-fighting medium, so that the temperature of the discharge discharged from the pressure relief mechanism can be lowered and the danger of the discharge can be reduced.
  • the fire-fighting medium can further flow into the battery cell through the actuated pressure relief mechanism, thereby further cooling the battery cell and enhancing the safety of the battery.
  • the pressure relief mechanism when the pressure relief mechanism is actuated, the discharge from the battery cell can damage the fire fighting duct, so that the fire fighting medium in the fire fighting duct is discharged.
  • the fire-fighting pipeline in the embodiment of the present application is used for containing fire-fighting medium, and the fire-fighting medium here may be a fluid, and the fluid may be a liquid or a gas.
  • the fire fighting medium can be circulated for better temperature regulation.
  • the fire-fighting medium may be water, a mixture of water and ethylene glycol, or air, or the like, or the fire-fighting medium may be at least one of liquid nitrogen, liquid argon, and liquid carbon dioxide.
  • the battery may include a control system that, upon actuation of the pressure relief mechanism, may control the discharge of the fire fighting medium from the fire fighting conduit.
  • exhaust emissions from within the battery cells may pass through and disrupt the fire fighting conduit so that the fire fighting conduit discharges the fire fighting medium.
  • the embodiments of the present application will be described by taking the discharge through and destroying the fire pipeline as an example, but the present application is not limited to this.
  • the fire fighting pipeline may not contain any substance, but when the pressure relief mechanism is actuated, the fire fighting medium can be contained in the fire fighting pipeline, for example, the fire fighting can be controlled by switching the valve The medium enters the fire pipeline.
  • the fire-fighting pipeline may always contain fire-fighting medium.
  • the fire fighting medium can also be used to regulate the temperature of the battery cells. Adjusting the temperature refers to heating or cooling a plurality of battery cells.
  • the fire fighting pipeline is used to contain the cooling fluid to reduce the temperature of the plurality of battery cells.
  • the contained fire fighting medium may also be referred to as cooling medium or cooling fluid, and more specifically, may be referred to as cooling liquid or cooling gas.
  • the embodiments of the present application provide a battery that can solve the above problems.
  • the technical solutions described in the embodiments of this application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
  • the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • the interior of the vehicle 1 may be provided with a motor 40 , a controller 30 and a battery 10 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for the starting, navigation and operation power requirements of the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • a battery can also be called a battery pack.
  • a plurality of battery cells can be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series or in parallel or mixed to form a battery. That is to say, a plurality of battery cells can directly form a battery, or a battery module can be formed first, and then the battery module can be formed into a battery.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may further include a box body (or a cover body), the inside of the box body is a hollow structure, and the plurality of battery cells 10 are accommodated in the box body.
  • the box body may include two parts, which are referred to as the first part 111 and the second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 can be a hollow cuboid and each has only one surface that is an open surface, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are interlocked with each other Combined to form a box with a closed chamber.
  • the box may include a bottom plate 112a, side plates 112b and beams.
  • the plurality of battery cells 20 are connected in parallel or in series or in a mixed connection and then placed in the box formed by the first part 111 and the second part 112 being fastened together.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may further include a bussing component for realizing electrical connection between the plurality of battery cells 20, such as parallel or series or hybrid.
  • the bus member may realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus members may be fixed to the electrode terminals of the battery cells 20 by welding. The electrical energy of the plurality of battery cells 20 can be further drawn out through the case through the conductive mechanism.
  • the conducting means may also belong to the bussing member.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in a mixed manner to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module.
  • the number of battery cells 20 included in the battery module is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery module.
  • the battery can include a plurality of battery modules, and these battery modules can be connected in series, parallel or mixed. As shown in FIG.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the coordinate system shown in FIG. 4 is the same as that in FIG. 3 .
  • the casing 211 and the cover plate 212 form an outer casing or battery case 21 . Both the wall of the case 211 and the cover plate 212 are referred to as the wall of the battery cell 20 .
  • the casing 211 is determined according to the combined shape of one or more electrode assemblies 22.
  • the casing 211 can be a hollow cuboid, a cube or a cylinder, and one surface of the casing 211 has an opening for one or more electrodes.
  • Assembly 22 may be placed within housing 211 .
  • the casing 211 is a hollow cuboid or cube
  • one of the planes of the casing 211 is an opening surface, that is, the plane does not have a wall so that the casing 211 communicates with the inside and the outside.
  • the casing 211 can be a hollow cylinder
  • the end face of the casing 211 is an open face, that is, the end face does not have a wall so that the casing 211 communicates with the inside and the outside.
  • the cover plate 212 covers the opening and is connected with the case 211 to form a closed cavity in which the electrode assembly 22 is placed.
  • the casing 211 is filled with an electrolyte, such as an electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is generally in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212 , and the two electrode terminals 214 are a positive electrode terminal 214a and a negative electrode terminal 214b respectively.
  • Each electrode terminal 214 is correspondingly provided with a connecting member 23 , or a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connecting member 23
  • the second tabs 212a of one or more electrode assemblies 22 are connected to another electrode terminal through another connecting member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 may be set in a single or multiple number. As shown in FIG. 4 , four independent electrode assemblies 22 are provided in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is used to actuate when the internal pressure or temperature of the battery cell 20 reaches a threshold value to relieve the internal pressure or temperature.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to be able to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism, and the pressure-sensitive pressure relief mechanism is configured to be able to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 5 is a schematic diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a battery cell 20 , a fire fighting pipe 12 and a receiving portion 13 .
  • the battery cell 20 includes a pressure relief mechanism 213, and the pressure relief mechanism 213 is used to actuate to release the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the fire fighting duct 12 is used to contain the fire fighting medium, and the fire fighting duct 12 is configured to discharge the fire fighting medium towards the battery cells 20 when the pressure relief mechanism 213 is actuated.
  • the accommodating part 13 is used for accommodating the fire fighting medium discharged from the fire fighting pipe 12 to cool down the battery cells 20 .
  • the battery 10 includes the accommodating portion 13 for accommodating the fire-fighting medium, so that when the pressure relief mechanism 213 is actuated and the fire-fighting pipe 12 discharges the fire-fighting medium toward the battery cell 20 where thermal runaway occurs, the fire-fighting
  • a part of the fire fighting medium can also be stored in the accommodating part 13, so that the fire fighting medium discharged from the fire fighting pipeline 12 can be fully and effectively used, and the fire fighting medium can be avoided from being wasted Therefore, the temperature of the battery cell 20 can be quickly lowered, the danger caused by the abnormality of the battery cell 20 can be suppressed at the first time, the possibility of the battery 10 explosion can be reduced, and the safety of the battery 10 can be enhanced.
  • the fire-fighting medium stored in the accommodating portion can continue to cool down the thermally runaway battery cells, thereby further increasing the safety of the battery.
  • the fire fighting conduit 12 may continuously discharge the fire fighting medium towards the battery cells 20 when the pressure relief mechanism 213 is actuated, or the fire fighting conduit 12 may intermittently discharge the fire fighting medium towards the battery cells 20 when the pressure relief mechanism 213 is actuated. medium.
  • the fire duct 12 can be set to any shape according to practical application.
  • the fire duct 12 can be set as a flat duct, or can be set as other shapes, such as cylindrical ducts, straight ducts, U-shaped ducts and S-shaped ducts.
  • the accommodating portion 13 can directly use the contained fire fighting medium to cool down the battery cells 20 where thermal runaway occurs through the wall where the pressure relief mechanism is located; and/or, the accommodating portion 13 can first The contained fire-fighting medium is allowed to flow into the battery cells 20 where thermal runaway occurs, and then the temperature of the battery cells 20 where thermal runaway occurs is lowered.
  • the battery 10 shown in FIG. 5 can be the battery 10 shown in FIGS. 1 and 2 .
  • the same reference numerals denote the same components, and for brevity, in different embodiments , detailed descriptions of the same components are omitted.
  • the thickness, length, width and other dimensions of various components in the embodiments of the present application shown in the accompanying drawings, as well as the overall thickness, length and width, etc. of the integrated device are only exemplary descriptions, and should not constitute any limitation to the present application. .
