WO2023078060A1 - 一种Doherty射频集成功率放大器 - Google Patents

一种Doherty射频集成功率放大器 Download PDF

Info

Publication number
WO2023078060A1
WO2023078060A1 PCT/CN2022/125436 CN2022125436W WO2023078060A1 WO 2023078060 A1 WO2023078060 A1 WO 2023078060A1 CN 2022125436 W CN2022125436 W CN 2022125436W WO 2023078060 A1 WO2023078060 A1 WO 2023078060A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
power amplifier
carrier
input
transistor
Prior art date
Application number
PCT/CN2022/125436
Other languages
English (en)
French (fr)
Inventor
彭艳军
宣凯
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023078060A1 publication Critical patent/WO2023078060A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the invention relates to the technical field of radio frequency integrated circuits, in particular to a Doherty radio frequency integrated power amplifier.
  • 5G wireless communication technology uses high-order quadrature amplitude modulation (QAM) technology, and the modulated signal has a very high peak-to-average ratio (PAPR).
  • QAM quadrature amplitude modulation
  • PAPR peak-to-average ratio
  • High peak-to-average ratio signals impose strict requirements on the linearity of RF power amplifiers.
  • the wireless communication system requires the RF power amplifier to work far away from the power back-off state of the power compression point, so as to ensure the linear amplification of the RF signal.
  • the efficiency of RF power amplifiers is highest near the saturation region, and the efficiency at the power back-off point is significantly reduced.
  • the Doherty structure is a common method for designing RF power amplifiers.
  • the Doherty radio frequency integrated power amplifier in the related art generally includes a power divider, a carrier amplifier, a peak amplifier and a quarter-wavelength transmission line.
  • Figure 1 is a schematic diagram of the circuit structure of a Doherty radio frequency integrated power amplifier in the related art, wherein the input signal is divided into two by a power divider, and input to the input terminal of the carrier amplifier and the peak amplifier respectively input terminal.
  • the output of the carrier amplifier is connected to the output load through a quarter-wavelength transmission line, while the output of the peak amplifier is directly connected to the output load.
  • the working principle of the Doherty RF integrated power amplifier in the related art is: the carrier amplifier is biased at Class AB or Class B, and the peak amplifier is biased at Class C.
  • the peak amplifier In the low output power state, the peak amplifier is off, and the load impedance of the carrier amplifier is 2Ropt. In the state of high output power, the peak amplifier is turned on, the load impedance of the carrier amplifier changes from 2Ropt to Ropt with the increase of input power, and the load impedance of the peak amplifier also gradually decreases from infinite value to Ropt with the increase of input power. Amplifiers complete power combining at output point A. Due to this change in load modulation, the Doherty PA exhibits higher efficiency when power is backed off.
  • the power divider and the quarter-wavelength transmission line of the traditional Doherty radio frequency integrated power amplifier are too large in size to be difficult to realize on the chip, especially In the Sub-6GHz frequency band, the lower the frequency, the longer the quarter-wavelength transmission line.
  • the small-scale characteristics of monolithic microwave integrated circuits require that small-sized passive devices must be used when designing Doherty radio frequency integrated power amplifiers using integrated circuit technology.
  • the present invention proposes a Doherty radio frequency integrated power amplifier with small layout area and high power added efficiency.
  • embodiments of the present invention provide a Doherty radio frequency integrated power amplifier, which includes a driver amplifier, a carrier input matching network, a carrier power amplifier, a peak input matching network, a peak power amplifier, and a power combining and phase shifting network;
  • the input end of described driving amplifier is used as the input end of described Doherty radio frequency integrated power amplifier
  • the output end of the driving amplifier is divided into two paths and respectively connected to the input end of the carrier input matching network and the input end of the peak input matching network;
  • the output end of the carrier input matching network is connected to the input end of the carrier power amplifier
  • the output terminal of the carrier power amplifier is connected to the first input terminal of the power combining and phase shifting network
  • the output terminal of the peak input matching network is connected to the input terminal of the peak power amplifier
  • the output terminal of the peak power amplifier is connected to the second input terminal of the power combining and phase shifting network
  • the output end of the power combining and phase-shifting network is used as the output end of the Doherty radio frequency integrated power amplifier for connecting the system load;
  • the power combining and phase-shifting network includes a balun impedance transformer, a capacitor Cb1, a capacitor Cb2, a capacitor Cb3, a capacitor Cb4, and a capacitor Cb5;
  • the first end of the primary coil of the balun impedance transformer is used as the first input end of the power combining and phase shifting network, and the first ends of the primary coil of the balun impedance transformer are respectively connected to the capacitor Cb1
  • the first end and the first end of the capacitor Cb4; the second end of the capacitor Cb4 is connected to ground;
  • the second end of the primary coil of the balun impedance transformer is respectively connected to the first end of the capacitor Cb2 and the first end of the capacitor Cb3; the second end of the capacitor Cb3 is connected to ground;
  • the first end of the secondary coil of the balun impedance transformer is used as the output end of the power combining and phase shifting network, and the first end of the secondary coil of the balun impedance transformer is connected to the first end of the capacitor Cb1 Two ends;
  • the second end of the secondary coil of the balun impedance transformer is used as the second input end of the power combining and phase shifting network, and the second ends of the secondary coil of the balun impedance transformer are respectively connected to the capacitors
  • the second end of Cb2 and the first end of the capacitor Cb5; the second end of the capacitor Cb5 is connected to ground.
  • the balun impedance transformer is a semi-lumped transformer with a 90-degree phase shift.
  • the capacitance value of the capacitor Cb1 and the capacitance value of the capacitor Cb2 are both 1/(2 ⁇ fZ 0 ), and the capacitance value of the capacitor Cb1 is 1/( ⁇ fZ 0 ); wherein, f is the Doherty radio frequency
  • the operating frequency of the integrated power amplifier, Z 0 is the characteristic impedance of the system load.
  • the driving amplifier, the carrier power amplifier and the peak power amplifier are all implemented by transistors.
  • the carrier power amplifier includes a carrier resonance circuit for suppressing the second harmonic; the peak power amplifier includes a carrier resonance circuit for suppressing the second harmonic.
