WO2023127774A1 - 遺伝子包含体の検出方法及び検出用キット - Google Patents

遺伝子包含体の検出方法及び検出用キット Download PDF

Info

Publication number
WO2023127774A1
WO2023127774A1 PCT/JP2022/047823 JP2022047823W WO2023127774A1 WO 2023127774 A1 WO2023127774 A1 WO 2023127774A1 JP 2022047823 W JP2022047823 W JP 2022047823W WO 2023127774 A1 WO2023127774 A1 WO 2023127774A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid amplification
specimen
enzyme
solution
Prior art date
Application number
PCT/JP2022/047823
Other languages
English (en)
French (fr)
Inventor
健悟 臼井
和仁 野村
崇裕 相馬
良英 林崎
Original Assignee
株式会社ダナフォーム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダナフォーム filed Critical 株式会社ダナフォーム
Publication of WO2023127774A1 publication Critical patent/WO2023127774A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction

Definitions

  • the present invention relates to a detection method and detection kit for gene inclusion bodies such as viruses.
  • CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority from Japanese Patent Application No. 2021-214454 filed on December 28, 2021, the entire description of which is expressly incorporated herein by reference.
  • a biological sample such as saliva containing a virus or the like is collected using a swab or the like, and the collected biological sample is suspended in a virus-dissolving solution to kill the virus and elute nucleic acids such as RNA into the solution.
  • the eluted nucleic acid is then amplified and the amplified nucleic acid is detected.
  • the solution in which the nucleic acid is eluted is used as it is for nucleic acid amplification (hereinafter referred to as the direct method), or the eluted nucleic acid is purified to a state free of contaminants contained in the biological sample and then used for nucleic acid amplification.
  • the purification requires an additional operation using a glass filter or the like, and is not suitable for easily processing a large amount of specimens in a short time to obtain test results.
  • the direct method in which the solution in which the nucleic acid is eluted is directly used for nucleic acid amplification without purification, does not require a purification operation, and can be performed in a short time and in a simple manner.
  • the solution in which the nucleic acids are eluted contains various contaminants, there have been problems such as inhibition of the amplification reaction during amplification and detection, or occurrence of false positives due to non-specific amplification. .
  • Patent Document 1 discloses the combined use of dithiothreitol (DTT) in nucleic acid amplification.
  • Patent Documents 2 and 3 disclose methods for suppressing the production of non-specific products in nucleic acid amplification methods.
  • Patent Document 2 discloses the combined use of agents such as free arginine and spermidine to suppress the production of non-specific products.
  • Patent Document 3 discloses combined use of a nucleic acid molecule bound with an elongation inhibitor such as an oligonucleotide, an antibody, or a low-molecular-weight compound.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-93175
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2017-29161
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2021-126095 Patent Documents 1 to 3 are specifically disclosed herein. Incorporated as
  • the nucleic acid amplification reaction is performed in the coexistence of DTT.
  • this method was insufficient in suppressing the amplification reaction of the nucleic acid to be detected and the occurrence of false positives.
  • the combined use of an additive that suppresses the production of non-specific products in the nucleic acid amplification method described in Patent Documents 2 and 3 was also insufficient to suppress the occurrence of false positives in the direct method.
  • the problem to be solved by the present invention is a method for detecting gene inclusions such as viruses by a direct method in which a solution in which nucleic acids are eluted is used as it is for nucleic acid amplification.
  • a virus detection kit capable of suppressing the occurrence of false positives due to
  • An object of the present invention is to provide a method for detecting gene inclusions such as viruses by a direct method and a kit for virus detection, which can suppress inhibition of the amplification reaction of the nucleic acid to be detected and generation of false positives.
  • Step (1) of obtaining a specimen suspension by suspending the specimen in a specimen suspension solution A step (2a) of mixing the specimen suspension with a reverse transcriptase, a nucleic acid amplification enzyme and a nucleic acid amplification primer and subjecting the obtained mixture to reverse transcription and nucleic acid amplification, or the specimen suspension and the nucleic acid amplification enzyme and a nucleic acid amplification primer, subjecting the resulting mixed solution to nucleic acid amplification (2b), and detecting the amplified nucleic acid (3), wherein the specimen suspension solution is an acidic solution , a method for detecting gene inclusions in a specimen.
  • nucleic acid amplification enzyme is a nucleic acid amplification enzyme or a ligase
  • nucleic acid synthetase is an isothermal amplification reaction enzyme or a thermocycle amplification reaction enzyme for nucleic acids.