  • the pressure relief mechanism 213 may be provided on the first wall 21a of the battery cell 20, the accommodating portion 13 includes a first accommodating portion 131, and the first accommodating portion 131 is attached to the battery cell
  • the second wall 21b of the body 20, the second wall 21b is perpendicular to the first wall 21a, and the first accommodating part 131 is used for collecting the fire fighting medium diffused from the first wall 21a.
  • the battery cell 20 When the battery cell 20 is thermally out of control, a part of the fire-fighting medium discharged from the fire-fighting pipe 12 can flow into the battery cell 20, and another part of the fire-fighting medium diffused from the first wall 21a can be collected in the first accommodating part 131, The fire-fighting medium collected in the first accommodating portion 131 can continuously cool the battery cells 20 .
  • the first wall 21a may be any wall of the battery cell 20 . As an example, as shown in FIG. 5 , the first wall 21 a is the uppermost wall of the battery cell 20 .
  • the pressure relief mechanism 213 may be a part of the first wall 21a, or may be a separate structure from the first wall 21a, and may be fixed on the first wall 21a by, for example, welding. When the pressure relief mechanism 213 is a part of the first wall 21a, for example, the pressure relief mechanism 213 may be formed by providing a score on the first wall 21a.
  • the second wall 21 b is the side wall of the battery cell 20 .
  • the first accommodating part 131 may include a first plate 133, a second plate 134 and at least two baffles 135, wherein the second plate 134 intersects the first plate 133, the first plate 133 intersects the second wall 21b, and at least two Each of the baffles 135 intersects the first plate 133 and the second plate 134 .
  • two of the at least two baffles 135 together with the first plate 133, the second plate 134 and the second walls 21b of the N battery cells 20 may form a accommodating space for accommodating a fire-fighting medium.
  • the space has an opening toward the first wall 21a, and N is a positive integer.
  • N can be 1, 2 or 3.
  • the second wall 21b of each battery cell 20 can be connected with two of the at least two baffles 135 , the first plate 133 , the second The plate 134 forms an accommodation space.
  • the number of the baffles 135 may be one more than the number of the battery cells 20 .
  • N is greater than 1, that is, a plurality of battery cells 20 share one first accommodating portion 131 .
  • FIGS. 8 and 9 as an example, the second walls 21 b of the two battery cells 20 and the first accommodating portion 131 form a accommodating space.
  • the first accommodating portion 131 may have any shape.
  • the first accommodating portion 131 may be a rectangle as shown in FIGS. 6-9 , or may be a circle, a trapezoid, etc.; for another example, the first accommodating portion 131 may be an irregular shape.
  • the first accommodating portion 131 may also have an integrated structure.
  • the first plate 133 may be parallel to the first wall 21a
  • the second plate 134 may be parallel to the second wall 21b, that is, the first plate 133 and the second plate 134 may be parallel to the second wall 21b.
  • the plate 134 is vertical, and at least two baffles 135 may be vertical to the first plate 133 and the second plate 134 . That is, the first plate 133 may be the bottom plate of the first accommodating portion 131 , and the second plate 134 may be the side plate of the first accommodating portion 131 .
  • the second plate 134 may be the side plate 112b of the case of the battery 10 or may be the beam of the case of the battery 10 .
  • the first plate 133 may be the bottom plate 112 a of the case of the battery 10 .
  • the first accommodating portion 131 reuses the case of the battery 10 . In this way, the production cost of the battery can be saved.
  • first plate 133 and/or the second plate 134 may also be newly added plates in the battery 10 .
  • the embodiment of the present application does not limit the distance between the first plate 133 and the upper surface of the casing of the battery 10 .
  • the first plate 133 may be located on the same plane as the third wall 21c of the battery cell 20, wherein, referring to FIG. 10, the third wall 21c is perpendicular to the second wall 21b, that is, the third wall 21c is parallel to the first wall 21c. wall 21a.
  • the first plate 133 in FIGS. 6 , 8 and 10 is on the same plane as the third wall 21 c , in other words, the first plate 133 is in close contact with the upper surface of the box of the first accommodating portion 131 .
  • the ends of at least two baffles 135 close to the third wall 21c are located on the same plane as the third wall 21c.
  • the first plate 133 and the third wall 21c are located on the same plane. In this way, the accommodating space formed between the first accommodating portion 131 and the second wall 21b can be maximized, thereby accommodating more fire-fighting media.
  • the first plate 133 may also be located between the first wall 21a and the third wall 21c.
  • the first plate 133 may also be located between the first wall 21a and the third wall 21c. For example, as shown in FIG. 7 , FIG. 9 and FIG. 11 .
  • the end of the second plate 134 close to the third wall 21c may be located on the same plane as the third wall 21c. Further, one end of each of the at least two baffles 135 close to the third wall 21c may be located on the same plane as the third wall 21c, as shown in FIGS. 7 and 9 . In this way, the first receiving portion 131 can be more securely attached to the second wall 21b.
  • an end of the second plate 134 close to the third wall 21c may be located on the same plane as the first plate 133 , and each baffle plate of the at least two baffle plates 135 has an end close to the first plate 135 .
  • One end of the three walls 21c may be on the same plane as the first plate 133 . At this time, the first accommodating portion 131 is suspended.
  • the connecting member 23 may be, but not limited to, thermally conductive adhesive, and the thermally conductive adhesive can transfer heat to the battery cells 20 .
  • the first accommodating portion 131 may further include a connecting plate 136 , and the connecting plate 136 may be connected to the second wall of the first plate 133 .
  • One end of the 21b extends along a first direction, and the connecting plate 136 can be attached to the second wall 21b through the connecting piece 23, wherein the first direction is a direction perpendicular to the first wall 21a.
  • one end of the first plate 133 connected to the second wall 21 b may extend in the first direction to form a connecting plate 136 , which may be attached to the second wall 21 b through the connecting piece 23 .
  • the connecting plate 136 may be in the shape shown in FIG. 10 and FIG. 11 , or the connecting plate 136 may also be in other shapes, such as H-shape, U-shape, and so on.
  • connection plate 136 By arranging the connection plate 136, a larger connection area can be provided between the first accommodating part 131 and the second wall 21b, so that the connection strength and the heat conduction area can be increased.
  • the first plate 133 may also be attached to the second wall 21b by sealing material or welding.
  • the sealing material may be a thermally conductive sealing material. It should be understood that the first plate 133 may also be attached to the second wall 21b in other ways, which is not limited in the embodiment of the present application. Similar to the way of attachment between the first plate 133 and the second wall 21b, the first plate 133, the second plate 134 and the at least two baffles 135 can also be connected in the way mentioned above.
  • the other baffles 135b of the at least two baffles 135 may be embedded between two adjacent battery cells 20 .
  • the other baffles 135b of the at least two baffles 135 may also be attached to the two adjacent battery cells 20 through connectors.
  • the other baffles 135b are embedded between two adjacent battery cells 20, which can improve the connection stability between the first accommodating portion 131 and the second wall 21b.
  • baffles 135a of the at least two baffles 135 may be attached to the second wall 21b by means of connecting pieces or welding or the like.
  • the pressure relief mechanism 213 may be disposed on the first wall 21a of the battery cell, and the accommodating portion 13 may further include a second accommodating portion 132 disposed on the first wall 21a, The pressure relief mechanism 213 is disposed on the bottom wall 132a of the second accommodating portion 132, and the second accommodating portion 132 is used to collect the fire-fighting medium flowing into the battery cells 20 when the pressure relief mechanism 213 is actuated.
  • the second accommodating portion 132 By disposing the second accommodating portion 132 on the first wall 21a of the battery cell 20, when the battery cell 20 is thermally out of control, in addition to the fire-fighting medium flowing into the battery cell 20, a part of the fire-fighting medium can also be stored in the first wall 20. In the two accommodating parts 132 , more fire-fighting medium can be used for cooling the battery cells 20 . Further, when the flow rate of the fire-fighting medium is small, the fire-fighting medium can more easily remain in the second accommodating portion 132 and then flow into the battery cells 20, thereby cooling the battery cells 20 that have thermal runaway.
  • the second accommodating portion 132 can be defined as a groove.
  • the first wall 21 a may be the uppermost wall of the battery cell 20
  • the second accommodating portion 132 in the embodiment of the present application may be disposed on the upper surface of the battery cell 20 .
  • FIGS. 13 and 14 are top views of the battery 10 according to the embodiment of the present application.
  • the opening of the second accommodating portion 132 faces the battery cell 20 .