  • the drive amplifier includes a first inductor, a second inductor, a first capacitor, and a first transistor; the first end of the first capacitor serves as the input end of the drive amplifier, and the first end of the first capacitor One end is connected to the ground after the first inductor is connected in series; the second end of the first capacitor is connected to the base of the first transistor; the emitter of the first transistor is connected to the ground; the first The collector of the transistor is used as the output terminal of the driving amplifier, and the collector of the first transistor is connected to the second terminal of the second inductor, the input terminal of the carrier input matching network and the peak input matching network respectively. the input terminal of the network; the first terminal of the second inductor is connected to the power supply voltage;
  • the carrier input matching network includes a third inductor, a second capacitor, and a third capacitor; the first end of the second capacitor is used as an input end of the carrier input matching network, and the first end of the second capacitor is connected to The collector of the first transistor; the second end of the second capacitor is respectively connected to the first end of the third capacitor and the first end of the third inductor; the second end of the third inductor connected to ground; the second end of the third capacitor is used as the output end of the carrier input matching network;
  • the carrier power amplifier includes a fourth inductance, a fifth inductance, a fifth capacitor and a second transistor; the base of the second transistor is used as the input terminal of the carrier power amplifier, and the base of the second transistor is connected to the The second end of the third capacitor; the emitter of the second transistor is connected to ground; the collector of the second transistor is respectively connected to the first end of the fifth capacitor, the second end of the fourth inductor end and the first end of the fifth inductor; the second end of the fifth capacitor is connected to ground; the first end of the fourth inductor is connected to the power supply voltage; the second end of the fifth inductor is used as the The output terminal of the carrier power amplifier;
  • the peak input matching network includes a fourth capacitor; the first end of the fourth capacitor is used as the input end of the peak input matching network, and the first end of the fourth capacitor is connected to the collector of the first transistor ; The second end of the fourth capacitor is used as the output end of the peak input matching network;
  • the peak power amplifier includes a sixth inductor, a seventh inductor, a sixth capacitor, and a third transistor; the base of the third transistor is used as the input terminal of the peak power amplifier, and the base of the third transistor is connected to the The second end of the sixth capacitor; the emitter of the third transistor is connected to ground; the collector of the third transistor is respectively connected to the first end of the sixth capacitor, the second end of the sixth inductor end and the first end of the seventh inductance; the second end of the sixth capacitor is connected to ground; the first end of the sixth inductance is connected to the power supply voltage; the second end of the seventh inductance is used as the The output terminal of the peak power amplifier.
  • the Doherty radio frequency integrated power amplifier of the present invention is directly connected to the output end of the drive amplifier through the input ends of the carrier power amplifier and the peak power amplifier.
  • the circuit does not need the power divider of the related art, and the layout area of the circuit is greatly reduced.
  • the output end adopts power combining and phase shifting network to realize load modulation and power combining.
  • the power combining and phase shifting network is composed of a balun impedance transformer, a capacitor Cb1 , a capacitor Cb2 , a capacitor Cb3 , a capacitor Cb4 and a capacitor Cb5 .
  • the power combining and phase-shifting network of the circuit realizes the transformation of the load impedance, so that the quarter-wavelength transmission line of the related art is not needed, and the layout area of the circuit is greatly reduced. More preferably, the power combining and phase-shifting network adopts the circuit structure of the balun impedance transformer to ensure that the circuit works in a high-efficiency state, so that the power added efficiency of the Doherty radio frequency integrated power amplifier of the present invention is high.
  • Fig. 1 is the schematic diagram of the circuit structure of the Doherty radio frequency integrated power amplifier of related art
  • Fig. 2 is the circuit structural representation of Doherty radio frequency integrated power amplifier of the present invention
  • Fig. 3 is the application circuit structure schematic diagram of a kind of embodiment of Doherty radio frequency integrated power amplifier of the present invention.
  • Fig. 4 is the circuit diagram of the power combining and phase-shifting network of Doherty radio frequency integrated power amplifier of the present invention
  • FIG. 5 is a schematic structural diagram of an application circuit of another embodiment of the Doherty radio frequency integrated power amplifier provided by the embodiment of the present invention.
  • An embodiment of the present invention provides a Doherty radio frequency integrated power amplifier 100 .
  • FIG. 2 is a schematic structural diagram of an application circuit of the Doherty radio frequency integrated power amplifier of the present invention
  • FIG. 3 is a schematic structural diagram of an application circuit of an embodiment of the Doherty radio frequency integrated power amplifier of the present invention.
  • the Doherty RF integrated power amplifier 100 includes a driver amplifier 1 , a carrier input matching network 2 , a carrier power amplifier 3 , a peak input matching network 4 , a peak power amplifier 5 and a power combining and phase shifting network 6 .
  • the circuit structure of the Doherty radio frequency integrated power amplifier 100 is:
  • the input terminal of the driving amplifier 1 is used as the input terminal RFin of the Doherty radio frequency integrated power amplifier 100 .
  • the output end of the driving amplifier 1 is divided into two paths and respectively connected to the input end of the carrier input matching network 2 and the input end of the peak input matching network 4 .
  • the output end of the carrier input matching network 2 is connected to the input end of the carrier power amplifier 3 .
  • the output terminal OPY1 of the carrier power amplifier 3 is connected to the first input terminal of the power combining and phase shifting network 6 .
  • the output terminal of the peak input matching network 4 is connected to the input terminal of the peak power amplifier 5 .
  • the output terminal OPY2 of the peak power amplifier 5 is connected to the second input terminal of the power combining and phase shifting network 6 .
  • the output terminal of the power combining and phase shifting network 6 is used as the output terminal RFout of the Doherty radio frequency integrated power amplifier 100 for connecting the system load.
  • the power combining and phase shifting network 6 includes a balun impedance transformer, a capacitor Cb1 , a capacitor Cb2 , a capacitor Cb3 , a capacitor Cb4 and a capacitor Cb5 .
  • the balun impedance transformer is a semi-lumped transformer with a 90-degree phase shift.
  • the power combining and phase-shifting network 6 adopts the balun impedance transformer structure with semi-lumped phase-shifting 90 degrees, on the one hand realizes the transformation of the load impedance, thus does not need the quarter-wavelength transmission line of the related art, and the circuit The layout area is greatly reduced; on the other hand, it ensures that the circuit works in a state of high efficiency, so that the power added efficiency of the Doherty radio frequency integrated power amplifier 100 of the present invention is high.
  • the circuit structure of described power combining and phase-shifting network 6 is:
  • the first end of the primary coil Lp of the balun impedance transformer is used as the first input end of the power combining and phase shifting network 6, and the first ends of the primary coil Lp of the balun impedance transformer are respectively connected to to the first terminal of the capacitor Cb1 and the first terminal of the capacitor Cb4.
  • the second end of the capacitor Cb4 is connected to ground.
  • the second end of the primary coil L p of the balun impedance transformer is respectively connected to the first end of the capacitor Cb2 and the first end of the capacitor Cb3 .
  • the second end of the capacitor Cb3 is connected to ground.
  • the first end of the secondary coil L s of the balun impedance transformer is used as the output end of the power combining and phase shifting network 6, and the first end of the secondary coil L s of the balun impedance transformer is connected to The second end of the capacitor Cb1.
  • the second end of the secondary coil L s of the balun impedance transformer is used as the second input end of the power combining and phase shifting network 6, and the second end of the secondary coil L s of the balun impedance transformer connected to the second end of the capacitor Cb2 and the first end of the capacitor Cb5 respectively.
  • the second end of the capacitor Cb5 is connected to ground.
  • the capacitance value of the capacitor Cb1 and the capacitance value of the capacitor Cb2 are both 1/(2 ⁇ fZ 0 ), and the capacitance value of the capacitor Cb1 is 1/( ⁇ fZ 0 ).