  • the method of. [9] The method according to any one of [1] to [8], wherein the nucleic acid amplification enzyme is a strand displacement DNA polymerase, and the nucleic acid amplification primer is a primer for a strand displacement DNA polymerase.
  • [10] Gene inclusion in a specimen, comprising a specimen suspension solution, an enzyme solution containing a nucleic acid amplification enzyme, a primer solution containing a nucleic acid amplification primer, and a reaction buffer, wherein the specimen suspension solution is an acidic solution.
  • a kit used to detect bodies [11] The kit of [10], wherein the enzyme solution further contains reverse transcriptase.
  • the specimen suspension solution has a pH in the range of 4.5 to 6.5.
  • kits of [13], wherein the surfactant is SDS.
  • the enzyme solution contains at least one selected from the group consisting of acetylated bovine serum albumin and RNase inhibitors.
  • the RNase inhibitor is a human placenta-derived RNase inhibitor.
  • the nucleic acid amplification enzyme is a nucleic acid amplification enzyme or a ligase
  • the nucleic acid synthetase is an isothermal amplification reaction enzyme or a thermocycle amplification reaction enzyme for nucleic acids.
  • nucleic acid amplification enzyme is a strand displacement DNA polymerase
  • nucleic acid amplification primer is a primer for a strand displacement DNA polymerase
  • the nucleic acid-eluted solution is directly used for nucleic acid amplification, and the method is capable of detecting gene inclusion bodies such as viruses while inhibiting the nucleic acid amplification reaction and suppressing the occurrence of false positives. and kits can be provided.
  • FIG. 1 shows the results of the amplification reaction of Example 1.
  • FIG. 2 shows the results of the amplification reaction of Example 2.
  • FIG. 3 shows the results of the amplification reaction of Example 3.
  • FIG. 4 shows the results of the amplification reaction of Example 4.
  • FIG. 5 shows the results of the amplification reaction of Example 5.
  • the present invention comprises a step (1) of obtaining a specimen suspension by suspending a specimen in a specimen suspension solution; A step (2a) of mixing the specimen suspension with a reverse transcriptase, a nucleic acid amplification enzyme and a nucleic acid amplification primer and subjecting the obtained mixture to reverse transcription and nucleic acid amplification, or the specimen suspension and the nucleic acid amplification enzyme and a nucleic acid amplification primer, subjecting the resulting mixed solution to nucleic acid amplification (2b), and detecting the amplified nucleic acid (3), wherein the specimen suspension solution is an acidic solution , relates to a method for detecting gene inclusions in a sample.
  • a specimen is suspended in a specimen suspension solution to obtain a specimen suspension.
  • the specimen is not particularly limited, and is, for example, a biological sample, and examples of the biological sample include animal and plant tissues, body fluids, excreta, and the like.
  • Body fluids include saliva, nasal mucus, blood, cerebrospinal fluid, urine, milk, nasal swab, nasopharyngeal swab, pharyngeal swab, and vaginal swab.
  • Cells include white blood cells separated from blood. It is not limited to these.
  • Examples of gene inclusion bodies in biological samples include viruses, cells, bacteria, fungi, and the like.
  • a gene inclusion body in a biological sample or the biological sample itself is suspended in a sample suspension solution to obtain a sample suspension without any special pretreatment.
  • the specimen suspension solution is an acidic solution, and preferably has a pH in the range of 4.5 to 6.5. Since the sample suspension solution is an acidic solution, the amplification reaction is not inhibited, and the occurrence of false positives in nucleic acid detection is suppressed through the subsequent step (2a) or (2b) and step (3). can be done.
  • the pH is preferably in the range of 5.0-6.5.
  • the sample suspension solution can be a buffer having a pH in the range of 4.5 to 6.5.
  • the sample suspension solution preferably contains an MES buffer adjusted to a pH in the range of 4.5 to 6.5.
  • the specimen can be, for example, one collected by wiping the nose or throat with a cotton swab, the cotton part of the swabbed cotton swab is immersed in the specimen suspension solution, and the collected specimen is collected by stirring appropriately. Suspend in suspending solution. Also, for example, a solution-like specimen such as saliva can be suspended in the specimen suspension solution. At this time, by changing the mixing ratio of the sample and the sample suspension solution to increase the amount of the sample brought in, it is possible to perform a more sensitive test.
  • the amount of specimen suspension solution used is not particularly limited, and can be, for example, in the range of 200 ⁇ L to 10 mL, considering the size of the cotton swab. However, it is not intended to be limited to this range.