  • the area of the opening of the second accommodating portion 132 may be larger than the area of the area where the pressure relief mechanism 213 is located.
  • the area of the opening of the second accommodating portion 132 may also be smaller than or equal to the area of the area where the pressure relief mechanism 213 is located.
  • the area of the opening of the second accommodating part 132 may be larger than the area of the bottom wall 132a of the second accommodating part 132 facing the battery The area of the outer surface of the cell 20 . That is to say, the side wall of the second accommodating portion 132 is gradually inclined downward from the periphery to the central position, and the side wall of the second accommodating portion 132 may be an inclined surface or a stepped shape.
  • the area of the opening of the second accommodating portion 132 may also be smaller than or equal to the area of the surface of the bottom wall 132 a of the second accommodating portion 132 facing the outside of the battery cell 20 .
  • the thickness of the bottom wall 132a of the second accommodating portion 132 may be uniform; or, the surface of the bottom wall 132a of the second accommodating portion 132 facing the outside of the battery cells 20 may be formed from the surrounding area.
  • the thickness of the bottom wall 132a of the second accommodating portion 132 may gradually increase from the center of the bottom wall 132a of the second accommodating portion 132 to the periphery; The center is stepped toward the inside of the second accommodating portion 132 .
  • the bottom wall 132a of the second accommodating portion 132 may further be provided with a through hole, and the pressure relief mechanism 213 covers the through hole.
  • the pressure relief mechanism may completely cover the through hole, or may partially cover the through hole.
  • the second accommodating portion 132 may include multiple regions, and the pressure relief mechanism 213 is located in one of the multiple regions.
  • the area of each area in the multiple areas may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the second accommodating portion 132 includes three regions, wherein the region where the pressure relief mechanism 213 is located has the largest area, and the other two regions have the same area.
  • the second accommodating part 132 may be relatively thin, in order to increase the strength of the second accommodating part 132 , the bottom wall 132 a of the second accommodating part 132 may be provided with a separation rib 1321 , and the dividing rib 1321 may separate the bottom of the second accommodating part 132
  • the wall 132a is divided into a plurality of regions.
  • the embodiment of the present application does not specifically limit the number of the separation ribs 1321, for example, the number of the separation ribs 1321 in FIG. 14 is two. By providing the dividing rib 1321, the strength of the second accommodating portion 132 can be increased.
  • the surface of the first wall 21a close to the interior of the battery cell 20 may include a first area 32a and a second area 32b, where the first area 32a is connected to the second accommodating portion
  • the area corresponding to 132, the second area 32b is an area other than the first area 32a on the surface of the first wall 21a close to the interior of the battery cell 20.
  • the first area 32a and the second area 32b may be located on the same plane.
  • the upper part in FIG. 16 corresponds to the outside of the battery cell 20
  • the lower part corresponds to the inside of the battery cell 20
  • the plane where the first region 32 a is located may be closer to the plane where the second region 32 b is located.
  • the fire fighting medium can flow into the second receptacle 132 better.
  • the surface of the pressure relief structure 213 is often contaminated with electrolyte or other foreign matter, and during the processing of the battery cell 20, the pressure relief mechanism 213 may be encountered due to misoperation, As a result, scratches are left on the surface of the pressure relief mechanism 213 or the pressure relief mechanism 213 is ruptured, which will affect the actuation effect of the pressure relief mechanism 213 , thereby affecting the safety of the battery cells 20 .
  • the material of the protective sheet 24 may be, but not limited to, polyethylene terephthalate (PET), polypropylene (PP), polycarbonate (PC), and the like.
  • the protection sheet 24 may also cover the second accommodating portion 132 .
  • the protection sheet 24 may partially cover the opening of the second accommodating portion 132 , or may completely cover the opening of the second accommodating portion 132 as shown in FIG. 18 .
  • the surface of the bottom wall 132 a of the second accommodating portion 132 facing the outside of the battery cell 20 may also be provided with a surface facing the outside of the pressure relief mechanism 213 in the surrounding area of the pressure relief mechanism 213 .
  • Externally extending protrusions 142 of the battery cells 20 When the protrusion 142 is provided, the protection sheet 24 can be fixed on the protrusion 142 to cover the pressure relief mechanism 213 .
  • the protruding height of the protrusion 142 relative to the surface of the bottom wall 132 a of the second accommodating part 132 facing the outside of the battery cell 20 may be smaller than the depth of the second accommodating part 132 .
  • An embodiment of the present application further provides an electrical device, and the electrical device may include the battery 10 in the foregoing embodiments.
  • the electrical device may be a vehicle 1, a ship or a spacecraft.
  • FIG. 19 shows a schematic flowchart of a method 200 for preparing a battery according to an embodiment of the present application. As shown in Figure 19, the method 200 may include:
  • the battery cell 20 comprising a pressure relief mechanism 213, the pressure relief mechanism 213 being used to actuate to release the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold;
  • the fire fighting pipeline 12 is configured to discharge the fire fighting medium towards the battery cells 20 when the pressure relief mechanism 213 is actuated;
  • the accommodating portion 13 for accommodating the fire-fighting medium discharged from the fire-fighting pipe 12 to cool the battery cells 20 .
  • FIG. 20 shows a schematic block diagram of an apparatus 300 for preparing a battery according to an embodiment of the present application.
  • the apparatus 300 for preparing a battery may include: providing a module 310 .
  • the providing module 310 may be used to: provide the battery cell 20 including the pressure relief mechanism 213 for actuation to relieve the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value ; providing a fire fighting pipeline 12 for containing a fire fighting medium, and the fire fighting pipeline 12 being configured to discharge the fire fighting medium towards the battery cells 20 when the pressure relief mechanism 213 is actuated; providing a receptacle 13 which is used for It is used to accommodate the fire fighting medium discharged from the fire fighting pipeline 12 to cool the battery cells 20 .