  • f is the operating frequency of the Doherty radio frequency integrated power amplifier 100
  • Z 0 is the characteristic impedance of the system load.
  • the impedance seen at the output end of the carrier power amplifier is 2Z 0 , and the higher load impedance ensures that the carrier power amplifier works in a high-efficiency state.
  • the impedance seen at the output end of the carrier amplifier changes from 2Z 0 to Z 0 as the output power increases, and at the same time the impedance at the output end of the peak power amplifier changes from the low impedance region Stepwise change to Z 0 .
  • This structure enables the isolation port of the balun impedance transformer of the power combining and phase shifting network 6 to provide special port conditions to obtain active modulation of the load impedance.
  • the isolated ports are opposite ends of the primary coil L p , namely the first end and the second end of the primary coil L p .
  • the output end of the traditional Doherty PA carrier power amplifier is connected to a quarter-wavelength transmission line for the transformation of the load impedance. This quarter-wavelength transmission line realizes impedance transformation by phase-shifting the impedance by 90 degrees.
  • the balun with a semi-lumped phase shift of 90 degrees can be used.
  • Impedance transformers are used to replace the impedance transformation.
  • the driving amplifier 1 , the carrier power amplifier 3 and the peak power amplifier 5 are all realized by transistors.
  • the use of transistors can make the layout area of the circuit small and easy for circuit integration.
  • the carrier power amplifier 3 includes a carrier resonance circuit for suppressing the second harmonic.
  • the peak power amplifier 5 includes a carrier resonance circuit for suppressing the second harmonic.
  • the carrier power amplifier 3 and the peak power amplifier 5 adopt circuits for suppressing second harmonics, so that the power added efficiency of the Doherty radio frequency integrated power amplifier 100 of the present invention is high.
  • Embodiment 2 provides a Doherty radio frequency integrated power amplifier 101 . Please refer to Figure 5.
  • the Doherty radio frequency integrated power amplifier 101 provides the drive amplifier 1, the carrier input matching network 2, the carrier power amplifier 3, the peak input matching network 4, the Doherty radio frequency integrated power amplifier 100 circuit integration. Describe the specific circuit of the peak power amplifier 5. Therefore, the Doherty radio frequency integrated power amplifier 101 is a specific technical solution with a small layout area and high power added efficiency. Wherein, in the second embodiment, the driving amplifier 1 , the carrier power amplifier 3 and the peak power amplifier 5 are all realized by transistors.
  • Doherty radio frequency integrated power amplifier 101 The specific circuit structure of Doherty radio frequency integrated power amplifier 101 is:
  • the driving amplifier 1 includes a first inductor L1, a second inductor L2, a first capacitor C1 and a first transistor Q1.
  • the specific circuit structure of the drive amplifier 1 is: the first end of the first capacitor C1 is used as the input end of the drive amplifier 1, and the first end of the first capacitor C1 is connected in series with the first inductor L1 Then connect to ground.
  • the second end of the first capacitor C1 is connected to the base of the first transistor Q1.
  • the emitter of the first transistor Q1 is connected to ground.
  • the collector of the first transistor Q1 is used as the output terminal of the driving amplifier 1, and the collector of the first transistor Q1 is respectively connected to the second end of the second inductor L2, the carrier input matching network 2
  • the first terminal of the second inductor L2 is connected to the power supply voltage Vcc.
  • the carrier input matching network 2 includes a third inductor L3, a second capacitor C2 and a third capacitor C3.
  • the specific circuit structure of the carrier input matching network 2 is: the first end of the second capacitor C2 is used as the input end of the carrier input matching network 2, and the first end of the second capacitor C2 is connected to the first end of the second capacitor C2. A collector of transistor Q1. The second terminal of the second capacitor C2 is respectively connected to the first terminal of the third capacitor C3 and the first terminal of the third inductor L3. A second end of the third inductor L3 is connected to ground. The second terminal of the third capacitor C3 is used as the output terminal of the carrier input matching network 2 .
  • the carrier power amplifier 3 includes a fourth inductor L4, a fifth inductor L5, a fifth capacitor C5 and a second transistor Q2.
  • the specific circuit structure of the carrier power amplifier 3 is as follows: the base of the second transistor Q2 is used as the input terminal of the carrier power amplifier 3, and the base of the second transistor Q2 is connected to the first terminal of the third capacitor C3. Two ends. The emitter of the second transistor Q2 is connected to ground. The collector of the second transistor Q2 is respectively connected to the first end of the fifth capacitor C5, the second end of the fourth inductor L4, and the first end of the fifth inductor L5. A second end of the fifth capacitor C5 is connected to ground. A first end of the fourth inductor L4 is connected to a power supply voltage Vcc. The second terminal of the fifth inductor L5 is used as the output terminal of the carrier power amplifier 3 .
  • the peak input matching network 4 includes a fourth capacitor C4.
  • the specific circuit structure of the peak input matching network 4 is as follows: the first terminal of the fourth capacitor C4 is used as the input terminal of the peak input matching network 4, and the first terminal of the fourth capacitor C4 is connected to the first terminal of the fourth capacitor C4. A collector of transistor Q1. The second terminal of the fourth capacitor C4 serves as the output terminal OPY1 of the peak input matching network 4 .
  • the peak power amplifier 5 includes a sixth inductor L6, a seventh inductor L7, a sixth capacitor C6 and a third transistor Q3.
  • the specific circuit structure of the peak power amplifier 5 is as follows: the base of the third transistor Q3 is used as the input terminal of the peak power amplifier 5, and the base of the third transistor Q3 is connected to the sixth capacitor C6. Two ends. The emitter of the third transistor Q3 is connected to ground. The collector of the third transistor Q3 is respectively connected to the first terminal of the sixth capacitor C6, the second terminal of the sixth inductor L6 and the first terminal of the seventh inductor L7. The second end of the sixth capacitor C6 is connected to ground. A first end of the sixth inductor L6 is connected to the power supply voltage Vcc. The second terminal of the seventh inductor L7 serves as the output terminal OPY2 of the peak power amplifier 5 .
  • the power combining and phase shifting network 6 includes a balun impedance transformer, a capacitor Cb1 , a capacitor Cb2 , a capacitor Cb3 , a capacitor Cb4 and a capacitor Cb5 .
  • the concrete circuit structure of described power combining and phase-shifting network 6 is: the first end of the primary coil L p of described balun impedance transformer is used as the first input end of described power combining and phase-shifting network 6, and the The first end of the primary coil Lp of the balun impedance transformer is respectively connected to the first end of the capacitor Cb1 and the first end of the capacitor Cb4. The second terminal of the capacitor Cb4 is connected to ground.
  • the second end of the primary coil L p of the balun impedance transformer is respectively connected to the first end of the capacitor Cb2 and the first end of the capacitor Cb3 .
  • the second end of the capacitor Cb3 is connected to ground.
  • the first end of the secondary coil L s of the balun impedance transformer is used as the output end of the power combining and phase shifting network 6, and the first end of the secondary coil L s of the balun impedance transformer is connected to The second terminal of the capacitor Cb1.
