WO2023132144A1 - 酸化物膜及び酸化物スパッタリングターゲット - Google Patents

酸化物膜及び酸化物スパッタリングターゲット Download PDF

Info

Publication number
WO2023132144A1
WO2023132144A1 PCT/JP2022/043060 JP2022043060W WO2023132144A1 WO 2023132144 A1 WO2023132144 A1 WO 2023132144A1 JP 2022043060 W JP2022043060 W JP 2022043060W WO 2023132144 A1 WO2023132144 A1 WO 2023132144A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
sputtering target
oxide film
film
less
Prior art date
Application number
PCT/JP2022/043060
Other languages
English (en)
French (fr)
Inventor
浩由 山本
淳史 奈良
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN202280085091.6A priority Critical patent/CN118401695A/zh
Priority to KR1020247025764A priority patent/KR20240132047A/ko
Priority to JP2023572370A priority patent/JPWO2023132144A1/ja
Publication of WO2023132144A1 publication Critical patent/WO2023132144A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Definitions

  • the present disclosure relates to oxide films and oxide sputtering targets.
  • ZTO Zinc-Tin-Oxide
  • Transparent conductive films are used, for example, in solar cells, liquid crystal surface elements, touch panels, and the like (Patent Document 1, etc.).
  • an oxide semiconductor film is used as a semiconductor layer (channel layer) of a thin film transistor (TFT) (Patent Document 2, etc.).
  • a ZTO-based film is usually formed using a sputtering target made of a Zn--Sn--O-based oxide sintered body.
  • Patent Documents 3 and 4 disclose forming a thin film using an oxide sputtering target made from zinc oxide, gallium oxide, and tin oxide.
  • the object is to produce an oxide sputtering target with low bulk resistance and high density, and to provide a transparent amorphous oxide semiconductor film that can be selectively etched with respect to a metal thin film. It is stated that
  • Carrier mobility has a positive correlation with carrier concentration, and the higher the carrier concentration, the higher the carrier mobility. Therefore, in order to increase the carrier mobility, it is conceivable to increase the carrier concentration, but there is a problem that the power consumption increases when the carrier concentration increases. In recent years, with the miniaturization of semiconductor devices, the problem of power consumption has become apparent, and it is required to reduce it. There is a need.
  • an object of the present disclosure is to provide an oxide film with a low carrier concentration and high carrier mobility, and an oxide sputtering target suitable for forming the oxide film.
  • [3] The oxide according to [1] or [2], which has a carrier concentration of 1.0 ⁇ 10 18 cm ⁇ 3 or less.
  • [4] The oxide film according to any one of [1] to [3], which has a refractive index of 2.15 or less.
  • [5] The oxide film according to any one of [1] to [4], which has an extinction coefficient of 0.02 or less.
  • Al, Sn, and Zn each represent the atomic ratio of each element in the oxide sputtering target.
  • an oxide film with a low carrier concentration and a high carrier mobility can be provided.
  • an oxide sputtering target suitable for forming an oxide semiconductor film with a low carrier concentration and high carrier mobility can be provided.
  • the oxide film according to the embodiment of the present disclosure contains zinc (Zn), tin (Sn), aluminum (Al), and oxygen (O), and satisfies the following formulas (1) to (3): It is an oxide film.
  • Al, Sn, and Zn each represent the atomic ratio of each element in the oxide film. (1) 3 ⁇ Sn/Zn ⁇ Al (2) Al/(Al+Sn+Zn) ⁇ 0.10 (3) 0.33 ⁇ Sn/(Sn+Zn) ⁇ 0.60
  • the oxide film according to the present embodiment contains ZTO and further Al (sometimes referred to as AZTO).
  • the carrier concentration increases It is characterized in that it is possible to prevent , and increase the carrier mobility.
  • the Al content is varied according to the Sn/Zn relationship. This is because when the Sn content increases, the effect of Al weakens, the carrier concentration increases, and as a result, the power consumption increases more than expected.
  • the lower limit of the Al content is set to 3 ⁇ Sn/Zn ⁇ Al.
  • the upper limit of the Al content is Al/(Al+Sn+Zn) ⁇ 0.10. This is because if Al/(Zn+Sn+Al) exceeds 0.10, there is a problem that the resistivity of the oxide film becomes too high.
  • the content ratio of Sn to Zn is 0.33 ⁇ Sn/(Sn+Zn) ⁇ 0.60. If Sn/(Sn+Zn) is 0.33 or more, thermal fluctuations in film properties (carrier concentration, mobility, volume resistivity, etc.) can be suppressed within a certain range when the film is annealed. Further, when Sn/(Sn+Zn) is 0.60 or less, the carrier concentration can be kept low.
  • the oxide film according to this embodiment preferably has a carrier mobility of 5.0 cm 2 /V ⁇ s or more. More preferably, it is 10.0 cm 2 /V ⁇ s or more. More preferably, it is 12.0 cm 2 /V ⁇ s or more.
  • the carrier mobility is high, and if the mobility is within the above range, desired semiconductor characteristics can be obtained.
  • the oxide film according to this embodiment preferably has a carrier concentration of 1.0 ⁇ 10 18 cm ⁇ 3 or less. It is more preferably 1.0 ⁇ 10 17 cm ⁇ 3 or less, still more preferably 1.0 ⁇ 10 16 cm ⁇ 3 or less. Since the carrier concentration is positively correlated with the carrier mobility, it is desired that the carrier concentration be high. Therefore, by adjusting the carrier concentration within the above range, power consumption can be sufficiently reduced.
  • the oxide film according to the present embodiment preferably has a refractive index of 2.00 or more and 2.15 or less for light with a wavelength of 405 nm.
  • a refractive index of 2.00 or more and 2.15 or less for light with a wavelength of 405 nm By setting the refractive index within the above numerical range, an effect of preventing scattering between media can be obtained, which is effective as a transparent conductive film.
  • the oxide film according to the present embodiment preferably has an extinction coefficient of 0.02 or less for light with a wavelength of 405 nm. By setting the extinction coefficient within the above numerical range, an effect of high transparency can be obtained, which is effective as a transparent conductive film.
  • the composition of the sputtering target can usually be adjusted so as to match the desired film composition. to determine the composition of the sputtering target.
  • the oxide sputtering target according to the present embodiment contains zinc (Zn), tin (Sn), aluminum (Al), and oxygen (O), and satisfies the following formulas (4) to (6).
  • Al, Sn, and Zn each represent the atomic ratio of each element in the oxide sputtering target.
  • Formulas (4) and (5) can be adjusted so as to have the same composition as each metal element in the oxide semiconductor film.
  • the formula (6) since the sputtering rate of Zn is lower than that of Sn, it is necessary to adjust the upper limit of Sn/(Sn+Zn) so that Sn/(Sn+Zn) ⁇ 0.50.
  • the oxide sputtering target according to this embodiment preferably has a relative density of 97% or more. More preferably, it is 98% or more. More preferably, it is 99% or more.
  • a high-density sputtering target can reduce the amount of particles generated during film formation.
  • the reference density is a density value calculated from the theoretical density and mass ratio of the oxides of the elements other than oxygen among the constituent elements of the sputtering target, and the theoretical density of each oxide is as follows.
  • Theoretical density of Al2O3 3.95 g/ cm3
  • Theoretical density of SnO 6.95 g/cm 3
  • Theoretical density of ZnO 5.61 g/ cm3
  • the measured density is a value obtained by dividing the weight of the sputtering target by the volume, and is calculated using the Archimedes method.
  • the oxide sputtering target according to this embodiment preferably has an average crystal grain size of 10 ⁇ m or less. More preferably, the average crystal grain size is 5 ⁇ m or less. If the structure of the sputtering target is fine, the amount of particles generated during sputtering deposition can be reduced.
  • the sputtering target according to this embodiment preferably has a volume resistivity of 10 ⁇ cm or less. More preferably, the volume resistivity is 5 ⁇ cm or less. If the volume resistivity of the sputtering target is low, a film can be stably formed during DC (direct current) sputtering.
  • An oxide sputtering target can be produced, for example, as follows. However, it should be understood that the following manufacturing method is an example and the embodiments of the present invention are not limited by this manufacturing method. Also, detailed descriptions of well-known processes are omitted to avoid unnecessarily obscuring the manufacturing method.
  • ZnO powder, SnO powder, and Al 2 O 3 powder are prepared as raw material powders, and these raw material powders are weighed, mixed, and pulverized so as to have a desired compounding ratio. After pulverization, the average particle size (D50) is preferably 1.5 ⁇ m or less.
  • Hot press sintering The above mixed powder or calcined powder is filled in a carbon mold and subjected to pressure sintering (hot pressing) in vacuum or in an inert gas atmosphere. Hot pressing conditions are preferably sintering temperature: 950° C. to 1100° C., press pressure: 200 to 300 kgf/cm 2 , holding time: 1 to 4 hours. If the sintering temperature is too low, a high-density sintered body cannot be obtained.
  • An oxide sputtering target can be manufactured by producing an oxide sintered body through the above steps and then performing machining such as cutting and polishing.
  • Example 1-5 ZnO powder, SnO powder, and Al 2 O 3 powder were prepared, and these powders were blended so as to have the composition ratio of the sputtering target shown in Table 1, and then mixed.
  • This mixed powder was pulverized to an average particle size (D50) of 1.5 ⁇ m or less by wet pulverization (using ZrO 2 beads), dried, and then sieved with a spread of 500 ⁇ m.
  • a carbon mold is filled with pulverized powder, hot press sintering is performed under the conditions shown in Table 1, and the obtained sintered body is machined to form a sputtering target (diameter of 6 inches). ).
  • Table 1 shows the results. As shown in Table 1, good results were obtained in relative density, average crystal grain size, and volume resistivity in all of Examples 1-5. Further, when DC sputtering was performed using this sputtering target, stable sputtering could be performed without causing arcing during sputtering.
  • Example 6-17 A ZnSnO sputtering target and an Al 2 O 3 sputtering target were produced using a powder sintering method. These sputtering targets were attached to a sputtering apparatus, and simultaneous sputtering (co-sputtering) was performed to form a film. The Al concentration in the film was adjusted by changing the sputtering power for the ZnSnO and Al 2 O 3 sputtering targets. The concentrations of Zn and Sn in the film were adjusted using four types of ZnSnO sputtering targets with different compositions.
  • Zn: Sn 66.7at%: 33.3at%, 60.0at%: 40.0at%, 50.0at%: 50.0at%, 40at%: 60at%, and composition was varied.
  • the obtained films were analyzed for carrier concentration, carrier mobility, refractive index, and extinction coefficient.
  • the carrier concentration was 1.0 ⁇ 10 18 cm ⁇ 3 or less
  • the carrier mobility was 10.0 cm 2 /V ⁇ s or more.
  • good results were obtained with refractive indices of 2.15 or less and extinction coefficients of 0.02 or less. Those results are shown in Table 2. Although the refractive index and the extinction coefficient were not measured in Examples 6-11, it is assumed that the refractive index and the extinction coefficient satisfy 2.15 or less and 0.02 or less, respectively.
  • Comparative Example 1-5) In Comparative Example 1-5, as in Example 6, a ZnSnO sputtering target and an Al 2 O 3 sputtering target were attached to the sputtering apparatus, and simultaneous sputtering (co-sputtering) was performed to form a film. The Al concentration in the film and the concentration ratio of Zn and Sn in the film were adjusted in the same manner as in Example 6. Table 2 shows the compositions of the films of Comparative Examples 1-5.
  • the films of Comparative Examples 1-5 were analyzed for carrier concentration, carrier mobility, refractive index, and extinction coefficient. As a result, it was found that the film of Comparative Example 1-5 had a high carrier mobility but also a high carrier concentration.
  • an oxide film with a low carrier concentration and a high carrier mobility can be provided.
  • the oxide film according to the present invention is useful as a transparent conductive film for solar cells, liquid crystal surface elements, touch panels and the like, and as a semiconductor film such as a TFT channel layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本開示は、低キャリア濃度、かつ、高キャリア移動度の酸化物膜、及び、当該酸化物膜の形成に適した酸化物スパッタリングターゲットを提供することを課題とする。亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有する酸化物膜であって、下記式(1)~(3)を満たすことを特徴とする酸化物膜。但し、式中、Al、Sn、Znは、それぞれ酸化物膜における各元素の原子比を表す。 (1)3×Sn/Zn<Al (2)Al/(Al+Sn+Zn)≦0.10 (3)0.33≦Sn/(Sn+Zn)≦0.60

Description

酸化物膜及び酸化物スパッタリングターゲット
 本開示は、酸化物膜及び酸化物スパッタリングターゲットに関する。
 透明導電膜や酸化物半導体膜の材料として、Zn-Sn-O系(ZTO:Zinc-Tin-Oxide)が知られている。透明導電膜は、例えば、太陽電池、液晶表面素子、タッチパネル等に用いられている(特許文献1など)。また、酸化物半導体膜は、薄膜トランジスタ(TFT)の半導体層(チャネル層)として用いられている(特許文献2など)。ZTO系の膜は、通常、Zn-Sn-O系の酸化物焼結体からなるスパッタリングターゲットを用いて成膜される。
 他の金属元素を添加したZn-Sn-O系の酸化物膜が知られている。たとえば、特許文献3、4には、酸化亜鉛、酸化ガリウム、酸化スズから作製した酸化物スパッタリングターゲットを用いて薄膜を形成することが開示されている。特許文献3には、バルク抵抗が低く、高密度の酸化物スパッタリングターゲットを作製すること、金属薄膜に対して、選択的エッチングが可能な透明非晶質酸化物半導体膜を提供することを課題とすることが記載されている。
特開2017-36198号公報 特開2010-37161号公報 特開2010-18457号公報 特表2016-507004号公報
 酸化物半導体膜において、応答速度を上げるために、キャリア移動度を上げることが求められる。キャリア移動度は、キャリア濃度と正の相関があり、キャリア濃度が高くなれば、キャリア移動度が上がる。そのため、キャリア移動度を上げるために、キャリア濃度を高くすることが考えられるが、キャリア濃度が高くなると消費電力が上昇してしまうという問題がある。近年、半導体デバイスの小型化に伴って、消費電力の問題が顕在化し、これを低減することが求められるが、キャリア移動度と消費電力とはトレードオフの関係にあるため、これらを共に満足する必要がある。
 ZTO膜を酸化物半導体膜として使用した場合、キャリア濃度が高いため、消費電力が大きいという問題があった。そのため、膜の組成調整を行って、キャリア濃度を低くすることが考えられる。しかし、キャリア濃度が低くなると、それに伴ってキャリア移動度も低下し、所望の半導体特性が得られないという問題があった。
 このような事情に鑑み、本開示は、低キャリア濃度、かつ、高キャリア移動度の酸化物膜、及び、当該酸化物膜の形成に適した酸化物スパッタリングターゲットを提供することを課題とする。
 上記課題を解決できる本開示の一態様は、以下に示す通りである。
[1]亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有する酸化物膜であって、下記式(1)~(3)を満たす、酸化物膜。但し、式中、Al、Sn、Znは、それぞれ酸化物膜における各元素の原子比を表す。
 (1)3×Sn/Zn<Al
 (2)Al/(Al+Sn+Zn)≦0.10
 (3)0.33≦Sn/(Sn+Zn)≦0.60
[2]キャリア移動度が5.0cm/V・s以上である、[1]に記載の酸化物膜。
[3]キャリア濃度が1.0×1018cm-3以下である、[1]又は[2]に記載の酸化物。
[4]屈折率が2.15以下である、[1]~[3]のいずれかに記載の酸化物膜。
[5]消衰係数が0.02以下である、[1]~[4]のいずれかに記載の酸化物膜。
[6]亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有する酸化物スパッタリングターゲットであって、下記式(4)~(6)を満たす、酸化物スパッタリングターゲット。但し、式中、Al、Sn、Znは、それぞれ酸化物スパッタリングターゲットにおける各元素の原子比を表す。
 (4)3×Sn/Zn<Al
 (5)Al/(Al+Sn+Zn)≦0.10
 (6)0.33≦Sn/(Sn+Zn)≦0.50
[7]相対密度が97%以上である、[6]に記載の酸化物スパッタリングターゲット。
[8]平均結晶粒径が10μm以下である、[6]又は[7]に記載の酸化物スパッタリングターゲット。
[9]体積抵抗率が10Ω・cm以下である、[6]~[8]のいずれかに記載の酸化物スパッタリングターゲット。
 本開示によれば、低キャリア濃度、かつ、高キャリア移動度の酸化物膜を提供することができるという優れた効果を有する。また、本開示によれば、低キャリア濃度、かつ、高キャリア移動度の酸化物半導体膜の形成に適した酸化物スパッタリングターゲットを提供することができるという優れた効果を有する。
 本開示の課題及び効果は、上記に具体的に記載したものに限らず、明細書の全体より当業者に明らかにされるものを含む。
[酸化物膜について]
 本開示の実施形態に係る酸化物膜は、亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有し、下記の式(1)~(3)を満たす、酸化物膜である。但し、式中、Al、Sn、Znは、それぞれ酸化物膜における各元素の原子比を表す。
 (1) 3×Sn/Zn<Al
 (2) Al/(Al+Sn+Zn)≦0.10
 (3) 0.33≦Sn/(Sn+Zn)≦0.60
 本実施形態に係る酸化膜は、ZTOに、さらにAlを含有したもの(AZTOと称する場合がある。)であるが、酸化物膜中、所定量のAlを含有させることにより、キャリア濃度の上昇を防ぎ、かつ、キャリア移動度を高くすることができるという特徴を有する。本実施形態に係る酸化膜は、Al含有量をSn/Znの関係で変化させる。Sn含有量が増加すると、Alの効果が弱くなり、キャリア濃度が上昇し、その結果、想定以上に消費電力が上昇するためである。具体的には、Al含有量の下限値を3×Sn/Zn<Alとする。
 本実施形態に係る酸化物膜において、Al含有量の上限値がAl/(Al+Sn+Zn)≦0.10である。Al/(Zn+Sn+Al)が0.10超であると、酸化膜の抵抗率が高くなりすぎるという問題があるためである。
 本実施形態に係る酸化物膜において、SnとZnの含有比が0.33≦Sn/(Sn+Zn)≦0.60である。Sn/(Sn+Zn)が0.33以上であれば、膜をアニールした際、熱による膜特性(キャリア濃度、移動度、体積抵抗率など)の変動を一定の範囲内に抑えることができる。また、Sn/(Sn+Zn)が0.60以下であれば、キャリア濃度を低く維持することができる。
 本実施形態に係る酸化物膜は、キャリア移動度が5.0cm/V・s以上であることが好ましい。より好ましくは、10.0cm/V・s以上である。さらに好ましくは、12.0cm/V・s以上である。酸化物膜の応答速度を高めるために、キャリア移動度が高い方が好ましく、移動度が上記の範囲内であれば、所望の半導体特性を得ることができる。
 本実施形態に係る酸化物膜は、キャリア濃度が1.0×1018cm-3以下であることが好ましい。より好ましくは1.0×1017cm-3以下であり、さらに好ましくは1.0×1016cm-3以下である。キャリア濃度は、キャリア移動度と正の相関関係があるため、高いことが望まれているが、キャリア濃度が高すぎると、消費電力が大きくなるという問題がある。したがって、キャリア濃度を上記範囲内に調整することで、消費電力を十分に低減することが可能となる。
 本実施形態に係る酸化物膜は、波長405nmの光の屈折率が2.00以上、2.15以下であることが好ましい。屈折率を上記数値範囲とすることにより、媒体同士による散乱を防ぐという効果が得られ、透明導電膜として有効である。
 本実施形態に係る酸化物膜は、波長405nmの光の消衰係数が0.02以下であることが好ましい。消衰係数を上記数値範囲とすることにより、高い透過性という効果が得られ、透明導電膜として有効である。
[酸化物スパッタリングターゲットについて]
 スパッタリング法では、真空中で成膜するため、成膜過程でスパッタリングターゲットを構成する金属成分が一部消失したり、他の金属成分が混入したりすることがなく、スパッタリングターゲットの組成(金属成分の原子比)が、膜の組成に反映されることになる。そのため、通常、所望の膜組成に一致させるようにスパッタリングターゲットの組成を調整することができるが、構成元素や結晶相によって、スパッタレートが異なるため、膜組成が変動するため、その変動分を考慮して、スパッタリングターゲットの組成を決定することが必要である。
 本実施形態に係る酸化物スパッタリングターゲットは、亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有し、下記式(4)~(6)を満たすことを特徴とする酸化物スパッタリングターゲットである。但し、式中、Al、Sn、Znは、それぞれ酸化物スパッタリングターゲットにおける各元素の原子比を表す。
 (4)3×Sn/Zn<Al
 (5)Al/(Al+Sn+Zn)≦0.10
 (6)0.33≦Sn/(Sn+Zn)≦0.50
 式(4)及び(5)は、酸化物半導体膜中の各金属元素と同様の組成となるように調整することができる。一方、式(6)については、Snに比べて、Znのスパッタレートが遅いため、Sn/(Sn+Zn)の上限値をSn/(Sn+Zn)≦0.50となるように調整する必要がある。
 本実施形態に係る酸化物スパッタリングターゲットは、相対密度が97%以上であることが好ましい。より好ましくは98%以上である。さらに好ましくは99%以上である。高密度のスパッタリングターゲットは、成膜時に発生するパーティクル量を低減することができる。
 相対密度は、相対密度(%)=(実測密度)/(基準密度)×100により算出する。
 基準密度は、スパッタリングターゲットの各構成元素において、酸素を除いた元素の酸化物の理論密度と質量比から算出される密度の値であり、各酸化物の理論密度は以下の通りとする。
   Alの理論密度:3.95g/cm
   SnOの理論密度 :6.95g/cm
   ZnOの理論密度 :5.61g/cm
 実測密度は、スパッタリングターゲットの重量を体積で割った値であり、アルキメデス法を用いて算出する。
 本実施形態に係る酸化物スパッタリングターゲットは、平均結晶粒径が10μm以下であることが好ましい。より好ましくは平均結晶粒径が5μm以下である。スパッタリングターゲットの組織が微細であれば、スパッタ成膜の際に発生するパーティクル量を低減することができる。
 本実施形態に係るスパッタリングターゲットは、体積抵抗率が10Ω・cm以下であることが好ましい。より好ましくは体積抵抗率が5Ω・cm以下である。スパッタリングターゲットの体積抵抗率が低ければ、DC(直流)スパッタリングの際に、安定して成膜することができる。
[酸化物スパッタリングターゲットの製造方法]
 酸化物スパッタリングターゲットは、例えば、以下のようにして作製することができる。但し、以下の製造方法は例示的なものであって、本発明の実施形態がこの製造方法によって限定されるものでないことは理解されたい。また、製造方法が不必要に不明瞭になることを避けるために、周知の処理の詳細な説明については省略している。
(原料の混合、粉砕)
 原料粉として、ZnO粉、SnO粉、Al粉を準備し、これらの原料粉を所望の配合比となるように秤量し、混合、粉砕する。粉砕後、平均粒子径(D50)が1.5μm以下とすることが好ましい。
(混合粉の仮焼)
 粉砕後の混合粉を1000℃~1300℃で、4~7時間、仮焼を行う。仮焼を行うことで、複合酸化物(ZnSnO相、ZnAl相)を得ることができる。但し、仮焼は、任意の工程である。
(ホットプレス焼結)
 上記混合粉又は仮焼粉をカーボン製の型に充填し、真空中又は不活性ガス雰囲気で加圧焼結(ホットプレス)を行う。ホットプレスの条件は、焼結温度:950℃~1100℃、プレス圧力:200~300kgf/cm、保持時間:1~4時間とすることが好ましい。焼結温度が低すぎると、高密度な焼結体が得られず、一方、焼結温度が高すぎると、ZnOの蒸発による組成ズレが生じるためである。
(表面加工)
 以上の工程により、酸化物焼結体を作製し、その後、切削、研磨等の機械加工を行うことで、酸化物スパッタリングターゲットを製造することができる。
(成膜について)
 スパッタリングターゲットを成膜装置に取り付けて、以下の条件でスパッタリングすることで、基板上に酸化物半導体膜を成膜することができる。但し、以下の成膜条件は例示的なものであって、この成膜条件に限定する意図はないことを理解されたい。
  成膜原理:DCスパッタリング
  成膜装置:ANELVA SPL-500
  ターゲットサイズ:直径6インチ、厚さ5mm
  基板:ガラス
  膜厚:60~900nm
  パワー:2.74~5.48W/cm
  雰囲気:Ar+2%O、0.5Pa、28~50sccm
 以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。
 本開示において、実施例及び比較例を含め、各種の物性について、以下の測定方法、測定条件等を用いて分析を行った。
(膜の成分組成)
  測定原理:FE-EPMA定量分析
  測定装置:日本電子社製 JXA-8500F
  測定条件:加速電圧15kV
  照射電流2×10-7
  ビーム径100μm
(膜のキャリア濃度)
  測定原理:ホール測定
  測定装置:Lake Shore社 8400型
  測定条件:200℃でアニールした後のサンプルを測定した。
(膜のキャリア移動度)
  測定原理:ホール測定
  測定装置:Lake Shore社 8400型
  測定条件:200℃でアニールした後のサンプルを測定した。
(スパッタリングターゲットの成分組成)
  方法:ICP-OES(高周波誘導結合プラズマ発光分析法)
  装置:SII社製SPS3500DD
(スパッタリングターゲットの体積抵抗率)
  測定装置:抵抗率測定器 Σ-5+
  測定方式:定電流印加方式
  測定方法:直流4探針法
 スパッタリングターゲットの表面について、中心部を1箇所、外周付近を90度間隔に4箇所について体積抵抗率を測定し、その平均値を求めた。
(実施例1-5)
 ZnO粉、SnO粉、Al粉を用意し、これらの粉末を表1に記載されるスパッタリングターゲットの組成比となるように調合した後、混合した。この混合粉を、湿式微粉砕(ZrOビーズ使用)により、平均粒子径(D50)が1.5μm以下に粉砕し、乾燥させた後、見開き500μmの篩別を行った。
 次に、カーボン製の型に粉砕粉を充填し、表1に記載される条件でホットプレス焼結を実施し、得られた焼結体を機械加工して、スパッタリングターゲットの形状(直径6インチ)に仕上げた。
 上記で作製したZn-Sn-Al-O(AZTO)酸化物スパッタリングターゲットについて、相対密度、平均結晶粒径、体積抵抗率を分析した。その結果を表1に示す。表1に示す通り、実施例1-5のいずれにおいても、相対密度、平均結晶粒径、体積抵抗率において、良好な結果が得られた。また、このスパッタリングターゲットを用いてDCスパッタを実施したところ、スパッタ中にアーキングを起こさず、安定したスパッタを行うことができた。
Figure JPOXMLDOC01-appb-T000001
(実施例6-17)
 粉末焼結法を用いて、ZnSnOスパッタリングターゲットと、Alスパッタリングターゲットを作製した。これらのスパッタリングターゲットをスパッタ装置に取り付け、同時スパッタ(コ・スパッタ)を実施して成膜を行った。なお、膜中のAl濃度の調整を、ZnSnO、Alスパッタリングターゲットに対するスパッタパワーを変更して行った。膜中のZnとSnの濃度調整は組成を変えた4種類のZnSnOスパッタリングターゲットを用いて行った。
 前記4種類のZnSnOスパッタリングターゲットとして、Zn:Sn=66.7at%:33.3at%、60.0at%:40.0at%、50.0at%:50.0at%、40at%:60at%、と組成を変化させた。
 実施例6-17について、得られた膜の、キャリア濃度、キャリア移動度、屈折率、消衰係数について、分析を行った。その結果、キャリア濃度はいずれも1.0×1018cm-3以下、キャリア移動度が10.0cm/V・s以上と所望の結果が得られた。また、屈折率はいずれも2.15以下、消衰係数はいずれも0.02以下と良好な結果が得られた。それらの結果を表2に示す。なお、実施例6-11においては、屈折率及び消衰係数を測定していないが、いずれにおいても屈折率が2.15以下、消衰係数が0.02以下を満たすと推測される。
Figure JPOXMLDOC01-appb-T000002
(比較例1-5)
 比較例1-5では、実施例6と同様、ZnSnOスパッタリングターゲットとAlスパッタリングターゲットをスパッタ装置に取り付け、同時スパッタ(コ・スパッタ)を実施して、成膜を行った。膜中のAl濃度、膜中のZnとSnの濃度比を実施例6と同様の方法で調整した。比較例1-5の膜の組成を表2に示す。
 比較例1-5の膜について、キャリア濃度、キャリア移動度、屈折率、消衰係数の分析を行った。その結果、比較例1-5の膜については、キャリア移動度が高いが、一方で、キャリア濃度も高くなるという結果が得られた。
本開示によれば、低キャリア濃度、かつ、高キャリア移動度の酸化物膜を提供することができるという優れた効果を有する。また、本開示によれば、低キャリア濃度、かつ、高キャリア移動度の酸化物膜の形成に適した酸化物スパッタリングターゲットを提供することができるという優れた効果を有する。本発明に係る酸化物膜は、太陽電池、液晶表面素子、タッチパネルなどの透明導電膜や、TFTチャネル層などの半導体膜、として有用である。

Claims (9)

  1.  亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有する酸化物膜であって、下記式(1)~(3)を満たすことを特徴とする酸化物膜。但し、式中、Al、Sn、Znは、それぞれ酸化物膜における各元素の原子比を表す。
     (1)3×Sn/Zn<Al
     (2)Al/(Al+Sn+Zn)≦0.10
     (3)0.33≦Sn/(Sn+Zn)≦0.60
  2.  キャリア移動度が5.0cm/V・s以上であることを特徴とする請求項1に記載の酸化物膜。
  3.  キャリア濃度が1.0×1018cm-3以下であることを特徴とする請求項1又は2に記載の酸化物膜。
  4.  屈折率が2.15以下であることを特徴とする請求項1~3のいずれか一項に記載の酸化物膜。
  5.  消衰係数が0.02以下であることを特徴とする請求項1~4のいずれか一項に記載の酸化物膜。
  6.  亜鉛(Zn)、スズ(Sn)、アルミニウム(Al)、及び、酸素(O)を含有する酸化物スパッタリングターゲットであって、下記式(4)~(6)を満たすことを特徴とする酸化物スパッタリングターゲット。但し、式中、Al、Sn、Znは、それぞれ酸化物スパッタリングターゲットにおける各元素の原子比を表す。
     (4)3×Sn/Zn<Al
     (5)Al/(Al+Sn+Zn)≦0.10
     (6)0.33≦Sn/(Sn+Zn)≦0.50
  7.  相対密度が97%以上であることを特徴とする請求項6に記載の酸化物スパッタリングターゲット。
  8.  平均結晶粒径が10μm以下であることを特徴とする請求項6又は7に記載の酸化物スパッタリングターゲット。
  9.  体積抵抗率が10Ω・cm以下であることを特徴とする請求項6~8のいずれか一項に記載の酸化物スパッタリングターゲット。
PCT/JP2022/043060 2022-01-05 2022-11-21 酸化物膜及び酸化物スパッタリングターゲット WO2023132144A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280085091.6A CN118401695A (zh) 2022-01-05 2022-11-21 氧化物膜和氧化物溅射靶
KR1020247025764A KR20240132047A (ko) 2022-01-05 2022-11-21 산화물막 및 산화물 스퍼터링 타깃
JP2023572370A JPWO2023132144A1 (ja) 2022-01-05 2022-11-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022000584 2022-01-05
JP2022-000584 2022-01-05

Publications (1)

Publication Number Publication Date
WO2023132144A1 true WO2023132144A1 (ja) 2023-07-13

Family

ID=87073403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043060 WO2023132144A1 (ja) 2022-01-05 2022-11-21 酸化物膜及び酸化物スパッタリングターゲット

Country Status (5)

Country Link
JP (1) JPWO2023132144A1 (ja)
KR (1) KR20240132047A (ja)
CN (1) CN118401695A (ja)
TW (1) TW202336249A (ja)
WO (1) WO2023132144A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935535A (ja) * 1995-07-25 1997-02-07 Sumitomo Metal Mining Co Ltd ZnO−SnO2 系透明導電性膜
JP2007223899A (ja) * 2007-06-06 2007-09-06 Nikko Kinzoku Kk スパッタリング用BaxSr1−xTiO3−yターゲット材の製造方法
JP2010018457A (ja) 2008-07-08 2010-01-28 Idemitsu Kosan Co Ltd 酸化物焼結体及びそれからなるスパッタリングターゲット
JP2010037161A (ja) 2008-08-06 2010-02-18 Hitachi Metals Ltd 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜
JP2012033854A (ja) * 2010-04-20 2012-02-16 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2012066968A (ja) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット
JP2014240525A (ja) * 2012-02-23 2014-12-25 Jx日鉱日石金属株式会社 クロム酸化物を含有する強磁性材スパッタリングターゲット
JP2017036198A (ja) 2015-08-07 2017-02-16 住友金属鉱山株式会社 Sn−Zn−O系酸化物焼結体とその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2615933T3 (es) 2013-02-05 2017-06-08 Soleras Advanced Coatings Bvba Blanco de pulverización catódica de óxido de Sn Zn (Ga)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935535A (ja) * 1995-07-25 1997-02-07 Sumitomo Metal Mining Co Ltd ZnO−SnO2 系透明導電性膜
JP2007223899A (ja) * 2007-06-06 2007-09-06 Nikko Kinzoku Kk スパッタリング用BaxSr1−xTiO3−yターゲット材の製造方法
JP2010018457A (ja) 2008-07-08 2010-01-28 Idemitsu Kosan Co Ltd 酸化物焼結体及びそれからなるスパッタリングターゲット
JP2010037161A (ja) 2008-08-06 2010-02-18 Hitachi Metals Ltd 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜
JP2012033854A (ja) * 2010-04-20 2012-02-16 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2012066968A (ja) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット
JP2014240525A (ja) * 2012-02-23 2014-12-25 Jx日鉱日石金属株式会社 クロム酸化物を含有する強磁性材スパッタリングターゲット
JP2017036198A (ja) 2015-08-07 2017-02-16 住友金属鉱山株式会社 Sn−Zn−O系酸化物焼結体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG CHIH-HSIANG, LIU PO-TSUN: "Investigation on plasma treatment for transparent Al–Zn–Sn–O thin film transistor application", THIN SOLID FILMS, ELSEVIER, AMSTERDAM, NL, vol. 549, 31 December 2013 (2013-12-31), AMSTERDAM, NL , pages 36 - 41, XP055935401, ISSN: 0040-6090, DOI: 10.1016/j.tsf.2013.06.042 *

Also Published As

Publication number Publication date
JPWO2023132144A1 (ja) 2023-07-13
KR20240132047A (ko) 2024-09-02
TW202336249A (zh) 2023-09-16
CN118401695A (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
KR101738742B1 (ko) 산화물 소결체, 스퍼터링 타깃 및 박막 그리고 산화물 소결체의 제조 방법
WO2012017659A1 (ja) スパッタリングターゲットの製造方法およびスパッタリングターゲット
JP6278229B2 (ja) 透明酸化物膜形成用スパッタリングターゲット及びその製造方法
WO2019176552A1 (ja) 酸化物薄膜及び該薄膜を製造するためのスパッタリングターゲット用酸化物焼結体
JP5735190B1 (ja) 酸化物焼結体、スパッタリングターゲット及び酸化物薄膜
JPWO2007000878A1 (ja) 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜
WO2012029455A1 (ja) 酸化物焼結体及び酸化物半導体薄膜
WO2012096343A1 (ja) 酸化物焼結体およびスパッタリングターゲット
JP6023920B1 (ja) 酸化物焼結体、酸化物スパッタリングターゲット及び酸化物薄膜
JP5334246B2 (ja) 酸化亜鉛系薄膜製造用のイオンプレーティング用ターゲット
WO2023132144A1 (ja) 酸化物膜及び酸化物スパッタリングターゲット
WO2022255266A1 (ja) スパッタリングターゲット及びその製造方法
JP2016074579A (ja) 酸化物焼結体、酸化物スパッタリングターゲット及び導電性酸化物薄膜並びに酸化物焼結体の製造方法
JP5913523B2 (ja) 酸化物焼結体、酸化物スパッタリングターゲット及び高屈折率の導電性酸化物薄膜並びに酸化物焼結体の製造方法
JPH0315107A (ja) 導電性金属酸化物焼結体及びその用途
KR101945083B1 (ko) 소결체 및 그 소결체로 이루어지는 스퍼터링 타깃 그리고 그 스퍼터링 타깃을 사용하여 형성한 박막
JP7425933B1 (ja) 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法
TWI851943B (zh) 氧化物濺鍍靶及其製造方法以及氧化物薄膜
WO2024057672A1 (ja) 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法
WO2024057671A1 (ja) 酸化物半導体薄膜形成用スパッタリングターゲット、酸化物半導体薄膜形成用スパッタリングターゲットの製造方法、酸化物半導体薄膜、薄膜半導体装置及びその製造方法
JP7436409B2 (ja) 酸化物スパッタリングターゲット及びその製造方法並びに酸化物薄膜
TWI777013B (zh) 氧化物燒結體、濺鍍靶及氧化物薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572370

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280085091.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247025764

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022917654

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022917654

Country of ref document: EP

Effective date: 20240805