Abstract

本申请实施例提供了一种电池、用电装置、制备电池的方法和设备。所述电池包括:电池单体,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;消防管道,用于容纳消防介质,且所述消防管道被配置为在所述泄压机构致动时朝向所述电池单体排出所述消防介质;容纳部,用于容纳从所述消防管道排出的所述消防介质以给所述电池单体降温。本申请实施例的技术方案,可以增强电池的安全性。

Description

电池、用电装置、制备电池的方法和设备 技术领域
本申请实施例涉及储能器件领域,并且更具体地,涉及一种电池、用电装置、制备电池的方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种电池、用电装置、制备电池的方法和设备,可以增强电池的安全性。
第一方面,提供了一种电池,包括:电池单体,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;消防管道,用于容纳消防介质,且所述消防管道被配置为在所述泄压机构致动时朝向所述电池单体排出所述消防介质;容纳部,用于容纳从所述消防管道排出的所述消防介质以给所述电池单体降温。
在本申请实施例中,电池包括用于容纳消防介质的容纳部,这样,在泄压机构致动且消防管道朝向发生热失控的电池单体排出消防介质时,消防介质除了可以流入发生热失控的电池单体内之外,一部分消防介质还可以存储在容纳部中,使得消防管道排出的消防介质都可以被充分有效地利用,避免了消防介质被浪费的问题,从而能够迅速降低电池单体的温度,在第一时间抑制电池单体异常带来的危险性,降低电池爆炸的可能性,增强电池的安全性。进一步地,如果在之后时刻,电池单体发生热失控的话,存储在容纳部中的消防介质还可以继续对发生热失控的电池单体降温,能够进一步增加电池的安全性。
在一些实施例中,所述泄压机构设置在所述电池单体的第一壁,所述容纳部包括第一容纳部,所述第一容纳部附s接于所述电池单体的第二壁,所述第二壁垂直于所述第一壁,所述第一容纳部用于收集从所述第一壁扩散出的所述消防介质。
该技术方案,当电池单体发生热失控时,消防管道排出的消防介质的一部分可以流入电池单体中,从第一壁扩散出的另一部分消防介质可以被收集在第一容纳部中,使得被收集在第一容纳部中的消防介质可以持续给电池单体降温。
在一些实施例中,所述第一容纳部包括第一板、第二板和至少两个挡板,所述第二板和所述第一板相交,所述第一板与所述第二壁相交,所述至少两个挡板均与所述第一板和所述第二板相交。
在一些实施例中,所述第一板平行于所述第一壁,所述第二板平行于所述第二壁,所 述至少两个挡板垂直于所述第一板和所述第二板。
在一些实施例中,所述第一板为所述电池的箱体的底板。
在一些实施例中,所述第二板为所述电池的箱体的侧板或者所述箱体的梁。
上述技术方案,第一容纳部通过复用电池的箱体、侧板或梁,可以节省电池的生产成本。
在一些实施例中,所述至少两个挡板中的两个挡板与所述第一板、所述第二板和N个所述电池单体的第二壁用于形成容纳所述消防介质的容纳空间,所述容纳空间具有朝向所述第一壁的开口,N为正整数。
在一些实施例中,N等于1,2或3。
当N大于1时,消防介质除了可以给发生热失控的电池单体降温之外,还可以给与该电池单体相邻的电池单体进行降温,从而可以起到阻断热扩散的效果。
在一些实施例中,所述至少两个挡板在第一方向上的长度相同,所述第一方向为垂直于所述第一壁的方向。
在一些实施例中,所述第一板与所述电池单体的第三壁位于同一平面,所述第三壁平行于所述第一壁。
第一板和第三壁位于同一平面,这样,第一容纳部与第二壁形成的容纳空间可以达到最大化,从而可以存留更多地消防介质。
在一些实施例中,所述第一板位于所述第一壁和所述电池单体的第三壁之间,所述第三壁平行于所述第一壁。
在一些实施例中,所述第二板的靠近所述第三壁的一端与所述第三壁齐平。
在一些实施例中,所述至少两个挡板中除位于所述第二板两端的两个挡板之外的其他挡板嵌入相邻的两个所述电池单体之间。
通过将挡板嵌入相邻的两个电池单体之间,可以提高第一容纳部与第二壁的连接稳定性。
在一些实施例中,所述第一板通过连接件附接于所述第二壁。
在一些实施例中,所述第一容纳部包括连接板,所述连接板在所述第一板的连接所述第二壁的一端沿第一方向延伸,所述连接板通过所述连接件附接于所述第二壁,所述第一方向为垂直于所述第一壁的方向。
通过设置连接板,使得第一容纳部与第二壁具有更大的连接面积,进而可以增加连接强度和导热面积。
在一些实施例中,所述连接件为导热胶。
将连接件设置为导热胶,这样导热胶可以将热量传递给电池单体。
在一些实施例中,所述泄压机构设置在所述电池单体的第一壁,所述容纳部包括设置在所述第一壁上的第二容纳部,所述泄压机构设置在所述第二容纳部的底壁,所述第二容纳部用于在所述泄压机构致动时收集流入所述电池单体内的所述消防介质。
通过在电池单体的第一壁上设置第二容纳部,在电池单体发生热失控时,消防介质除了可以流入电池单体内之外,一部分消防介质还可以存留在第二容纳部中,使得更多的消防介质可以用于对电池单体的冷却降温。进一步地,当消防介质的流量较小时,消防介质可以更容易存留在第二容纳部内,再流入电池单体,从而能够对发生热失控的电池单体进行冷却降温;当消防介质的流量较大时,消防介质除了可以第一时刻对发生热 失控的电池单体进行降温之外,也可以存储在第二容纳部中,这样的话,消防介质也可以对其他电池单体进行降温,从而可以进一步增强电池的安全性。
在一些实施例中,所述第二容纳部的开口朝向所述电池单体的外部,所述第二容纳部的开口的面积大于所述泄压机构所在的区域的面积。
在一些实施例中,所述第二容纳部的开口的面积大于或者等于所述第二容纳部的底壁的朝向所述电池单体的外部的表面的面积。
第二容纳部的开口的面积越大,其收集消防介质的面积就越大,从而可以提高第二容纳部收集消防介质的效率。
在一些实施例中,所述第二容纳部的底壁的厚度均匀。
在一些实施例中,所述第二容纳部的底壁的朝向所述电池单体的外部的表面为自四周到中心向所述第二容纳部的内部倾斜的倾斜面。
在一些实施例中,所述第一壁的靠近所述电池单体的内部的表面包括第一区域与第二区域,所述第一区域为与所述第二容纳部对应的区域,所述第二区域为所述第一壁的靠近所述电池单体的内部的表面上除所述第一区域以外的区域,所述第一区域与所述第二区域位于同一平面。
在一些实施例中,所述第一壁的靠近所述电池单体的内部的表面包括第一区域与第二区域,所述第一区域为与所述第二容纳部对应的区域,所述第二区域为所述第一壁的靠近所述电池单体的内部的表面上除所述第一区域以外的区域,所述第一区域所在的平面相比于所述第二区域所在的平面靠近所述电池单体的内部。
这样,消防介质可以更好地流入第二容纳部中。
在一些实施例中,所述第二容纳部的底壁设置有分隔筋,所述分隔筋将所述第二容纳部的底壁分为至少两个区域。
通过设置分隔筋,能够增加第二容纳部的强度。
在一些实施例中,所述泄压机构位于所述至少两个区域中的一个区域。
在一些实施例中,所述第二容纳部的底壁设置有通孔,所述泄压机构覆盖所述通孔。
在一些实施例中,所述电池还包括:保护片,用于保护所述泄压机构,位于所述泄压机构的朝向所述电池单体外部的一侧并覆盖所述泄压机构。
通过设置保护片,可以阻挡外物接触泄压机构,这样外物不会影响泄压机构致动时的压力,从而能够保护泄压机构。
在一些实施例中,所述第二容纳部的底壁的朝向所述电池单体的外部的表面在所述泄压机构的周围区域设置有朝向所述电池单体的外部延伸的凸起,所述保护片固定在所述凸起上,以覆盖所述泄压机构。凸起可以加强泄压机构周围的强度。
在一些实施例中,所述凸起相对于所述第二容纳部的底壁的朝向所述电池单体的外部的表面突出的高度小于所述第二容纳部的深度。
第二方面,提供了一种用电装置,包括:第一方面的电池。
在一些实施例中,所述用电装置为车辆、船舶或航天器。
第三方面,提供了一种制备电池的方法,包括:提供电池单体,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供消防管道,所述消防管道用于容纳消防介质,且所述消防管道被配置为在所述泄压机构致动时朝向所述电池单体排出所述消防介质;提供容纳部,所述容纳 部用于容纳从所述消防管道排出的所述消防介质以给所述电池单体降温。
在一些实施例中,所述泄压机构设置在所述电池单体的第一壁,所述容纳部包括第一容纳部,所述第一容纳部附接于所述电池单体的第二壁,所述第二壁垂直于所述第一壁,所述第一容纳部用于收集从所述第一壁扩散出的所述消防介质。
在一些实施例中,所述第一容纳部包括第一板、第二板和至少两个挡板,所述第二板和所述第一板相交,所述第一板与所述第二壁相交,所述至少两个挡板均与所述第一板和所述第二板相交。
在一些实施例中,所述容纳部包括设置在所述第一壁上的第二容纳部,所述泄压机构设置在所述第二容纳部的底壁,所述第二容纳部用于在所述泄压机构致动时收集流入所述电池单体内的所述消防介质。
在一些实施例中,所述第二容纳部的开口朝向所述电池单体的外部,所述第二容纳部的开口的面积大于所述泄压机构所在的区域的面积。
第四方面,提供了一种制备电池的设备,包括执行上述第三方面的方法的模块。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一个实施例的车辆的示意图;
图2为本申请一个实施例的电池的结构示意图;
图3为本申请一个实施例的电池模块的结构示意图;
图4为本申请一个实施例的电池单体的分解图;
图5为本申请一个实施例的电池的结构示意图;
图6-图9为本申请一些实施例的第一容纳部的结构示意图;
图10-图12为本申请一些实施例的电池的剖面图;
图13和图14为本申请一些实施例的电池的俯视图;
图15和图16为本申请一些实施例的电池的剖面图;
图17和图18为本申请一些实施例的电池的结构示意图;
图19为本申请实施例的制备电池的方法的示意性流程图;