  • the second end of the secondary coil L s of the balun impedance transformer is used as the second input end of the power combining and phase shifting network 6, and the second end of the secondary coil L s of the balun impedance transformer connected to the second end of the capacitor Cb2 and the first end of the capacitor Cb5 respectively.
  • the second end of the capacitor Cb5 is connected to ground.
  • the power amplifying unit is composed of a two-stage amplifying circuit, the first transistor Q1 is a driving power transistor, and the first transistor Q1 is a single-ended amplifying structure.
  • Both the second transistor Q2 and the third transistor Q3 are output power transistors, and the second transistor Q2 and the third transistor Q3 form a Doherty power amplifier circuit structure.
  • the input end of the second transistor Q2 and the input end of the third transistor Q3 pass through the matching network of the carrier input matching network 2 and the peak input matching network 4 respectively, and are directly connected to the output end of the first transistor Q1, the second The output terminal of the second transistor Q2 and the output terminal of the third transistor Q3 are connected to the power combining and phase shifting network 6 of the balun structure.
  • the carrier power amplifier 3 includes a carrier resonance circuit for suppressing the second harmonic.
  • the peak power amplifier 5 includes a carrier resonance circuit for suppressing the second harmonic.
  • the carrier power amplifier 3 and the peak power amplifier 5 adopt circuits for suppressing second harmonics. specific:
  • the collector of the second transistor Q2 and the collector of the third transistor Q3 are respectively connected in parallel with the fifth capacitor C5 and the sixth capacitor C6, which resonate in series with the bonding inductor at the second harmonic frequency, Form an approximate short circuit to ground.
  • the power combining and phase-shifting network 6 is connected in parallel with capacitors C b4 and C b5 , which resonate in series with the bonded inductance at the second harmonic frequency, which deepens the depth of suppressing the second harmonic and improves the linearity of output power .
  • the Doherty radio frequency integrated power amplifier 101 has fewer circuit components and high circuit performance, and is easy to be integrated on a GaAs HBT process chip.
  • the Doherty radio frequency integrated power amplifier of the present invention is directly connected to the output end of the driving amplifier through the carrier power amplifier and the input end of the peak power amplifier.
  • the circuit does not need the power divider of the related art, and the layout area of the circuit is greatly reduced.
  • the output end adopts power combining and phase shifting network to realize load modulation and power combining.
  • the power combining and phase shifting network is composed of a balun impedance transformer, a capacitor Cb1 , a capacitor Cb2 , a capacitor Cb3 , a capacitor Cb4 and a capacitor Cb5 .
  • the power combining and phase-shifting network of the circuit realizes the transformation of the load impedance, so that the quarter-wavelength transmission line of the related art is not needed, and the layout area of the circuit is greatly reduced. More preferably, the power combining and phase-shifting network adopts the circuit structure of the balun impedance transformer to ensure that the circuit works in a high-efficiency state, so that the power added efficiency of the Doherty radio frequency integrated power amplifier of the present invention is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种Doherty射频集成功率放大器,包括驱动放大器、载波输入匹配网络、载波功放、峰值输入匹配网络、峰值功放及功率合成和移相网络;驱动放大器的输出端分两路分别连接载波输入匹配网络的输入端和峰值输入匹配网络的输入端;载波输入匹配网络的输出端连接至载波功放的输入端;载波功放的输出端连接至功率合成和移相网络的第一输入端;峰值输入匹配网络的输出端连接至峰值功放的输入端;峰值功放的输出端连接至功率合成和移相网络的第二输入端;功率合成和移相网络包括巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4及电容Cb5。本发明Doherty射频集成功率放大器的版图面积小且功率附加效率高。

