WO2023130843A1 - 一种新型宽带多赫蒂射频功率放大器 - Google Patents

一种新型宽带多赫蒂射频功率放大器 Download PDF

Info

Publication number
WO2023130843A1
WO2023130843A1 PCT/CN2022/132956 CN2022132956W WO2023130843A1 WO 2023130843 A1 WO2023130843 A1 WO 2023130843A1 CN 2022132956 W CN2022132956 W CN 2022132956W WO 2023130843 A1 WO2023130843 A1 WO 2023130843A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
network
transformer
auxiliary power
amplifier
Prior art date
Application number
PCT/CN2022/132956
Other languages
English (en)
French (fr)
Inventor
彭艳军
宣凯
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023130843A1 publication Critical patent/WO2023130843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the invention relates to the field of electronic technology, in particular to a novel broadband Doherty radio frequency power amplifier.
  • Modern wireless communication systems require handheld wireless communication devices to maintain high-speed communication during fast movement.
  • modern wireless communication systems use a peak-to-average ratio (PAPR) signal modulation system.
  • PAPR peak-to-average ratio
  • the peak-to-average ratio signal puts forward strict requirements on the linearity of the RF power amplifier.
  • the wireless communication system requires the RF power amplifier to work in a power back-off state of P -1 dB away from the power compression point to ensure that the RF signal linear amplification.
  • traditional RF power amplifiers are often designed for a fixed power supply voltage, the load impedance is optimized at the maximum output power, and the efficiency is very low when the power is backed off.
  • Doherty PA Doherty power amplifier circuit
  • the Doherty technique is based on load modulation at the output end, and the size of the output load is determined by the current ratio of the main power amplifier and the auxiliary power amplifier.
  • the Doherty PA consists of two amplifiers and quarter-wavelength lines.
  • the main power amplifier works in class AB
  • the auxiliary power amplifier works in class C.
  • the Doherty PA When the output power of the main power amplifier is close to the saturated power, the efficiency of the main power amplifier reaches the first peak point, the Doherty PA enters the high power mode, the auxiliary power amplifier is turned on, the load impedance of the main power amplifier changes from 2Z opt to Z opt , and the load impedance of the auxiliary power amplifier changes from infinite Transform to Zopt .
  • Doherty technology implements load modulation by placing a quarter-wavelength transmission line at the output end of the main power amplifier, and the quarter-wavelength transmission line in front of the auxiliary power amplifier is used to compensate the phase of the modulation signal to reduce power combining losses. Ideally, in high power mode, the output power of the Doherty PA is 6dB higher than that in low power mode.
  • the mobile terminal equipment requires a compact size, and the larger power divider and quarter-wavelength transmission line in the Doherty power amplifier circuit structure limit its application.
  • power distribution circuits suitable for RF/microwave monolithic integrated circuit technology and lumped parameter circuits for replacing quarter-wavelength transmission lines have gradually matured.
  • Doherty RF power amplifiers are also used in mobile applications. increasingly widespread.
  • the difference between the main power amplifier and the auxiliary power amplifier must be considered when designing the Doherty PA.
  • the input capacitance of the auxiliary power amplifier changes with the input power, and the input impedance changes accordingly.
  • the changing impedance leads to nonlinearity.
  • auxiliary PA output parasitic capacitances lead to undesirable load modulation behavior, degrading the efficiency, linearity, and bandwidth characteristics of Doherty PAs.
  • the invention provides a novel broadband Doherty radio frequency power amplifier to solve the above technical problems.
  • the present invention provides a novel broadband Doherty radio frequency power amplifier, comprising: a power divider, an input matching network, a drive amplification network, a differential signal conversion network, a main power amplifier network, an auxiliary power amplifier network, and a folded power combining transformer network;
  • the power divider is used to divide the power of the input signal and then output the first orthogonal signal RF+ and the second orthogonal signal RF-;
  • the input matching network is respectively connected to the output end of the power divider, and the output end of the input matching network is connected to the driving amplification network for receiving the first quadrature signal RF+ and the second quadrature signal RF - and matched to the drive amplifier network;
  • the output end of the drive amplifier network is connected to the differential signal conversion network, and the drive amplifier network is used to amplify the first quadrature signal RF+ and the second quadrature signal RF-, and input them to the differential signal switch network;
  • the output ends of the differential signal conversion network are respectively connected to the main power amplifier network and the auxiliary power amplifier network, and are used to convert the amplified first quadrature signal RF+ and the second quadrature signal RF- from single-ended to differential signals. converted and input to the main power amplifier network and the auxiliary power amplifier network respectively;
  • the main power amplifier network and the auxiliary power amplifier network are connected to the folded power combining transformer network, power is amplified through the main power amplifier network and the auxiliary power amplifier network, and then the power is combined through the folded power combining transformer network and output.
  • the folded power combining transformer includes a three-layer metal structure, wherein the outermost metal structure is wound with the main power amplifier primary coil connected to the main power amplifier network, and the innermost metal structure is wound with the auxiliary coil connected to the main power amplifier network.
  • a secondary coil is wound around the metal structure of the middle layer. One port of the secondary coil is used to connect the antenna load, and a capacitor C P1 is connected in parallel between the two ports of the secondary coil.
  • the power divider includes: a first capacitor C 1 , a second capacitor C 2 and a first transformer.
  • the input matching network includes: a first input matching network connected to one output end of the power divider, and a second input matching network connected to the other output end of the power divider; the The first input matching network receives the first quadrature signal RF+ and is matched to the driving amplifying network, and the second input matching network receives the second quadrature signal RF- and is matching to the driving amplifying network.
  • the driving amplifier network includes: a first driving amplifier connected to the first input matching network, and a second driving amplifier connected to the second input matching network.
  • the differential signal conversion network includes: a first transformer-type balun connected to the first driving amplifier, and a second transformer-type balun connected to the second driving amplifier.
  • the main power amplifier network includes a first main power amplifier and a second main power amplifier, the input terminals of the first main power amplifier and the second main power amplifier are connected to the first transformer-type balun, and the first main power amplifier A transformer-type balun receives the amplified first quadrature signal RF+ and then converts the differential signal and outputs the first differential signal to the first main power amplifier and the second main power amplifier.
  • the second main power amplifier outputs the amplified second differential signal to the folded power combining transformer network.
  • the auxiliary power amplifier network includes a first auxiliary power amplifier and a second auxiliary power amplifier, the input ends of the first auxiliary power amplifier and the second auxiliary power amplifier are connected to the second transformer-type balun, and the first auxiliary power amplifier
  • the second transformer-type balun receives the amplified second quadrature signal RF-, converts the differential signal and outputs a third differential signal to the first auxiliary power amplifier and the second auxiliary power amplifier, and the first auxiliary power amplifier and the second auxiliary power amplifier to output the amplified fourth differential signal to the folded power combining transformer network.
  • the auxiliary power amplifier network further includes a phase compensation network.
  • the phase compensation network includes: a first inductor, a second inductor, a third capacitor, and a fourth capacitor, the first inductor is connected to the output terminal of the first auxiliary power amplifier, and the second inductor is connected to The output terminal of the second auxiliary power amplifier, the two ends of the third capacitor are respectively connected to the output terminals of the first auxiliary power amplifier and the second auxiliary power amplifier, and the fourth capacitor is respectively connected to the first inductor and the second inductor output terminal.