图20为本申请实施例的制备电池的设备的示意性框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而 不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具 体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极片和负极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升,这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将排放物排出到电池单体外部。高温高压的排放物朝向电池单体设置泄压机构的方向排放,并且可更具体地沿朝向泄压机构致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个结构,造成进一步的安全问题。另外,电池单体内部发生热失控后电池单体内部的高压和高热可能会持续产生,导致持续的安全隐患。
为了解决上述问题,可以在电池的箱体内设置消防系统,消防系统的消防管道设置在电池单体的设置有泄压机构的壁的上方。泄压机构致动时,消防管道排出消防介质,从而可以对从泄压机构排出的排放物进行降温,降低排放物的危险性。消防介质还可以进一步通过致动后的泄压机构流入到电池单体内部,从而进一步对电池单体降温,增强电池的安全性。例如,可以利用泄压机构致动时,从电池单体内排出的排放物破坏该消防管道,以使得消防管道内的消防介质排出。
本申请实施例中的消防管道用于容纳消防介质,这里的消防介质可以为流体,该流体可以是液体或气体。可选地,消防介质可以是循环流动的,以达到更好的温度调节的效果。可选地,消防介质可以为水、水和乙二醇的混合液或者空气等,或者,消防介质可以为液氮、液氩和液态二氧化碳中的至少一种。
作为一种示例,电池可以包括控制系统,该控制系统在泄压机构致动时,可以控制消防管道排出消防介质。
作为另一种示例,在泄压机构致动时,电池单体内排出的排放物可以穿过并破坏消 防管道,以使得消防管道排出消防介质。本申请实施例将以排放物穿过并破坏消防管道为例进行说明,但本申请并不限于此。
在泄压机构未破坏该消防管道的情况下,该消防管道中可以不容纳任何物质,而在泄压机构致动的情况下,使得消防管道中容纳消防介质,例如,可以通过开关阀门控制消防介质进入至消防管道中。或者,在泄压架构未被破坏的情况下,该消防管道中也可以始终容纳有消防介质。
该消防介质还可以用于调节电池单体的温度。调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该消防管道用于容纳冷却流体以给多个电池单体降低温度,此时,消防管道也可以称为冷却部件、冷却系统或冷却管道等,其容纳的消防介质也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。
然而,当电池单体内部发生热失控而导致泄压机构致动时,消防管道排出的消防介质中可能会有一部分消防介质流到发生热失控的电池单体的外部,使得消防介质不能被充分利用,可能会出现发生热失控的电池单体无法被快速降温的问题。鉴于此,本申请实施例提供了一种电池,可以解决上述问题。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体),箱体内部为中空结构,多个电池单体10容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。其中,箱体可以包 括底板112a、侧板112b和梁。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模块的一个示例。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。如图4所示,为本申请一个实施例的电池单体的分解图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。图4中所示的坐标系与图3中的相同。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳212a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏 泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图5为本申请一个实施例的电池10的示意图。如图5所示,电池10可以包括电池单体20,消防管道12以及容纳部13。
其中,电池单体20包括泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力。消防管道12用于容纳消防介质,且消防管道12被配置为在泄压机构213致动时朝向电池单体20排出消防介质。容纳部13用于容纳从消防管道12排出的消防介质以给电池单体20降温。
因此,在本申请实施例中,电池10包括用于容纳消防介质的容纳部13,这样,在泄压机构213致动且消防管道12朝向发生热失控的电池单体20排出消防介质时,消防介质除了可以流入发生热失控的电池单体20内之外,一部分消防介质还可以存储在容纳部13中,使得消防管道12排出的消防介质都可以被充分有效地利用,避免了消防介质被浪费的问题,从而能够迅速降低电池单体20的温度,在第一时间抑制电池单体20异常带来的危险性,降低电池10爆炸的可能性,增强电池10的安全性。
进一步地,如果在之后时刻,电池单体发生热失控的话,存储在容纳部中的消防介质还可以继续对发生热失控的电池单体降温,从而能够进一步增加电池的安全性。
可选地,消防管道12可以在泄压机构213致动时连续地朝向电池单体20排出消防介质,或者,消防管道12可以在泄压机构213致动时间断地朝向电池单体20排出消防介质。
消防管道12可以根据实际应用设置为任意形状。例如,考虑到空间利用率和便于安装,可以将消防管道12设置为扁平的管道,或者也可以设置为其他形状,例如圆柱形管道、直线型管道、U型管道和S型管道等。
可选地,在泄压机构213致动后,容纳部13可以直接使用容纳的消防介质经泄压机构所在的壁给发生热失控的电池单体20降温;和/或,容纳部13可以先使容纳的消防介质流入发生热失控的电池单体20内,然后给发生热失控的电池单体20进行降温。
图5所示的电池10可以为图1和图2中的电池10,需要说明的是,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
可选地,在本申请的一个实施例中,泄压机构213可以设置在电池单体20的第一壁21a,容纳部13包括第一容纳部131,第一容纳部131附接于电池单体20的第二壁21b,第二壁21b垂直于第一壁21a,第一容纳部131用于收集从第一壁21a扩散出的消防介质。
当电池单体20发生热失控时,消防管道12排出的消防介质的一部分可以流入电池单体20中,从第一壁21a扩散出的另一部分消防介质可以被收集在第一容纳部131中,使得被收集在第一容纳部131中的消防介质可以持续给电池单体20降温。
第一壁21a可以为电池单体20的任一壁。作为一种示例,如图5所示,第一壁21a为电池单体20最上方的壁。泄压机构213可以为第一壁21a的一部分,也可以与第一壁21a为分体式结构,通过例如焊接的方式固定在第一壁21a上。当泄压机构213为第一壁21a的一部分时,例如,泄压机构213可以通过在第一壁21a上设置刻痕的方式形成。在第一壁21a为电池单体20最上方的壁的情况下,第二壁21b为电池单体20的侧壁。
第一容纳部131可以包括第一板133、第二板134和至少两个挡板135,其中,第二板134与第一板133相交,第一板133与第二壁21b相交,至少两个挡板135均与第一板133和第二板134相交。
其中,至少两个挡板135中的两个挡板与第一板133、第二板134以及N个电池单体20的第二壁21b可以一起形成用于容纳消防介质的容纳空间,该容纳空间具有朝向第一壁21a的开口,N为正整数。
本申请对N的取值不作限定。可选地,N可以为1,2或者3。
如图6和图7所示,当N为1时,即每个电池单体20的第二壁21b都可以与至少两个挡板135中的两个挡板、第一板133、第二板134形成容纳空间。此时,挡板135的数量可以比电池单体20的数量多一个。当N大于1时,即多个电池单体20共用一个第一容纳部131。以图8和图9为例,2个电池单体20的第二壁21b与第一容纳部131形成一个容纳空间。当多个电池单体20共用一个第一容纳部131时,当其中一个电池单体20发生热失控时,消防管道与该电池单体20相对应的区域破裂释放出消防介质,消防介质的一部分通过泄压机构213流入该电池单体20内,另一部分从第一壁21a流出,并储存在第一容纳部131内,该部分消防介质除了可以给发生热失控的电池单体20降温之外,还可以给与该电池单体20相邻的电池单体20进行降温,从而可以进一步起到阻断热扩散的效果。
第一容纳部131可以为任意形状。比如,第一容纳部131可以为图6-图9所示的矩形,也可以为圆形、梯形等;再比如,第一容纳部131可以为不规则的形状。另外,第一容纳部131还可以为一体结构。
在第一容纳部131为图6-图9所示的矩形时,第一板133可以平行于第一壁21a,第二板134可以平行于第二壁21b,即第一板133和第二板134垂直,且至少两个挡板135可以垂直于第一板133和第二板134。也就是说,第一板133可以为第一容纳部131的底板,第二板134可以为第一容纳部131的侧板。
可选地,第二板134可以为电池10的箱体的侧板112b或者可以为电池10的箱体的梁。
可选地,第一板133可以为电池10的箱体的底板112a。
第一容纳部131复用电池10的箱体。如此,可以节省电池的生产成本。
或者,第一板133和/或第二板134也可以为电池10中新增加的板。
需要说明的是,本申请实施例对第一板133与电池10的箱体的上表面之间的距离不作限定。作为一种示例,第一板133可以与电池单体20的第三壁21c位于同一平面,其中,参考图10,第三壁21c垂直于第二壁21b,即第三壁21c平行于第一壁21a。上图中的图6、图8和图10中的第一板133与第三壁21c位于同一平面,换言之,第一板133与第一容纳部131的箱体的上表面紧贴。需要说明的是,在图6-图9中,至少两个挡板135的靠近第三壁21c的一端与第三壁21c位于同一平面。