Description

一种Doherty射频集成功率放大器 技术领域
本发明涉及射频集成电路技术领域,尤其涉及一种Doherty射频集成功率放大器。
背景技术
为了满足人们对数据高通信速率的要求,5G无线通信技术采用了高阶正交幅度调制(QAM)技术,调制信号具有非常高的峰均比(PAPR)。高峰均比信号对射频功率放大器的线性提出了严格的要求。为了保证信号的不失真传输,无线通信系统要求射频功率放大器工作远离功率压缩点的功率回退状态,以保证射频信号的线性放大。但是射频功率放大器的效率在接近饱和区域时效率最高,功率回退点的效率显著降低了。为了提高功率回退时射频功率放大器的效率,Doherty结构是射频功率放大器设计的一种常用方法。
相关技术的Doherty射频集成功率放大器一般包括功分器、载波放大器、峰值放大器以及四分之一波长传输线。请参考图1所示,图1为相关技术的Doherty射频集成功率放大器的电路结构示意图,其中,输入信号通过功分器将输入功率一分为二,分别输入到载波放大器的输入端和峰值放大器的输入端。载波放大器的输出端通过四分之一波长传输线连接输出负载,而峰值放大器的输出端直接连接输出负载。相关技术的Doherty射频集成功率放大器的工作原理为:载波放大器偏置在Class AB或Class B,峰值放大器偏置在Class C。在低输出功率状态下,峰值放大器处于关闭状态,载波放大器的负载阻抗为2Ropt。在高输出功率状态下,峰值放大器打开,载波放大器的负载阻抗随着输入功率的增加从2Ropt变化到Ropt,峰值放大器的负载阻抗也随着输入功率增加从无限大值逐步减小到Ropt,两个放大器在输出点A完成功率合成。由于这种负载调制的变化,Doherty功率放大器在功率回退时呈现出了较高的 效率。
然而,相关技术的Doherty射频集成功率放大器对于单片微波集成电路而言,传统Doherty射频集成功率放大器的功分器和四分之一波长传输线,尺寸都过于庞大,难以在芯片上实现,尤其是Sub-6GHz频段,频率越低,四分之一波长传输线就越长。单片微波集成电路的小尺寸特性要求采用集成电路工艺设计Doherty射频集成功率放大器时必须采用小尺寸的无源器件。
因此,实有必要提供一种新的宽带Doherty射频集成功率放大器解决上述问题。
发明内容
针对以上现有技术的不足,本发明提出一种版图面积小且功率附加效率高的Doherty射频集成功率放大器。
为了解决上述技术问题,本发明的实施例提供了一种Doherty射频集成功率放大器,其包括驱动放大器、载波输入匹配网络、载波功放、峰值输入匹配网络、峰值功放以及功率合成和移相网络;
所述驱动放大器的输入端作为所述Doherty射频集成功率放大器的输入端;
所述驱动放大器的输出端分两路分别连接所述载波输入匹配网络的输入端和所述峰值输入匹配网络的输入端;
所述载波输入匹配网络的输出端连接至所述载波功放的输入端;
所述载波功放的输出端连接至所述功率合成和移相网络的第一输入端;
所述峰值输入匹配网络的输出端连接至所述峰值功放的输入端;
所述峰值功放的输出端连接至所述功率合成和移相网络的第二输入端;
所述功率合成和移相网络的输出端作为所述Doherty射频集成功率放大器的输出端,以用于连接系统负载;
其中,所述功率合成和移相网络包括巴伦阻抗变压器、电容 Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5;
所述巴伦阻抗变压器的初级线圈的第一端作为所述功率合成和移相网络的第一输入端,且所述巴伦阻抗变压器的初级线圈的第一端分别连接至所述电容Cb1的第一端和所述电容Cb4的第一端;所述电容Cb4的第二端连接至接地;
所述巴伦阻抗变压器的初级线圈的第二端分别连接至所述电容Cb2的第一端和所述电容Cb3的第一端;所述电容Cb3的第二端连接至接地;
所述巴伦阻抗变压器的次级线圈的第一端作为所述功率合成和移相网络的输出端,且所述巴伦阻抗变压器的次级线圈的第一端连接至所述电容Cb1的第二端;
所述巴伦阻抗变压器的次级线圈的第二端作为所述功率合成和移相网络的第二输入端,且所述巴伦阻抗变压器的次级线圈的第二端分别连接至所述电容Cb2的第二端和所述电容Cb5的第一端;所述电容Cb5的第二端连接至接地。
优选的,所述巴伦阻抗变压器为半集总移相90度的变压器。
优选的,所述电容Cb1的电容值和所述电容Cb2的电容值均为1/(2πfZ 0),所述电容Cb1的电容值为1/(πfZ 0);其中,f为所述Doherty射频集成功率放大器的工作频率,Z 0为所述系统负载的特征阻抗。
优选的,所述驱动放大器、所述载波功放以及所述峰值功放均采用晶体管实现。
优选的,所述载波功放包括用于抑制二次谐波的载波谐振电路;所述峰值功放包括用于抑制二次谐波的载波谐振电路。
优选的,所述驱动放大器包括第一电感、第二电感、第一电容以及第一晶体管;所述第一电容的第一端作为所述驱动放大器的输入端,且所述第一电容的第一端通过串联所述第一电感后连接至接地;所述第一电容的第二端连接至所述第一晶体管的基极;所述第一晶体管的发射极连接至接地;所述第一晶体管的集电极作为所述驱动放大器的输出端,且所述第一晶体管的集电极分别连接至所 述第二电感的第二端、所述载波输入匹配网络的输入端和所述峰值输入匹配网络的输入端;所述第二电感的第一端连接至电源电压;
所述载波输入匹配网络包括第三电感、第二电容以及第三电容;所述第二电容的第一端作为所述载波输入匹配网络的输入端,且所述第二电容的第一端至所述第一晶体管的集电极;所述第二电容的第二端分别连接至所述第三电容的第一端和所述第三电感的第一端;所述第三电感的第二端连接至接地;所述第三电容的第二端作为所述载波输入匹配网络的输出端;
所述载波功放包括第四电感、第五电感、第五电容以及第二晶体管;所述第二晶体管的基极作为所述载波功放的输入端,且所述第二晶体管的基极连接至所述第三电容的第二端;所述第二晶体管的发射极连接至接地;所述第二晶体管的集电极分别连接至所述第五电容的第一端、所述第四电感的第二端以及所述第五电感的第一端;所述第五电容的第二端连接至接地;所述第四电感的第一端连接至电源电压;所述第五电感的第二端作为所述载波功放的输出端;
所述峰值输入匹配网络包括第四电容;所述第四电容的第一端作为所述峰值输入匹配网络的输入端,且所述第四电容的第一端至所述第一晶体管的集电极;所述第四电容的第二端作为所述峰值输入匹配网络的输出端;
所述峰值功放包括第六电感、第七电感、第六电容以及第三晶体管;所述第三晶体管的基极作为所述峰值功放的输入端,且所述第三晶体管的基极连接至所述第六电容的第二端;所述第三晶体管的发射极连接至接地;所述第三晶体管的集电极分别连接至所述第六电容的第一端、所述第六电感的第二端以及所述第七电感的第一端;所述第六电容的第二端连接至接地;所述第六电感的第一端连接至电源电压;所述第七电感的第二端作为所述峰值功放的输出端。
与相关技术相比,本发明的Doherty射频集成功率放大器通过载波功放和峰值功放输入端采用直接连接到驱动放大器输出端的 方式。使得该电路不需要相关技术的功分器,电路的版图面积大大地减少。同时,输出端采用功率合成和移相网络实现负载调制和功率合成。其中,所述功率合成和移相网络由巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5组成。该电路所述功率合成和移相网络实现负载阻抗的变换,从而不需要相关技术的四分之一波长传输线,电路的版图面积大大地减少。更优的,所述功率合成和移相网络采用巴伦阻抗变压器的电路结构保证了电路工作在高效率状态,从而使得本发明的Doherty射频集成功率放大器的功率附加效率高。
附图说明
下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的Doherty射频集成功率放大器的电路结构示意图;
图2为本发明Doherty射频集成功率放大器的电路结构示意图;
图3为本发明Doherty射频集成功率放大器的一种实施例的应用电路结构示意图;
图4为本发明Doherty射频集成功率放大器的功率合成和移相网络的电路图;