  • the specimen suspension solution further contains at least one selected from the group consisting of surfactants and reducing agents.
  • a surfactant having a protein-denaturing action is preferable, and examples thereof include SDS (sodium dodecyl sulfate), sodium laureth sulfate, dioctyl sodium sulfosuccinate, and sodium stearate.
  • SDS sodium dodecyl sulfate
  • sodium laureth sulfate sodium laureth sulfate
  • dioctyl sodium sulfosuccinate dioctyl sodium sulfosuccinate
  • sodium stearate sodium stearate
  • concentration of the surfactant in the sample suspending solution can range, for example, from 0.01 to 1.0%, preferably from 0.05 to 0.5%.
  • the sample suspension solution can contain a reducing agent, for example, Tris(2-carboxyethyl)phosphine hydrochloride (Tris(2-carboxyethyl ) phosphine Hydrochloride [TCEP-HCl]).
  • a reducing agent for example, Tris(2-carboxyethyl)phosphine hydrochloride (Tris(2-carboxyethyl ) phosphine Hydrochloride [TCEP-HCl]).
  • the concentration of the reducing agent in the specimen suspension solution can range, for example, from 0.1 to 100 mM, depending on the type of reducing agent.
  • Ultrasonication can be used to suspend the specimen in the specimen suspension solution. False positives can be suppressed by using sonication.
  • Step (2a) the specimen suspension is mixed with a reverse transcriptase, a nucleic acid amplification enzyme, and a nucleic acid amplification primer, and the resulting mixture is subjected to reverse transcription and nucleic acid amplification.
  • the RNA of the gene inclusion body contained in the specimen is reverse transcribed, and the DNA obtained by reverse transcription is amplified.
  • the reverse transcriptase is not particularly limited, but is not particularly limited as long as it has cDNA synthesis activity using RNA as a template.
  • Reverse transcriptases of various origins such as related virus 2 reverse transcriptase (RAV-2 RTase), Moloney murine leukemia virus-derived reverse transcriptase (MMLV RTase), and the like.
  • RAV-2 RTase related virus 2 reverse transcriptase
  • MMLV RTase Moloney murine leukemia virus-derived reverse transcriptase
  • DNA polymerase having reverse transcription activity can also be used as the DNA polymerase described below.
  • DNA polymerases with reverse transcription activity include, for example, Bca BEST DNA polymerase, Bca (exo-) DNA polymerase, Tth DNA polymerase and the like.
  • the nucleic acid amplification enzyme is not particularly limited, it can be, for example, a nucleic acid synthetase or a ligase.
  • the nucleic acid synthetase can be an enzyme for isothermal or thermocyclic amplification reactions of nucleic acids.
  • the isothermal amplification reaction of nucleic acids can be, for example, the LAMP method or the SmartAmp method of nucleic acids, and can be an enzyme for nucleic acid amplification reaction using strand displacement reaction.
  • a thermocycling amplification reaction can be a PCR amplification reaction.
  • the nucleic acid amplification enzyme is a ligase
  • the target sequence is amplified by the ligase chain reaction (LCR) method.
  • LCR ligase chain reaction
  • polymerase which is an enzyme for nucleic acid amplification reactions having strand displacement activity.
  • polymerases described in WO2004/040019 can be mentioned, but are not intended to be limited thereto.
  • the polymerase with strand displacement activity can also be a DNA polymerase (Aac), disclosed in WO2009/054510 (Japanese Patent No. 4450867).
  • any one that is normal temperature, mesophilic, or thermostable can be suitably used.
  • this polymerase may be either a natural product or an artificially mutated mutant.
  • Such polymerases include DNA polymerases.
  • DNA polymerases include thermophilic Bacillus bacteria such as Bacillus stearothermophilus (hereinafter referred to as "B.st”) and Bacillus caldotenax (hereinafter referred to as "B.ca”). Mutants lacking the 5' to 3' exonuclease activity of the derived DNA polymerase, the Klenow fragment of E. coli derived DNA polymerase I, and the like can be mentioned.
  • DNA polymerases used in nucleic acid amplification reactions further include Vent DNA polymerase, Vent (Exo-) DNA polymerase, Deep Vent DNA polymerase, Deep Vent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, MS-2 phage DNA polymerase, Z -Taq DNA polymerase, Pfu DNA polymerase, Pfu turbo DNA polymerase, KOD DNA polymerase, 9°Nm DNA polymerase, Therminator DNA polymerase, Taq DNA polymerase and the like.