第一板133与第三壁21c位于同一平面,这样的话,可以实现第一容纳部131与第二壁21b之间形成的容纳空间的最大化,从而可以容纳更多的消防介质。
或者,第一板133也可以位于第一壁21a和第三壁21c之间。例如,如图7、图9和图11所示。
此时,在本申请的一个实施例中,继续参考图11,第二板134的靠近第三壁21c的 一端可以与第三壁21c位于同一平面。进一步地,至少两个挡板135中的每个挡板的靠近第三壁21c的一端可以与第三壁21c位于同一平面,如图7和图9所示。如此,第一容纳部131可以更牢靠地附接于第二壁21b上。或者,在本申请的另一个实施例中,第二板134的靠近第三壁21c的一端可以与第一板133位于同一平面,且至少两个挡板135中的每个挡板的靠近第三壁21c的一端可以与第一板133位于同一平面。此时,第一容纳部131是悬空的。
在第一板133与第二壁21b相交的情况下,如图12所示,第一板133可以通过连接件23附接于第二壁21b。其中,连接件23可以为但不限于导热胶,进而导热胶可以将热量传递给电池单体20。
可选地,在本申请的一个实施例中,继续参考图10和图11所示,第一容纳部131还可以包括连接板136,该连接板136可以在第一板133的连接第二壁21b的一端沿第一方向延伸,该连接板136可以通过连接件23附接于第二壁21b,其中,第一方向为垂直于第一壁21a的方向。换言之,第一板133的连接第二壁21b的一端可以在第一方向上延伸,形成连接板136,该连接板136可以通过连接件23附接于第二壁21b。作为示例,连接板136可以为图10和图11所示的形状,或者,连接板136也可以为其他形状,如H型、U型等。
通过设置连接板136,使得第一容纳部131与第二壁21b之间能够具有更大的连接面积,从而可以增加连接强度和导热面积。
第一板133也可以通过密封材料或焊接方式附接于第二壁21b。该密封材料可以为导热的密封材料。应理解,第一板133还可以通过其它方式附接于第二壁21b,本申请实施例对此并不限定。与第一板133和第二壁21b之间的附接方式类似,第一板133、第二板134以及至少两个挡板135之间也可以通过上述内容提到的方式进行连接。
可选地,在本申请的一个实施例中,至少两个挡板135中的其他挡板135b可以嵌入相邻的两个电池单体20之间。除此之外,至少两个挡板135中的其他挡板135b还可以通过连接件附接于相邻的两个电池单体20中。其他挡板135b嵌入相邻的两个电池单体20之间,可以提高第一容纳部131与第二壁21b的连接稳定性。
另外,至少两个挡板135中的两个挡板135a可以通过连接件或者焊接等方式附接于第二壁21b上。
可选地,在本申请的一个实施例中,泄压机构213可以设置在电池单体的第一壁21a上,容纳部13还可以包括设置在第一壁21a上的第二容纳部132,泄压机构213设置在第二容纳部132的底壁132a,第二容纳部132用于在泄压机构213致动时收集流入电池单体20内的消防介质。
通过在电池单体20的第一壁21a上设置第二容纳部132,在电池单体20发生热失控时,消防介质除了可以流入电池单体20内之外,一部分消防介质还可以存留在第二容纳部132中,使得更多的消防介质可以用于对电池单体20的冷却降温。进一步地,当消防介质的流量较小时,消防介质可以更容易存留在第二容纳部132内,再流入电池单体20,从而能够对发生热失控的电池单体20进行冷却降温。
其中,可以将第二容纳部132定义为凹槽。
继续参考图5,第一壁21a可以为电池单体20最上方的壁,则本申请实施例的第二容纳部132可以设置于电池单体20的上表面。
图13和图14为本申请实施例的电池10的俯视图,如图13和图14所示,可选地,在本申请的一个实施例中,第二容纳部132的开口朝向电池单体20的外部,且第二容纳部132的开口的面积可以大于泄压机构213所在的区域的面积。第二容纳部132的开口的面积越大,其收集消防介质的面积就会越大,从而可以提高第二容纳部132收集消防介质的效率。应理解,第二容纳部132的开口的面积也可以小于或等于泄压机构213所在的区域的面积。
另外,为了使消防介质可以更好地流入第二容纳部132中,在本申请的一个实施例中,第二容纳部132的开口的面积可以大于第二容纳部132的底壁132a的朝向电池单体20的外部的表面的面积。也就是说,第二容纳部132的侧壁自四周向中心位置逐渐向下倾斜,第二容纳部132的侧壁可以为倾斜面也可以为台阶状。当然,第二容纳部132的开口的面积也可以小于或者等于第二容纳部132的底壁132a的朝向电池单体20的外部的表面的面积。
在本申请的一个实施例中,第二容纳部132的底壁132a的厚度可以是均匀的;或者,第二容纳部132的底壁132a的朝向电池单体20的外部的表面可以为自四周到中心向第二容纳部132的内部倾斜的倾斜面。简单来说,第二容纳部132的底壁132a的厚度可以自第二容纳部132的底壁132a的中心向四周逐渐增加;再或者,第二容纳部132的底壁132a可以为自四周到中心向第二容纳部132的内部的台阶状。
可选地,第二容纳部132的底壁132a还可以设置有通孔,泄压机构213覆盖该通孔。其中,泄压机构可以完全覆盖该通孔,也可以部分覆盖该通孔。
进一步地,在本申请的一个实施例中,第二容纳部132可以包括多个区域,泄压机构213位于该多个区域中的其中一个区域。该多个区域中每个区域的面积可以相同也可以不同,本申请实施例对此不作具体限定。例如,如图14所示,第二容纳部132包括3个区域,其中,泄压机构213所在的区域的面积最大,另外两个区域的面积相同。
考虑到第二容纳部132可能较薄,为了增加第二容纳部132的强度,第二容纳部132的底壁132a可以设置有分隔筋1321,该分隔筋1321可以将第二容纳部132的底壁132a分为多个区域。本申请实施例对分隔筋1321的数量不作具体限定,例如,图14中的分隔筋1321的数量为2个。通过设置分割筋1321,能够增加第二容纳部132的强度。
可选地,在本申请的一个实施例中,第一壁21a的靠近电池单体20的内部的表面可以包括第一区域32a与第二区域32b,该第一区域32a为与第二容纳部132对应的区域,第二区域32b为第一壁21a的靠近电池单体20的内部的表面上除第一区域32a以外的区域。作为一种示例,如图15所示,第一区域32a可以与第二区域32b位于同一平面。
或者,如图16所述,图16中的上方对应电池单体20的外部,下方对应电池单体20的内部,第一区域32a所在的平面相比于第二区域32b所在的平面可以更靠近电池单体20的内部。如此,消防介质可以更好地流入第二容纳部132中。
在电池单体20的生产过程中,经常会有电解液或者其他异物污染到泄压结构213的表面,并且在电池单体20的加工过程中,由于误操作可能会碰到泄压机构213,导致在泄压机构213的表面留下刮痕或是泄压机构213的破裂,这些都会影响到泄压机构213的致动效果,从而影响电池单体20的安全性。为了提高电池单体20的安全性能,可选地,在本申请的一个实施例中,如图17所示,电池10还可以包括:保护片24,该保护片24设置于泄压机构213的朝向电池单体20外部的一侧并覆盖泄压机构213。其中, 保护片24的材质可以为但不限于聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚碳酸酯(PC)等。
通过设置保护片24,可以阻挡异物接触泄压机构213,这样异物不会影响泄压机构213致动时的压力,从而能够保护泄压机构213,提高电池单体20的安全性。
当保护片24覆盖泄压机构213时,该保护片24也可以覆盖第二容纳部132。示例性地,保护片24可以部分覆盖第二容纳部132的开口,也可以如图18所示全部覆盖第二容纳部132的开口。
为了增加泄压机构213周围的强度,如图15和图16所示,第二容纳部132的底壁132a的朝向电池单体20外部的表面在泄压机构213的周围区域还可以设置有朝向电池单体20的外部延伸的凸起142。在设置有凸起142的情况下,该保护片24可以固定在凸起142上,以覆盖泄压机构213。
可选地,该凸起142相对于第二容纳部132的底壁132a的朝向电池单体20的外部的表面突出的高度可以小于第二容纳部132的深度。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10。可选地,用电装置可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池和用电装置,下面将描述本申请实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图19示出了本申请一个实施例的制备电池的方法200的示意性流程图。如图19所示,该方法200可以包括:
210,提供电池单体20,该电池单体20包括泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力;
220,提供消防管道12,该消防管道12用于容纳消防介质,且消防管道12被配置为在泄压机构213致动时朝向电池单体20排出消防介质;
230,提供容纳部13,该容纳部13用于容纳从消防管道12排出的消防介质以给电池单体20降温。
图20示出了本申请一个实施例的制备电池的设备300的示意性框图。如图20所示,制备电池的设备300可以包括:提供模块310。
提供模块310可以用于:提供电池单体20,该电池单体20包括泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力;提供消防管道12,该消防管道12用于容纳消防介质,且消防管道12被配置为在泄压机构213致动时朝向电池单体20排出消防介质;提供容纳部13,该容纳部13用于容纳从消防管道12排出的消防介质以给电池单体20降温。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (37)

  1. 一种电池(10),其特征在于,包括:
    电池单体(20),包括泄压机构(213),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    消防管道(12),用于容纳消防介质,且所述消防管道(12)被配置为在所述泄压机构(213)致动时朝向所述电池单体(20)排出所述消防介质;
    容纳部(13),用于容纳从所述消防管道(12)排出的所述消防介质以给所述电池单体(20)降温。
  2. 根据权利要求1所述的电池,其特征在于,所述泄压机构(213)设置在所述电池单体(20)的第一壁(21a),所述容纳部(13)包括第一容纳部(131),所述第一容纳部(131)附接于所述电池单体(20)的第二壁(21b),所述第二壁(21b)垂直于所述第一壁(21a),所述第一容纳部(131)用于收集从所述第一壁(21a)扩散出的所述消防介质。
  3. 根据权利要求2所述的电池,其特征在于,所述第一容纳部(131)包括第一板(133)、第二板(134)和至少两个挡板(135),所述第二板(134)和所述第一板(133)相交,所述第一板(133)与所述第二壁(21b)相交,所述至少两个挡板(135)均与所述第一板(133)和所述第二板(134)相交。
  4. 根据权利要求3所述的电池,其特征在于,所述第一板(133)平行于所述第一壁(21a),所述第二板(134)平行于所述第二壁(21b),所述至少两个挡板(135)垂直于所述第一板(133)和所述第二板(134)。
  5. 根据权利要求4所述的电池,其特征在于,所述第一板(133)为所述电池的箱体的底板(112a)。
  6. 根据权利要求4或5所述的电池,其特征在于,所述第二板(134)为所述电池的箱体的侧板(112b)或者所述箱体的梁。
  7. 根据权利要求3至6中任一项所述的电池,其特征在于,所述至少两个挡板(135)中的两个挡板与所述第一板(133)、所述第二板(134)和N个所述电池单体(20)的第二壁(21b)用于形成容纳所述消防介质的容纳空间,所述容纳空间具有朝向所述第一壁(21a)的开口,N为正整数。
  8. 根据权利要求7所述的电池,其特征在于,N等于1,2或3。
  9. 根据权利要求3至8中任一项所述的电池,其特征在于,所述至少两个挡板(135)在第一方向上的长度相同,所述第一方向为垂直于所述第一壁(21a)的方向。
  10. 根据权利要求3至9中任一项所述的电池,其特征在于,所述第一板(133)与所述电池单体(20)的第三壁(21c)位于同一平面,所述第三壁(21c)平行于所述第一壁(21a)。
  11. 根据权利要求3至9中任一项所述的电池,其特征在于,所述第一板(133)位于所述第一壁(21a)和所述电池单体(20)的第三壁(21c)之间,所述第三壁(21c)平行于所述第一壁(21a)。
  12. 根据权利要求11所述的电池,其特征在于,所述第二板(134)的靠近所述第三壁(21c)的一端与所述第三壁(21c)齐平。
  13. 根据权利要求3至12中任一项所述的电池,其特征在于,所述至少两个挡板(135)中除位于所述第二板(134)两端的两个挡板(135a)之外的其他挡板(135b)嵌入相邻的两个所述电池单体(20)之间。
  14. 根据权利要求3至13中任一项所述的电池,其特征在于,所述第一板(133)通过连接件(23)附接于所述第二壁(21b)。
  15. 根据权利要求14所述的电池,其特征在于,所述第一容纳部(131)包括连接板(136),所述连接板(136)在所述第一板(133)的连接所述第二壁(21b)的一端沿第一方向延伸,所述连接板(136)通过所述连接件(23)附接于所述第二壁(21b),所述第一方向为垂直于所述第一壁(21a)的方向。
  16. 根据权利要求14或15所述的电池,其特征在于,所述连接件(23)为导热胶。
  17. 根据权利要求1至16中任一项所述的电池,其特征在于,所述泄压机构(213)设置在所述电池单体(20)的第一壁(21a),所述容纳部(13)包括设置在所述第一壁(21a)上的第二容纳部(132),所述泄压机构(213)设置在所述第二容纳部(132)的底壁132a,所述第二容纳部(132)用于在所述泄压机构(213)致动时收集流入所述电池单体(20)内的所述消防介质。
  18. 根据权利要求17所述的电池,其特征在于,所述第二容纳部(132)的开口朝向所述电池单体(20)的外部,所述第二容纳部(132)的开口的面积大于所述泄压机构(213)所在的区域的面积。
  19. 根据权利要求17或18所述的电池,其特征在于,所述第二容纳部(132)的开口的面积大于或者等于所述第二容纳部(132)的底壁(132a)的朝向所述电池单体(20)的外部的表面的面积。
  20. 根据权利要求17至19中任一项所述的电池,其特征在于,所述第二容纳部(132)的底壁(132a)的厚度均匀。
  21. 根据权利要求17至19中任一项所述的电池,其特征在于,所述第二容纳部(132)的底壁(132a)的朝向所述电池单体(20)的外部的表面为自四周到中心向所述第二容纳部(132)的内部倾斜的倾斜面。
  22. 根据权利要求17至21中任一项所述的电池,其特征在于,所述第一壁(21a)的靠近所述电池单体(20)的内部的表面包括第一区域(32a)与第二区域(32b),所述第一区域(32a)为与所述第二容纳部(132)对应的区域,所述第二区域(32b)为所述第一壁(21a)的靠近所述电池单体(20)的内部的表面上除所述第一区域(32a)以外的区域,所述第一区域(32a)与所述第二区域(32b)位于同一平面。
  23. 根据权利要求17至21中任一项所述的电池,其特征在于,所述第一壁(21a)的靠近所述电池单体(20)的内部的表面包括第一区域(32a)与第二区域(32b),所述第一区域(32a)为与所述第二容纳部(132)对应的区域,所述第二区域(32b)为所述第一壁(21a)的靠近所述电池单体(20)的内部的表面上除所述第一区域(32a)以外的区域,所述第一区域(32a)所在的平面相比于所述第二区域(32b)所在的平面靠近所述电池单体(20)的内部。
  24. 根据权利要求17至23中任一项所述的电池,其特征在于,所述第二容纳部 (132)的底壁(132a)设置有分隔筋(1321),所述分隔筋(1321)将所述第二容纳部(132)的底壁(132a)分为至少两个区域。
  25. 根据权利要求24所述的电池,其特征在于,所述泄压机构(213)位于所述至少两个区域中的一个区域。
  26. 根据权利要求17至25中任一项所述的电池,其特征在于,所述第二容纳部(132)的底壁(132a)设置有通孔,所述泄压机构(213)覆盖所述通孔。
  27. 根据权利要求17至26中任一项所述的电池,其特征在于,所述电池还包括:
    保护片(24),用于保护所述泄压机构(213),位于所述泄压机构(213)的朝向所述电池单体(20)外部的一侧并覆盖所述泄压机构(213)。
  28. 根据权利要求27所述的电池,其特征在于,所述第二容纳部(132)的底壁(132a)的朝向所述电池单体(20)的外部的表面在所述泄压机构(213)的周围区域设置有朝向所述电池单体(20)的外部延伸的凸起(142),所述保护片(24)固定在所述凸起(142)上,以覆盖所述泄压机构(213)。
  29. 根据权利要求28所述的电池,其特征在于,所述凸起(142)相对于所述第二容纳部(132)的底壁(132a)的朝向所述电池单体(20)的外部的表面突出的高度小于所述第二容纳部(132)的深度。
  30. 一种用电装置,其特征在于,包括:根据权利要求1至29中任一项所述的电池。
  31. 根据权利要求30所述的用电装置,其特征在于,所述用电装置为车辆、船舶或航天器。
  32. 一种制备电池的方法,其特征在于,包括:
    提供电池单体(20),所述电池单体(20)包括泄压机构(213),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供消防管道(12),所述消防管道(12)用于容纳消防介质,且所述消防管道(12)被配置为在所述泄压机构(213)致动时朝向所述电池单体(20)排出所述消防介质;
    提供容纳部(13),所述容纳部(13)用于容纳从所述消防管道(12)排出的所述消防介质以给所述电池单体(20)降温。
  33. 根据权利要求32所述的方法,其特征在于,所述泄压机构(213)设置在所述电池单体(20)的第一壁(21a),所述容纳部(13)包括第一容纳部(131),所述第一容纳部(131)附接于所述电池单体(20)的第二壁(21b),所述第二壁(21b)垂直于所述第一壁(21a),所述第一容纳部(131)用于收集从所述第一壁(21a)扩散出的所述消防介质。
  34. 根据权利要求33所述的方法,其特征在于,所述第一容纳部(131)包括第一板(133)、第二板(134)和至少两个挡板(135),所述第二板(134)和所述第一板(133)相交,所述第一板(133)与所述第二壁(21b)相交,所述至少两个挡板(135)均与所述第一板(133)和所述第二板(134)相交。
  35. 根据权利要求32至34中任一项所述的方法,其特征在于,所述容纳部(13)包括设置在所述第一壁(21a)上的第二容纳部(132),所述泄压机构(213)设置在 所述第二容纳部(132)的底壁(132a),所述第二容纳部(132)用于在所述泄压机构(213)致动时收集流入所述电池单体(20)内的所述消防介质。
  36. 根据权利要求35所述的方法,其特征在于,所述第二容纳部(132)的开口朝向所述电池单体(20)的外部,所述第二容纳部(132)的开口的面积大于所述泄压机构(213)所在的区域的面积。
  37. 一种制备电池的设备,其特征在于,包括:
    提供模块,用于:
    提供电池单体(20),所述电池单体(20)包括泄压机构(213),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供消防管道(12),所述消防管道(12)用于容纳消防介质,且所述消防管道(12)被配置为在所述泄压机构(213)致动时朝向所述电池单体(20)排出所述消防介质;