  • the input matching network includes: a first input matching network connected to one output end of the power divider and composed of a first inductor and a third capacitor, and connected to another output end of the power divider A second input matching network connected and composed of a second inductor and a fourth capacitor; the first input matching network receives the first quadrature signal RF+ and is matched to the driving amplifier network, and the second input matching network The second quadrature signal RF- is received and matched to the drive amplifier network.
  • the drive amplifier network includes: a first drive amplifier tube connected to the first input matching network, and a second drive amplifier tube connected to the second input matching network;
  • the differential signal conversion network includes : the first transformer-type balun connected with the first drive amplifier tube, the second harmonic capacitor connected to the ground and the center tap of the first transformer-type balun secondary coil, and the first transformer-type balun secondary coil
  • the sixth capacitor connected in parallel with the two ports is used to adjust the impedance matching between the first transformer-type balun and the input impedance of the main power amplifier.
  • Two transformer type baluns XFM 3 Two transformer type baluns XFM 3 .
  • the second harmonic capacitor C 7 connected to ground and the center tap of the XFM 3 secondary coil, and the capacitor C 8 connected in parallel with the two ports of the XFM 3 secondary coil to adjust the impedance matching between the XFM 3 and the input impedance of the auxiliary power amplifier .
  • the main power amplifier network includes a first main power amplifying tube Q3 and a second main power amplifying tube Q4 , and the input ends of the first main power amplifying tube Q3 and the second main power amplifying tube Q4 are connected to
  • the first transformer-type balun XFM 2 receives the amplified first quadrature signal RF+, converts the differential signal and outputs the first differential signal to the first main power
  • the amplifying tube Q3 and the second main power amplifying tube Q4 , the main power amplifying tubes Q3 and Q4 output the amplified second differential signal to the folded power combining transformer.
  • the auxiliary power amplifier network further includes a phase compensation network (impedance inversion network) for realizing 90° phase compensation.
  • the phase compensation network includes: a third bonding wire inductor BW 3 , a third inductor L 3 , a ninth capacitor C 9 , a fourth bonding wire inductor BW 4 , a fourth inductor L 4 , and a tenth capacitor C 10 , the third bonding wire inductance BW 3 is connected to the output terminal of the first auxiliary power amplifier tube Q5 , and the fourth bonding wire inductance BW 4 is connected to the output terminal of the second auxiliary power amplifier tube Q6 Output terminals, the two ends of the ninth capacitor C9 are respectively connected to the output terminals of the first auxiliary power amplifier tube Q5 and the second auxiliary power amplifier tube Q6 , and the tenth capacitor C10 is respectively connected to the third inductor L3 , the output terminal of the fourth inductor L 4 .
  • the folded power synthesis transformer network 108 includes a transformer-type balun XFM 4 and a capacitor C P1 connected in parallel between the XFM 4 secondary coil output port RFout and ground, and the XFM 4 port MA+ passes through the first bonding wire inductance BW 1 is connected to the output terminal of the first main power amplifier tube Q 3 , and XFM 4 port MA- is connected to the output terminal of the second main power amplifier tube Q 4 through the second bonding wire inductor BW 2 , and XFM 4 ports Aux+ and Aux- are connected to the auxiliary Power amplifier network 107
  • the two ends of the tenth capacitor C 10 are connected to the output terminals of the first auxiliary power amplifier tube Q5 and the second auxiliary amplifier tube Q6 through the impedance inversion network 201, and the output port RFout of the XFM 4 secondary coil is connected to the antenna Load Z L .
  • a transformer is used to replace the traditional power divider and quarter-wavelength transmission line.
  • the power combination adopts a folded power combination transformer network, which has a compact structure, a small footprint, small insertion loss, and a wide frequency band. , making it more suitable for radio frequency integrated circuits, and has the advantages of high efficiency, good linearity and high integration.
  • Fig. 1 is a structural schematic diagram of an existing Doherty power amplifier
  • Fig. 2 is the schematic diagram of the broadband Doherty power amplifier provided by the present invention.
  • Fig. 3 is a structural schematic diagram of a folded power combining transformer in the present invention.
  • Fig. 4 is the schematic diagram of folding type power combining transformer network in the present invention.
  • Fig. 5 is a schematic diagram of an HBT wideband Doherty power amplifier according to Embodiment 2 of the present invention.
  • Figure 2 is a novel broadband Doherty radio frequency power amplifier provided by the present invention, comprising: power divider 10, input matching network 20, drive amplification network 30, differential signal conversion network 40, main power amplifier network 50 , an auxiliary power amplifier network 60 , and a folding power combining transformer network 70 .
  • the power divider 10 is used to divide the power of the input signal RFin and then output the first quadrature signal RF+ and the second quadrature signal RF- with a phase difference of 90°;
  • the input matching network 20 is connected with The output end of the power divider 10 is connected, and the output end of the input matching network 20 is connected to the drive amplification network 30 for receiving the first quadrature signal RF+ and the second quadrature signal RF- and matching them to The drive amplifier network 30;
  • the output end of the drive amplifier network 30 is connected to the differential signal conversion network 40, and the drive amplifier network 30 is used to convert the first quadrature signal RF+ and the second quadrature signal RF-
  • the differential signal conversion network 40 After being amplified, it is input to the differential signal conversion network 40;
  • the output ends of the differential signal conversion network 40 are respectively connected to the main power amplifier network 50 and the auxiliary power amplifier network 60 for amplifying the first quadrature
  • the signal RF+ and the second quadrature signal RF- are
  • the folded power combining transformer XFM 4 in the folded power combining transformer network 70 includes a three-layer metal structure, wherein the outermost metal structure is wound with a
  • the main power amplifier primary coil L p1 of the network 50 is connected to the differential output port of the main power amplifier network 50 through the port MA+ and the port MA-, and the innermost metal structure is wound with the auxiliary power amplifier primary coil L p2 connected to the auxiliary power amplifier network 60 , connected to the differential output port of the auxiliary power amplifier network through port Aux+ and port Aux-, the middle layer metal structure is wound with a secondary coil, one port of the secondary coil is used to connect the antenna load, and the other port is grounded to form a single-ended output structure, a capacitor C P1 is connected in parallel between the two ports of the secondary coil to adjust the inductance of the secondary coil.
  • the compact structure of the folded power combining transformer network 70 not only occupies a smaller size, but also has a small insertion loss and a wide frequency band. Its working principle diagram is shown in FIG. 4 .
  • the MA+ and MA- ports of the XFM 4 primary coil are connected to the output of the main power amplifier, the Aux+ and Aux- ports are connected to the output of the auxiliary power amplifier, and the center tap ports V S1 _MA and V S2 _Aux are connected to the power supply for the main power amplifier respectively. and auxiliary power amplifier.
  • the secondary coil of the main power amplifier and the primary coil of the auxiliary power amplifier are loosely coupled, and the shared secondary coil forms a parallel power combination of a folded transformer network.
  • the folded transformer type Doherty RF power amplifier designed by the present invention only works on the main power amplifier, and all the secondary coils are used to couple power from the primary coil of the main power amplifier.
  • the main power amplifier and auxiliary power amplifier are turned on, the main power amplifier maintains the maximum output power, the power of the auxiliary power amplifier gradually increases to the maximum output power with the increase of input power, and the combined output power of the main power amplifier and auxiliary power amplifier also reaches maximum.
  • the power splitter 10 includes: a first capacitor C 1 , a second capacitor C 2 and a first transformer.
  • the transformer is used as the power divider, and its structure size is smaller, which is more conducive to the use in integrated circuits.
  • the input matching network 20 includes: a first input matching network connected to one output end of the power divider 10, and a second input connected to the other output end of the power divider 10 Matching network; the first input matching network receives the first quadrature signal RF+ and is matched to the drive amplifier network, and the second input matching network receives the second quadrature signal RF- and is matched to the Drive Amplification Network.
  • the driving amplifier network 30 includes: a first driving amplifier PA 1 connected to the first input matching network, and a second driving amplifier PA 2 connected to the second input matching network.