图5为本发明实施例提供的Doherty射频集成功率放大器的另一种实施例的应用电路结构示意图。
具体实施方式
下面结合附图详细说明本发明的具体实施方式。
在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例 外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
(实施例一)
本发明实施例提供一种Doherty射频集成功率放大器100。
请同时参考图2-3所示,其中,图2为本发明Doherty射频集成功率放大器的应用电路结构示意图;图3为本发明Doherty射频集成功率放大器的一种实施例的应用电路结构示意图。
所述Doherty射频集成功率放大器100包括驱动放大器1、载波输入匹配网络2、载波功放3、峰值输入匹配网络4、峰值功放5以及功率合成和移相网络6。
所述Doherty射频集成功率放大器100的电路结构为:
所述驱动放大器1的输入端作为所述Doherty射频集成功率放大器100的输入端RFin。
所述驱动放大器1的输出端分两路分别连接所述载波输入匹配网络2的输入端和所述峰值输入匹配网络4的输入端。
所述载波输入匹配网络2的输出端连接至所述载波功放3的输入端。
所述载波功放3的输出端OPY1连接至所述的功率合成和移相网络6的第一输入端。
所述峰值输入匹配网络4的输出端连接至所述峰值功放5的输入端。
所述峰值功放5的输出端OPY2连接至所述的功率合成和移相网络6的第二输入端。
所述的功率合成和移相网络6的输出端作为所述Doherty射频集成功率放大器100的输出端RFout,以用于连接系统负载。
具体的,所述的功率合成和移相网络6包括巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5。
其中,所述巴伦阻抗变压器为半集总移相90度的变压器。所 述的功率合成和移相网络6采用半集总移相90度的所述巴伦阻抗变压器结构,一方面实现负载阻抗的变换,从而不需要相关技术的四分之一波长传输线,电路的版图面积大大地减少;另一方面,保证了电路工作在高效率状态,从而使得本发明的Doherty射频集成功率放大器100的功率附加效率高。
所述的功率合成和移相网络6的电路结构为:
所述巴伦阻抗变压器的初级线圈L p的第一端作为所述的功率合成和移相网络6的第一输入端,且所述巴伦阻抗变压器的初级线圈L p的第一端分别连接至所述电容Cb1的第一端和所述电容Cb4的第一端。所述电容Cb4的第二端连接至接地。
所述巴伦阻抗变压器的初级线圈L p的第二端分别连接至所述电容Cb2的第一端和所述电容Cb3的第一端。所述电容Cb3的第二端连接至接地。
所述巴伦阻抗变压器的次级线圈L s的第一端作为所述的功率合成和移相网络6的输出端,且所述巴伦阻抗变压器的次级线圈L s的第一端连接至所述电容Cb1的第二端。
所述巴伦阻抗变压器的次级线圈L s的第二端作为所述的功率合成和移相网络6的第二输入端,且所述巴伦阻抗变压器的次级线圈L s的第二端分别连接至所述电容Cb2的第二端和所述电容Cb5的第一端。所述电容Cb5的第二端连接至接地。
本实施例一中,所述电容Cb1的电容值和所述电容Cb2的电容值均为1/(2πfZ 0),所述电容Cb1的电容值为1/(πfZ 0)。其中,f为所述Doherty射频集成功率放大器100的工作频率,Z 0为所述系统负载的特征阻抗。所述Doherty射频集成功率放大器100工作在低输出功率模式时,峰值功放处于关闭状态,输出阻抗接近于开路状态,经过90度移相后,阻抗呈现出接近短路状态,载波功放工作在单端放大器状态,载波功放输出端看到的阻抗为2Z 0,较高的负载阻抗保证了载波功放工作在高效率状态。所述Doherty射频集成功率放大器100工作在高输出功率模式时,载波放大器输出端看到的阻抗,随着输出功率的增大从2Z 0变化到Z 0,同时峰值功放输出端的阻抗从低 阻抗区逐步变化到Z 0。该结构使得所述的功率合成和移相网络6的所述巴伦阻抗变压器的隔离端口提供特殊的端口条件获得负载阻抗的有源调制。隔离端口为初级线圈L p相对两端,即初级线圈L p的第一端和第二端。传统Doherty PA载波功放输出端连接四分之一波长传输线,用于负载阻抗的变换。这个四分之一波长传输线通过对阻抗90度的移相来实现阻抗变换,单片微波集成电路设计所述Doherty射频集成功率放大器100时,可以用半集总移相90度的所述巴伦阻抗变压器来替换实现阻抗变换。
本实施例一中,所述驱动放大器1、所述载波功放3以及所述峰值功放5均采用晶体管实现。采用晶体管可以使得电路的版图面积小,易于电路集成。当然,不限于此,采用其他放大器电路或者元器件实现也是可以的。
更优的,所述载波功放3包括用于抑制二次谐波的载波谐振电路。所述峰值功放5包括用于抑制二次谐波的载波谐振电路。所述载波功放3和所述峰值功放5采用抑制二次谐波的电路,从而使得本发明的Doherty射频集成功率放大器100的功率附加效率高。
(实施例二)
实施例二提供一种Doherty射频集成功率放大器101。请参考图5所示。
Doherty射频集成功率放大器101为在Doherty射频集成功率放大器100的电路集成上,提供了所述驱动放大器1、所述载波输入匹配网络2、所述载波功放3、所述峰值输入匹配网络4、所述峰值功放5的具体电路。从而使得Doherty射频集成功率放大器101为一个版图面积下且功率附加效率高的具体技术方案。其中,在实施例二中,所述驱动放大器1、所述载波功放3以及所述峰值功放5均采用晶体管实现。
Doherty射频集成功率放大器101的具体电路结构为:
所述驱动放大器1包括第一电感L1、第二电感L2、第一电容C1以及第一晶体管Q1。
所述驱动放大器1的具体电路结构为:所述第一电容C1的第 一端作为所述驱动放大器1的输入端,且所述第一电容C1的第一端通过串联所述第一电感L1后连接至接地。所述第一电容C1的第二端连接至所述第一晶体管Q1的基极。所述第一晶体管Q1的发射极连接至接地。所述第一晶体管Q1的集电极作为所述驱动放大器1的输出端,且所述第一晶体管Q1的集电极分别连接至所述第二电感L2的第二端、所述载波输入匹配网络2的输入端和所述峰值输入匹配网络4的输入端。所述第二电感L2的第一端连接至电源电压Vcc。
所述载波输入匹配网络2包括第三电感L3、第二电容C2以及第三电容C3。
所述载波输入匹配网络2的具体电路结构为:所述第二电容C2的第一端作为所述载波输入匹配网络2的输入端,且所述第二电容C2的第一端至所述第一晶体管Q1的集电极。所述第二电容C2的第二端分别连接至所述第三电容C3的第一端和所述第三电感L3的第一端。所述第三电感L3的第二端连接至接地。所述第三电容C3的第二端作为所述载波输入匹配网络2的输出端。
所述载波功放3包括第四电感L4、第五电感L5、第五电容C5以及第二晶体管Q2。
所述载波功放3的具体电路结构为:所述第二晶体管Q2的基极作为所述载波功放3的输入端,且所述第二晶体管Q2的基极连接至所述第三电容C3的第二端。所述第二晶体管Q2的发射极连接至接地。所述第二晶体管Q2的集电极分别连接至所述第五电容C5的第一端、所述第四电感L4的第二端以及所述第五电感L5的第一端。所述第五电容C5的第二端连接至接地。所述第四电感L4的第一端连接至电源电压Vcc。所述第五电感L5的第二端作为所述载波功放3的输出端。
所述峰值输入匹配网络4包括第四电容C4。
所述峰值输入匹配网络4的具体电路结构为:所述第四电容C4的第一端作为所述峰值输入匹配网络4的输入端,且所述第四电容C4的第一端至所述第一晶体管Q1的集电极。所述第四电容 C4的第二端作为所述峰值输入匹配网络4的输出端OPY1。
所述峰值功放5包括第六电感L6、第七电感L7、第六电容C6以及第三晶体管Q3。
所述峰值功放5的具体电路结构为:所述第三晶体管Q3的基极作为所述峰值功放5的输入端,且所述第三晶体管Q3的基极连接至所述第六电容C6的第二端。所述第三晶体管Q3的发射极连接至接地。所述第三晶体管Q3的集电极分别连接至所述第六电容C6的第一端、所述第六电感L6的第二端以及所述第七电感L7的第一端。所述第六电容C6的第二端连接至接地。所述第六电感L6的第一端连接至电源电压Vcc。所述第七电感L7的第二端作为所述峰值功放5的输出端OPY2。
所述的功率合成和移相网络6包括巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5。
所述的功率合成和移相网络6的具体电路结构为:所述巴伦阻抗变压器的初级线圈L p的第一端作为所述的功率合成和移相网络6的第一输入端,且所述巴伦阻抗变压器的初级线圈L p的第一端分别连接至所述电容Cb1的第一端和所述电容Cb4的第一端。所述电容Cb4的第二端连接至接地。