  • the nucleic acid amplification primer is appropriately determined according to the nucleic acid amplification enzyme to be used.
  • the nucleic acid amplification primer is a primer for a strand displacement DNA polymerase.
  • the nucleic acid amplification reaction enzyme is a nucleic acid amplification reaction enzyme that uses a strand displacement reaction, see International Publication No. 2004/040019, Japanese Patent Application Laid-Open No. 2009-171935, Japanese Patent Application Laid-Open No. 2011-50380, etc.
  • the described primers can be mentioned.
  • nucleic acid amplification enzyme is ligase
  • at least 4 types of primers are used as nucleic acid amplification primers.
  • the nucleotide sequence of the primer can be appropriately determined according to the target nucleotide sequence.
  • step (2b) In the step (2b), the specimen suspension, the nucleic acid amplification enzyme and the nucleic acid amplification primer are mixed, and the resulting mixture is subjected to nucleic acid amplification. In this step, the DNA of gene inclusions contained in the sample is amplified.
  • nucleic acid amplification enzyme and the nucleic acid amplification primer those exemplified in step (2a) can be used as they are.
  • the nucleic acid amplification method can be, for example, but not limited to, the SmartAmp method.
  • Reverse transcription and nucleic acid amplification in step (2a) and nucleic acid amplification in step (2b) are performed in the presence of at least one selected from the group consisting of acetylated bovine serum albumin and RNase inhibitors to prevent false positives. It is more preferable from the viewpoint of suppression.
  • Acetylated bovine serum albumin is obtained by acetylating bovine serum albumin.
  • BSA bovine serum albumin
  • lysine (Lys) residues in particular are frequently modified, and serine (Ser) and threonine (Thr) residues are modified less frequently.
  • Acetylation also derivatizes similar amino acid residues of the microcontaminating nuclease within BSA, inactivating its nuclease activity. Therefore, acetylated BSA has suppressed nuclease activity, and can suppress false positives by the action of BSA while suppressing nuclease activity in reverse transcription in step (2a).
  • the coexisting amount of acetylated bovine serum albumin can be, for example, 1-500 ⁇ g/mL.
  • the RNase inhibitor can be, for example, human placenta-derived RNase inhibitor (trade name Rnasin).
  • Rnasin human placenta-derived RNase inhibitor
  • reverse transcription in step (2a) can be performed while suppressing liponuclease activity, thereby suppressing false positives.
  • the coexisting amount of RNase inhibitor can be, for example, 0.1 U to 20 U.
  • Step (3) the amplified nucleic acid is detected.
  • a known method can be used as it is for the detection method of the amplified nucleic acid. Detection of the amplified nucleic acid identifies and detects the presence of gene inclusions in the sample.
  • the amplified nucleic acid is optically detected, electrically detected, or detected by surface plasmon resonance or the like.
  • Amplified nucleic acids can be detected, for example, by using fluorogenic primers as primers and labeling the fluorogenic primers. Detection of amplified nucleic acids can be accomplished using exciton effects, for example, using exciton primers or exciton probes in the amplification reaction.
  • a method for optically detecting nucleic acids may be a method using an intercalating dye.
  • the nucleic acid amplification reaction is performed by the SmartAmp method or the LAMP method, and label detection is performed with exciton primers or exciton probes.
  • label detection is performed with exciton primers or exciton probes.
  • nucleic acid melting curve following the nucleic acid amplification reaction and determine the properties of the amplification product, such as false positives and true positives, based on the melting curve.
  • the present invention includes a kit used for detecting gene inclusions in a sample, which includes a sample suspension solution, an enzyme solution containing a nucleic acid amplification enzyme, and a primer solution containing a nucleic acid amplification primer. , a reaction buffer, wherein the sample suspending solution is an acidic solution.
  • the above kit is used to amplify the DNA of the gene inclusion contained in the sample and detect the gene inclusion in the sample.
  • the enzyme solution may further contain a reverse transcriptase, and the kit reverse transcribes the RNA of the gene inclusion body contained in the sample, and further amplifies the DNA obtained by the reverse transcription to obtain the gene in the sample. Used to detect inclusions.
  • the sample suspension solution which is an acidic solution, preferably has a pH in the range of 4.5 to 6.5. Since the specimen suspension solution is an acidic solution, the amplification reaction is not inhibited, and the occurrence of false positives in nucleic acid detection can be suppressed.
  • the pH is preferably in the range of 5.0-6.5.
  • the sample suspension solution can be a buffer having a pH in the range of 4.5 to 6.5. (2-Acetamide) iminodiacetic acid), PIPES (Piperazine-1,4-bis (2-ethanesulfonic acid)), ACES (N-(2-Acetamide)-2-aminoethanesulfonic acid) and other buffers can be used. .
  • the sample suspension solution preferably contains an MES buffer adjusted to a pH in the range of 4.5 to 6.5.
  • the specimen suspension solution preferably contains at least one selected from the group consisting of surfactants, reducing agents and semi-alkaline proteases.
  • the specimen suspension solution can inhibit the amplification reaction of the nucleic acid to be detected and suppress false positives.
  • a surfactant having a protein-denaturing action is preferable, and examples thereof include SDS (sodium dodecyl sulfate).
  • SDS sodium dodecyl sulfate
  • concentration of the surfactant in the sample suspending solution can range, for example, from 0.01 to 1.0%, preferably from 0.05 to 0.5%.
  • the specimen suspension solution preferably further contains a reducing agent.
  • the reducing agent is, for example, Tris(2-carboxyethyl)phosphine Hydrochloride [TCEP-HCl], which is a reducing agent that cleaves intraprotein or interprotein disulfide bonds. can be done.
  • the concentration of the reducing agent in the specimen suspension solution can range, for example, from 0.1 to 100 mM, depending on the type of reducing agent.
  • the specimen suspension solution further contains a semi-alkaline protease so that false positives can be suppressed.
  • Semi-alkaline proteases are available under the trade name Sputazyme. However, water or an aqueous solution containing semi-alkaline protease may be prepared separately from the sample suspension solution and used together with the sample suspension solution.
  • the nucleic acid amplification enzyme contained in the enzyme solution containing the nucleic acid amplification enzyme is not particularly limited, it can be, for example, a nucleic acid synthetase or a ligase.
  • the nucleic acid synthetase can be, for example, an isothermal amplification reaction enzyme or a thermocycle amplification reaction enzyme.
  • the enzyme for isothermal amplification reaction of nucleic acid can be an enzyme for amplification reaction of nucleic acid using strand displacement reaction.
  • the nucleic acid amplification enzyme is a ligase
  • the target sequence is amplified by the ligase chain reaction (LCR) method.
  • LCR ligase chain reaction
  • polymerase which is an enzyme for nucleic acid amplification reactions having strand displacement activity.
  • examples include, but are not intended to be limited to, the polymerases described in WO2004/040019 (the entire description of which is specifically incorporated herein by reference).
  • the polymerase with strand displacement activity can also be a DNA polymerase (Aac), described in WO 2009/054510 (the entire description of which is specifically incorporated herein by reference) (Japanese Patent No. 4450867). disclosed.
  • any one that is normal temperature, mesophilic, or thermostable can be suitably used.
  • this polymerase may be either a natural product or an artificially mutated mutant.
  • Such polymerases include DNA polymerases.
  • DNA polymerases include thermophilic Bacillus bacteria such as Bacillus stearothermophilus (hereinafter referred to as "B.st”) and Bacillus caldotenax (hereinafter referred to as "B.ca”). Mutants lacking the 5' to 3' exonuclease activity of the derived DNA polymerase, the Klenow fragment of E. coli derived DNA polymerase I, and the like can be mentioned.
  • DNA polymerases used in nucleic acid amplification reactions further include Vent DNA polymerase, Vent (Exo-) DNA polymerase, Deep Vent DNA polymerase, Deep Vent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, MS-2 phage DNA polymerase, Z -Taq DNA polymerase, Pfu DNA polymerase, Pfu turbo DNA polymerase, KOD DNA polymerase, 9°Nm DNA polymerase, Therminator DNA polymerase, Taq DNA polymerase and the like.
  • the enzyme solution may further contain a reverse transcriptase, and the reverse transcriptase is not particularly limited as long as it has cDNA synthesis activity using RNA as a template.
  • reverse transcriptase derived from avian myeloblastosis virus (AMVRTase), Routine-associated virus 2 reverse transcriptase (RAV-2RTase), reverse transcriptase derived from Moloney murine leukemia virus (MMLV RTase), etc. be done.
  • AMVRTase avian myeloblastosis virus
  • RAV-2RTase Routine-associated virus 2 reverse transcriptase
  • MMLV RTase Moloney murine leukemia virus
  • DNA polymerase having reverse transcription activity
  • DNA polymerases with reverse transcription activity include, for example, Bca BEST DNA polymerase, Bca (exo-) DNA polymerase, Tth DNA polymerase and the like.
  • the nucleic acid amplification primer contained in the primer solution containing the nucleic acid amplification primer is appropriately determined according to the nucleic acid amplification enzyme to be used.
  • the nucleic acid amplification enzyme is a strand displacement DNA polymerase
  • the nucleic acid amplification primer is a primer for a strand displacement DNA polymerase.
  • the nucleic acid amplification reaction enzyme is a nucleic acid amplification reaction enzyme that utilizes a strand displacement reaction, it is described in International Publication No. 2004/040019, Japanese Patent Application Laid-Open No. 2009-171935, Japanese Patent Application Laid-Open No. 2011-50380, etc. ( The entire description thereof is specifically incorporated herein by reference.).
  • nucleic acid amplification enzyme is ligase
  • at least 4 types of primers are used as nucleic acid amplification primers.
  • the nucleotide sequence of the primer can be appropriately determined according to the target nucleotide sequence.
  • the enzyme solution preferably further contains at least one selected from the group consisting of acetylated bovine serum albumin and RNase inhibitors.
  • Acetylated bovine serum albumin is obtained by acetylating bovine serum albumin as described in the explanation of the method invention. Acetylation also derivatizes similar amino acid residues of the microcontaminating nuclease within BSA, inactivating its nuclease activity. Therefore, acetylated BSA has suppressed nuclease activity, and can suppress false positives by the action of BSA while suppressing nuclease activity in reverse transcription.
  • the RNase inhibitor can be, for example, a human placenta-derived RNase inhibitor (trade name Rnasin).
  • Rnasin a human placenta-derived RNase inhibitor
  • reverse transcription can be performed while suppressing liponuclease activity, thereby suppressing false positives.
  • the kit of the present invention can be used to identify gene inclusion bodies by detecting genes in gene inclusion bodies in biological samples that are specimens.
  • Genetic inclusion bodies can be, for example, viruses, bacteria, fungi, or cells.
  • Example 1 ⁇ Effect of MES (pH 5.8)> A specimen suspension is prepared by immersing a swab to which a specimen is attached in 0.8 mL of a specimen suspension solution having the composition shown in Table 1.
  • An amplification reaction solution is prepared by mixing the prepared specimen suspension with the 2x reaction buffer and the enzyme solution whose compositions and amounts are shown in Tables 2-1 and 2-2, and the amounts shown in Table 2-3.
  • the primer mix uses DNA polymerase Aac as the DNA polymerase, the five types of primers described in paragraph 0114 of International Publication No. 2009/054510 (the entire description of which is specifically incorporated herein as disclosure) Those containing TP, FP, BPw, OP1 and OP2 were used.
  • the prepared amplification reaction solution is subjected to amplification reaction at 67°C. The results of the amplification reaction for 48 specimens are shown in FIG.
  • results shown in FIG. 1 show that nucleic acid amplification occurs in all cases when 1000 copies of the target RNA molecule are present in the reaction solution, and when the target RNA molecule is not present in the reaction solution It shows that no nucleic acid amplification occurs.
  • Example 2 ⁇ Effect of acetylated bovine serum albumin>
  • the amplification reaction of 16 specimens in the cases where no acetylated BSA was added to the amplification reaction solution (2x reaction buffer in Table 2-1) and where 0.2 mg of acetylated BSA was added The results are shown in FIG.
  • results shown in FIG. 2 show that when 100 copies of the target RNA molecule are present in the reaction solution, nucleic acid amplification occurs in all cases, and when the target RNA molecule is not present in the reaction solution, , the phenomenon that nucleic acid amplification was observed in some reactions when acetylated BSA was not added indicates that no nucleic acid amplification occurred when acetylated BSA was added. These results show that the addition of acetylated BSA can suppress non-specific amplification reactions.
  • Example 3 ⁇ Effect of semi-alkaline protease (trade name: Sputazyme)> The swab to which about 100 ⁇ L of the specimen was attached was placed in 300 ⁇ L of sputazyme-containing water or distilled water, stirred for 20 seconds, spun down, and left at room temperature for 15 minutes. A 100 ⁇ L portion of the resulting solution was added to 800 ⁇ L of a sample suspension solution having the composition shown in Table 1, stirred for 20 seconds and centrifuged for 30 seconds, and the supernatant was used as a sample suspension. Using this sample solution, amplification reaction is performed in the same manner as in Example 1. The results of the amplification reaction for 40 specimens are shown in FIG.