  • the differential signal conversion network 40 includes: a first transformer-type balun XFM 2 connected to the first driving amplifier PA 1 , and a second transformer-type balun XFM 3 connected to the second driving amplifier PA 2 .
  • the main power amplifier network 50 includes a first main power amplifier PA 3 and a second main power amplifier PA 4 , the input terminals of the first main power amplifier PA 3 and the second main power amplifier PA 4 are connected to the The first transformer-type balun XFM 2 , the first transformer-type balun XFM 2 receives the amplified first quadrature signal RF+, converts the differential signal and outputs the first differential signal to the first main power amplifier PA 3 and the second main power amplifier PA 4 , the first and second main power amplifiers output the amplified second differential signal to the folded power combining transformer network 70 .
  • the auxiliary power amplifier network 60 includes a first auxiliary power amplifier PA 5 and a second auxiliary power amplifier PA 6 , the input ends of the first auxiliary power amplifier PA 5 and the second auxiliary power amplifier PA 6 are connected to the The second transformer-type balun XFM 3 , the second transformer-type balun XFM 3 receives the amplified second quadrature signal RF-, converts the differential signal and outputs the third differential signal to the first auxiliary power
  • the amplifier PA 5 and the second auxiliary power amplifier PA 6 output the amplified fourth differential signal to the folded power combining transformer network 70 from the first and second auxiliary power amplifiers.
  • the auxiliary power amplifier network 60 further includes a phase compensation network (impedance inversion network) 61 for realizing 90° phase compensation.
  • the phase compensation network includes: a first inductor L 1 , a second inductor L 2 , a third capacitor C 3 , and a fourth capacitor C 4 , the first inductor L 1 is connected to the first auxiliary power amplifier
  • the output end of PA 5 , the second inductance L 2 is connected to the output end of the second auxiliary power amplifier PA 6
  • the two ends of the third capacitor C 3 are connected to the first auxiliary power amplifier PA 5 and the second auxiliary power amplifier PA 5 and the second auxiliary power amplifier respectively.
  • the output terminal of the power amplifier PA 6 and the fourth capacitor C 4 are respectively connected to the output terminals of the first inductor L 1 and the second inductor L 2 .
  • the folded power combining transformer network 70 includes a transformer-type balun XFM 4 and a capacitor C P1 connected in parallel between the XFM 4 secondary coil output port RFout and ground, and the XFM 4 port MA+ passes through the first bonding wire Inductor BW 1 is connected to the first main power amplifier PA 3 output, XFM 4 port MA- is connected to the second main power amplifier PA 4 output through the second bonding wire Inductor BW 2 , XFM 4 ports Aux+ and Aux- are connected to the auxiliary power amplifier Both ends of the fourth capacitor C4 of the network 60 are connected to the output terminals of the first auxiliary power amplifier PA5 and the second auxiliary amplifier PA6 through an impedance inversion network 61 .
  • Figure 5 is a HBT wideband Doherty RF power amplifier provided by an embodiment of the present invention, including: a power divider 101, an input matching network 102, a driving amplification network 103, and differential signal conversion networks 104 and 105 , a main power amplifier network 106 , an auxiliary power amplifier network 107 , and a folded power combining transformer network 108 .
  • the power divider 101 includes: a first capacitor C 1 , a second capacitor C 2 and a first transformer.
  • the transformer is used as the power divider, and its structure size is smaller, which is more conducive to the use in integrated circuits.
  • the input matching network 102 includes: a first input matching network connected to an output end of the power divider 101 and composed of a first inductor L1 and a third capacitor C3 ;
  • the other output terminal of the power divider 101 is connected to a second input matching network composed of a second inductor L2 and a fourth capacitor C4 ;
  • the first input matching network receives the first quadrature signal RF+ and matched to the driving amplifying network
  • the second input matching network receives the second quadrature signal RF- and is matched to the driving amplifying network.
  • the driving amplifying network 103 includes: a first driving amplifying transistor Q 1 connected to the first input matching network, and a second driving amplifying transistor Q connected to the second input matching network 2 .
  • the differential signal conversion network 104 includes: a first transformer-type balun XFM 2 connected to the first drive amplifier tube Q 1 , a second harmonic capacitor C 5 connected to ground and the center tap of the secondary coil of XFM 2 , and The capacitor C 6 connected in parallel with the two ports of the XFM 2 secondary coil is used to adjust the impedance matching between the XFM 2 and the input impedance of the main power amplifier.
  • the differential signal conversion network 105 includes a second transformer-type balun XFM 3 connected to the second drive amplifier tube Q 2 .
  • the second harmonic capacitor C 7 connected to ground and the center tap of the XFM 3 secondary coil, and the capacitor C 8 connected in parallel with the two ports of the XFM 3 secondary coil to adjust the impedance matching between the XFM 3 and the input impedance of the auxiliary power amplifier .
  • the main power amplifier network 106 includes a first main power amplifier tube Q 3 and a second main power amplifier tube Q 4 , the first main power amplifier tube Q 3 , the second main power amplifier tube Q
  • the input terminal of 4 is connected to the first transformer-type balun XFM 2 , and the first transformer-type balun XFM 2 receives the amplified first quadrature signal RF+, converts the differential signal and outputs the first differential signal to the
  • the first main power amplifying tube Q3 and the second main power amplifying tube Q4 , the main power amplifying tubes Q3 and Q4 output the amplified second differential signal to the folded power combining transformer 108 .
  • the auxiliary power amplifier network 107 includes a first auxiliary power amplifier tube Q5 and a second auxiliary power amplifier tube Q6 .
  • the input ends of the first auxiliary power amplifying tube Q5 and the second auxiliary power amplifying tube Q6 are connected to the second transformer-type balun XFM 3 , and the second transformer-type balun XFM 3 receives the amplified second After the quadrature signal RF-, convert the differential signal and output the third differential signal to the first auxiliary power amplifier tube Q5 and the second auxiliary power amplifier tube Q6 , and the auxiliary power amplifier tube Q5 and Q 6 outputs the amplified fourth differential signal to the folded power combining transformer network 108 .
  • the auxiliary power amplifier network 107 further includes a phase compensation network (impedance inversion network) 201 for realizing 90° phase compensation.
  • the phase compensation network includes: a third bonding wire inductor BW 3 , a third inductor L 3 , a ninth capacitor C 9 , a fourth bonding wire inductor BW 4 , a fourth inductor L 4 , and a tenth capacitor C 10 , the third bonding wire inductance BW 3 is connected to the output terminal of the first auxiliary power amplifier tube Q5 , and the fourth bonding wire inductance BW 4 is connected to the output terminal of the second auxiliary power amplifier tube Q6 Output terminals, the two ends of the ninth capacitor C9 are respectively connected to the output terminals of the first auxiliary power amplifier tube Q5 and the second auxiliary power amplifier tube Q6 , and the tenth capacitor C10 is respectively connected to the third inductor L3 , the output terminal of the fourth inductor L 4 .
  • the folded power combining transformer network 108 includes a third transformer-type balun XFM 4 and a capacitor C P1 connected in parallel between the output port RFout of the secondary coil of the third transformer-type balun XFM 4 and ground, Folded power synthesis transformer XFM 4 -port MA+ is connected to the output terminal of the first main power amplifier tube Q 3 through the first bonding wire inductor BW 1 , XFM 4- port MA- is connected to the second main power amplifier through the second bonding wire inductor BW 2
  • the output terminal of the tube Q 4 , the folded power synthesis transformer XFM 4 ports Aux+ and Aux- are connected to the two ends of the tenth capacitor C 10 of the auxiliary power amplifier network 107, and then connected to the first auxiliary power amplifier tube Q 5 and the first auxiliary power amplifier tube Q 5 through the impedance inversion network 201
  • a transformer is used to replace the traditional power divider and quarter-wavelength transmission line.
  • the power combination adopts a folded power combination transformer network, which has a compact structure, a small footprint, small insertion loss, and a wide frequency band. , making it more suitable for radio frequency integrated circuits, and has the advantages of high efficiency, good linearity and high integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及电子技术领域,提供一种新型宽带多赫蒂射频功率放大器,包括:功率分配器、输入匹配网络、驱动放大网络、差分信号转换网络、主功放网络、辅助功放网络、以及折叠型功率合成变压器网络;其中,功率分配器用于将输入信号进行功率分配后输出第一正交信号RF+和第二正交信号RF-;输入匹配网络分别与功率分配器的输出端连接,输入匹配网络的输出端与驱动放大网络连接;驱动放大网络的输出端连接差分信号转换网络;差分信号转换网络的输出端分别连接主功放网络以及辅助功放网络;主功放网络及辅助功放网络与折叠型功率合成变压器网络连接。本发明的多赫蒂功率放大器其结构紧凑、尺寸较小,且插损小、频带宽。