所述巴伦阻抗变压器的初级线圈L p的第二端分别连接至所述电容Cb2的第一端和所述电容Cb3的第一端。所述电容Cb3的第二端连接至接地。
所述巴伦阻抗变压器的次级线圈L s的第一端作为所述的功率合成和移相网络6的输出端,且所述巴伦阻抗变压器的次级线圈L s的第一端连接至所述电容Cb1的第二端。
所述巴伦阻抗变压器的次级线圈L s的第二端作为所述的功率合成和移相网络6的第二输入端,且所述巴伦阻抗变压器的次级线圈L s的第二端分别连接至所述电容Cb2的第二端和所述电容Cb5的第一端。所述电容Cb5的第二端连接至接地。
上述的电路结构可知:
功率放大单元由两级放大电路组成,第一晶体管Q1为驱动功率 管,且第一晶体管Q1为单端放大结构。第二晶体管Q2和第三晶体管Q3均为输出功率管,并且第二晶体管Q2和第三晶体管Q3组成Doherty功率放大电路结构。第二晶体管Q2的输入端和第三晶体管Q3的输入端分别经过所述载波输入匹配网络2和所述峰值输入匹配网络4的匹配网络后,均与第一晶体管Q1的输出端直接连接,第二晶体管Q2的输出端和第三晶体管Q3的输出端连接到巴伦结构的所述功率合成和移相网络6。
其中,在实施例二中,所述载波功放3包括用于抑制二次谐波的载波谐振电路。所述峰值功放5包括用于抑制二次谐波的载波谐振电路。所述载波功放3和所述峰值功放5采用抑制二次谐波的电路。具体的:
为了抑制二次谐波,第二晶体管Q2的集电极和第三晶体管Q3的集电极分别并联了所述第五电容C5和第六电容C6,与键合电感串联谐振在二次谐波频率,形成对地近似短路。
所述功率合成和移相网络6并联了电容C b4和C b5,与键合电感也串联谐振在二次谐波频率上,加深了抑制二次谐波的深度,提高了输出功率的线性度。
因此,Doherty射频集成功率放大器101的电路元器件较少,电路性能高,易于集成在一个GaAs HBT工艺的芯片上。
与相关技术相比,本发明的Doherty射频集成功率放大器通过载波功放和峰值功放输入端采用直接连接到驱动放大器输出端的方式。使得该电路不需要相关技术的功分器,电路的版图面积大大地减少。同时,输出端采用功率合成和移相网络实现负载调制和功率合成。其中,所述功率合成和移相网络由巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5组成。该电路所述功率合成和移相网络实现负载阻抗的变换,从而不需要相关技术的四分之一波长传输线,电路的版图面积大大地减少。更优的,所述功率合成和移相网络采用巴伦阻抗变压器的电路结构保证了电路工作在高效率状态,从而使得本发明的Doherty射频集成功率放大器的功率附加效率高。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (6)

  1. 一种Doherty射频集成功率放大器,其特征在于,其包括驱动放大器、载波输入匹配网络、载波功放、峰值输入匹配网络、峰值功放以及功率合成和移相网络;
    所述驱动放大器的输入端作为所述Doherty射频集成功率放大器的输入端;
    所述驱动放大器的输出端分两路分别连接所述载波输入匹配网络的输入端和所述峰值输入匹配网络的输入端;
    所述载波输入匹配网络的输出端连接至所述载波功放的输入端;
    所述载波功放的输出端连接至所述功率合成和移相网络的第一输入端;
    所述峰值输入匹配网络的输出端连接至所述峰值功放的输入端;
    所述峰值功放的输出端连接至所述功率合成和移相网络的第二输入端;
    所述功率合成和移相网络的输出端作为所述Doherty射频集成功率放大器的输出端,以用于连接系统负载;
    其中,所述功率合成和移相网络包括巴伦阻抗变压器、电容Cb1、电容Cb2、电容Cb3、电容Cb4以及电容Cb5;
    所述巴伦阻抗变压器的初级线圈的第一端作为所述功率合成和移相网络的第一输入端,且所述巴伦阻抗变压器的初级线圈的第一端分别连接至所述电容Cb1的第一端和所述电容Cb4的第一端;所述电容Cb4的第二端连接至接地;
    所述巴伦阻抗变压器的初级线圈的第二端分别连接至所述电容Cb2的第一端和所述电容Cb3的第一端;所述电容Cb3的第二端连接至接地;
    所述巴伦阻抗变压器的次级线圈的第一端作为所述功率合成和移相网络的输出端,且所述巴伦阻抗变压器的次级线圈的第一端连接至所述电容Cb1的第二端;
    所述巴伦阻抗变压器的次级线圈的第二端作为所述功率合成和移相网络的第二输入端,且所述巴伦阻抗变压器的次级线圈的第二端分别连接至所述电容Cb2的第二端和所述电容Cb5的第一端;所述电容Cb5的第二端连接至接地。
  2. 根据权利要求1所述的Doherty射频集成功率放大器,其特征在于,所述巴伦阻抗变压器为半集总移相90度的变压器。
  3. 根据权利要求1所述的Doherty射频集成功率放大器,其特征在于,所述电容Cb1的电容值和所述电容Cb2的电容值均为1/(2πfZ 0),所述电容Cb1的电容值为1/(πfZ 0);其中,f为所述Doherty射频集成功率放大器的工作频率,Z 0为所述系统负载的特征阻抗。
  4. 根据权利要求1所述的Doherty射频集成功率放大器,其特征在于,所述驱动放大器、所述载波功放以及所述峰值功放均采用晶体管实现。
  5. 根据权利要求1所述的Doherty射频集成功率放大器,其特征在于,所述载波功放包括用于抑制二次谐波的载波谐振电路;所述峰值功放包括用于抑制二次谐波的载波谐振电路。
  6. 根据权利要求4所述的Doherty射频集成功率放大器,其特征在于,所述驱动放大器包括第一电感、第二电感、第一电容以及第一晶体管;所述第一电容的第一端作为所述驱动放大器的输入端,且所述第一电容的第一端通过串联所述第一电感后连接至接地;所述第一电容的第二端连接至所述第一晶体管的基极;所述第一晶体管的发射极连接至接地;所述第一晶体管的集电极作为所述驱动放大器的输出端,且所述第一晶体管的集电极分别连接至所述第二电感的第二端、所述载波输入匹配网络的输入端和所述峰值输入匹配网络的输入端;所述第二电感的第一端连接至电源电压;
    所述载波输入匹配网络包括第三电感、第二电容以及第三电容;所述第二电容的第一端作为所述载波输入匹配网络的输入端,且所述第二电容的第一端至所述第一晶体管的集电极;所述第二电容的第二端分别连接至所述第三电容的第一端和所述第三电感的第一端;所述第三电感的第二端连接至接地;所述第三电容的第二 端作为所述载波输入匹配网络的输出端;
    所述载波功放包括第四电感、第五电感、第五电容以及第二晶体管;所述第二晶体管的基极作为所述载波功放的输入端,且所述第二晶体管的基极连接至所述第三电容的第二端;所述第二晶体管的发射极连接至接地;所述第二晶体管的集电极分别连接至所述第五电容的第一端、所述第四电感的第二端以及所述第五电感的第一端;所述第五电容的第二端连接至接地;所述第四电感的第一端连接至电源电压;所述第五电感的第二端作为所述载波功放的输出端;
    所述峰值输入匹配网络包括第四电容;所述第四电容的第一端作为所述峰值输入匹配网络的输入端,且所述第四电容的第一端至所述第一晶体管的集电极;所述第四电容的第二端作为所述峰值输入匹配网络的输出端;
    所述峰值功放包括第六电感、第七电感、第六电容以及第三晶体管;所述第三晶体管的基极作为所述峰值功放的输入端,且所述第三晶体管的基极连接至所述第六电容的第二端;所述第三晶体管的发射极连接至接地;所述第三晶体管的集电极分别连接至所述第六电容的第一端、所述第六电感的第二端以及所述第七电感的第一端;所述第六电容的第二端连接至接地;所述第六电感的第一端连接至电源电压;所述第七电感的第二端作为所述峰值功放的输出端。
PCT/CN2022/125436 2021-11-05 2022-10-14 一种Doherty射频集成功率放大器 WO2023078060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111316620.2A CN114094959A (zh) 2021-11-05 2021-11-05 一种Doherty射频集成功率放大器
CN202111316620.2 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078060A1 true WO2023078060A1 (zh) 2023-05-11

Family

ID=80299401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125436 WO2023078060A1 (zh) 2021-11-05 2022-10-14 一种Doherty射频集成功率放大器

Country Status (2)

Country Link
