WO2023132230A1 - 二軸延伸ポリアミドフィルムロール - Google Patents

二軸延伸ポリアミドフィルムロール Download PDF

Info

Publication number
WO2023132230A1
WO2023132230A1 PCT/JP2022/046839 JP2022046839W WO2023132230A1 WO 2023132230 A1 WO2023132230 A1 WO 2023132230A1 JP 2022046839 W JP2022046839 W JP 2022046839W WO 2023132230 A1 WO2023132230 A1 WO 2023132230A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin
film roll
biaxially stretched
biomass
Prior art date
Application number
PCT/JP2022/046839
Other languages
English (en)
French (fr)
Inventor
彩芽 鳥居
考道 後藤
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020247020915A priority Critical patent/KR20240123804A/ko
Priority to JP2023572409A priority patent/JPWO2023132230A1/ja
Priority to CN202280085911.1A priority patent/CN118450977A/zh
Publication of WO2023132230A1 publication Critical patent/WO2023132230A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/242Component parts, details or accessories; Auxiliary operations for feeding in measured doses
    • B29B7/244Component parts, details or accessories; Auxiliary operations for feeding in measured doses of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/10Feeding of the material to be moulded, e.g. into a mould cavity of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/28Storing of extruded material, e.g. by winding up or stacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a carbon-neutral biaxially stretched polyamide film roll that is suitably used for packaging films and the like and that uses biomass-derived raw materials, and a method for producing the same.
  • a biaxially stretched film made of an aliphatic polyamide represented by polyamide 6 is excellent in impact resistance and bending pinhole resistance, and is widely used as various packaging materials.
  • Biomass is an organic compound that is photosynthesised from carbon dioxide and water, and is a so-called carbon-neutral raw material that regenerates carbon dioxide and water by utilizing it. Carbon neutrality means reducing emissions of carbon dioxide, a greenhouse gas, to virtually zero by balancing the amount of carbon dioxide emitted and absorbed in the environment. Biomass plastics made from these biomass materials have been rapidly put to practical use, and a biaxially oriented polyamide film containing a polyamide 6 resin and a polyamide resin at least part of which is derived from biomass has been proposed (Patent Document 1). ).
  • Polyamide 6 resin and polyamide resin, at least part of which is derived from biomass, may differ in specific gravity and shape of resin chips, so the segregation of these raw resin chips causes variation in the ratio of raw materials in the mixing and extrusion processes.
  • the difference in biomass degree occurs in the MD (Machine Direction) direction of the film.
  • the object of the present invention is to provide a biaxially oriented polyamide film using a raw material derived from biomass, and a film roll of a biaxially oriented polyamide film that has little variation in the degree of biomass in the MD direction even if it is a long film roll with a long winding length. and to provide a method for producing the same.
  • the present invention consists of the following configurations.
  • (Section 1) Made of a biaxially stretched polyamide film containing 99 to 70% by mass of polyamide 6 resin and 1 to 30% by mass of polyamide resin at least part of which is derived from biomass, Samples are taken every 1000 m from the surface layer of the film roll to the core in the MD direction, and the maximum value of biomass degree when measuring radioactive carbon 14 C is Xmax, the minimum value is Xmin, and the average value is Xave.
  • the variation in biomass degree represented by (1) is 15% or less,
  • a biaxially stretched polyamide film roll having a roll length of 1,000 to 60,000 m and a width of 400 to 3,000 mm.
  • (Section 5) A laminated film roll obtained by laminating a sealant film on the biaxially oriented polyamide film roll according to any one of Items 1 to 4.
  • (Section 6) A step of supplying and mixing a raw material resin to an extruder, extruding the raw material resin into a sheet form from the extruder, cooling it on a casting drum to form an unstretched sheet, and subjecting the molded unstretched sheet to MD
  • a method for producing a biaxially stretched polyamide film roll characterized by melt extruding a raw material resin from an extruder.
  • the raw resin chips of the second hopper are supplied through a pipe having an outlet in the first hopper and directly above the extruder, and the raw resin chips of the first hopper and the raw resin of the second hopper Item 7.
  • FIG. 2 is a schematic diagram showing an example of a method of mixing two or more resins in a film roll manufacturing process.
  • the biaxially stretched polyamide film of the present invention contains 70 to 99% by mass of polyamide 6 resin and 1 to 30% by mass of polyamide whose raw material is at least partly derived from biomass.
  • the polyamide 6 resin is contained in an amount of 70% by mass or more, the excellent mechanical strength such as impact strength and the gas barrier property against oxygen, which are inherent to the biaxially stretched polyamide film made of polyamide 6, can be obtained.
  • 1 to 30% by mass of polyamide at least part of which is derived from biomass, not only the effect of reducing the impact on carbon dioxide emissions in the environment, but also bending pinhole resistance and abrasion resistance Improves pinpoint performance.
  • Polyamide 6 used in the present invention is usually produced by ring-opening polymerization of ⁇ -caprolactam.
  • Polyamide 6 obtained by ring-opening polymerization is usually melt-extruded by an extruder after removing the lactam monomer with hot water and then drying.
  • the relative viscosity of polyamide 6 is preferably 1.8-4.5, more preferably 2.6-3.2. If the relative viscosity is less than 1.8, the impact strength of the film will be insufficient. If it is more than 4.5, the load on the extruder is increased, making it difficult to obtain an unstretched film before stretching.
  • polyamide 6 in addition to those polymerized from commonly used fossil fuel-derived monomers, polyamide 6 chemically recycled from waste polyamide 6 products such as waste plastic products, waste tire rubber, fibers, and fishing nets can also be used.
  • waste polyamide 6 products such as waste plastic products, waste tire rubber, fibers, and fishing nets
  • depolymerization is performed to obtain ⁇ -caprolactam, which is purified and then polyamide 6 is obtained.
  • a method of polymerization can be used.
  • polyamide 6 obtained by mechanically recycling waste material from the production process of the polyamide film can be used together.
  • Mechanically recycled polyamide 6 is, for example, a non-standard film that cannot be shipped when manufacturing a biaxially stretched polyamide film, and waste materials generated as cut ends (edge trim) are collected and melted extrusion or compression molding. It is a raw material pelletized by
  • Polyamide at least part of which is derived from biomass examples include polyamide 11, polyamide 410, polyamide 610, polyamide 1010, polyamide MXD10, and polyamide 11/6T copolymer resin.
  • Polyamide 11 is a polyamide resin having a structure in which monomers having 11 carbon atoms are bonded via amide bonds.
  • Polyamide 11 is usually obtained using aminoundecanoic acid or undecanelactam as a monomer.
  • aminoundecanoic acid is desirable from the viewpoint of carbon neutrality because it is a monomer obtained from castor oil.
  • These structural units derived from monomers having 11 carbon atoms account for preferably 50 mol% or more, more preferably 80% mol or more, more preferably 80% mol or more, and 100 mol% of all structural units in polyamide 11. good too.
  • Polyamide 11 is usually produced by the ring-opening polymerization of undecanelactam described above.
  • Polyamide 11 obtained by ring-opening polymerization is usually melt-extruded by an extruder after removing the lactam monomer with hot water and then drying.
  • the relative viscosity of polyamide 11 is preferably 1.8 to 4.5, more preferably 2.4 to 3.2.
  • Polyamide 410 is a polyamide resin having a structure in which a monomer having 4 carbon atoms and a diamine having 10 carbon atoms are copolymerized. Polyamide 410 typically utilizes sebacic acid and tetramethylene diamine. Sebacic acid is preferably made from castor oil, which is a vegetable oil, from an environmental point of view. Sebacic acid used here is preferably obtained from castor oil from the viewpoint of environmental protection, particularly from the viewpoint of carbon neutrality.
  • Polyamide 610 is a polyamide resin having a structure in which a diamine having 6 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized. Hexamethylenediamine and sebacic acid are commonly used. Of these, sebacic acid is a monomer obtained from castor oil, and is desirable from the viewpoint of carbon neutrality. Structural units derived from these monomers having 6 carbon atoms and structural units derived from monomers having 10 carbon atoms, the total in PA610 is 50 mol of all structural units % or more, more preferably 80 mol % or more, and may be 100 mol %.
  • Polyamide 1010 is a polyamide resin having a structure in which a diamine having 10 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized.
  • Polyamide 1010 typically utilizes 1,10-decanediamine (decamethylenediamine) and sebacic acid. Decamethylenediamine and sebacic acid are monomers obtained from castor oil, and thus are desirable from the carbon neutral point of view.
  • These structural units derived from a diamine having 10 carbon atoms and structural units derived from a dicarboxylic acid having 10 carbon atoms account for 50 mol% or more of all structural units in PA1010. It is preferably 80 mol % or more, more preferably 100 mol %.
  • the lower limit of the content of the polyamide, at least part of which is derived from biomass is not particularly limited, but is preferably 1% by mass, more preferably 3% by mass or more.
  • the upper limit of the content is 30% by mass, more preferably 20% by mass. If the content of the polyamide, at least part of which is derived from biomass, exceeds 30% by mass, the melt film may become unstable during casting, making it difficult to obtain a homogeneous unstretched film.
  • the biaxially stretched polyamide film of the present invention requires various additives such as other thermoplastic resins, lubricants, heat stabilizers, antioxidants, antistatic agents, antifogging agents, ultraviolet absorbers, dyes, pigments, etc. can be included depending on
  • the biaxially stretched polyamide film of the present invention can contain a thermoplastic resin in addition to the polyamide 6 and the polyamide resin at least part of which is derived from biomass as long as the object of the present invention is not impaired.
  • a thermoplastic resin such as polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, polyamide 6/66 copolymer resin, and polyamide MXD6 resin.
  • Thermoplastic resins other than polyamides for example, polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate, and polyolefin polymers such as polyethylene and polypropylene, may be added as necessary. good. It is preferable that the raw materials for these thermoplastic resins are biomass-derived, since they do not affect the increase or decrease of carbon dioxide on the ground, thereby reducing the burden on the environment.
  • the biaxially stretched polyamide film of the present invention preferably contains fine particles or an organic lubricant such as a fatty acid amide as a lubricant in order to improve slipperiness and facilitate handling.
  • an organic lubricant such as a fatty acid amide
  • the fine particles inorganic fine particles such as silica, kaolin, and zeolite, and polymer-based organic fine particles such as acryl-based and polystyrene-based organic fine particles can be appropriately selected and used. From the viewpoint of transparency and slipperiness, it is preferable to use fine silica particles.
  • the fine particles preferably have an average particle size of 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m.
  • the biaxially stretched polyamide film of the present invention may contain a fatty acid amide and/or a fatty acid bisamide for the purpose of improving slipperiness.
  • Fatty acid amides and/or fatty acid bisamides include erucic acid amide, stearic acid amide, ethylene bis stearic acid amide, ethylene bis behenic acid amide, ethylene bis oleic acid amide and the like.
  • the content of fatty acid amide and/or fatty acid bisamide is preferably 0.01 to 0.40% by mass, more preferably 0.05 to 0.30% by mass.
  • the biaxially stretched polyamide film of the present invention contains a polyamide resin such as polyamide MXD6 resin, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, polyamide 6/66 copolymer resin for the purpose of improving slipperiness. can be added.
  • a polyamide resin such as polyamide MXD6 resin, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, polyamide 6/66 copolymer resin for the purpose of improving slipperiness. can be added.
  • the biaxially stretched polyamide film of the present invention can contain an antioxidant.
  • Phenolic antioxidants are preferred as antioxidants.
  • the phenolic antioxidant is preferably a fully hindered phenolic compound or a partially hindered phenolic compound.
  • the thickness of the biaxially stretched polyamide film in the present invention is not particularly limited. 30 ⁇ m is used.
  • the biaxially stretched polyamide film in the present invention preferably has a heat shrinkage rate of 0.6 to 3.0% in both the MD and TD directions at 160° C. for 10 minutes, more preferably 0.6. ⁇ 2.5%.
  • a heat shrinkage rate of 3.0% or less, it is possible to suppress the occurrence of curling and shrinkage when heat is applied in subsequent processes such as lamination and printing.
  • the impact strength of the biaxially stretched polyamide film in the present invention is preferably 0.7 J/15 ⁇ m or more.
  • a more preferable impact strength is 0.9 J/15 ⁇ m or more.
  • the upper limit of the impact strength is not particularly limited, it may be 2.0 J/15 ⁇ m or less, or 1.5 J/15 ⁇ m or less.
  • the haze value of the biaxially stretched polyamide film in the invention is preferably 10% or less. More preferably 7% or less, still more preferably 5% or less. If the haze value is small, the transparency and gloss are good, so when used for packaging bags, clear printing can be performed and the product value is increased.
  • the dynamic friction coefficient of the biaxially stretched polyamide film in the invention is preferably 1.0 or less. It is more preferably 0.7 or less, still more preferably 0.5 or less. If the coefficient of dynamic friction of the film is small, the slipperiness is improved and the handling of the film is facilitated. If the coefficient of dynamic friction of the film is too small, the film will be too slippery and difficult to handle.
  • the content of biomass-derived carbon measured by radioactive carbon 14 C of ASTM D6866-18 that is, the degree of biomass is 1 to 30% with respect to the total carbon in the polyamide film. is preferred. Since carbon dioxide in the atmosphere contains 14 C at a certain rate (105.5 pMC), the 14 C content in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. is known to be It is also known that fossil fuels contain almost no 14 C. Therefore, by measuring the ratio of 14 C contained in the total carbon atoms in the film, the ratio of biomass-derived carbon can be calculated.
  • the film roll of the present invention is sampled every 1000 m from the surface layer of the film roll to the winding core in the MD direction, and the maximum value of biomass degree when measuring radiocarbon 14 C is Xmax, the minimum value is Xmin, and the average
  • the variation in the degree of biomass represented by the following formula (1) is preferably 15% or less, more preferably 13% or less, and most preferably 10% or less.
  • Formula (1) Vertical variation of biomass degree (%) ⁇ (Xmax-Xmin) / Xave ⁇ ⁇ 100
  • the upper limit of the thickness accuracy of the film roll in the MD direction and the TD direction in the present invention is preferably 30% or less, more preferably 25% or less, and most preferably 20% or less.
  • the thickness accuracy of the film is 30% or less, it is possible to suppress appearance defects of the film roll to be obtained, and to prevent the occurrence of wrinkles and winding misalignment due to meandering.
  • polyamide 6 resin chips and polyamide resin chips at least part of which is derived from biomass are supplied to and mixed with an extruder equipped with a hopper, and the extruder A process of melt extruding a polyamide raw material resin from a sheet and cooling it on a casting drum to form an unstretched sheet, an MD stretching process of stretching the molded unstretched sheet in the MD direction, and a TD after the MD stretching
  • raw material resin chips of polyamide 6 are supplied to a first hopper, and at least one of the raw materials is fed to a second hopper.
  • the raw material resin chips of polyamide whose part is derived from biomass are supplied, and the raw resin chips supplied from the first hopper and the raw resin chips supplied from the second hopper are mixed right above the extruder, and then the extruder It is preferable to melt-extrude the raw material resin from.
  • the raw material resin chips of the second hopper are supplied through a pipe (hereinafter sometimes referred to as an inner pipe) having an outlet directly above the extruder in the first hopper.
  • the raw resin chips of the first hopper and the raw resin chips of the second hopper can be mixed.
  • FIG. 1 is a schematic diagram showing an example of the relationship between an extruder 2 having a hopper 1 and an inner pipe 3.
  • resins other than the polyamide 6 resin chips which are the main raw material of the polyamide film of the present invention, are supplied through the inner pipe 3, and the polyamide 6 resin chips are supplied from the upper part of the hopper 1.
  • the inner pipe outlet 4 of the inner pipe 3 is directly above the raw material resin supply port 5 of the extruder 2, the mixing ratio of the raw materials can be kept constant.
  • the raw material resin is melt extruded using an extruder, extruded into a film form from a T-die, cast on a cooling roll and cooled to obtain an unstretched film.
  • the melting temperature of the resin is preferably 220-350°C. If it is less than the above range, unmelted materials may occur, resulting in appearance defects such as defects.
  • the die temperature is preferably 250-350°C.
  • the cooling roll temperature is preferably -30 to 80°C, more preferably 0 to 50°C.
  • a method using an air knife or an electrostatic contact method in which static charge is applied is preferably applied. can. Especially the latter is preferably used.
  • the stretching method may be a simultaneous biaxial stretching method or a sequential biaxial stretching method.
  • single-stage stretching or multi-stage stretching such as two-stage stretching can be used as the stretching method in the MD direction.
  • multi-stage stretching in the MD direction such as two-stage stretching is preferable in terms of physical properties and uniformity of physical properties in the MD and TD directions, that is, isotropy, rather than single-stage stretching.
  • Stretching in the MD direction in the sequential biaxial stretching method is preferably roll stretching.
  • the lower limit of the stretching temperature in the MD direction is preferably 50°C, more preferably 55°C, and still more preferably 60°C.
  • the upper limit of the stretching temperature in the MD direction is preferably 120°C, more preferably 115°C, still more preferably 110°C.
  • the lower limit of the draw ratio in the MD direction is preferably 2.2 times, more preferably 2.5 times, and still more preferably 2.8 times.
  • the upper limit of the draw ratio in the MD direction is preferably 5.0 times, more preferably 4.5 times, and most preferably 4.0 times.
  • the stretching ratio in the MD direction is the total stretching ratio obtained by multiplying the respective stretching ratios.
  • the above-mentioned stretching is possible in each stretching. is preferably adjusted.
  • the first stage stretching is preferably 1.5 to 2.1 times
  • the second stage stretching is preferably 1.5 to 1.8 times.
  • a film stretched in the MD direction is stretched in the TD direction with a tenter, heat-set, and then subjected to relaxation treatment (also called relaxation treatment).
  • the lower limit of the stretching temperature in the TD direction is preferably 50°C, more preferably 55°C, still more preferably 60°C.
  • the upper limit of the stretching temperature in the TD direction is preferably 190°C, more preferably 185°C, still more preferably 180°C.
  • the lower limit of the draw ratio in the TD direction is preferably 2.8, more preferably 3.2, still more preferably 3.5, and particularly preferably 3.8.
  • the upper limit of the draw ratio in the TD direction is preferably 5.5 times, more preferably 5.0 times, still more preferably 4.7 times, particularly preferably 4.5 times, and most preferably 4.5 times. Three times.
  • the above draw ratio in the TD direction is the total draw ratio obtained by multiplying each ratio.
  • the lower limit of the heat setting temperature is preferably 210°C, more preferably 212°C.
  • the upper limit of the heat setting temperature is preferably 220°C, more preferably 218°C.
  • the heat setting time is preferably 0.5 to 20 seconds. More preferably, it is 1 to 15 seconds.
  • the heat setting time can be set to an appropriate time in consideration of the heat setting temperature and the wind speed in the heat setting zone.
  • the temperature for the relaxation treatment can be selected in the range from the heat setting temperature to the glass transition temperature Tg of the resin, but the temperature within the range of [heat setting temperature -10°C] to [Tg + 10°C] is preferable.
  • the lower limit of the relaxation rate of relaxation processing is preferably 0.5%, more preferably 1%.
  • the upper limit of the relaxation rate is preferably 20%, more preferably 15%, still more preferably 10%.
  • a vapor deposition film formed by the vapor deposition process a vapor deposition film of aluminum, a vapor deposition film of a single substance or a mixture of silicon oxide or aluminum oxide is preferably used. Furthermore, by coating a protective layer or the like on these vapor-deposited films, the oxygen barrier properties and the like can be improved.
  • Heat-sealable laminated film roll When the polyamide film roll of the present invention is used as a packaging material, it is preferable to laminate a heat-sealable film called a sealant film.
  • a laminated film roll can also be constructed by interposing an adhesive layer, a printed layer, a metal layer, or the like between the biaxially stretched polyamide film and the sealant film.
  • a lamination method known methods such as a dry lamination method and an extrusion lamination method can be used, but any method may be used. Specific examples are shown below.
  • Example of layer structure of the laminated film roll of the present invention ONY/adhesive/CPP, ONY/adhesive/Al/adhesive/CPP, PET/adhesive/ONY/adhesive/CPP, PET/adhesive/ONY/ Adhesive/Al/Adhesive/CPP, PET/Adhesive/Al/Adhesive/ONY/Adhesive/CPP, ONY/Adhesive/PET/Adhesive/CPP, ONY/PE/CPP, ONY/Adhesive/ EVOH/adhesive/CPP, ONY/adhesive/aluminum-deposited PET/adhesive/CPP, CPP/adhesive/ONY/adhesive/LLDPE, ONY/adhesive/aluminum-deposited CPP.
  • Film evaluation was performed by the following measurement methods. Unless otherwise specified, measurements were carried out in a measurement room at 23° C. and a relative humidity of 65%.
  • Film thickness accuracy in the MD direction A film test piece with a width of 5 cm and a length of 100 cm was cut out in the MD direction from the center of the film roll in the width direction, and the thickness was measured at 20 points at a pitch of 5 cm using a dial gauge (thickness gauge manufactured by Tester Sangyo Co., Ltd.). . Taking the maximum thickness as Tmax, the minimum thickness as Tmin, and the average thickness as Tave, the thickness precision (Tv) was obtained from the following equation (2).
  • MD direction Tv (%) ⁇ (Tmax-Tmin)/Tave ⁇ x 100 [Thickness accuracy of film in TD direction]
  • a film test piece having a width of 5 cm was cut out in the TD direction of the film roll, and measured at a pitch of 5 cm using a dial gauge (thickness measuring instrument manufactured by Tester Sangyo Co., Ltd.). With Tmax being the maximum thickness, Tmin being the minimum thickness, and Tave being the average thickness, the thickness precision (Tv) was obtained from the following equation (3).
  • Formula (3) TD direction Tv (%) ⁇ (Tmax-Tmin)/Tave ⁇ x 100
  • Thermal shrinkage rate (%) [(length before treatment - length after treatment) / length before treatment] ⁇ 100
  • Example 1 A device consisting of an extruder and a co-extrusion T-die with a width of 380 mm is used, and the molten resin is extruded from the T-die into a film, cast on a cooling roll temperature-controlled at 20° C., and electrostatically adhered to form an unstretched film with a thickness of 200 ⁇ m. got The resin composition B was introduced using an inner pipe as shown in FIG. 1 so as to be mixed with the resin composition A directly above the extruder.
  • Resin composition A Polyamide 6 (manufactured by Toyobo Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 97 parts by mass, porous silica fine particles (manufactured by Fuji Silysia Chemical Co., Ltd., average particle diameter 2.0 ⁇ m, pore volume 1 .6 ml/g) and 0.15 parts by mass of fatty acid bisamide (ethienbisstearic acid amide manufactured by Kyoeisha Chemical Co., Ltd.).
  • Resin composition B Polyamide resin containing raw materials derived from biomass-polyamide 11 (manufactured by Arkema, relative viscosity 2.5, melting point 186 ° C.) 3.0 parts by mass
  • the obtained unstretched film was guided to a roll type stretching machine, and after being stretched 1.73 times in the MD direction at 80°C by utilizing the peripheral speed difference of the rolls, it was further stretched 1.85 times at 70°C. Subsequently, this uniaxially stretched film was continuously guided to a tenter type stretching machine, preheated at 110°C, and stretched in the TD direction at 120°C for 1.2 times, 130°C for 1.7 times, and 160°C for 2.0 times. After stretching and heat setting treatment at 218 ° C., 7% relaxation treatment is performed at 218 ° C., and then the surface of the side to be dry laminated with the linear low density polyethylene film is corona discharge treated to form a jumbo biaxially oriented polyamide film.
  • the obtained jumbo roll was slit to obtain a biaxially oriented polyamide film roll having a width of 1,000 mm and a winding length of 4,000 m.
  • Table 1 shows the evaluation results of the obtained biaxially stretched polyamide film roll.
  • Example 2 to Example 9 A biaxially oriented polyamide film roll was obtained in the same manner as in Example 1, except that the film forming conditions such as the raw material resin composition and the heat setting temperature were changed as shown in Table 1. Table 1 shows the evaluation results of the obtained biaxially stretched polyamide film roll.
  • Example 1 A device consisting of an extruder and a co-extrusion T-die with a width of 380 mm is used, and the molten resin is extruded from the T-die into a film, cast on a cooling roll temperature-controlled at 20° C., and electrostatically adhered to form an unstretched film with a thickness of 200 ⁇ m. got The same resin composition A and resin composition B as in Example 1 were used, but the resin composition B was mixed at the top of the hopper without using an inner pipe. , fed the resin composition to the extruder.
  • a biaxially oriented polyamide film roll was obtained under the same film-forming conditions as in Example 1, except that the mixing method of the resin composition was changed. Table 2 shows the evaluation results of the obtained biaxially stretched polyamide film roll.
  • polyamide 410, polyamide 610, and polyamide 1010 which are polyamide resins containing raw materials derived from biomass, were as follows.
  • the biaxially stretched polyamide film rolls of the examples were able to reduce the variation in biomass content when measuring radiocarbon 14 C in the MD direction by using an inner pipe for supplying raw materials.
  • the comparative example does not use an inner pipe to supply raw materials, and the raw material segregation causes large fluctuations in the raw material ratio in the MD direction. There was a lot of variation in the biomass degree when measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Robotics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】 本発明によれば、耐熱性、耐衝撃性、耐屈曲ピンホール性に優れるとともに、バイオマス由来の原料を用いたカーボンニュートラルな二軸延伸ポリアミドフィルムを提供する。また、縦(長手)方向でのバイオマス度のばらつきが抑制される二軸延伸ポリアミドフィルムロールを提供する。 【解決手段】 ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含む二軸延伸ポリアミドフィルムからなり、MD方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、放射性炭素14Cを測定したときのバイオマス度のばらつきが15%以下であり、巻長1,000~60,000m、幅400~3,000mmであるの二軸延伸ポリアミドフィルムロール。

Description

二軸延伸ポリアミドフィルムロール
 本発明は、包装用フィルムなどに好適に使用されるとともに、バイオマス由来の原料を用いたカーボンニュートラルな二軸延伸ポリアミドフィルムロール及びその製造方法に関する。
ポリアミド6に代表される脂肪族ポリアミドからなる二軸延伸フィルムは、耐衝撃性と耐屈曲ピンホール性に優れており、各種の包装材料として広く使用されている。
近年、循環型社会の構築のため、材料分野において化石燃料の原料に代わりバイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな原料である。カーボンニュートラルとは、環境中での二酸化炭素の排出量と吸収量を均衡させることにより、温室効果ガスである二酸化炭素の排出を実質的にゼロにすることである。これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、ポリアミド6樹脂及び少なくとも原料の一部がバイオマス由来であるポリアミド樹脂を含む二軸延伸ポリアミドフィルムも提案されている(特許文献1)。
国際公開第2020/170714号公報
 ポリアミド6樹脂と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂では、比重や樹脂チップの形状が異なる場合があるため、これら原料樹脂チップの偏析により、混合、押出し工程で原料比率のバラツキが生じ易く、フィルムMD(Machine Direction)方向でバイオマス度の差が生じる。その結果、長尺な製品ロールのMD方向で均一なバイオマス度の製品が得られなくなるケースがあった。
本発明の目的はバイオマス由来の原料を用いた二軸延伸ポリアミドフィルムであり、巻き長の長い長尺のフィルムロールであってもMD方向のバイオマス度のばらつきが少ない二軸延伸ポリアミドフィルムのフィルムロール及びその製造方法を提供することにある。
 本発明は以下の構成よりなる。
(項1)
ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含む二軸延伸ポリアミドフィルムからなり、
MD方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、放射性炭素14Cを測定したときのバイオマス度の最大値をXmax、最小値をXmin、平均値をXaveとしたときの、下記式(1)で表されるバイオマス度のばらつきが15%以下であり、
巻長1,000~60,000m、幅400~3,000mmである、二軸延伸ポリアミドフィルムロール。
 式(1) バイオマス度のばらつき(%)={(Xmax-Xmin)/Xave}×100
(項2)
前記バイオマス度が1~30%である、項1に記載の二軸延伸ポリアミドフィルムロール。
(項3)
 前記二軸延伸ポリアミドフィルムにおける原料の少なくとも一部がバイオマス由来であるポリアミド樹脂が、ポリアミド11、ポリアミド410、ポリアミド610、及びポリアミド1010からなる群から選ばれる少なくとも1種のポリアミド樹脂である、項1又は項2に記載のフィルムロール。
(項4)
前記フィルムロールのMD方向及びTD(Transverse Direction)方向の厚み精度がいずれも30%以下である、項1~3のいずれか一項に記載の二軸延伸ポリアミドフィルムロール。
(項5)
 項1~4のいずれか一項に記載の二軸延伸ポリアミドフィルムロールにシーラントフィルムを積層した、積層フィルムロール。
(項6)
 原料樹脂を押出機に供給及び混合し、該押出機から前記原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程と、成形された前記未延伸シートをMD方向及びTD方向に延伸する工程と、熱固定工程とを含む、二軸延伸ポリアミドフィルムロールの製造方法において、第1のホッパーにポリアミド6の原料樹脂チップを供給し、第2のホッパーに少なくとも原料の一部がバイオマス由来であるポリアミドの原料樹脂チップを供給し、第1のホッパーから供給された原料樹脂チップと第2のホッパーから供給された原料樹脂チップを押出機の直上で混合した後、押出機から原料樹脂を溶融押出することを特徴とする、二軸延伸ポリアミドフィルムロールの製造方法。
(項7)
前記第2のホッパーの原料樹脂チップを、前記第1のホッパー内であって押出機直上に出口を有する配管を通じて供給し、前記第1のホッパーの原料樹脂チップと前記第2のホッパーの原料樹脂チップを混合する工程を含む、項6に記載の二軸延伸ポリアミドフィルムロールの製造方法。
本発明によれば、巻き長の長い長尺のフィルムロールであってもMD向のバイオマス度のばらつきが少ない二軸延伸ポリアミドフィルムロールが得られる。
フィルムロールの製造工程における2種以上の樹脂の混合方法の一例を示す概略図である。
 本発明における二軸延伸ポリアミドフィルムは、ポリアミド6樹脂を70~99質量%と、原料の少なくとも一部がバイオマス由来であるポリアミドを1~30質量%を含む。ポリアミド6樹脂を70質量%以上含むことで、ポリアミド6からなる二軸延伸ポリアミドフィルムが本来持つ、優れた衝撃強度などの機械的強度や酸素などのガスバリア性が得られる。加えて、原料の少なくとも一部がバイオマス由来であるポリアミドを1~30質量%含むことで、環境中の二酸化炭素の排出に与える影響を少なくする効果だけでなく、耐屈曲ピンホール性及び耐摩耗ピンポール性が向上する。
<ポリアミド6>
本発明に使用するポリアミド6は、通常、ε-カプロラクタムの開環重合によって製造される。開環重合で得られたポリアミド6は、通常、熱水でラクタムモノマーを除去した後、乾燥してから押出し機で溶融押出しされる。
 ポリアミド6の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.6~3.2である。相対粘度が1.8より小さい場合は、フィルムの衝撃強度が不足する。4.5より大きい場合は、押出機の負荷が大きくなり延伸前の未延伸フィルムを得るのが困難になる。
ポリアミド6として、通常使用されている化石燃料由来のモノマーから重合されたものに加え、廃棄プラスチック製品、廃棄タイヤゴム、繊維、漁網などの廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6を用いることもできる。廃棄ポリアミド6製品からケミカルリサイクルしたポリアミド6を得る方法としては、例えば、ポリアミド製製品の使用済み品を回収した後、解重合を行ってε-カプロラクタムを得てこれを精製してからポリアミド6を重合する方法を用いることができる。
加えて、ポリアミドフィルムの製造工程から出された廃材をメカニカルリサイクルしたポリアミド6を併用することができる。メカニカルリサイクルしたポリアミド6とは、例えば、二軸延伸ポリアミフィルムを製造する際に生成する規格外の出荷できないフィルムや切断端材(耳トリム)として発生する屑材を回収し、溶融押し出しや圧縮成形でペレット化させた原料である。
<原料の少なくとも一部がバイオマス由来であるポリアミド>
 本発明に使用する、原料の少なくとも一部がバイオマス由来であるポリアミドとしては、例えば、ポリアミド11、ポリアミド410、ポリアミド610、ポリアミド1010、ポリアミドMXD10、及びポリアミド11・6T共重合樹脂などが挙げられる。
 ポリアミド11は、炭素原子数11である単量体がアミド結合を介して結合された構造を有するポリアミド樹脂である。通常、ポリアミド11は、アミノウンデカン酸又はウンデカンラクタムを単量体として用いて得られる。とりわけアミノウンデカン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数が11である単量体に由来する構成単位は、ポリアミド11内において全構成単位のうちの50モル%以上が好ましく、80%モル以上が更に好ましく、100モル%であってもよい。ポリアミド11としては、通常、前述したウンデカンラクタムの開環重合によって製造される。開環重合で得られたポリアミド11は、通常、熱水でラクタムモノマーを除去した後、乾燥してから押出し機で溶融押出しされる。ポリアミド11の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.4~3.2である。
 ポリアミド410は、炭素数4である単量体と炭素原子数10であるジアミンとが共重合された構造を有するポリアミド樹脂である。通常ポリアミド410には、セバシン酸とテトラメチレンジアミンとが利用される。セバシン酸としては、環境面から植物油のヒマシ油を原料とするものが好ましい。ここで用いるセバシン酸としては、ヒマシ油から得られるものが環境保護の観点、特にカーボンニュートラルの観点から望ましい。
 ポリアミド610は、炭素原子数6であるジアミンと炭素原子数10であるジカルボン酸とが重合された構造を有するポリアミド樹脂である。通常、ヘキサメチレンジアミンとセバシン酸が利用される。このうちセバシン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数6である単量体に由来する構成単位と、炭素原子数10である単量体に由来する構成単位とは、PA610内においてその合計が、全構成単位のうちの50モル%以上が好ましく、80%モル以上が更に好ましく、100モル%であってもよい。
 ポリアミド1010は、炭素原子数10であるジアミンと炭素原子数10であるジカルボン酸とが重合された構造を有するポリアミド樹脂である。通常、ポリアミド1010には、1,10-デカンジアミン(デカメチレンジアミン)とセバシン酸とが利用される。デカメチレンジアミン及びセバシン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数10であるジアミンに由来する構成単位と、炭素原子数10であるジカルボン酸に由来する構成単位とは、PA1010内においてその合計が、全構成単位のうちの50モル%以上が好ましく、80モル%以上が更に好ましく、100モル%であってもよい。
 本発明の二軸延伸ポリアミドフィルムにおける、原料の少なくとも一部がバイオマス由来であるポリアミドの含有量の下限は特に限定されないが、1質量%が好ましく、3質量以上がより好ましい。含有量の上限は30質量%であり、20質量%がより好ましい。原料の少なくとも一部がバイオマス由来であるポリアミドの含有量が30質量%を超えると、溶融フィルムをキャスティングする時に溶融フィルムが安定しなくなり均質な未延伸フィルムを得るのが難しくなる場合がある。
<副材料、添加剤>
 本発明の二軸延伸ポリアミドフィルムには、他の熱可塑性樹脂、滑剤、熱安定剤、酸化防止剤、帯電防止剤や防曇剤、紫外線吸収剤、染料、顔料等の各種の添加剤を必要に応じて含有させることができる。
<他の熱可塑性樹脂>
 本発明の二軸延伸ポリアミドフィルムには、本発明の目的を損なわない範囲で、上記のポリアミド6及び原料の少なくとも一部がバイオマス由来であるポリアミド樹脂の他に熱可塑性樹脂を含むことができる。例えば、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂、ポリアミドMXD6樹脂、などのポリアミド系樹脂が挙げられる。必要に応じてポリアミド系以外の熱可塑性樹脂、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系重合体、ポリエチレン、ポリプロピレン等のポリオレフィン系重合体等を含有させてもよい。これらの熱可塑性樹脂の原料はバイオマス由来であると、地上の二酸化炭素の増減に影響を与えないので、環境負荷を低減できるので好ましい。
<滑剤>
本発明の二軸延伸ポリアミドフィルムには、滑り性を良くして取扱い易くするために、滑剤として微粒子や脂肪酸アミドなどの有機滑剤を含有させることが好ましい。前記微粒子としては、シリカ、カオリン、ゼオライト等の無機微粒子、アクリル系、ポリスチレン系等の高分子系有機微粒子等の中から適宜選択して使用することができる。なお、透明性と滑り性の面から、シリカ微粒子を用いることが好ましい。前記微粒子の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。
本発明の二軸延伸ポリアミドフィルムには、滑り性を良くする目的で脂肪酸アマイド及び/又は脂肪酸ビスアマイドを含有させることができる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドとしては、エルカ酸アマイド、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスオレイン酸アマイドなどが挙げられる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量は、好ましくは0.01~0.40質量%であり、更に好ましくは0.05~0.30質量%である。
本発明の二軸延伸ポリアミドフィルムには、滑り性を良くする目的でポリアミドMXD6樹脂、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂などのポリアミド樹脂を添加することができる。
<酸化防止剤>
本発明の二軸延伸ポリアミドフィルムには、酸化防止剤を含有させることができる。酸化防止剤としては、フェノール系酸化防止剤が好ましい。フェノール系酸化防止剤は、完全ヒンダードフェノール系化合物又は部分ヒンダードフェノール系化合物が好ましい。例えば、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス〔1,1-ジメチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル〕2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。フェノール系酸化防止剤を含有させることにより、二軸延伸ポリアミドフィルムの製膜操業性が向上する。
本発明における二軸延伸ポリアミドフィルムの厚みは、特に制限されるものではないが、包装材料として使用する場合、通常100μm以下であり、一般には5~50μmの厚みのものが使用され、特に8~30μmのものが使用される。
本発明における二軸延伸ポリアミドフィルムは、160℃、10分での熱収縮率がMD方向及びTD方向ともに0.6~3.0%の範囲であることが好ましく、より好ましくは、0.6~2.5%である。熱収縮率を3.0%以下とすることにより、ラミネートや印刷など、次工程で熱がかかる場合にカールや収縮の発生を抑制することができる。熱収縮率を0.6%未満とすることは可能ではあるが、力学的に脆くなることや、生産性が悪化する場合がある。
本発明における二軸延伸ポリアミドフィルムの衝撃強度は、0.7J/15μm以上が好ましい。より好ましい衝撃強度は、0.9J/15μm以上である。衝撃強度の上限は特に限定されないが、2.0J/15μm以下であってもよく、1.5J/15μm以下であってもよい。
本発明における二軸延伸ポリアミドフィルムのヘイズ値は、10%以下であることが好ましい。より好ましくは7%以下、更に好ましくは5%以下である。ヘイズ値が小さいと透明性や光沢が良いので、包装袋に使用した場合、きれいな印刷ができ商品価値を高める。
本発明における二軸延伸ポリアミドフィルムの動摩擦係数は、1.0以下であることが好ましい。より好ましくは0.7以下、更に好ましくは0.5以下である。フィルムの動摩擦係数が小さいと滑り性を良くなり、フィルムのハンドリングがしやすくなる。フィルムの動摩擦係数が小さすぎると、滑りすぎてハンドリングがしにくくなるので本発明の二軸延伸ポリアミドフィルムの動摩擦係数は0.15以上が好ましい。
本発明における二軸延伸ポリアミドフィルムは、ASTM D6866-18の放射性炭素14C測定によるバイオマス由来の炭素の含有量、すなわちバイオマス度が、ポリアミドフィルム中の全炭素に対して1~30%含まれることが好ましい。大気中の二酸化炭素には、14Cが一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中の14C含有量も105.5pMC程度であることが知られている。また、化石燃料中には14Cが殆ど含まれていないことも知られている。したがって、フィルム中の全炭素原子中に含まれる14Cの割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。
 本発明のフィルムロールにおいて、フィルムロールをMD方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、放射性炭素14Cを測定したときのバイオマス度の最大値をXmax、最小値をXmin、平均値をXaveとしたときの、下記式(1)で表されるバイオマス度のばらつきは15%以下であることが好ましく、さらに好ましくは13%以下、最も好ましくは10%以下である。
 式(1) バイオマス度の縦方向ばらつき(%)={(Xmax-Xmin)/Xave}×100
 本発明におけるフィルムロールのMD方向及びTD方向の厚み精度の上限は好ましくは30%以下であり、さらに好ましくは25%以下であり、最も好ましくは20%以下である。
 フィルムの厚み精度が30%以下であることにより、得られるフィルムロールの外観不良を抑制することができるとともに、シワの発生や、蛇行による巻きズレなどを防止することができる。
[ポリアミドフィルムの作製方法]
本発明のポリアミドフィルムロールを得るため製造方法は、ポリアミド6樹脂チップと、少なくとも原料の一部がバイオマス由来であるポリアミド樹脂チップとを、ホッパーを備えた押出機に供給及び混合し、該押出機からポリアミド原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程と、成形された前記未延伸シートをMD方向に延伸するMD延伸工程と、前記MD延伸後にTD延伸可能な温度に予熱する予熱工程、前記MD方向と直交するTD方向に延伸するTD延伸工程、前記MD延伸及び前記TD延伸を行なった後の前記ポリアミドフィルムを加熱し結晶化させて熱固定する熱固定工程、前記熱固定されたポリアミドフィルムを幅方向に緊張を緩和してフィルムの残留歪みを除去する熱緩和工程、並びに、熱緩和後のポリアミドフィルムを冷却する冷却工程を含む。
 ポリアミド6樹脂チップと、少なくとも原料の一部がバイオマス由来であるポリアミド樹脂チップとを混合する方法として、第1のホッパーにポリアミド6の原料樹脂チップを供給し、第2のホッパーに少なくとも原料の一部がバイオマス由来であるポリアミドの原料樹脂チップを供給し、第1のホッパーから供給された原料樹脂チップと第2のホッパーから供給された原料樹脂チップを押出機の直上で混合した後、押出機から原料樹脂を溶融押出することが好ましい。
 具体的な態様の一例として、前記第2のホッパーの原料樹脂チップを、前記第1のホッパー内であって押出機直上に出口を有する配管(以下、インナーパイプと称する場合がある)を通じて供給し、前記第1のホッパーの原料樹脂チップと前記第2のホッパーの原料樹脂チップを混合することができる。混合手順の概略図を図1に示す。図1は、ホッパー1を備えた押出機2と、インナーパイプ3との関係の一例を示す概略図である。図1に示す様に、本発明のポリアミドフィルムの主原料であるポリアミド6樹脂チップ以外の樹脂はインナーパイプ3を通じて供給され、ポリアミド6樹脂チップはホッパー1の上部から供給される。そしてインナーパイプ3のインナーパイプ出口4が押出機2の原料樹脂供給口5の直上にあるため、原料の混合比率を一定に保つことができる。
ポリアミド6樹脂チップと少なくとも原料の一部がバイオマス由来であるポリアミド樹脂チップを単一ホッパー内で混合すると、比重やチップの形状の異なる樹脂チップがホッパー内で原料偏析を起こす可能性があり、特にホッパーの内壁が鉛直でない箇所で原料偏析を起こす心配が高い。ホッパーの内壁が鉛直でない箇所は、あるいはホッパーのテーパー形状になっている部分である。インナーパイプを通じてホッパー内の押出機直上部にポリアミド6樹脂チップ以外の樹脂をダイレクトに供給すると、比重やチップ形状が異なっていっても、原料偏斥を低減でき、ポリアミドフィルムロールを安定して工業生産することができる。
 原料樹脂は、押出機を用いて溶融押出しし、Tダイからフィルム状に押出し、冷却ロール上にキャストして冷却し、未延伸フィルムを得る。樹脂の溶融温度は好ましくは220~350℃である。上記未満であると未溶融物などが発生し、欠点などの外観不良が発生することがあり、上記を超えると樹脂の劣化などが観察され、分子量低下、外観低下が発生することがある。ダイ温度は250~350℃が好ましい。
冷却ロール温度は、-30~80℃が好ましく、更に好ましくは0~50℃である。Tダイから押出されたフィルム状溶融物を回転冷却ドラムにキャストし冷却して未延伸フィルムを得るには、例えば、エアナイフを使用する方法や静電荷を印荷する静電密着法等が好ましく適用できる。特に後者が好ましく使用される。
延伸方法としては同時二軸延伸法、逐次二軸延伸法のいずれでもよい。いずれの場合においても、MD方向の延伸方法としては一段延伸又は二段延伸等の多段延伸が使用できる。後述するように、一段での延伸ではなく、二段延伸などの多段のMD方向の延伸が物性面およびMD方向及びTD方向の物性の均一さ、すなわち等方性の面で好ましい。逐次二軸延伸法におけるMD方向の延伸は、ロール延伸が好ましい。
 MD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、更に好ましくは60℃である。MD方向の延伸温度の上限は好ましくは120℃であり、より好ましくは115℃であり、更に好ましくは110℃である。
 MD方向の延伸倍率の下限は好ましくは2.2倍であり、より好ましくは2.5倍であり、更に好ましくは2.8倍である。MD方向の延伸倍率の上限は好ましくは5.0倍であり、より好ましくは4.5倍であり、最も好ましくは4.0倍である。MD方向に多段で延伸する場合は、上記MD方向の延伸倍率はそれぞれの倍率を乗じた全延伸倍率である。
 MD方向の延伸を多段で行う場合には、それぞれの延伸で上述のような延伸が可能であるが、倍率については、全MD方向の延伸倍率の積は5.0以下となるよう、延伸倍率を調整することが好ましい。例えば、二段延伸の場合であれば、一段目の延伸を1.5~2.1倍、二段目の延伸を1.5~1.8倍が好ましい。
 MD方向に延伸したフィルムは、テンターでTD方向に延伸し、熱固定し、リラックス処理(緩和処理ともいう)する。TD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、更に好ましくは60℃である。TD方向の延伸温度の上限は好ましくは190℃であり、より好ましくは185℃であり、更に好ましくは180℃である。
 TD方向の延伸倍率の下限は好ましくは2.8であり、より好ましくは3.2倍であり、更に好ましくは3.5倍であり、特に好ましくは3.8倍である。TD方向の延伸倍率の上限は好ましくは5.5倍であり、より好ましくは5.0倍であり、更に好ましくは4.7であり、特に好ましくは4.5であり、最も好ましくは4.3倍である。TD方向に多段で延伸する場合は、上記TD方向の延伸倍率はそれぞれの倍率を乗じた全延伸倍率である。
 熱固定温度の下限は好ましくは210℃であり、より好ましくは212℃である。熱固定温度の上限は好ましくは220℃であり、より好ましくは218℃である。
 熱固定の時間は0.5~20秒であることが好ましい。より好ましくは1~15秒である。熱固定時間は熱固定温度や熱固定ゾーンでの風速とのかね合いで適正時間とすることができる。
 熱固定処理した後にリラックス処理をすることは熱収縮率の制御に有効である。リラックス処理する温度は熱固定処理温度から樹脂のガラス転移温度Tgまでの範囲で選べるが、[熱固定処理温度-10℃]~[Tg+10℃]の範囲内の温度が好ましい。
 リラックス処理のリラックス率の下限は、好ましくは0.5%であり、より好ましくは1%である。リラックス率の上限は好ましくは20%であり、より好ましくは15%であり、更に好ましくは10%である。
 更に、用途に応じて寸法安定性を良くするために熱処理や調湿処理を施すことも可能である。加えて、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したり、印刷加工、金属物や無機酸化物等の蒸着加工を施したりすることも可能である。なお蒸着加工にて形成される蒸着膜としては、アルミニウムの蒸着膜、ケイ素酸化物やアルミニウム酸化物の単一物もしくは混合物の蒸着膜が好適に用いられる。更にこれらの蒸着膜上に保護層などをコーティングすることにより、酸素バリア性などを向上させることができる。
[ヒートシール性積層フィルムロール]
 本発明のポリアミドフィルムロールを包装材料として用いる場合には、シーラントフィルムと呼ばれるヒートシール性のフィルムを積層することが好ましい。二軸延伸ポリアミドフィルムとシーラントフィルムの間に、接着剤層、印刷層、金属層などを介して積層フィルムロールを構成することもできる。積層の方法はドライラミネート方式、押し出しラミネート方式など公知の方法が使用できるが、いずれの方式であっても良い。以下に具体的な例を示す。
 本発明の積層フィルムロールの層構成の例:ONY/接着剤/CPP、ONY/接着剤/Al/接着剤/CPP、PET/接着剤/ONY/接着剤/CPP、PET/接着剤/ONY/接着剤/Al/接着剤/CPP、PET/接着剤/Al/接着剤/ONY/接着剤/CPP、ONY/接着剤/PET/接着剤/CPP、ONY/PE/CPP、ONY/接着剤/EVOH/接着剤/CPP、ONY/接着剤/アルミ蒸着PET/接着剤/CPP、CPP/接着剤/ONY/接着剤/LLDPE、ONY/接着剤/アルミ蒸着CPP。
 なお上記層構成に用いた各略称は以下の通りである。
/ :層の境界を表わす
ONY:二軸延伸ポリアミドフィルム
PET:延伸ポリエチレンテレフタレートフィルム
LLDPE:未延伸線状低密度ポリエチレンフィルム
CPP:未延伸ポリプロピレンフィルム
PE:押出しラミネート又は未延伸の低密度ポリエチレンフィルム
Al:アルミニウム箔
EVOH:エチレン-ビニルアルコール共重合樹脂
接着剤:フィルム同士を接着させる接着剤層
アルミ蒸着:アルミニウムが蒸着されていることを表わす
フィルムの評価は次の測定法によって行った。特に記載しない場合は、測定は23℃、相対湿度65%の環境の測定室で行った。
(1)フィルムの厚み
[フィルムのMD方向の厚み精度]
 フィルムロールの幅方向に対する中央部から、MD方向に幅5cm、長さ100cmのフィルム試験片を切り出し、5cmピッチで、20箇所をダイアルゲージ(テスター産業社製厚さ測定器)を用いて測定した。最大厚みをTmax,最小厚みをTmin、平均厚みをTave とし、下記の式(2)より厚み精度(Tv)を求めた。
 式(2) MD方向Tv(%)={(Tmax-Tmin)/Tave}×100
[フィルムのTD方向の厚み精度]
 フィルムロールのTD方向に幅5cmのフィルム試験片を切り出し、5cmピッチで、ダイアルゲージ(テスター産業社製厚さ測定器)を用いて測定した。最大厚みをTmax,最小厚みをTmin、平均厚みをTave とし、下記の式(3)より厚み精度(Tv)を求めた。
 式(3) TD方向Tv(%)={(Tmax-Tmin)/Tave}×100
(2)バイオマス度
 フィルムのバイオマス度(%)は、ASTM D6866-18 Method B (AMS)に示された放射性炭素14C測定により行った。
(3)熱収縮率
 フィルムの熱収縮率(%)は、MD方向及びTD方向それぞれについて、試験温度160℃、加熱時間10分間とした以外は、JIS C2318に記載の寸法変化試験法に準じて下記式(4)によって測定した。
 式(4) 熱収縮率(%)=[(処理前の長さ-処理後の長さ)/処理前の長さ]×100
(4)バイオマス度のばらつき
 ポリアミドフィルムロールについて、MD方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングした。サンプリングした各フィルムについて、放射性炭素14Cを測定したときのバイオマス度を測定した。
 得られたバイオマス度の最大値をXmax(%)、最小値をXmin(%)、平均値をXave(%)とし、下記式(1)で表されるバイオマス度のばらつきを求めた。
 式(1) バイオマス度のばらつき(%)=100×(Xmax-Xmin)/Xave 
 以下に各実施例及び比較例で使用するポリアミドフィルムの作成方法を記す。また、下記ポリアミドフィルムの物性を表1に示した。
<実施例1>
押出機と380mm巾の共押出Tダイよりなる装置を使用し、Tダイから溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。なお、樹脂組成物Bは、押出機の直上で樹脂組成物Aと混合するように、図1に示すようなインナーパイプを用いて投入した。
樹脂組成物A:ポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)97質量部、多孔質シリカ微粒子(富士シリシア化学株式会社製、平均粒子径2.0μm、細孔容積1.6ml/g)0.45質量部及び脂肪酸ビスアマイド(共栄社化学株式会社製エチエンビスステアリン酸アミド)0.15質量部からなる樹脂組成物。
樹脂組成物B:バイオマス由来の原料を含むポリアミド樹脂-ポリアミド11(アルケマ社製、相対粘度2.5、融点186℃)3.0質量部
 得られた未延伸フィルムを、ロール式延伸機に導き、ロールの周速差を利用して、80℃でMD方向に1.73倍延伸した後、70℃でさらに1.85倍延伸した。引き続き、この一軸延伸フィルムを連続的にテンター式延伸機に導き、110℃で予熱した後、TD方向に120℃で1.2倍、130℃で1.7倍、160℃で2.0倍延伸して、218℃で熱固定処理した後、218℃で7%緩和処理を行い、ついで線状低密度ポリエチレンフィルムとドライラミネートする側の表面をコロナ放電処理して二軸延伸ポリアミドフィルムのジャンボロールを得た。得られたジャンボロールをスリットして、幅1,000mm、巻長4,000mの二軸延伸ポリアミドフィルムロールを得た。得られた二軸延伸ポリアミドフィルムロールの評価結果を表1に示す。
<実施例2~実施例9>
原料樹脂組成物、熱固定温度などの製膜条件を表1のように変更した以外は、実施例1と同様の方法で二軸延伸ポリアミドフィルムロールを得た。得られた二軸延伸ポリアミドフィルムロールの評価結果を表1に示す。
<比較例1>
押出機と380mm巾の共押出Tダイよりなる装置を使用し、Tダイから溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。実施例1と同じ樹脂組成物Aと樹脂組成物Bを用いたが、上記樹脂組成物Bの混合にはインナーパイプを用いず、樹脂組成物Aと樹脂組成物Bをホッパー上部で混合して、押出機に樹脂組成物を供給した。樹脂組成物の混合方法を変更した以外は、実施例1と同様の製膜条件で二軸延伸ポリアミドフィルムロールを得た。得られた二軸延伸ポリアミドフィルムロールの評価結果を表2に示す。
<比較例2~比較例9>
 原料樹脂組成物、熱固定温度などの製膜条件を表2のように変更した以外は、比較例1と同様の方法で二軸延伸ポリアミドフィルムロールを得た。得られた二軸延伸ポリアミドフィルムロールの評価結果を表2に示す。
なお、実施例及び比較例において、バイオマス由来の原料を含むポリアミド樹脂であるポリアミド410、ポリアミド610、ポリアミド1010は、それぞれ下記のものを用いた。
 ポリアミド410:(DSM社製、ECOPaXX Q150-E、融点250℃)
 ポリアミド610:(アルケマ社製、RilsanS SMNO、融点222℃)
 ポリアミド1010:(アルケマ社製、RilsanT TMNO、融点202℃)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表1に示したとおり、実施例の二軸延伸ポリアミドフィルムロールは、原料の供給にインナーパイプを用いることによって、MD方向での放射性炭素14C測定したときのバイオマス度のばらつきが小さくできた。
 一方、表2に示したとおり、比較例は、原料の供給にインナーパイプを用いておらず、原料の偏析のためにMD方向で原料比率の変動が大きくなるため、MD方向の放射性炭素14C測定したときのバイオマス度のばらつきが多くなっていた。
1 ホッパー
2 押出し機
3 インナーパイプ
4 インナーパイプ出口
5 原料樹脂供給口
 

 

Claims (7)

  1.  ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含む二軸延伸ポリアミドフィルムからなり、
    MD方向にフィルムロールの表層から巻き芯まで1000m毎にサンプリングし、放射性炭素14Cを測定したときのバイオマス度の最大値をXmax、最小値をXmin、平均値をXaveとしたときの、下記式(1)で表されるバイオマス度のばらつきが15%以下であり、
    巻長1,000~60,000m、幅400~3,000mmである、二軸延伸ポリアミドフィルムロール。
     式(1) バイオマス度のばらつき(%)={(Xmax-Xmin)/Xave}×100
  2. 前記バイオマス度が1~30%である、請求項1に記載の二軸延伸ポリアミドフィルムロール。
  3.  前記二軸延伸ポリアミドフィルムにおける原料の少なくとも一部がバイオマス由来であるポリアミド樹脂が、ポリアミド11、ポリアミド410、ポリアミド610、及びポリアミド1010からなる群から選ばれる少なくとも1種のポリアミド樹脂である、請求項1又は2に記載のフィルムロール。
  4. 前記フィルムロールのMD方向及びTD方向の厚み精度がいずれも30%以下である、請求項1~3のいずれか一項に記載の二軸延伸ポリアミドフィルムロール。
  5.  請求項1~4のいずれか一項に記載の二軸延伸ポリアミドフィルムロールにシーラントフィルムを積層した、積層フィルムロール。
  6.  原料樹脂を押出機に供給及び混合し、該押出機から前記原料樹脂をシート状に溶融押出し、キャスティングドラム上で冷却して未延伸シートを成形する工程と、成形された前記未延伸シートをMD方向及びTD方向に延伸する工程と、熱固定工程とを含む、二軸延伸ポリアミドフィルムロールの製造方法において、第1のホッパーにポリアミド6の原料樹脂チップを供給し、第2のホッパーに少なくとも原料の一部がバイオマス由来であるポリアミドの原料樹脂チップを供給し、第1のホッパーから供給された原料樹脂チップと第2のホッパーから供給された原料樹脂チップを押出機の直上で混合した後、押出機から原料樹脂を溶融押出することを特徴とする、二軸延伸ポリアミドフィルムロールの製造方法。
  7. 前記第2のホッパーの原料樹脂チップを、前記第1のホッパー内であって押出機直上に出口を有する配管を通じて供給し、前記第1のホッパーの原料樹脂チップと前記第2のホッパーの原料樹脂チップを混合する工程を含む、請求項6に記載の二軸延伸ポリアミドフィルムロールの製造方法。

     
PCT/JP2022/046839 2022-01-05 2022-12-20 二軸延伸ポリアミドフィルムロール WO2023132230A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247020915A KR20240123804A (ko) 2022-01-05 2022-12-20 이축 연신 폴리아미드 필름 롤
JP2023572409A JPWO2023132230A1 (ja) 2022-01-05 2022-12-20
CN202280085911.1A CN118450977A (zh) 2022-01-05 2022-12-20 双轴拉伸聚酰胺膜卷

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022000644 2022-01-05
JP2022-000644 2022-01-05

Publications (1)

Publication Number Publication Date
WO2023132230A1 true WO2023132230A1 (ja) 2023-07-13

Family

ID=87073672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046839 WO2023132230A1 (ja) 2022-01-05 2022-12-20 二軸延伸ポリアミドフィルムロール

Country Status (4)

Country Link
JP (1) JPWO2023132230A1 (ja)
KR (1) KR20240123804A (ja)
CN (1) CN118450977A (ja)
WO (1) WO2023132230A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118307777A (zh) * 2024-06-05 2024-07-09 陕西爱弗特智能装备科技有限公司 一种芳香族聚噁二唑薄膜的涂布设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847972A (ja) * 1994-06-03 1996-02-20 Unitika Ltd 2軸配向ポリアミドフィルム及びその製造法
JP2010155455A (ja) * 2008-12-03 2010-07-15 Toyobo Co Ltd 層状化合物が高度に面内に配向した熱可塑性樹脂延伸多層フィルム
JP2016120721A (ja) * 2011-03-01 2016-07-07 東洋紡株式会社 延伸ポリアミドフィルム
WO2018062145A1 (ja) * 2016-09-28 2018-04-05 東洋紡株式会社 白色熱収縮性ポリエステル系フィルムロール
WO2020170714A1 (ja) 2019-02-18 2020-08-27 東洋紡株式会社 二軸延伸ポリアミドフィルム及び積層フィルム
WO2020203106A1 (ja) * 2019-03-29 2020-10-08 東洋紡株式会社 ポリエステルフィルム及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847972A (ja) * 1994-06-03 1996-02-20 Unitika Ltd 2軸配向ポリアミドフィルム及びその製造法
JP2010155455A (ja) * 2008-12-03 2010-07-15 Toyobo Co Ltd 層状化合物が高度に面内に配向した熱可塑性樹脂延伸多層フィルム
JP2016120721A (ja) * 2011-03-01 2016-07-07 東洋紡株式会社 延伸ポリアミドフィルム
WO2018062145A1 (ja) * 2016-09-28 2018-04-05 東洋紡株式会社 白色熱収縮性ポリエステル系フィルムロール
WO2020170714A1 (ja) 2019-02-18 2020-08-27 東洋紡株式会社 二軸延伸ポリアミドフィルム及び積層フィルム
WO2020203106A1 (ja) * 2019-03-29 2020-10-08 東洋紡株式会社 ポリエステルフィルム及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118307777A (zh) * 2024-06-05 2024-07-09 陕西爱弗特智能装备科技有限公司 一种芳香族聚噁二唑薄膜的涂布设备

Also Published As

Publication number Publication date
KR20240123804A (ko) 2024-08-14
CN118450977A (zh) 2024-08-06
JPWO2023132230A1 (ja) 2023-07-13

Similar Documents

Publication Publication Date Title
KR101930967B1 (ko) 연신 폴리아미드 필름
JP7444056B2 (ja) 二軸延伸ポリアミドフィルム及び積層フィルム
US20050287382A1 (en) Extrusion-coatable polyester film comprising poly(m--xyleneadipamide)
CN111433000B (zh) 聚酰胺系膜和其制造方法
WO2023132230A1 (ja) 二軸延伸ポリアミドフィルムロール
WO2023157930A1 (ja) ポリアミドフィルムロール
WO2023008364A1 (ja) 積層フィルム及び包装袋
JP2023009437A (ja) 電池包装用積層体
WO2021039259A1 (ja) ガスバリア性ポリアミドフィルム
JP2023015849A (ja) 真空断熱材外装用積層体
JP2022179043A (ja) ヒートシール性積層フィルム
WO2021199461A1 (ja) 二軸延伸ポリアミドフィルム
WO2024157875A1 (ja) 二軸延伸ポリアミドフィルム、および包装材料
JP7543779B2 (ja) ガスバリア性ポリアミドフィルムの製造方法
WO2021229922A1 (ja) 二軸延伸ポリアミドフィルム
WO2024084775A1 (ja) 冷間成形用二軸延伸ポリアミドフィルム
WO2019142781A1 (ja) 二軸配向ポリエステルフィルム
TWI853886B (zh) 雙軸延伸聚醯胺膜、積層膜、以及包裝袋
WO2023176214A1 (ja) 二軸配向ポリアミドフィルム
WO2023176213A1 (ja) 二軸配向ポリアミドフィルム
EP4427937A1 (en) Multilayered biodegradable barrier film, manufacturing method therefor, and eco-friendly packaging material comprising same
EP4427938A1 (en) Multi-layer barrier film, method for producing same, and packaging material including same
WO2023176212A1 (ja) 二軸配向ポリエステルフィルム及び二軸配向ポリアミドフィルムを含む積層体
US20240316909A1 (en) Layered film and packing bag
CN117881538A (zh) 双轴拉伸聚酰胺膜和包装材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023572409

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247020915

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401004452

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202447053723

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022918814

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022918814

Country of ref document: EP

Effective date: 20240805