  • Example 4 ⁇ Effect of ultrasonic treatment> In the same method as in Example 1, after suspending the specimen in the specimen suspension, sonication for 5 minutes using Bransonic (R) M3800h-J (Output: 110 W / 40 kHz) Amplification reaction The results are shown in FIG.
  • Example 5 ⁇ Detection using saliva as specimen> A sample suspension was prepared by suspending 80 ⁇ L of a saliva sample in 20 ⁇ L of a sample suspension solution having the composition shown in Table 3-1. Additionally, 2x reaction buffers and enzyme solutions having the compositions shown in Tables 3-2 and 3-3 were prepared. The prepared sample suspension, 2x reaction buffer and enzyme solution were mixed in amounts shown in Table 3-4 to prepare an amplification reaction solution.
  • the primer mix uses Aac DNA polymerase as a DNA polymerase, the five types of primers described in paragraph 0114 of WO 2009/054510 (the entire description of which is specifically incorporated herein by reference) Those containing TP, FP, BPw, OP1 and OP2 were used.
  • FIG. 5 shows the results of subjecting the prepared amplification reaction solution to amplification reaction at 67°C.
  • the results shown in FIG. 5 indicate that nucleic acid amplification occurs in all cases where 50 to 200 copies of the target RNA molecule are present in the reaction solution, and that no nucleic acid amplification occurs when the target RNA molecule is not present in the reaction solution. It shows that no nucleic acid amplification occurs. From these results, it was found that the nucleic acid amplification reaction using the specimen suspension and the reaction solution used suppressed reaction inhibition due to contaminants, and increased the amount of specimen brought into the amplification reaction solution, resulting in higher sensitivity. can detect the target RNA contained in the sample.
  • the present invention is useful in the field of detection of genetic inclusion bodies such as viruses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、検体を酸性溶液である検体懸濁用溶液に懸濁して検体懸濁液を得る工程(1)、検体懸濁液と逆転写酵素、核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を逆転写及び核酸増幅に供する工程(2a)、または検体懸濁液と核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を核酸増幅に供する工程(2b)、並びに増幅した核酸を検出する工程(3)を含む、検体中の遺伝子包含体を検出する方法、及び酸性溶液である検体懸濁用溶液、核酸増幅用酵素を含有する酵素溶液、核酸増幅用プライマーを含有するプライマー溶液、反応用緩衝液を含む、検体中の遺伝子包含体を検出するために用いるキットに関する。本発明は、核酸を溶出させた溶液をそのまま核酸増幅に用いるウィルス検出方法(ダイレクト法)であって、夾雑物による核酸増幅反応の阻害や非特異的増幅による偽陽性の発生を抑制できる方法及びウィルス検出用キットを提供する。

Description

遺伝子包含体の検出方法及び検出用キット
 本発明は、ウィルス等の遺伝子包含体の検出方法及び検出用キットに関する。
関連出願の相互参照