Description

一种新型宽带多赫蒂射频功率放大器 技术领域
本发明涉及电子技术领域,尤其涉及一种新型宽带多赫蒂射频功率放大器。
背景技术
现代无线通信系统要求手持无线通信设备在快速移动的过程中仍能保持高速率通信,为了充分利用频谱资源,提高数据传输速率,现代无线通信系统采用了高峰均比(PAPR)的信号调制制式。高峰均比信号对射频功率放大器的线性提出了严格的要求,为了保证信号不失真传输,无线通信系统要求射频功率放大器工作在远离功率压缩点P -1dB的功率回退状态,以保证射频信号的线性放大。但是,传统的射频功率放大器往往设计为固定的电源电压,负载阻抗优化在最大输出功率处,功率回退时的效率非常低。为了提升功率回退时射频功率放大器的效率,广播和基站设备广为使用了包络跟踪(ET)、数字预失真、包络消除与恢复(EER)、Doherty等效率提升技术。其中,多赫蒂功率放大器电路(Doherty PA)具有简单的电路拓扑结构,不需要额外的控制电路,也不会受到控制电路的带宽限制,非常容易实现,而且易与其它效率提升技术相结合使用,是一种非常具有竞争力的技术。
Doherty技术基于输出端的负载调制,输出负载的大小由主功放和辅助功放电流比的大小决定。如图1所示,Doherty PA由两个放大器和四分之一波长线组成。主功放工作在AB类,辅助功放工作在C类。低功率模式时,仅主功放工作,输出端负载阻抗为2Z opt。当主功放输出功率接近饱和功率时,主功放效率到达第一个峰值点,Doherty PA进入高功率模式,辅助功放打开,主功放的负载阻抗从2Z opt变换到Z opt,辅助功放的负载阻抗从无穷大变换到Z opt。Doherty技术是通过放置在主功放的输出端四分之一波长传输线实现负载调制,辅助功放前的四分之一波长传输线用于补偿调制信号的相位,以降低功率合成损耗。理想情况,高功率模式下,Doherty PA的输出功率比低功率模式下输出功率增加6dB。然而,移动端设备要求尺寸紧凑,Doherty功率放大器电路结 构中尺寸较大的功率分配器和四分之一波长传输线限制了其应用。不过随着Doherty技术的发展,适用于射频/微波单片集成电路工艺的功率分配电路以及用于替换四分之一波长传输线的集总参数电路逐渐成熟起来,Doherty射频功率放大器也在移动端的应用日益广泛起来。
实际应用中,设计Doherty PA时必须考虑到主功放和辅助功放的差异。辅助功放的输入电容随着输入功率而变化,输入阻抗因而随之变化,变化的阻抗导致非线性的产生。另一方面,辅助功放输出寄生电容导致不理想的负载调制行为,降低了Doherty PA的效率、线性度和带宽特性。
发明内容
本发明提供一种新型宽带多赫蒂射频功率放大器,以解决上述技术问题。
本发明提供一种新型宽带多赫蒂射频功率放大器,包括:功率分配器、输入匹配网络、驱动放大网络、差分信号转换网络、主功放网络、辅助功放网络、以及折叠型功率合成变压器网络;
其中,所述功率分配器用于将输入信号进行功率分配后输出第一正交信号RF+和第二正交信号RF-;
所述输入匹配网络分别与所述功率分配器的输出端连接,所输入匹配网络的输出端与所述驱动放大网络连接,用于接收所述第一正交信号RF+和第二正交信号RF-并匹配到所述驱动放大网络;
所述驱动放大网络的输出端连接所述差分信号转换网络,所述驱动放大网络用于对所述第一正交信号RF+和第二正交信号RF-进行放大后,输入到所述差分信号转换网络;
所述差分信号转换网络的输出端分别连接所述主功放网络以及所述辅助功放网络,用于对放大后的第一正交信号RF+、第二正交信号RF-进行单端到差分信号的转换,并分别输入到所述主功放网络及所述辅助功放网络;
所述主功放网络及所述辅助功放网络与所述折叠型功率合成变压器网络连接,通过所述主功放网络及所述辅助功放网络进行功率放大后通过所述折叠型功率合成变压器网络进行功率合成并输出。
优选的,所述折叠型功率合成变压器包括三层金属结构,其中,最外层金属结构绕设有连接所述主功放网络的主功放初级线圈,最内层金属结构绕设有 连接所述辅助功放网络的辅助功放初级线圈,中间层金属结构绕设有次级线圈,次级线圈的一个端口用于连接天线负载,次级线圈两个端口之间并联电容C P1
优选的,所述功率分配器包括:第一电容C 1、第二电容C 2和第一变压器。
优选的,所述输入匹配网络包括:与所述功率分配器的一个输出端连接的第一输入匹配网络、以及与所述功率分配器的另一个输出端连接的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号RF+并匹配到所述驱动放大网络,所述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
优选的,所述驱动放大网络包括:与所述第一输入匹配网络连接的第一驱动放大器、及与所述第二输入匹配网络连接的第二驱动放大器。
优选的,所述差分信号转换网络包括:与所述第一驱动放大器连接的第一变压器型巴伦、及与所述第二驱动放大器连接的第二变压器型巴伦。
优选的,所述主功放网络包括第一主功率放大器和第二主功率放大器,所述第一主功率放大器、第二主功率放大器的输入端连接所述第一变压器型巴伦,所述第一变压器型巴伦接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大器和所述第二主功率放大器,由所述第一和第二主功率放大器输出经过放大的第二差分信号至所述折叠型功率合成变压器网络。
优选的,所述辅助功放网络包括第一辅助功率放大器和第二辅助功率放大器,所述第一辅助功率放大器、第二辅助功率放大器的输入端连接所述第二变压器型巴伦,所述第二变压器型巴伦接收经过放大的第二正交信号RF-后进行差分信号的转换并输出第三差分信号至所述第一辅助功率放大器和所述第二辅助功率放大器,由所述第一和第二辅助功率放大器输出经过放大的第四差分信号至所述折叠型功率合成变压器网络。
优选的,所述辅助功放网络还包括相位补偿网络。
优选的,所述相位补偿网络包括:第一电感、第二电感、第三电容、以及第四电容,所述第一电感连接所述第一辅助功率放大器的输出端,所述第二电感连接所述第二辅助功率放大器的输出端,第三电容的两端分别连接所述第一辅助功率放大器和第二辅助功率放大器的输出端,第四电容分别连接所述第一电感、第二电感的输出端。
优选的,所述输入匹配网络包括:与所述功率分配器的一个输出端连接并由第一电感和第三电容组成的第一输入匹配网络、以及与所述功率分配器的另一个输出端连接并由第二电感和第四电容组成的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号RF+并匹配到所述驱动放大网络,所述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
优选的,所述驱动放大网络包括:与所述第一输入匹配网络连接的第一驱动放大管、及与所述第二输入匹配网络连接的第二驱动放大管;所述差分信号转换网络包括:与所述第一驱动放大管连接的第一变压器型巴伦,连接地和第一变压器型巴伦次级线圈中心抽头的二次谐波电容,以及与第一变压器型巴伦次级线圈两个端口相并联的第六电容,以调节第一变压器型巴伦和主功放输入阻抗之间的阻抗匹配,所述差分信号转换网络105包括与所述第二驱动放大管Q 2连接的第二变压器型巴伦XFM 3。连接地和XFM 3次级线圈中心抽头的二次谐波电容C 7,以及与XFM 3次级线圈两个端口相并联的电容C 8,以调节XFM 3和辅助功放输入阻抗之间的阻抗匹配。
优选的,所述主功放网络包括第一主功率放大管Q 3和第二主功率放大管Q 4,所述第一主功率放大管Q 3、第二主功率放大管Q 4的输入端连接所述第一变压器型巴伦XFM 2,所述第一变压器型巴伦XFM 2接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大管Q 3和所述第二主功率放大管Q 4,由所述主功率放大管Q 3和Q 4输出经过放大的第二差分信号至所述折叠型功率合成变压器。
优选的,所述辅助功放网络还包括相位补偿网络(阻抗反转网络),用于实现90°相位补偿。具体的,所述相位补偿网络包括:第三键合线电感BW 3、第三电感L 3、第九电容C 9、第四键合线电感BW 4、第四电感L 4、以及第十电容C 10,所述第三键合线电感BW 3连接所述第一辅助功率放大管Q 5的输出端,所述第四键合线电感BW 4连接所述第二辅助功率放大器管Q 6的输出端,第九电容C 9的两端分别连接所述第一辅助功率放大管Q 5和第二辅助功率放大器管Q 6的输出端,第十电容C 10分别连接所述第三电感L 3、第四电感L 4的输出端。
优选的,所述折叠型功率合成变压器网络108包括变压器型巴伦XFM 4和并联在XFM 4次级线圈输出端口RFout和地之间的电容C P1,XFM 4端口MA+通过第一键合线电感BW 1连接第一主功率放大管Q 3输出端,XFM 4端口MA- 通过第二键合线电感BW 2连接第二主功率放大管Q 4输出端,XFM 4端口Aux+和Aux-连接到辅助功放网络107第十电容C 10两端,再通过阻抗反转网络201连接到第一辅助功率放大管Q 5和第二辅助放大管Q 6的输出端,XFM 4次级线圈输出端口RFout连接天线负载Z L
本发明中,使用变压器替换了传统的功分器和四分之一波长传输线,特别是,功率合成采用折叠型功率合成变压器网络,其结构紧凑、占用尺寸较小,且插损小、频带宽,使其更适用于射频集成电路,并具备效率高、线性好和集成度高的优点。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对本发明或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有多赫蒂功率放大器的结构示意图;
图2是本发明提供的宽带多赫蒂功率放大器的原理图;
图3是本发明中折叠型功率合成变压器的结构示意图;
图4是本发明中折叠型功率合成变压器网络的原理图;
图5是本发明实施例二HBT宽带多赫蒂功率放大器的原理图。
具体实施方式
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的每个行人其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现 该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
如图2所示,图2是本发明提供的一种新型宽带多赫蒂射频功率放大器,包括:功率分配器10、输入匹配网络20、驱动放大网络30、差分信号转换网络40、主功放网络50、辅助功放网络60、以及折叠型功率合成变压器网络网络70。
本发明中,所述功率分配器10用于将输入信号RFin进行功率分配后输出相位差为90°的第一正交信号RF+和第二正交信号RF-;所述输入匹配网络20分别与所述功率分配器10的输出端连接,所输入匹配网络20的输出端与所述驱动放大网络30连接,用于接收所述第一正交信号RF+和第二正交信号RF-并匹配到所述驱动放大网络30;所述驱动放大网络30的输出端连接所述差分信号转换网络40,所述驱动放大网络30用于对所述第一正交信号RF+和第二正交信号RF-进行放大后,输入到所述差分信号转换网络40;所述差分信号转换网络40的输出端分别连接所述主功放网络50以及所述辅助功放网络60,用于对放大后的第一正交信号RF+、第二正交信号RF-进行单端到差分信号的转换,并分别输入到所述主功放网络50及所述辅助功放网络60;所述主功放网络50及所述辅助功放网络60与所述折叠型功率合成变压器网络70连接,通过所述主功放网络50及所述辅助功放网络60进行功率放大后通过所述折叠型功率合成变压器网络70进行功率合成并输出。
在本发明中,结合图2所示,所述折叠型功率合成变压器网络70中的折叠型功率合成变压器XFM 4包括三层金属结构,其中,最外层金属结构绕设有连接所述主功放网络50的主功放初级线圈L p1,通过端口MA+和端口MA-与主功放网络50的差分输出端口连接,最内层金属结构绕设有连接所述辅助功放网络60的辅助功放初级线圈L p2,通过端口Aux+和端口Aux-与辅助功放网络的差分输出端口连接,中间层金属结构绕设有次级线圈,次级线圈的一个端口用于连接天线负载,另一个端口接地,形成单端输出结构,次级线圈两个端口之间并联电容C P1,用于调节次级线圈电感。
本发明中,折叠型功率合成变压器网络70(XFM 4)紧凑的结构不仅占用的尺寸较小,而且插损小,频带宽,其工作原理图如图四所示。XFM 4初级线 圈的MA+和MA-端口连接到主功放的输出端,Aux+和Aux-端口连接到辅助功放的输出端,中心抽头端口V S1_MA和V S2_Aux连接电源,分别用于给主功放和辅助功放供电。主功放次级线圈与辅助功放初级线圈是松耦合关系,共用的次级线圈形成了折叠变压器网络的并行功率合成。在低功率模式下,本发明设计的折叠变压器型多赫蒂射频功率放大器仅主功放工作,全部次级线圈都被用来从主功放的初级线圈耦合功率。在高功率工作模式,主功放和辅助功放打开,主功放保持最大输出功率,辅助功放的功率随着输入功率增大逐步增大到最大输出功率,主功放和辅助功放合成后的输出功率也达到最大。
在本发明中,所述功率分配器10包括:第一电容C 1、第二电容C 2和第一变压器。采用变压器作为功率分配器,相对于传统的功分器而言,其结构尺寸更小,更有利于集成电路中使用。
在本发明中,所述输入匹配网络20包括:与所述功率分配器10的一个输出端连接的第一输入匹配网络、以及与所述功率分配器10的另一个输出端连接的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号RF+并匹配到所述驱动放大网络,所述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
在本发明中,所述驱动放大网络30包括:与所述第一输入匹配网络连接的第一驱动放大器PA 1、及与所述第二输入匹配网络连接的第二驱动放大器PA 2。所述差分信号转换网络40包括:与所述第一驱动放大器PA 1连接的第一变压器型巴伦XFM 2、及与所述第二驱动放大器PA 2连接的第二变压器型巴伦XFM 3
在本发明中,所述主功放网络50包括第一主功率放大器PA 3和第二主功率放大器PA 4,所述第一主功率放大器PA 3、第二主功率放大器PA 4的输入端连接所述第一变压器型巴伦XFM 2,所述第一变压器型巴伦XFM 2接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大器PA 3和所述第二主功率放大器PA 4,由所述第一和第二主功率放大器输出经过放大的第二差分信号至所述折叠型功率合成变压器网络70。
在本发明中,所述辅助功放网络60包括第一辅助功率放大器PA 5和第二辅助功率放大器PA 6,所述第一辅助功率放大器PA 5、第二辅助功率放大器PA 6的输入端连接所述第二变压器型巴伦XFM 3,所述第二变压器型巴伦XFM 3接 收经过放大的第二正交信号RF-后进行差分信号的转换并输出第三差分信号至所述第一辅助功率放大器PA 5和所述第二辅助功率放大器PA 6,由所述第一和第二辅助功率放大器输出经过放大的第四差分信号至所述折叠型功率合成变压器网络70。
在本发明中,所述辅助功放网络60还包括相位补偿网络(阻抗反转网络)61,用于实现90°相位补偿。具体的,所述相位补偿网络包括:第一电感L 1、第二电感L 2、第三电容C 3、以及第四电容C 4,所述第一电感L 1连接所述第一辅助功率放大器PA 5的输出端,所述第二电感L 2连接所述第二辅助功率放大器PA 6的输出端,第三电容C 3的两端分别连接所述第一辅助功率放大器PA 5和第二辅助功率放大器PA 6的输出端,第四电容C 4分别连接所述第一电感L 1、第二电感L 2的输出端。
本发明中,所述折叠型功率合成变压器网络70包括变压器型巴伦XFM 4和并联在XFM 4次级线圈输出端口RFout和地之间的电容C P1,XFM 4端口MA+通过第一键合线电感BW 1连接第一主功率放大器PA 3输出端,XFM 4端口MA-通过第二键合线电感BW 2连接第二主功率放大器PA 4输出端,XFM 4端口Aux+和Aux-连接到辅助功放网络60第四电容C 4两端,再通过阻抗反转网络61连接到第一辅助功率放大器PA 5和第二辅助放大器PA 6的输出端。
实施例二
如图5所示,图5是本发明实施例提供的一种HBT宽带多赫蒂射频功率放大器,包括:功率分配器101、输入匹配网络102、驱动放大网络103、差分信号转换网络104和105、主功放网络106、辅助功放网络107、以及折叠型功率合成变压器网络108。
在本发明实施例中,所述功率分配器101包括:第一电容C 1、第二电容C 2和第一变压器。采用变压器作为功率分配器,相对于传统的功分器而言,其结构尺寸更小,更有利于集成电路中使用。
在本发明实施例中,所述输入匹配网络102包括:与所述功率分配器101的一个输出端连接并由第一电感L 1和第三电容C 3组成的第一输入匹配网络、以及与所述功率分配器101的另一个输出端连接并由第二电感L 2和第四电容C 4组成的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号 RF+并匹配到所述驱动放大网络,所述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
在本发明实施例中,所述驱动放大网络103包括:与所述第一输入匹配网络连接的第一驱动放大管Q 1、及与所述第二输入匹配网络连接的第二驱动放大管Q 2。所述差分信号转换网络104包括:与所述第一驱动放大管Q 1连接的第一变压器型巴伦XFM 2,连接地和XFM 2次级线圈中心抽头的二次谐波电容C 5,以及与XFM 2次级线圈两个端口相并联的电容C 6,以调节XFM 2和主功放输入阻抗之间的阻抗匹配。所述差分信号转换网络105包括与所述第二驱动放大管Q 2连接的第二变压器型巴伦XFM 3。连接地和XFM 3次级线圈中心抽头的二次谐波电容C 7,以及与XFM 3次级线圈两个端口相并联的电容C 8,以调节XFM 3和辅助功放输入阻抗之间的阻抗匹配。
在本发明实施例中,所述主功放网络106包括第一主功率放大管Q 3和第二主功率放大管Q 4,所述第一主功率放大管Q 3、第二主功率放大管Q 4的输入端连接所述第一变压器型巴伦XFM 2,所述第一变压器型巴伦XFM 2接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大管Q 3和所述第二主功率放大管Q 4,由所述主功率放大管Q 3和Q 4输出经过放大的第二差分信号至所述折叠型功率合成变压器108。
在本发明实施例中,所述辅助功放网络107包括第一辅助功率放大管Q 5和第二辅助功率放大管Q 6。所述第一辅助功率放大管Q 5、第二辅助功率放大管Q 6的输入端连接所述第二变压器型巴伦XFM 3,所述第二变压器型巴伦XFM 3接收经过放大的第二正交信号RF-后进行差分信号的转换并输出第三差分信号至所述第一辅助功率放大管Q 5和所述第二辅助功率放大器管Q 6,由所述辅助功率放大管Q 5和Q 6输出经过放大的第四差分信号至所述折叠型功率合成变压器网络108。
在本发明实施中,所述辅助功放网络107还包括相位补偿网络(阻抗反转网络)201,用于实现90°相位补偿。具体的,所述相位补偿网络包括:第三键合线电感BW 3、第三电感L 3、第九电容C 9、第四键合线电感BW 4、第四电感L 4、以及第十电容C 10,所述第三键合线电感BW 3连接所述第一辅助功率放大管Q 5的输出端,所述第四键合线电感BW 4连接所述第二辅助功率放大器管Q 6的输出端,第九电容C 9的两端分别连接所述第一辅助功率放大管Q 5和第二 辅助功率放大器管Q 6的输出端,第十电容C 10分别连接所述第三电感L 3、第四电感L 4的输出端。
在本发明实施中,所述折叠型功率合成变压器网络108包括第三变压器型巴伦XFM 4和并联在第三变压器型巴伦XFM 4次级线圈输出端口RFout和地之间的电容C P1,折叠型功率合成变压器XFM 4端口MA+通过第一键合线电感BW 1连接第一主功率放大管Q 3输出端,XFM 4端口MA-通过第二键合线电感BW 2连接第二主功率放大管Q 4输出端,折叠型功率合成变压器XFM 4端口Aux+和Aux-连接到辅助功放网络107第十电容C 10两端,再通过阻抗反转网络201连接到第一辅助功率放大管Q 5和第二辅助放大管Q 6的输出端,折叠型功率合成变压器XFM 4次级线圈输出端口RFout连接天线负载Z L
本发明中,使用变压器替换了传统的功分器和四分之一波长传输线,特别是,功率合成采用折叠型功率合成变压器网络,其结构紧凑、占用尺寸较小,且插损小、频带宽,使其更适用于射频集成电路,并具备效率高、线性好和集成度高的优点。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (16)

  1. 一种新型宽带多赫蒂射频功率放大器,其特征在于,包括:功率分配器、输入匹配网络、驱动放大网络、差分信号转换网络、主功放网络、辅助功放网络、以及折叠型功率合成变压器网络;
    其中,所述功率分配器用于将输入信号进行功率分配后输出第一正交信号RF+和第二正交信号RF-;
    所述输入匹配网络分别与所述功率分配器的输出端连接,所述输入匹配网络的输出端与所述驱动放大网络连接,用于接收所述第一正交信号RF+和第二正交信号RF-并匹配到所述驱动放大网络;
    所述驱动放大网络的输出端连接所述差分信号转换网络,所述驱动放大网络用于对所述第一正交信号RF+和第二正交信号RF-进行放大后,输入到所述差分信号转换网络;
    所述差分信号转换网络的输出端分别连接所述主功放网络以及所述辅助功放网络,用于对放大后的第一正交信号RF+、第二正交信号RF-进行单端到差分信号的转换,并分别输入到所述主功放网络及所述辅助功放网络;
    所述主功放网络及所述辅助功放网络与所述折叠型功率合成变压器网络连接,通过所述主功放网络及所述辅助功放网络进行功率放大后通过所述折叠型功率合成变压器网络进行功率合成并输出。
  2. 如权利要求1所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述折叠型功率合成变压器包括三层金属结构,其中,最外层金属结构绕设有连接所述主功放网络的主功放初级线圈,最内层金属结构绕设有连接所述辅助功放网络的辅助功放初级线圈,中间层金属结构绕设有次级线圈,次级线圈的一个端口用于连接天线负载,次级线圈两个端口之间并联电容。
  3. 如权利要求1所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述功率分配器包括:第一电容、第二电容和第一变压器。
  4. 如权利要求1所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述输入匹配网络包括:与所述功率分配器的一个输出端连接的第一输入匹配网络、以及与所述功率分配器的另一个输出端连接的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号RF+并匹配到所述驱动放大网络,所 述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
  5. 如权利要求4所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述驱动放大网络包括:与所述第一输入匹配网络连接的第一驱动放大器、及与所述第二输入匹配网络连接的第二驱动放大器。
  6. 如权利要求5所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述差分信号转换网络包括:与所述第一驱动放大器连接的第一变压器型巴伦、及与所述第二驱动放大器连接的第二变压器型巴伦。
  7. 如权利要求6所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述主功放网络包括第一主功率放大器和第二主功率放大器,所述第一主功率放大器、第二主功率放大器的输入端连接所述第一变压器型巴伦,所述第一变压器型巴伦接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大器和所述第二主功率放大器,由所述第一和第二主功率放大器输出经过放大的第二差分信号至所述折叠型功率合成变压器网络。
  8. 如权利要求6所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述辅助功放网络包括第一辅助功率放大器和第二辅助功率放大器,所述第一辅助功率放大器、第二辅助功率放大器的输入端连接所述第二变压器型巴伦,所述第二变压器型巴伦接收经过放大的第二正交信号RF-后进行差分信号的转换并输出第三差分信号至所述第一辅助功率放大器和所述第二辅助功率放大器,由所述第一和第二辅助功率放大器输出经过放大的第四差分信号至所述折叠型功率合成变压器网络。
  9. 如权利要求8所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述辅助功放网络还包括相位补偿网络。
  10. 如权利要求9所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述相位补偿网络包括:第一电感、第二电感、第三电容、以及第四电容,所述第一电感连接所述第一辅助功率放大器的输出端,所述第二电感连接所述第二辅助功率放大器的输出端,第三电容的两端分别连接所述第一辅助功率放大器和第二辅助功率放大器的输出端,第四电容分别连接所述第一电感、第二电感的输出端。
  11. 如权利要求1所述的新型宽带多赫蒂射频功率放大器,其特征在于, 所述输入匹配网络包括:与所述功率分配器的一个输出端连接并由第一电感和第三电容组成的第一输入匹配网络、以及与所述功率分配器的另一个输出端连接并由第二电感和第四电容组成的第二输入匹配网络;所述第一输入匹配网络接收所述第一正交信号RF+并匹配到所述驱动放大网络,所述第二输入匹配网络接收所述第二正交信号RF-并匹配到所述驱动放大网络。
  12. 如权利要求11所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述驱动放大网络包括:与所述第一输入匹配网络连接的第一驱动放大管、及与所述第二输入匹配网络连接的第二驱动放大管;所述差分信号转换网络包括:与所述第一驱动放大管连接的第一变压器型巴伦,连接地和第一变压器型巴伦次级线圈中心抽头的第一二次谐波电容,以及与第一变压器型巴伦次级线圈两个端口相并联的第六电容,以调节第一变压器型巴伦和主功放输入阻抗之间的阻抗匹配,所述差分信号转换网络包括与所述第二驱动放大管连接的第二变压器型巴伦、连接地和第二变压器型巴伦次级线圈中心抽头的第二二次谐波电容,以及与第二变压器型巴伦次级线圈两个端口相并联的第八电容,以调节第二变压器型巴伦和辅助功放输入阻抗之间的阻抗匹配。
  13. 如权利要求12所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述主功放网络包括第一主功率放大管和第二主功率放大管,所述第一主功率放大管、第二主功率放大管的输入端连接所述第一变压器型巴伦,所述第一变压器型巴伦接收经过放大的第一正交信号RF+后进行差分信号的转换并输出第一差分信号至所述第一主功率放大管和所述第二主功率放大管,由所述第一主功率放大管和第二主功率放大管输出经过放大的第二差分信号至所述折叠型功率合成变压器网络。
  14. 如权利要求13所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述辅助功放网络包括第一辅助功率放大管和第二辅助功率放大管,所述第一辅助功率放大管、第二辅助功率放大管的输入端连接所述第二变压器型巴伦,所述第二变压器型巴伦接收经过放大的第二正交信号RF-后进行差分信号的转换并输出第三差分信号至所述第一辅助功率放大管和所述第二辅助功率放大器管,由所述第一辅助功率放大管和第二辅助功率放大管输出经过放大的第四差分信号至所述折叠型功率合成变压器网络。
  15. 如权利要求14所述的新型宽带多赫蒂射频功率放大器,其特征在于, 所述辅助功放网络还包括相位补偿网络,用于实现90°相位补偿,所述相位补偿网络包括:第三键合线电感、第三电感、第九电容、第四键合线电感、第四电感、以及第十电容,所述第三键合线电感连接所述第一辅助功率放大管的输出端,所述第四键合线电感连接所述第二辅助功率放大器管的输出端,第九电容的两端分别连接所述第一辅助功率放大管和第二辅助功率放大器管的输出端,第十电容分别连接所述第三电感、第四电感的输出端。
  16. 如权利要求15所述的新型宽带多赫蒂射频功率放大器,其特征在于,所述折叠型功率合成变压器网络包括折叠型功率合成变压器和并联在折叠型功率合成变压器次级线圈输出端口和地之间的并联电容,折叠型功率合成变压器的端口MA+通过第一键合线电感连接第一主功率放大管输出端,折叠型功率合成变压器的端口MA-通过第二键合线电感连接第二主功率放大管输出端,折叠型功率合成变压器端口Aux+和端口Aux-连接到辅助功放网络的第十电容两端,再通过阻抗反转网络连接到第一辅助功率放大管和第二辅助放大管的输出端,端口次级线圈输出端口RFout连接天线负载。
PCT/CN2022/132956 2022-01-10 2022-11-18 一种新型宽带多赫蒂射频功率放大器 WO2023130843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210022140.3A CN114050792A (zh) 2022-01-10 2022-01-10 一种新型宽带多赫蒂射频功率放大器
CN202210022140.3 2022-01-10

Publications (1)

Publication Number Publication Date
WO2023130843A1 true WO2023130843A1 (zh) 2023-07-13

Family

ID=80213491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132956 WO2023130843A1 (zh) 2022-01-10 2022-11-18 一种新型宽带多赫蒂射频功率放大器

Country Status (2)

Country Link
CN (1) CN114050792A (zh)
WO (1) WO2023130843A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647199A (zh) * 2023-07-24 2023-08-25 成都通量科技有限公司 调谐变压器及包含该调谐变压器的Doherty功率放大器
CN116865685A (zh) * 2023-08-31 2023-10-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050792A (zh) * 2022-01-10 2022-02-15 深圳飞骧科技股份有限公司 一种新型宽带多赫蒂射频功率放大器
CN114785289B (zh) * 2022-04-02 2023-01-06 华南理工大学 一种Doherty功率放大器
CN114824720B (zh) * 2022-04-13 2023-04-07 电子科技大学 一种嵌入阻抗变换功能的紧凑型变压器威尔金森巴伦
CN114824721B (zh) * 2022-04-27 2023-05-05 中国电子科技集团公司第二十九研究所 超宽带小型化功分器
CN114826173B (zh) * 2022-06-30 2022-10-14 深圳市时代速信科技有限公司 一种射频功率器件与电子设备
WO2024092492A1 (zh) * 2022-11-01 2024-05-10 苏州华太电子技术股份有限公司 多赫蒂放大器及其输出网络、多赫蒂放大器的设计方法
CN115714582A (zh) * 2022-11-23 2023-02-24 深圳飞骧科技股份有限公司 一种射频功率放大器及电子设备
CN218829865U (zh) * 2022-11-28 2023-04-07 深圳飞骧科技股份有限公司 射频功率放大器及射频芯片
CN115800936B (zh) * 2022-12-08 2023-07-21 康希通信科技(上海)有限公司 放大电路、无线通信模块和电子设备
CN115940839A (zh) * 2022-12-08 2023-04-07 康希通信科技(上海)有限公司 放大电路、无线通信模块和电子设备
CN115882791A (zh) * 2022-12-12 2023-03-31 深圳飞骧科技股份有限公司 一种电压合成式Doherty功率放大器
CN116015227B (zh) * 2023-02-20 2024-01-23 优镓科技(北京)有限公司 一种并联式差分功率放大器
CN115833768B (zh) * 2023-02-23 2023-05-23 深圳飞骧科技股份有限公司 电压合成式Doherty功率放大器
CN115940850B (zh) * 2023-02-23 2023-05-23 深圳飞骧科技股份有限公司 电流合成式新型Doherty功率放大器
CN117294257A (zh) * 2023-08-18 2023-12-26 芯百特微电子(无锡)有限公司 一种Doherty功率放大器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180428A1 (en) * 2013-12-20 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Enhanced and Versatile N-Way Doherty Power Amplifier
CN109672411A (zh) * 2018-12-19 2019-04-23 重庆邮电大学 一种适用于5G低频段全频段的非对称宽带Doherty功率放大器
CN109889163A (zh) * 2019-02-27 2019-06-14 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951160A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951159A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN110324008A (zh) * 2019-06-13 2019-10-11 上海华虹宏力半导体制造有限公司 基于变压器的非平衡Doherty功率放大器及其设计方法
CN111510076A (zh) * 2020-05-18 2020-08-07 优镓科技(北京)有限公司 一种class-AB驱动的Doherty功率放大器、基站和移动终端
CN114050792A (zh) * 2022-01-10 2022-02-15 深圳飞骧科技股份有限公司 一种新型宽带多赫蒂射频功率放大器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145078B1 (en) * 2014-05-28 2018-09-19 Huawei Technologies Co., Ltd. Doherty power amplifier and transmitter
CN106374860A (zh) * 2016-08-26 2017-02-01 成都通量科技有限公司 一种基于电压合成结构的Doherty功率放大器
JP2021192476A (ja) * 2020-06-05 2021-12-16 株式会社村田製作所 電力増幅回路
CN113904628A (zh) * 2021-09-23 2022-01-07 深圳飞骧科技股份有限公司 宽带Doherty功率放大器和实现方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180428A1 (en) * 2013-12-20 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Enhanced and Versatile N-Way Doherty Power Amplifier
CN109672411A (zh) * 2018-12-19 2019-04-23 重庆邮电大学 一种适用于5G低频段全频段的非对称宽带Doherty功率放大器
CN109889163A (zh) * 2019-02-27 2019-06-14 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951160A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN109951159A (zh) * 2019-02-27 2019-06-28 上海华虹宏力半导体制造有限公司 基于变压器的Doherty功率放大器
CN110324008A (zh) * 2019-06-13 2019-10-11 上海华虹宏力半导体制造有限公司 基于变压器的非平衡Doherty功率放大器及其设计方法
CN111510076A (zh) * 2020-05-18 2020-08-07 优镓科技(北京)有限公司 一种class-AB驱动的Doherty功率放大器、基站和移动终端
CN114050792A (zh) * 2022-01-10 2022-02-15 深圳飞骧科技股份有限公司 一种新型宽带多赫蒂射频功率放大器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647199A (zh) * 2023-07-24 2023-08-25 成都通量科技有限公司 调谐变压器及包含该调谐变压器的Doherty功率放大器
CN116647199B (zh) * 2023-07-24 2023-11-07 成都通量科技有限公司 调谐变压器及包含该调谐变压器的Doherty功率放大器
CN116865685A (zh) * 2023-08-31 2023-10-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器
CN116865685B (zh) * 2023-08-31 2023-11-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器

Also Published As

Publication number Publication date
CN114050792A (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2023130843A1 (zh) 一种新型宽带多赫蒂射频功率放大器
WO2023087627A1 (zh) 一种宽带Doherty功率放大器
KR102618439B1 (ko) 선형의 효율적인 광대역 전력 증폭기들에 관한 시스템들 및 방법들
JP2945833B2 (ja) マイクロ波ドハティ型増幅器
US7884668B2 (en) Integrated doherty type amplifier arrangement with high power efficiency
US20100001802A1 (en) Integrated doherty type amplifier arrangement with high power efficiency
WO2023078060A1 (zh) 一种Doherty射频集成功率放大器
WO2023078061A1 (zh) Doherty射频功率放大器
WO2023045542A1 (zh) 应用于5g通信系统的射频功率放大器及射频前端架构
Nguyen et al. A coupler-based differential Doherty power amplifier with built-in baluns for high mm-wave linear-yet-efficient Gbit/s amplifications
WO2023040474A1 (zh) 一种射频功率放大器
WO2024125227A1 (zh) 一种电压合成式Doherty功率放大器
WO2023078062A1 (zh) Doherty射频功率放大器
CN112543002B (zh) 宽带差分Doherty功率放大器及其设计方法和应用
WO2023040201A1 (zh) 一种基于变压器匹配网络的射频功率放大器
WO2023045543A1 (zh) 基于变压器匹配的三级功率放大器及射频前端架构
WO2024109421A1 (zh) 一种射频功率放大器及电子设备
WO2023045544A1 (zh) 宽带Doherty功率放大器和实现方法
WO2023065843A1 (zh) 基于变压器匹配的三路功率合成的射频功率放大器
WO2023040238A1 (zh) 一种差分功率放大器
WO2023082565A1 (zh) Mmic微波功率放大器及射频前端模组
CN110932687A (zh) 一种交流堆叠功率放大器
CN110601668A (zh) 一种面向车联网通信的高效功率放大器
WO2023005458A1 (zh) 多尔蒂功率放大器及射频前端模块
KR102663823B1 (ko) 차동 구조를 이용하는 2단 도허티 전력 증폭 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918295

Country of ref document: EP

Kind code of ref document: A1