CN (1) CN114094959A (zh)
WO (1) WO2023078060A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116865685A (zh) * 2023-08-31 2023-10-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094959A (zh) * 2021-11-05 2022-02-25 深圳飞骧科技股份有限公司 一种Doherty射频集成功率放大器
CN114629443A (zh) * 2022-03-29 2022-06-14 苏州英嘉通半导体有限公司 Doherty功率放大器
CN115833768B (zh) * 2023-02-23 2023-05-23 深圳飞骧科技股份有限公司 电压合成式Doherty功率放大器
CN117856749A (zh) * 2024-02-08 2024-04-09 北京巨束科技有限公司 功率合成模块及功率放大器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100148877A1 (en) * 2008-12-12 2010-06-17 Samsung Electro-Mechanics Company, Ltd. Integrated power amplifiers for use in wireless communication devices
CN105375883A (zh) * 2014-08-13 2016-03-02 天工方案公司 具有可调阻抗终端电路的多尔蒂功率放大器组合器
CN106059502A (zh) * 2015-04-17 2016-10-26 英飞凌科技股份有限公司 具有集成的变压器线巴伦的宽带Doherty放大器电路
CN109728789A (zh) * 2017-10-31 2019-05-07 恩智浦有限公司 功率放大器单元
CN114094959A (zh) * 2021-11-05 2022-02-25 深圳飞骧科技股份有限公司 一种Doherty射频集成功率放大器
CN114123982A (zh) * 2021-11-18 2022-03-01 深圳飞骧科技股份有限公司 一种宽带Doherty功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100148877A1 (en) * 2008-12-12 2010-06-17 Samsung Electro-Mechanics Company, Ltd. Integrated power amplifiers for use in wireless communication devices
CN105375883A (zh) * 2014-08-13 2016-03-02 天工方案公司 具有可调阻抗终端电路的多尔蒂功率放大器组合器
CN106059502A (zh) * 2015-04-17 2016-10-26 英飞凌科技股份有限公司 具有集成的变压器线巴伦的宽带Doherty放大器电路
CN109728789A (zh) * 2017-10-31 2019-05-07 恩智浦有限公司 功率放大器单元
CN114094959A (zh) * 2021-11-05 2022-02-25 深圳飞骧科技股份有限公司 一种Doherty射频集成功率放大器
CN114123982A (zh) * 2021-11-18 2022-03-01 深圳飞骧科技股份有限公司 一种宽带Doherty功率放大器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116865685A (zh) * 2023-08-31 2023-10-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器
CN116865685B (zh) * 2023-08-31 2023-11-10 成都明夷电子科技有限公司 一种高集成度宽带高效率功率放大器

Also Published As

Publication number Publication date
CN114094959A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023078060A1 (zh) 一种Doherty射频集成功率放大器
WO2023130843A1 (zh) 一种新型宽带多赫蒂射频功率放大器
WO2023087627A1 (zh) 一种宽带Doherty功率放大器
CN106537769B (zh) 与线性和高效宽带功率放大器有关的系统和方法
Kang et al. Design of bandwidth-enhanced Doherty power amplifiers for handset applications
Grebennikov et al. High-efficiency Doherty power amplifiers: Historical aspect and modern trends
US8174322B2 (en) Power control of reconfigurable outphasing chireix amplifiers and methods
US7961048B2 (en) Integrated power amplifiers for use in wireless communication devices
US8203386B2 (en) Reconfigurable outphasing Chireix amplifiers and methods
KR102598591B1 (ko) 전력 증폭 회로
WO2023078061A1 (zh) Doherty射频功率放大器
US11005433B2 (en) Continuous-mode harmonically tuned power amplifier output networks and systems including same
WO2023078062A1 (zh) Doherty射频功率放大器
WO2015069426A1 (en) A quasi-doherty architecture amplifier and method
Nguyen et al. A coupler-based differential Doherty power amplifier with built-in baluns for high mm-wave linear-yet-efficient Gbit/s amplifications
CN115882791A (zh) 一种电压合成式Doherty功率放大器
CN110086439A (zh) 适用5g网络的f类异相功率放大电路及射频功率合成器
CN117294257A (zh) 一种Doherty功率放大器
Díez-Acereda et al. Power Amplifiers Load Modulation Techniques for 5G in GaN-on-Si Techonology
Li KEY FRONT-END CIRCUITS IN MILLIMETER-WAVE SILICON-BASED WIRELESS TRANSMITTERS FOR PHASED-ARRAY APPLICATIONS
Díez-Acereda et al. A Comparative Analysis of Doherty and Outphasing MMIC GaN Power Amplifiers for 5G Applications. Micromachines 2023, 1, 0
CN116781017A (zh) 一种应用于5G通信的紧凑型Doherty功率放大器
CN117176095A (zh) 一种输入功率自适应分配Doherty功率放大器
CN118074631A (zh) 基于改进分布式耦合变压的可调谐波相位线性功率放大器
MARIAPPAN et al. Energy efficiency in CMOS power amplifier designs for ultra low power mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889085

Country of ref document: EP

Kind code of ref document: A1