    提供容纳部(13),所述容纳部(13)用于容纳从所述消防管道(12)排出的所述消防介质以给所述电池单体(20)降温。
PCT/CN2020/121994 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法和设备 WO2022082391A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2020/121994 WO2022082391A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法和设备
KR1020237001494A KR102646203B1 (ko) 2020-10-19 2020-10-19 배터리, 전기 장치, 배터리를 제조하는 방법과 기기
JP2023503004A JP7350211B2 (ja) 2020-10-19 2020-10-19 電池、電力消費装置、電池の製造方法及びその装置
EP20828247.5A EP4009433B1 (en) 2020-10-19 2020-10-19 Battery, electric apparatus, and battery manufacturing method and device
EP23176973.8A EP4235950A3 (en) 2020-10-19 2020-10-19 Battery, electric apparatus, and battery manufacturing method and device
US17/139,735 US11888177B2 (en) 2020-10-19 2020-12-31 Battery, power consumption device, and method and device for producing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121994 WO2022082391A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/139,735 Continuation US11888177B2 (en) 2020-10-19 2020-12-31 Battery, power consumption device, and method and device for producing battery

Publications (1)

Publication Number Publication Date
WO2022082391A1 true WO2022082391A1 (zh) 2022-04-28

Family

ID=81185251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121994 WO2022082391A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法和设备

Country Status (5)

Country Link
US (1) US11888177B2 (zh)
EP (2) EP4009433B1 (zh)
JP (1) JP7350211B2 (zh)
KR (1) KR102646203B1 (zh)
WO (1) WO2022082391A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN110034256A (zh) * 2019-03-22 2019-07-19 中国电力科学研究院有限公司 具有消防结构的电池箱及储能电池机柜
CN110148694A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 电池模组和电池包
CN210723159U (zh) * 2019-11-13 2020-06-09 苏州宇量电池有限公司 一种灭火动力电池模组及电池包
CN111509163A (zh) * 2020-05-25 2020-08-07 重庆金康动力新能源有限公司 具有灭火功能的电池包
CN211376746U (zh) * 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222418B2 (ja) 1998-03-20 2001-10-29 ミヤマツール株式会社 密閉型電池の封口板及びその製造方法
CN201303012Y (zh) 2008-11-26 2009-09-02 江苏新日电动车股份有限公司 蓄电池盒
JP2012129183A (ja) * 2010-11-26 2012-07-05 Sony Corp 二次電池セル、電池パック及び電力消費機器
CN107732041B (zh) 2015-08-10 2020-06-16 北京北方华创新能源锂电装备技术有限公司 一种可再充电的电池
JP6554038B2 (ja) 2016-01-08 2019-07-31 日立オートモティブシステムズ株式会社 蓄電装置
KR102220902B1 (ko) * 2017-01-26 2021-02-26 삼성에스디아이 주식회사 소화시스템을 포함하는 배터리 팩
JP2019029245A (ja) 2017-08-01 2019-02-21 株式会社Gsユアサ 蓄電装置
CN207233825U (zh) 2017-08-24 2018-04-13 中北智杰科技(北京)有限公司 一种电池箱装置
WO2019059198A1 (ja) 2017-09-22 2019-03-28 株式会社Gsユアサ 蓄電装置
CN207886552U (zh) * 2017-09-29 2018-09-21 郑州宇通客车股份有限公司 一种灭火压条及使用该压条的电池模组、电池箱、车辆
CN207474504U (zh) 2017-09-29 2018-06-08 郑州宇通客车股份有限公司 一种电池及使用该电池的电池模组、电池箱和车辆
CN208848942U (zh) 2018-11-14 2019-05-10 江西京九电源(九江)有限公司 一种铅蓄电池的上盖
CN209592146U (zh) 2019-04-19 2019-11-05 宁德时代新能源科技股份有限公司 电池模组
CN110660945A (zh) 2019-11-11 2020-01-07 佛山科学技术学院 一种防止热失控蔓延的电池组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN110034256A (zh) * 2019-03-22 2019-07-19 中国电力科学研究院有限公司 具有消防结构的电池箱及储能电池机柜
CN110148694A (zh) * 2019-06-19 2019-08-20 珠海格力电器股份有限公司 电池模组和电池包
CN210723159U (zh) * 2019-11-13 2020-06-09 苏州宇量电池有限公司 一种灭火动力电池模组及电池包
CN211376746U (zh) * 2020-02-21 2020-08-28 宁德时代新能源科技股份有限公司 电池组及装置
CN111509163A (zh) * 2020-05-25 2020-08-07 重庆金康动力新能源有限公司 具有灭火功能的电池包

Also Published As

Publication number Publication date
JP7350211B2 (ja) 2023-09-25
EP4235950A3 (en) 2023-11-01
EP4009433A4 (en) 2022-06-08
US20220123431A1 (en) 2022-04-21
EP4009433B1 (en) 2023-07-12
KR102646203B1 (ko) 2024-03-12
US11888177B2 (en) 2024-01-30
EP4009433A1 (en) 2022-06-08
KR20230023780A (ko) 2023-02-17
JP2023529757A (ja) 2023-07-11
EP4235950A2 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
JP7429719B2 (ja) 電池、電力消費機器、電池の製造方法及び装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
CN112018302B (zh) 电池、用电装置、制备电池的方法和设备
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023179192A1 (zh) 电池和用电设备
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2022082390A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
WO2022082388A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023028748A1 (zh) 电池、用电装置以及制备电池的方法和装置
US20230361423A1 (en) Battery, electric device, and method and device for manufacturing battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237001494

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023503004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE