WO2023132525A1 - 충격 감지 모듈을 포함하는 배터리 팩 - Google Patents

충격 감지 모듈을 포함하는 배터리 팩 Download PDF

Info

Publication number
WO2023132525A1
WO2023132525A1 PCT/KR2022/020848 KR2022020848W WO2023132525A1 WO 2023132525 A1 WO2023132525 A1 WO 2023132525A1 KR 2022020848 W KR2022020848 W KR 2022020848W WO 2023132525 A1 WO2023132525 A1 WO 2023132525A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
impact
voltage value
value
shock
Prior art date
Application number
PCT/KR2022/020848
Other languages
English (en)
French (fr)
Inventor
안치호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280038143.4A priority Critical patent/CN117397089A/zh
Priority to EP22919062.4A priority patent/EP4329046A1/en
Publication of WO2023132525A1 publication Critical patent/WO2023132525A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present invention relates to a battery pack including an impact detection module, and more particularly, to a battery pack capable of controlling the pack operation according to the strength of the impact by detecting the strength of the impact step by step with a voltage change according to the connection of a resistance caused by the impact. It's about the battery pack.
  • Batteries are widely used in various fields ranging from small electronic devices such as smart phones, laptops, and tablet PCs to electric vehicles and energy storage systems (ESS).
  • ESS energy storage systems
  • a battery typically consists of an assembly comprising a plurality of unit cells and a configuration comprising a plurality of the assembly, and the cell comprises a cathode current collector, a separator, an active material, an electrolyte solution, an aluminum thin film layer, and the like. Including, it becomes a structure capable of charging and discharging by the electrochemical reaction between components.
  • the battery is additionally equipped with a physical protection device, various sensing means, and firmware with precise algorithms for estimating SOC (State Of Charge) from the cell to the battery through assembly. It consists of
  • Patent Document 1 KR 1053352 B1
  • the present invention is intended to solve the above problems, and to provide a battery pack configured to sense the strength of impact applied to the battery pack step by step by applying an impact sensing module structure to the BMS and perform BMS control for this.
  • the BMS module includes a reference voltage source V ref for sensing impact; a reference resistance R ref connected to the reference voltage source V ref ; and a voltage measurement unit measuring a divided voltage between the reference resistance R ref and the measurement resistance R 0
  • the shock sensing module includes: a non-conductive barrier rib connected to an inside of a case of a battery pack through an elastic body; a measurement resistance R 0 connected to the reference resistance R ref ; A battery pack comprising first and second resistors R 1 , R 2 connected to both ends of the non-conductive barrier rib through hinges, one end of which is connected to ground, and the other end of which is connected to measurement resistance R0. to provide.
  • the BMS module includes: a comparison determination unit that compares whether or not a predetermined impact arrival condition is satisfied based on the divided voltage measurement value of the voltage measurement unit, and determines the degree of impact applied to the battery pack according to the comparison result; a pack operation control unit that controls an operation of a battery pack in response to a result of the comparison and determination unit; It may be configured to further include.
  • the other ends of the first resistor and the second resistor are arranged at a predetermined interval or less in the measurement resistor R 0 , and when vibration is applied to the battery pack case, the first and second resistors R 1 and R 2 are A change occurs in the measured value of the divided voltage of the voltage measuring unit in contact with the measuring resistance R 0 , wherein the distance d1 at which the first resistance R 1 is disposed adjacent to the measuring resistance R 0 is the second resistance It is characterized in that R 2 is different from the distance d2 disposed adjacent to the measurement resistance R 0 .
  • the divided voltage value measured by the voltage measurement unit varies according to the degree of vibration generated in the battery pack; characterized by
  • the measurement resistance R 0 is formed at a fixed position on the BMS board constituting the BMS module, has a contact portion with the first and second resistors R 1 and R 2 , and the first and second resistors R 1 and R 2 are connected to the non-conductive diaphragm by an elastic body to have a positional change against external vibration, and the distribution voltage is generated at the moment when the first and second resistors R 1 and R 2 contact the measuring resistor R 0 . It is measured as a voltage, and it is measured as a different value according to the degree of external vibration.
  • the comparison determination unit compares whether the divided voltage measurement value of the voltage measurement unit is equal to the first reference voltage value, and if the same, determines that the battery pack is in a state without impact; And, comparing whether the number of cycles in which the voltage measurement value of the voltage measurement unit overturns the first reference voltage value and the second reference voltage value reaches a predetermined number of impacts, if it is reached, a weak impact is continuously applied to the battery pack judged to be in a losing state; and compares whether or not the measured value of the divided voltage of the voltage measurement unit reaches the third reference voltage value, and when it reaches the third reference voltage value, it is determined that a strong shock has been applied to the battery pack.
  • the present invention is also a method for detecting an external shock state in the battery pack described above, wherein the reference resistance R ref connected to the reference voltage source V ref for implementing shock sensing on the BMS board and the measurement resistance R 0 of the shock sensing module are distributed at the connection point a division voltage measuring step of measuring voltage; an impact arrival condition comparison step of comparing whether or not a predetermined impact arrival condition is satisfied based on the divided voltage value measured in the divided voltage measurement step; An impact state determination step of determining the degree of impact applied to the battery pack according to the comparison result of the comparison step of whether or not the impact arrival condition is satisfied is provided.
  • the battery pack shock detection method may include a pack operation control step of controlling an operation of the battery pack in response to the determination result of the shock state determination step;
  • the measured divided voltage value is compared with a first reference voltage value, and the measured divided voltage value is compared to the first reference voltage value and the second reference voltage value. It compares whether the number of cycles of reversing the reference voltage value reaches a predetermined number of impacts, and compares whether the measured divided voltage value reaches a third reference voltage value.
  • the shock state determination step when the measured distribution voltage value is equal to the first reference value as a result of comparison in the comparison step of whether the shock arrival condition is met, it is determined that there is no external shock applied to the battery pack, , When the number of cycles in which the measured distribution voltage value reverses the first reference voltage value and the second reference voltage value reaches a predetermined number of shocks, it is determined that a weak shock is continuously applied to the battery pack, When the measured distribution voltage value reaches the third reference voltage value, it is determined that a strong shock has been applied to the battery pack.
  • the present invention can provide improved safety against external impact by detecting the strength of the impact step by step through a voltage change according to the connection of a resistance caused by the impact and controlling the operation of the battery pack according to the strength of the impact.
  • FIG. 1 is a diagram schematically showing a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of an impact sensing module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the impact sensing module of FIG. 2 as a circuit.
  • FIG. 4 is a diagram illustrating an operation of an impact sensing module assuming a case in which a weak impact is applied to a battery pack.
  • FIG. 5 is a diagram illustrating an operation of an impact sensing module assuming a case in which a strong impact is applied to a battery pack.
  • FIG. 6 is a diagram showing an example of 00 appearing when a strong impact is applied to the battery pack.
  • FIG. 1 is a diagram schematically showing a battery pack according to an embodiment of the present invention.
  • the battery pack 10 of the present invention largely includes a BMS module 100 , a cell module 200 , and an impact detection module 300 .
  • the BMS module 100 includes a reference voltage source (V ref ) for implementing shock sensing, a reference resistance (R ref ) connected to the reference voltage source (V ref ), and the reference resistance ( R ref ) and a voltage measurement unit 110 for measuring a distribution voltage (V In ) at a connection point between a measurement resistance pattern (R 0 ) formed in an impact detection module 300 to be described later, and configured to include a voltage measuring unit 110, which will be described later
  • a control unit (not shown) may be further included.
  • the cell module 200 may include one or more battery cells (not shown).
  • FIG. 2 is a diagram showing the configuration of an impact sensing module according to an embodiment of the present invention.
  • the impact sensing module 300 is configured to sense the intensity of impact applied to the battery pack 10 step by step, and may include the following elements.
  • the shock sensing module 300 of the present invention may be formed on a separate board from the above-described BMS module, installed in another part of the battery pack, or disposed together on a PCB board on which the BMS module is formed.
  • the non-conductive barrier rib 310 is connected to the case of the battery pack 10 with an elastic body so that displacement occurs according to the vibration of the battery pack 10, or connected to a board on which the non-conductive barrier 310 is formed with an elastic body. It can be.
  • the non-conductive barrier rib 310 surrounds a measurement resistance pattern R 0 described later.
  • the elastic body may be implemented as, for example, a spring having restoring force.
  • the measurement resistance pattern (R 0 ) is formed spaced apart from the inside of the non-conductive barrier rib 110, and one end is connected to the reference resistance (R ref ).
  • the first and second resistors (R 1 , R 2 )
  • the first and second resistors R 1 and R 2 are respectively connected to ends of the non-conductive barrier 310 and have one end connected to the ground (GND). More specifically, both ends of the non-conductive barrier 310 are connected through hinges 320, one end of which is connected to the ground (GND), and the other end is disposed adjacent to the measurement resistance pattern (R 0 ).
  • the other ends of the first resistor (R 1 ) and the second resistor (R 2 ) are disposed adjacent to the measurement resistance pattern (R 0 ) at a predetermined interval or less, and the first resistor (R 1 )
  • An interval disposed adjacent to the measurement resistance pattern R 0 and an interval disposed adjacent to the measurement resistance pattern R 2 , the second resistor R 2 are set to be different from each other.
  • the hinge 320 has a restoring force, and even if a very large displacement occurs in the non-conductive barrier 310 due to an external impact, mechanically prevents the connection between the first and second resistors and the non-conductive barrier 310 from being damaged. .
  • the first and second resistors may be spaced apart from the measurement resistance pattern R 0 , or the restoring force of the hinge may be set so that it remains in contact, , In these different cases, changes may be made to the determination of the shock level and the control of the operation of the battery pack, which will be described later.
  • the hinge 320 is set so that the first resistor and the second resistor are in contact with the measurement resistance pattern R 0 for a while and then separated according to the displacement, in order to give a sufficient divided voltage measurement time.
  • the restoring force strength of the hinge may be set so that the displacement returns with a time difference from the return of the non-conductive barrier 310 so that it is in contact for more than a time of . It is also possible to set the degree of restoring force of the hinge so that it is not restored.
  • FIG. 3 is a schematic diagram of the impact detection module 300 of FIG. 2 as a circuit.
  • the divided voltage measurement value (V In ) detected by the voltage measuring unit 110 of the BMS 100 due to the voltage distribution between the reference resistance (R ref ) and the measurement resistance (R 0 ) is expressed by the following formula is expressed as
  • Control unit (not shown)
  • the control unit may compare whether or not a predetermined shock arrival condition is satisfied based on the divided voltage measurement value (V In ) detected by the voltage measurement unit 110 and determine the shock level according to the comparison result.
  • the operation of the battery pack may be controlled in response to the determination result.
  • the comparison judging unit compares whether or not the external impact currently applied to the battery pack satisfies a predetermined impact arrival condition using the divided voltage measurement value detected by the voltage measurement unit 110, and determines the degree of impact according to the result.
  • the comparison determination unit compares whether the divided voltage measurement value of the voltage measuring unit 110 is equal to the first reference voltage value, and determines that no impact is applied to the battery pack when the value is equal.
  • the divided voltage measurement value V In of the voltage measurement unit 110 has the same value as the first reference voltage value.
  • the first reference voltage value may be a value calculated by (Equation 1) described above.
  • the comparison and determination unit counts the pulse period in which the divided voltage measurement value of the voltage measurement unit 110 moves back and forth between the first reference voltage value and the second reference voltage value, and compares whether the counted number of times reaches a predetermined number of impacts. In one case, it is determined that a weak impact is continuously applied to the battery pack.
  • FIG. 4 is a diagram illustrating an operation of an impact detection module assuming a case in which a weak impact is applied to a battery pack.
  • the measurement resistance (R 0 ) and the first and second resistances (R 1 , R 2 ) are differentially arranged in the gap, so the measurement resistance (R 0 ) and the first and second resistances (R 0 ) Even in a situation where the resistance (R 1 ) is in contact with each other, the measurement resistance (R 0 ) and the second resistance (R 2 ) do not come into contact.
  • this state is schematized as a circuit as shown in FIG. 4 (b) and a weak impact is applied, the divided voltage measurement value (V Inw ) detected by the voltage measuring unit 110 is calculated and expressed by the following formula.
  • the measurement resistance (R 0 ) and the first resistance (R 1 ) can repeat the state of contact and not contact, and the voltage level also goes back and forth between the first and second reference voltages in line with the impact. detected in the form of pulses.
  • the divided voltage measurement value (V In ) of the voltage measuring unit 110 determines whether the pulse period in which the first reference voltage value and the second reference voltage value are reversed reaches a predetermined number of impacts. By comparison, it can be determined that a slight impact to the battery pack is continuously applied.
  • the same value as the second reference voltage value continues for a predetermined number of shocks. It may be determined that a weak impact to the battery pack is continuously applied by comparing whether or not it is sensed as a .
  • the second reference voltage value may be a value calculated by Equation 2 above.
  • the comparison determination unit compares whether the distribution low voltage measurement value (V In ) of the voltage measurement unit 110 has reached the third reference voltage value, and determines that a strong shock has been applied to the battery pack when it has reached the third reference voltage value.
  • FIG. 5 is a diagram illustrating an operation of an impact detection module assuming a case in which a strong impact is applied to a battery pack.
  • V In V Inw In
  • V Ins the voltage of V Ins becomes lower. Comparing the magnitudes of the three voltage values, it can be expressed in the form of a graph as shown in FIG. 6 .
  • the pack operation control unit may perform operation control of the battery pack in response to the determination result of the comparison and determination unit.
  • the normal operation of the battery pack may be maintained.
  • This control unit may be implemented as a conventional battery BMS included in the BMS module 100 described above and a processor included therein, but is characterized in that it performs the characteristic functions of the present invention described above.
  • the above-described voltage measuring unit 110 may be included as one component of the BMS.
  • a shock sensing method of a battery pack comprises a reference voltage source (V ref ) for implementing shock sensing on a BMS board, a reference resistance (R ref ) connected to the reference voltage source (V ref ), and a battery
  • V ref reference voltage source
  • R ref reference resistance
  • R ref battery
  • the reference voltage source (V ref ) for shock detection implementation on the BMS board, the reference resistance (R ref ) connected to the reference voltage source (V ref ) and the measurement resistance pattern (R 0 ) of the shock detection module are connected at the connection point.
  • the step of comparing whether an impact arrival condition is satisfied is a step of comparing whether or not a predetermined impact arrival condition is satisfied based on the divided voltage value measured in the dividing voltage measurement step.
  • the measured divided voltage value is equal to the first reference voltage value.
  • the first reference voltage value may be a value calculated by (Equation 1) described above.
  • the number of cycles in which the measured divided voltage value reverses the first reference voltage value and the second reference voltage value may be counted, and whether or not the counted number reaches a predetermined number of impacts may be compared.
  • the measured divided voltage value is initially detected as the same value as the first reference voltage value, it is possible to compare whether or not the same value as the second reference voltage value is continuously detected for a predetermined number of impacts. .
  • the second reference voltage value may be a value calculated by (Equation 2) described above.
  • the measured divided voltage value may be compared whether the measured divided voltage value reaches the third reference voltage value.
  • the third reference voltage value may be a value calculated by (Equation 3) described above.
  • the state of the impact intensity applied to the battery pack may be determined according to the comparison result of the shock arrival condition comparison step.
  • the number of cycles in which the measured divided voltage value reverses the first reference voltage value and the second reference voltage value reaches a predetermined number of shocks or After the measured distribution voltage value is initially detected as the same value as the first reference voltage value, when the number of continuously detected values as the same value as the second reference voltage value reaches a predetermined number of shocks, a weak shock is applied to the current battery pack. It can be judged that it is a state that is continuously applied.
  • the measured distribution voltage value reaches the third reference voltage value as a result of the comparison in the step of comparing whether the shock arrival condition is satisfied, it can be determined that a strong shock is currently applied to the battery pack.
  • the pack operation control step is a step of controlling the operation of the battery pack in response to the determination result of the shock state determination step.
  • the normal operation of the battery pack may be maintained and controlled.
  • the level of the safety control operation is increased step by step according to the degree of impact applied to the battery pack and is controlled to be performed.
  • V ref reference voltage source
  • R ref reference resistance
  • R 1 1st resistance
  • R 2 Second resistance

Abstract

본 발명은 충격 감지 모듈을 포함하는 배터리 팩에 관한 것으로, 충격 감지 모듈구조를 BMS에 적용하여 배터리 팩에 가해지는 충격 강도를 단계별로 감지하고 이에 대한 BMS 제어를 수행할 수 있도록 구성된 배터리 팩에 관한 것이다.

Description

충격 감지 모듈을 포함하는 배터리 팩
본 발명은 충격 감지 모듈을 포함하는 배터리 팩에 관한 것으로, 보다 구체적으로는 충격으로 인한 저항의 연결에 따른 전압 변화로 충격의 강도를 단계적으로 감지하여 충격의 강도에 따라 팩 동작을 제어할 수 있는 배터리 팩에 관한 것이다.
배터리는 스마트폰, 노트북, 태블릿 PC 등의 소형 전자기기 분야뿐만 아니라 전기 자동차, 에너지저장시스템(ESS)에 이르기까지 다양한 분야에서 널리 사용되고 있다.
배터리(팩)은 통상적으로 단위 셀(cell)이 복수 개 구성되는 어셈블리와 상기 어셈블리가 복수 개로 이루어지는 구성으로 이루어지며, 상기 셀(cell)은 양극 집전체, 세퍼레이터, 활물질, 전해액, 알루미늄 박막층 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 충방전이 가능한 구조가 된다.
이러한 충방전을 위한 기본적 구조에 더하여, 상기 배터리는 셀에서 어셈블리를 거쳐 배터리가 되기까지 물리적인 보호 장치, 다양한 센싱 수단, SOC(State Of Charge) 등의 추정을 위한 정밀한 알고리즘이 적용된 펌웨어 등이 추가적으로 구성된다.
이와 같은 배터리(팩)에 물리적 충격이 가해지는 경우, 배터리 또는 배터리를 구성하는 셀의 파우치, 하우징, 프레임 등과 같은 물리적 형태의 변형이 초래될 수 있고 이는 배터리 또는 셀의 저항이나 전기적 특성값의 변화로 이어질 수 있다.
하지만, 종래에는 배터리 팩에 대한 외부 충격을 감지하여 팩 동작을 제어하거나 차단하는 수단이 부재한 상황으로, 물리적 충격에 따른 배터리 팩의 안전성을 확보하지 못한 문제점이 있다.
본 발명과 관련된 선행기술로는 다음과 같은 문헌이 있다.
특허문헌 1: KR 1053352 B1
본 발명은 상술한 문제점을 해결하고자 하는 것으로서, 충격 감지 모듈구조를 BMS에 적용하여 배터리 팩에 가해지는 충격 강도를 단계별로 감지하고 이에 대한 BMS 제어를 수행할 수 있도록 구성된 배터리 팩을 제공하고자 한다.
상술한 과제 해결을 위하여, 본 발명은, BMS 모듈; 배터리 팩에 가해지는 충격 강도를 단계적으로 감지하기 위한 충격 감지 모듈; 을 포함하며, 상기 BMS 모듈은, 충격감지를 위한 기준전압원 Vref; 상기 기준전압원 Vref에 연결되는 기준저항 Rref; 상기 기준저항 Rref과 측정저항 R0 사이에서 분배전압을 측정하는 전압측정부;를 포함하여 구성되며, 상기 충격 감지 모듈은, 배터리 팩의 케이스 내측에 탄성체를 통하여 연결되는 비전도성 격벽; 상기 기준저항 Rref에 연결되는 측정저항 R0; 상기 비전도성 격벽의 양단부에 각각 힌지를 통하여 연결되며, 그 일단이 접지에 연결되고, 타단은 측정저항 R0에 연결되는 제1, 제2 저항 R1, R2;를 포함하여 구성되는 배터리 팩을 제공한다.
상기 BMS 모듈은, 상기 전압측정부의 분배전압 측정값을 기반으로 소정의 충격 도달 조건을 충족하는지를 비교하여, 그 비교 결과에 따라 배터리 팩에 가해지는 충격 정도를 판단하는 비교 판단부; 상기 비교 판단부의 판단 결과에 대응하여 배터리 팩의 동작을 제어하는 팩 동작 제어부; 를 더 포함하여 구성될 수 있다.
상기 제1 저항 및 제2 저항의 타단은, 상기 측정저항 R0에 소정 간격 이하로 배치되어, 상기 배터리 팩 케이스에 진동이 가해지는 경우, 상기 제1, 제2 저항 R1, R2이 상기 측정저항 R0에 접촉하여 상기 전압측정부의 분배전압 측정값에 변동이 발생하는 것;을 특징으로 하며, 상기 제1 저항 R1이 상기 측정저항 R0에 인접 배치되는 간격 d1은 상기 제2 저항 R2이 상기 측정저항 R0에 인접 배치되는 간격 d2과 서로 다른 것;을 특징으로 한다. 또한, 상기 d1과 d2가 상이하므로 배터리 팩에 발생하는 진동의 정도에 따라서 상기 전압측정부에서 측정되는 분배전압 값이 달라지는 것; 을 특징으로 한다.
이때, 상기 측정저항 R0은 BMS 모듈을 구성하는 BMS 보드 상에 고정 위치에 형성되며, 상기 제1, 제2 저항 R1, R2과의 접촉부를 구비하고, 상기 제1, 제2 저항 R1, R2은 상기 비전도성 격벽에 탄성체로 연결되어 외부 진동에 대하여 위치 변동을 가지며, 상기 분배전압은, 상기 제1, 제2 저항 R1, R2이 상기 측정저항 R0에 접촉되는 순간 전압으로 측정되며, 외부 진동의 정도에 따라서 다른 값으로 측정된다.
상기 배터리 팩에서, 상기 비교 판단부는, 상기 전압측정부의 분배전압 측정값이 제1 기준 전압 값과 동일한지를 비교하여, 동일한 경우 배터리 팩에 가해지는 충격이 없는 상태인 것으로 판단; 하고, 상기 전압측정부의 분배전압 측정값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단; 하며, 상기 전압측정부의 분배전압 측정값이 제3 기준 전압 값에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단한다.
본 발명은 또한 상술한 배터리 팩에서 외부 충격 상태를 감지하는 방법에 있어서, BMS 보드에 충격감지 구현을 위한 기준전압원 Vref에 연결된 기준저항 Rref과 충격 감지 모듈의 측정저항 R0 연결지점에서 분배전압을 측정하는 분배전압 측정단계; 상기 분배전압 측정단계에서 측정되는 분배전압 값을 기반으로 소정의 충격 도달 조건을 충족하는지의 여부를 비교하는 충격 도달 조건 충족여부 비교단계; 상기 충격 도달 조건 충족여부 비교단계의 비교 결과에 따라 배터리 팩에 가해지는 충격 정도를 판단하는 충격 상태 판단단계;를 포함하는 배터리 팩 충격 감지 방법을 제공한다.
상기 배터리 팩 충격 감지 방법은 상기 충격 상태 판단단계의 판단 결과에 대응하여 배터리 팩의 동작을 제어하는 팩 동작 제어단계;
를 더 포함할 수 있으며, 상기 충격 도달 조건 충족여부 비교단계는, 상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한지를 비교하고, 상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달하였는지를 비교하고, 상기 측정된 분배전압 값이 제3 기준 전압 값에 도달하였는지를 비교한다.
또한, 상기 충격 상태 판단단계는, 상기 충격 도달 조건 충족여부 비교단계의 비교 결과, 상기 측정된 분배전압 값이 제1 기준 값과 동일한 경우, 배터리 팩에 가해지는 외부 충격이 없는 상태인 것으로 판단하고, 상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달한 경우, 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단하며, 상기 측정된 분배전압 값이 제3 기준 전압 값에 도달한 경우, 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단한다.
본 발명은 충격으로 인한 저항의 연결에 따른 전압 변화로 충격의 강도를 단계적으로 감지하여 충격의 강도에 따라 배터리 팩의 동작을 제어함으로써, 외부 충격에 대한 향상된 안전성을 제공할 수 있다.
도 1은 본 발명의 실시 예에 따른 배터리 팩을 개략적으로 보여주는 도면이다.
도 2는 본 발명의 실시 예에 따른 충격 감지 모듈의 구성을 보여주는 도면이다.
도 3은 도 2의 충격 감지 모듈을 회로로 도식화 하여 나타내는 도면이다.
도 4는 배터리 팩에 약한 충격이 인가되는 경우를 상정하였을 때 충격 감지 모듈의 동작을 나타내는 도면이다.
도 5는 배터리 팩에 강한 충격이 인가되는 경우를 상정하였을 때 충격 감지 모듈의 동작을 나타내는 도면이다.
도 6은 배터리 팩에 강한 충격이 인가되는 경우 나타나는 00 예시를 보여주는 도면이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
이하, 도면을 참조하여 본 발명에 대하여 상세하게 설명한다.
1.본 발명에 따른 배터리 팩
도 1은 본 발명의 실시 예에 따른 배터리 팩을 개략적으로 보여주는 도면이다.
도 1을 참조하면, 본 발명의 배터리 팩(10)은 크게 BMS 모듈(100), 셀 모듈(200), 충격 감지 모듈(300)을 포함한다.
1.1.BMS 모듈(100)
본 발명에 따른 BMS 모듈(100)는, 도 1에 보이는 것과 같이 충격감지 구현을 위한 기준전압원(Vref)과 상기 기준전압원(Vref)에 연결되는 기준저항(Rref), 상기 기준저항(Rref)과 후술하는 충격 감지 모듈(300)에 형성되어 있는 측정저항패턴(R0)의 연결지점에서 분배전압(VIn)을 측정하는 전압측정부(110)를 포함하여 구성되며, 후술하는 제어부(미도시)를 추가로 포함할 수 있다.
1.2.셀 모듈(200)
셀 모듈(200)은, 하나 이상의 배터리 셀(미도시)를 포함할 수 있다.
1.3.충격 감지 모듈(300)
도 2는 본 발명의 실시 예에 따른 충격 감지 모듈의 구성을 보여주는 도면이다.
충격 감지 모듈(300)은, 배터리 팩(10)에 가해지는 충격 강도를 단계별로 감지할 수 있도록 하는 구성으로, 아래와 같은 구성을 포함할 수 있다.
본 발명의 충격 감지 모듈(300)은 별도의 상술한 BMS 모듈과 별도의 보드에 형성되어, 배터리 팩의 다른 부위에 설치되거나, 또는 BMS 모듈이 형성되는 PCB 보드에 함께 배치될 수 있다.
1.3.1.비전도성 격벽(310)
비전도성 격벽(310)은, 배터리 팩(10)의 진동에 따라 변위가 발생하도록 배터리 팩(10)의 케이스와 탄성체로 연결되거나, 비전도성 격벽(310)이 형성되는 보드에 탄성체로 연결되어 구성될 수 있다.
비전도성 격벽(310)은, 도 2에 보이는 것과 같이 후술하는 측정저항패턴(R0)을 감싸는 형태로 형성된다.
여기서, 탄성체는 예를 들어 복원력을 갖고 있는 스프링으로 구현될 수 있다.
1.3.2.측정저항패턴(R0)
측정저항패턴(R0)은, 비전도성 격벽(110)의 내측에 이격되어 형성되고 일단이 기준저항(Rref)에 연결된다.
1.3.3.제1, 2 저항(R1, R2)
제1, 2 저항(R1, R2)은, 비전도성 격벽(310)의 단부에 각각 연결되고 일단이 접지(GND)에 연결된다. 보다 구체적으로, 비전도성 격벽(310)의 양단부에 각각 힌지(320)를 통해 연결되며, 그 일단은 접지(GND)에 연결되고, 타단은 측정저항패턴(R0)과 인접 배치되는 형태이다.
도 2에 보이는 것처럼, 제1 저항(R1) 및 제2 저항(R2)의 타단이 측정저항패턴(R0)에 소정 간격 이하로 인접 배치되되, 상기 제1 저항(R1)이 상기 측정저항패턴(R0)에 인접 배치되는 간격과 상기 제2 저항(R2)이 상기 측정저항패턴(R0)에 인접 배치되는 간격은 상호 상이하게 설정된다. 이러한 배치 간격 차이로 인해, 배터리 팩(10)의 외부로부터의 충격에 의해 배터리 팩 케이스에 진동이 가해지는 경우, 스프링에 의해 고정된 비전도성 격벽(310)에 변위가 발생하고 이에 연결된 상기 제1, 2 저항(R1, R2)이 상기 측정저항패턴(R0)에 접촉하여 BMS(100)의 전압측정부(110)에서 측정하는 분배전압 값(VIn)에 변동이 발생하게 된다.
상기 힌지(320)는 복원력을 가지고 있으며, 외부 충격에 의해 비전도성 격벽(310)에 매우 큰 변위가 발생하더라도 기계적으로 제1, 2저항과 비전도성 격벽(310)의 연결부위가 파손되지 않도록 한다. 또한 충격 이후에 비전도성 격벽(310)이 원위치로 복귀하는 경우, 제1, 2 저항은 측정저항패턴(R0)으로부터 이격하거나, 또는 접촉된 상태로 그대로 남아있도록 힌지의 복원력이 설정될 수 있으며, 이러한 서로 다른 경우에 있어서, 후술하는 충격 레벨의 판단 및 배터리 팩의 동작의 제어에 변경을 가할 수 있다. 예를 들어 경우에 따라 힌지(320)는 변위 발생에 따라 제1 저항 및 제2 저항이 잠시 측정저항패턴(R0)에 접촉하였다가 이격하도록 설정됨에 있어서, 충분한 분배전압 측정 시간을 주기 위하여 소정의 시간 이상 접촉되도록 비전도성 격벽(310)이 복귀하는 것과 시간차를 가지고 변위 복귀하도록 힌지의 복원력 강도가 설정될 수 있으며, 필요시 비전도성 격벽(310)이 복귀하더라도 제1, 2 저항의 위치가 복원되지 않도록 힌지의 복원력의 정도를 설정하는 것도 가능하다.
도 3은 도 2의 충격 감지 모듈(300)을 회로로 도식화 하여 나타낸 도면이다. 도 3을 참조하면, 기준저항(Rref)과 측정저항(R0)의 전압분배로 인해 BMS(100)의 전압측정부(110)에서 감지되는 분배전압 측정값(VIn)은 아래의 수식으로 표현된다.
(수식 1)
Figure PCTKR2022020848-appb-I000001
1.4.제어부(미도시)
제어부는, 전압측정부(110)에서 감지되는 분배전압 측정값(VIn)을 기반으로 소정의 충격 도달 조건을 충족하는지를 비교하여, 그 비교 결과에 따라 충격 레벨을 판단할 수 있다. 또한, 판단 결과에 대응하여 배터리 팩의 동작을 제어할 수 있다.
1.4.1.비교 판단부
비교 판단부는, 전압측정부(110)에서 감지되는 분배전압 측정값을 이용하여 현재 배터리 팩에 가해지는 외부 충격이 소정의 충격 도달 조건을 충족하는지를 비교하여, 그 충족 결과에 따라 충격 정도를 판단할 수 있다.
<제1 경우: 충격 없는 상태>
비교 판단부는, 전압측정부(110)의 분배전압 측정값이 제1 기준 전압 값과 동일한지를 비교하여, 동일한 경우 배터리 팩에 가해지는 충격이 없는 상태로 판단한다.
충격 감지 모듈의 동작 상태가 도 2 및 3에 보이는 것과 같은 경우, 전압측정부(110)의 분배전압 측정값(VIn)은 제1 기준 전압 값과 동일한 값을 가지게 된다.
여기서, 제1 기준 전압 값은, 앞서 설명한 상기 (수식 1)에 의해 연산되는 값일 수 있다.
<제2 경우: 약한 충격이 지속적으로 가해지는 상태>
비교 판단부는, 전압측정부(110)의 분배전압 측정값이 제1 기준 전압 값과 제2 기준 전압 값을 오가는 펄스 주기를 카운팅하고, 카운팅 된 횟수가 소정의 충격 횟수에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 약한 충격이 지속적으로 가해지고 있는 상태로 판단한다.
도 4는 배터리 팩에 약한 충격이 가해지는 경우를 상정하였을 때 충격 감지 모듈의 동작을 나타내는 도면이다.
도 4를 참조하면, 앞서 설명한 것과 같이 측정저항(R0)과 제1, 2 저항(R1, R2)의 간극에 차등을 두어 배치하였으므로, 약한 충격에 측정저항(R0)과 제1 저항(R1)이 마주 닿는 상황에서도 측정저항(R0)과 제2 저항(R2)은 닿지 않게 된다. 이러한 상태를 도 4의 (b)와 같이 회로로 도식화 하여 약한 충격이 가해진 경우 전압측정부(110)에서 감지되는 분배전압 측정값(VInw)을 계산하면 아래의 수식으로 표현된다.
(수식 2)
Figure PCTKR2022020848-appb-I000002
외부 환경에서 인가되는 지속적인 잔충격으로 인해 측정저항(R0)과 제1 저항(R1)이 닿고 닿지 않고의 상태를 반복할 수 있으며, 전압 레벨도 충격에 맞춰 제1, 2 기준 전압을 오가는 펄스 형태로 감지된다. 이러한 원리를 이용하여, 일 실시 예로, 전압측정부(110)의 분배전압 측정값(VIn)이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 펄스 주기가 소정의 충격 횟수에 도달하였는지를 비교하여 배터리 팩에 대한 약간 충격이 지속적으로 가해지는 경우를 판단할 수 있다. 다른 실시 예로는, 전압측정부(110)의 분배전압 측정값(VIn)이 제1 기준 전압 값과 동일한 값으로 최초 감지된 이후, 제2 기준 전압 값과 동일한 값으로 소정의 충격 횟수만큼 지속적으로 감지되는지를 비교하여 배터리 팩에 대한 약한 충격이 지속적으로 가해지는 경우를 판단할 수도 있다.
여기서, 제2 기준 전압 값은, 상기 (수식 2)에 의해 연산되는 값일 수 있다.
<제3 경우: 강한 충격이 가해지는 상태>
비교 판단부는, 전압측정부(110)의 분배저압 측정값(VIn)이 제3 기준 전압 값에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 강한 충격이 가해진 상태로 판단한다.
도 5는 배터리 팩에 강한 충격이 가해지는 경우를 상정하였을 때 충격 감지 모듈의 동작을 나타내는 도면이다.
도 5를 참조하면, 강한 충격으로 비전도성 격벽(310)이 세게 흔들리는 경우, 측정저항(R0)과 제1, 2 저항(R1, R2)이 모두 마주 닿는 상태가 되며 이를 도 5의 (b)와 같이 회로로 도식화 하여 전압측정부(110)에서 감지되는 분배전압 측정값(VIns)을 계산하면 아래의 수식으로 표현된다.
(수식 3)
Figure PCTKR2022020848-appb-I000003
이 경우, VIn , VInw 대비 VIns의 전압은 낮아지게 된다. 상기 세 전압값의 크기를 비교하여 보면, 도 6과 같은 그래프의 형태로 표현될 수 있다.
1.4.2.팩 동작 제어부
팩 동작 제어부는, 상기 비교 판단부의 판단 결과에 대응하여 배터리 팩의 동작 제어를 수행할 수 있다.
상기 판단 결과, 외부 충격이 없는 일반적인 상태로 판단된 경우, 배터리 팩의 정상 동작을 유지시킬 수 있다.
한편, 상기 판단 결과, 약한 충격이 지속적으로 가해지는 상태로 판단된 경우, 외부 충격이 없는 일반적인 상태일 경우 대비 높은 단계의 안전 제어 동작을 수행할 수 있다.
한편, 상기 판단 결과, 강한 충격이 가해지는 상태로 판단된 경우, 약한 충격이 지속적으로 가해지는 상태일 경우 대비 높은 단계의 안전 제어 동작을 수행할 수 있다.
이러한 제어부(미도시)는, 앞서 설명한 BMS 모듈(100) 내에 포함되는 통상의 배터리 BMS 및 그에 포함되는 프로세서로 구현될 수 있지만, 상술한 본 발명의 특징적인 기능을 수행하는 것을 특징으로 한다. 이 경우, 상술한 전압측정부(110)는 BMS의 일 구성으로 포함될 수 있다.
2.본 발명에 따른 배터리 팩의 충격 감지 방법
본 발명의 실시 예에 따른 배터리 팩의 충격 감지 방법은, BMS 보드에 충격감지 구현을 위한 기준전압원(Vref), 기준전압원(Vref)에 연결되는 기준저항(Rref)을 구성하고, 배터리 팩(10)의 진동에 따라 변위가 발생하도록 배터리 팩의 케이스와 탄성체로 연결된 비전도성 격벽(310), 비전도성 격벽(310)의 내측에 이격되어 형성되고 일단이 기준저항(Rref)에 연결되고, 보드상에 고정 형성된 측정저항패턴(R0), 비전도성 격벽(310)의 양단부에 각각 힌지(320)를 통하여 연결되며, 그 일단이 측정저항패턴(R0)과 인접 배치되고, 타단은 접지(GND)에 연결된 제1, 2 저항(R1, R2)을 포함하는 충격 감지 모듈(300)을 적용하여 이루어질 수 있다.
2.1.분배전압 측정단계
분배전압 측정 단계는, BMS 보드에 충격감지 구현을 위한 기준전압원(Vref), 기준전압원(Vref)에 연결된 기준저항(Rref)과 충격 감지 모듈의 측정저항패턴(R0) 연결지점에서 분배전압을 측정하는 단계이다. 이 단계는, 앞서 설명한 BMS(100)의 전압측정부(110)에 의해 수행된다.
2.2.충격 도달 조건 충족여부 비교단계
충격 도달 조건 충족여부 비교단계는, 상기 분배전압 측정단계에서 측정되는 분배전압 값을 기반으로 소정의 충격 도달 조건을 충족하는지의 여부를 비교하는 단계이다.
<제1 경우: 충격 없는 상태>
제1 경우로, 상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한지를 비교할 수 있다.
여기서, 제1 기준 전압 값은, 앞서 설명한 (수식 1)에 의해 연산된 값일 수 있다.
<제2 경우: 약한 충격이 지속적으로 가해지는 상태>
제2 경우로, 상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수를 카운팅하고, 카운팅 된 횟수가 소정의 충격 횟수에 도달하였는지를 비교할 수 있다.
한편, 다른 실시 예로는, 상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한 값으로 최초 감지된 이후, 제2 기준 전압 값과 동일한 값으로 소정의 충격 횟수만큼 지속적으로 감지되는지를 비교할 수 있다.
여기서, 제2 기준 전압 값은, 앞서 설명한 (수식 2)에 의해 연산된 값일 수 있다.
<제3 경우: 강한 충격이 가해지는 상태>
제3 경우로, 상기 측정된 분배전압 값이 제3 기준 전압 값에 도달하였는지를 비교할 수 있다.
여기서, 제3 기준 전압 값은, 앞서 설명한 (수식 3)에 의해 연산된 값일 수 있다.
2.3.충격 상태 판단단계
충격 상태 판단단계는, 상기 충격 도닫 조건 충족여부 비교단계의 비교 결과에 따라 배터리 팩에 가해지는 충격 강도의 상태를 판단할 수 있다.
<제1 경우: 외부 충격이 없는 상태>
제1 경우로, 상기 충격 도달 조건 충족여부 비교단계의 비교 결과, 상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한 경우, 현재 배터리 팩에 외부 충격이 없는 상태인 것으로 판단할 수 있다.
<제2 경우: 약한 충격이 지속적으로 가해지는 상태>
제2 경우로, 상기 충격 도달 조건 충족여부 비교단계의 비교 결과, 상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달하거나 또는 상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한 값으로 최초 감지된 이후, 제2 기준 전압 값과 동일한 값으로 지속 감지된 횟수가 소정의 충격 횟수에 도달한 경우, 현재 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단할 수 있다.
<제3 경우: 강한 충격이 가해지는 상태>
제3 경우로, 상기 충격 도달 조건 충족여부 비교단계의 비교 결과, 상기 측정된 분배전압 값이 제3 기준 전압 값에 도달한 경우, 현재 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단할 수 있다.
상기와 같이 판단하는 기술 원리는, 앞서 설명하였으므로 상세한 설명은 생략하도록 한다.
2.4.팩 동작 제어단계
팩 동작 제어단계는, 상기 충격 상태 판단단계의 판단 결과에 대응하여 배터리 팩의 동작을 제어하는 단계이다.
상기 판단 결과, 외부 충격이 없는 일반적인 상태인 것으로 판단된 경우, 배터리 팩의 정상 동작을 유지 제어할 수 있다.
한편, 상기 판단 결과, 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단된 경우, 상기 외부 충격이 없는 상태일 경우 대비 높은 단계의 안전 동작을 수행하도록 제어할 수 있다.
한편, 상기 판단 결과, 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단된 경우, 상기 약한 충격이 지속적으로 가해지는 상태일 경우 대비 높은 단계의 안전 제어 동작을 수행하도록 제어할 수 있다.
즉, 배터리 팩에 가해지는 충격 정도에 따라 단계적으로 안전 제어 동작의 레벨을 높여 수행하도록 제어하는 것이다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
본 발명에서 사용된 도면의 부호 및 그에 따른 명칭은 다음과 같다.
10:배터리 팩
100:BMS
110:전압측정부
200:셀 모듈
300:충격 감지 모듈
310:비전도성 격벽
320:힌지
Vref:기준전압원
Rref:기준저항
R0:측정저항
R1:제1 저항
R2:제2 저항

Claims (12)

  1. 배터리 팩에 있어서,
    BMS 모듈;
    배터리 팩에 가해지는 충격 강도를 단계적으로 감지하기 위한 충격 감지 모듈;
    을 포함하며,
    상기 BMS 모듈은,
    충격감지를 위한 기준전압원 Vref;
    상기 기준전압원 Vref에 연결되는 기준저항 Rref;
    상기 기준저항 Rref과 측정저항 R0 사이에서 분배전압을 측정하는 전압측정부;
    를 포함하여 구성되며,
    상기 충격 감지 모듈은,
    배터리 팩의 케이스 내측에 탄성체를 통하여 연결되는 비전도성 격벽;
    상기 기준저항 Rref에 연결되는 측정저항 R0;
    상기 비전도성 격벽의 양단부에 각각 힌지를 통하여 연결되며, 그 일단이 접지에 연결되고, 타단은 측정저항 R0에 연결되는 제1, 제2 저항 R1, R2;
    를 포함하여 구성되는 배터리 팩.
  2. 제1항에 있어서,
    상기 BMS 모듈은,
    상기 전압측정부의 분배전압 측정값을 기반으로 소정의 충격 도달 조건을 충족하는지를 비교하여, 그 비교 결과에 따라 배터리 팩에 가해지는 충격 정도를 판단하는 비교 판단부;
    상기 비교 판단부의 판단 결과에 대응하여 배터리 팩의 동작을 제어하는 팩 동작 제어부;
    를 더 포함하여 구성되는 배터리 팩.
  3. 제1항에 있어서,
    상기 제1 저항 및 제2 저항의 타단은, 상기 측정저항 R0에 소정 간격 이하로 배치되어, 상기 배터리 팩 케이스에 진동이 가해지는 경우, 상기 제1, 제2 저항 R1, R2이 상기 측정저항 R0에 접촉하여 상기 전압측정부의 분배전압 측정값에 변동이 발생하는 것;
    을 특징으로 하는 배터리 팩.
  4. 제3항에 있어서,
    상기 제1 저항 R1이 상기 측정저항 R0에 인접 배치되는 간격 d1은 상기 제2 저항 R2이 상기 측정저항 R0에 인접 배치되는 간격 d2과 서로 다른 것;
    을 특징으로 하는 배터리 팩.
  5. 제4항에 있어서,
    상기 d1과 d2가 상이하므로 배터리 팩에 발생하는 진동의 정도에 따라서 상기 전압측정부에서 측정되는 분배전압 값이 달라지는 것;
    을 특징으로 하는 배터리 팩.
  6. 제5항에 있어서,
    상기 측정저항 R0은 BMS 모듈을 구성하는 BMS 보드 상에 고정 위치에 형성되며, 상기 제1, 제2 저항 R1, R2과의 접촉부를 구비하고,
    상기 제1, 제2 저항 R1, R2은 상기 비전도성 격벽에 탄성체로 연결되어 외부 진동에 대하여 위치 변동을 가지는 것;
    을 특징으로 하는 배터리 팩.
  7. 제6항에 있어서,
    상기 분배전압은,
    상기 제1, 제2 저항 R1, R2이 상기 측정저항 R0에 접촉되는 순간 전압으로 측정되며,
    외부 진동의 정도에 따라서 다른 값으로 측정되는 것;
    을 특징으로 하는 배터리 팩.
  8. 제2항에 있어서,
    상기 비교 판단부는,
    상기 전압측정부의 분배전압 측정값이 제1 기준 전압 값과 동일한지를 비교하여, 동일한 경우 배터리 팩에 가해지는 충격이 없는 상태인 것으로 판단; 하고,
    상기 전압측정부의 분배전압 측정값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단; 하며,
    상기 전압측정부의 분배전압 측정값이 제3 기준 전압 값에 도달하였는지를 비교하여, 도달한 경우 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단하는 것;
    을 특징으로 하는 배터리 팩.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 팩에서 외부 충격 상태를 감지하는 방법에 있어서,
    BMS 보드에 충격감지 구현을 위한 기준전압원 Vref에 연결된 기준저항 Rref과 충격 감지 모듈의 측정저항 R0 연결지점에서 분배전압을 측정하는 분배전압 측정단계;
    상기 분배전압 측정단계에서 측정되는 분배전압 값을 기반으로 소정의 충격 도달 조건을 충족하는지의 여부를 비교하는 충격 도달 조건 충족여부 비교단계;
    상기 충격 도달 조건 충족여부 비교단계의 비교 결과에 따라 배터리 팩에 가해지는 충격 정도를 판단하는 충격 상태 판단단계;
    를 포함하는 배터리 팩 충격 감지 방법.
  10. 제9항에 있어서,
    상기 충격 상태 판단단계의 판단 결과에 대응하여 배터리 팩의 동작을 제어하는 팩 동작 제어단계;
    를 더 포함하는 배터리 팩 충격 감지 방법.
  11. 제9항에 있어서,
    상기 충격 도달 조건 충족여부 비교단계는,
    상기 측정된 분배전압 값이 제1 기준 전압 값과 동일한지를 비교하고,
    상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달하였는지를 비교하고,
    상기 측정된 분배전압 값이 제3 기준 전압 값에 도달하였는지를 비교하는 것;
    을 특징으로 하는 배터리 팩 충격 감지 방법.
  12. 제11항에 있어서,
    상기 충격 상태 판단단계는,
    상기 충격 도달 조건 충족여부 비교단계의 비교 결과,
    상기 측정된 분배전압 값이 제1 기준 값과 동일한 경우, 배터리 팩에 가해지는 외부 충격이 없는 상태인 것으로 판단하고,
    상기 측정된 분배전압 값이 제1 기준 전압 값과 제2 기준 전압 값을 번복하는 주기 횟수가 소정의 충격 횟수에 도달한 경우, 배터리 팩에 약한 충격이 지속적으로 가해지는 상태인 것으로 판단하며,
    상기 측정된 분배전압 값이 제3 기준 전압 값에 도달한 경우, 배터리 팩에 강한 충격이 가해진 상태인 것으로 판단하는 것;
    을 특징으로 하는 배터리 팩 충격 감지 방법.
PCT/KR2022/020848 2022-01-06 2022-12-20 충격 감지 모듈을 포함하는 배터리 팩 WO2023132525A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038143.4A CN117397089A (zh) 2022-01-06 2022-12-20 包括冲击感测模块的电池组
EP22919062.4A EP4329046A1 (en) 2022-01-06 2022-12-20 Battery pack including impact sensing module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0002194 2022-01-06
KR1020220002194A KR20230106374A (ko) 2022-01-06 2022-01-06 충격 감지 모듈을 포함하는 배터리 팩

Publications (1)

Publication Number Publication Date
WO2023132525A1 true WO2023132525A1 (ko) 2023-07-13

Family

ID=87073791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020848 WO2023132525A1 (ko) 2022-01-06 2022-12-20 충격 감지 모듈을 포함하는 배터리 팩

Country Status (4)

Country Link
EP (1) EP4329046A1 (ko)
KR (1) KR20230106374A (ko)
CN (1) CN117397089A (ko)
WO (1) WO2023132525A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230023A (ja) * 1992-03-04 1994-08-19 Omron Corp 変位検出センサ
KR20020089104A (ko) * 2001-05-17 2002-11-29 주식회사 태림테크 충격 감지 장치와 이를 이용한 충격 감지 회로 및이동통신 단말기의 제어방법
KR101040471B1 (ko) * 2010-01-05 2011-06-09 주식회사 엘지화학 배터리 제어장치 및 방법
KR101053352B1 (ko) 2009-12-07 2011-08-01 주식회사 엘지화학 배터리 제어 장치 및 방법
KR20120061401A (ko) * 2010-12-03 2012-06-13 한국표준과학연구원 충격력 측정장치, 충격력 측정 시스템, 그 장치를 이용한 충격력 측정방법, 그 시스템을 이용한 충격력 분석방법 및 그 기록매체
JP6176213B2 (ja) * 2014-09-11 2017-08-09 三菱電機株式会社 蓄電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230023A (ja) * 1992-03-04 1994-08-19 Omron Corp 変位検出センサ
KR20020089104A (ko) * 2001-05-17 2002-11-29 주식회사 태림테크 충격 감지 장치와 이를 이용한 충격 감지 회로 및이동통신 단말기의 제어방법
KR101053352B1 (ko) 2009-12-07 2011-08-01 주식회사 엘지화학 배터리 제어 장치 및 방법
KR101040471B1 (ko) * 2010-01-05 2011-06-09 주식회사 엘지화학 배터리 제어장치 및 방법
KR20120061401A (ko) * 2010-12-03 2012-06-13 한국표준과학연구원 충격력 측정장치, 충격력 측정 시스템, 그 장치를 이용한 충격력 측정방법, 그 시스템을 이용한 충격력 분석방법 및 그 기록매체
JP6176213B2 (ja) * 2014-09-11 2017-08-09 三菱電機株式会社 蓄電システム

Also Published As

Publication number Publication date
KR20230106374A (ko) 2023-07-13
EP4329046A1 (en) 2024-02-28
CN117397089A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2019199058A1 (ko) 배터리 진단 장치 및 방법
WO2018139833A1 (ko) 이차 전지 평가 장치
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2010018959A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2020231086A1 (ko) 배터리의 퇴화도를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2019098576A1 (ko) 배터리 여유 용량 추정 장치
WO2019093627A1 (ko) 배터리 온도 추정 장치 및 방법
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2016056740A1 (ko) 스위치 열화 검출 장치 및 방법
WO2019107976A1 (ko) 배터리 팩
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
WO2019107982A1 (ko) 배터리 팩
WO2019182253A1 (ko) 냉각수 누설 검출 장치
WO2022014955A1 (ko) 스웰링 측정 정확도가 향상된 배터리 팩
WO2019107978A1 (ko) 배터리 팩
WO2019245215A1 (ko) 전류 측정 장치, 전류 측정 방법 및 상기 전류 측정 장치를 포함하는 배터리 팩
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2019107979A1 (ko) 배터리 팩
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2019190144A1 (ko) 션트 저항 및 이를 포함하는 전류 검출 장치
WO2023132525A1 (ko) 충격 감지 모듈을 포함하는 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572633

Country of ref document: JP

Ref document number: 2022919062

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022919062

Country of ref document: EP

Effective date: 20231122