 本出願は、2021年12月28日出願の日本特願2021-214454号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 COVID-19の蔓延に伴って、ウィルス中の核酸を回収し、増幅し、検出して、ウィルス感染の有無を簡便にかつ確実に判定する技術に対する要求は日々高まっている。また、COVID-19の問題を解消した後にも、人類は様々なウィルスや細菌による疾病に直面していることから、同様の技術に対する要求は依然として存在する。
 核酸を増幅し、検出する技術は、サーモサイクラーを用いたPCR法の出現と、その後のサーモサイクルPCR法以外の様々な方法の発展により、方法論としてはほぼ確立され、実験室のみならず、病院の検査室などにおいても簡便に行われるようになってきた。
 実際の操作は、以下の通りである。ウィルス等を含む唾液等の生体試料を、スワブ等を用いて収集し、収集した生体試料をウィルス溶解用溶液に懸濁し、ウィルスを死滅させると共に溶液中にRNA等の核酸を溶出させる。次に溶出した核酸を増幅し、増幅した核酸を検出する。核酸を溶出させた溶液は、そのまま核酸増幅に用いる場合(以下、ダイレクト法と呼ぶ)と、溶出した核酸を、生体試料に含まれる夾雑物を含まない状態に精製した後に核酸増幅に用いる場合とがある。しかし、精製には、グラスフィルターなどを用いる追加の操作が必要であり、多量の検体を短時間にかつ簡易に処理して検査結果を得るには不適である。一方、核酸を溶出させた溶液を精製することなくそのまま核酸増幅に用いるダイレクト法では、精製操作が不要であることから、短時間かつ簡易処理が可能である。しかし、核酸を溶出させた溶液は様々な夾雑物を含有することから、増幅及び検出において増幅反応が阻害される、あるいは非特異的増幅が生じることで偽陽性が発生するなどの問題があった。
 ダイレクト法における夾雑物による反応阻害の抑制を目的として、例えば、特許文献1には、核酸の増幅においてジチオスレイトール(DTT)を併用することが開示されている。
 また、核酸増幅法における非特異的産物の生成を抑制する方法は、例えば、特許文献2及び3に記載されている。特許文献2には、非特異的産物の生成を抑制するために、遊離アルギニンやスペルミジンのような作用物質を併用することが開示されている。特許文献3には、オリゴヌクレオチド、抗体または低分子化合物などの伸長阻害因子を結合した核酸分子を併用することが開示されている。
特許文献1:日本特開2000-93175号公報
特許文献2:日本特開2017-29161号公報
特許文献3:日本特開2021-126095号公報
特許文献1~3の全記載は、ここに特に開示として援用される。
 特許文献1に記載の方法では、核酸の増幅反応をDTTの共存下で行う。しかし、この方法では、検出しようとする核酸の増幅反応や偽陽性の発生抑制が不十分であった。特許文献2及び3に記載されている、核酸増幅法における非特異的産物の生成を抑制する添加剤を併用することでも、ダイレクト法における偽陽性の発生抑制は不十分であった。
 本発明が解決すべき課題は、核酸を溶出させた溶液をそのまま核酸増幅に用いるダイレクト法によるウィルス等の遺伝子包含体の検出方法であって、夾雑物による核酸増幅反応の阻害や非特異的増幅による偽陽性の発生を抑制できる方法及びウィルス検出用キットを提供することにある。本発明は、検出しようとする核酸の増幅反応の阻害と偽陽性の発生を抑制できる、ダイレクト法によるウィルス等の遺伝子包含体の検出方法及びウィルス検出用キットを提供することを目的とする。
 本発明者らの検討の結果、ウィルスなどの遺伝子包含体を含む検体溶解用溶液を酸性にすることで、検出しようとする核酸の増幅反応の阻害と偽陽性の発生を抑制できること見いだして本発明を完成させた。このことは、核酸増幅反応をSmartAmp法で行った場合に顕著であった。
 本発明は、以下の通りである。
[1]
検体を検体懸濁用溶液に懸濁して検体懸濁液を得る工程(1)、
検体懸濁液と逆転写酵素、核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を逆転写及び核酸増幅に供する工程(2a)、または
検体懸濁液と核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を核酸増幅に供する工程(2b)、並びに
増幅した核酸を検出する工程(3)を含み、前記検体懸濁用溶液は、酸性溶液である、検体中の遺伝子包含体を検出する方法。
[2]
前記検体懸濁用溶液は、pHが4.5~6.5の範囲である、[1]に記載の方法。
[3]
前記検体懸濁用溶液は、界面活性剤及び還元剤から成る群から選ばれる少なくとも1種をさらに含有する、[1]または[2]に記載の方法。
[4]
工程(2a)の逆転写及び核酸増幅、並びに工程(2b)の核酸増幅は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種の共存下で行う、[1]~[3]のいずれか1項に記載の方法。
[5]
前記検体の検体懸濁用溶液への懸濁は、セミアルカリプロテアーゼの存在下で行う、[1]~[4]のいずれか1項に記載の方法。
[6]
前記検体の検体懸濁用溶液への懸濁に、超音波処理を用いる、[1]~[5]のいずれか1項に記載の方法。
[7]
遺伝子包含体は、ウィルス、細菌、真菌、または細胞である[1]~[6]のいずれか1項に記載の方法。
[8]
核酸増幅用酵素が、核酸増幅酵素またはリガーゼであり、核酸合成酵素は、核酸の等温増幅反応用酵素またはサーモサイクル増幅反応用酵素である、[1]~[7]のいずれか1項に記載の方法。
[9]
核酸増幅用酵素が、鎖置換型DNAポリメラーゼであり、核酸増幅用プライマーが、鎖置換型DNAポリメラーゼ用のプライマーである[1]~[8]のいずれか1項に記載の方法。
[10]
検体懸濁用溶液、核酸増幅用酵素を含有する酵素溶液、核酸増幅用プライマーを含有するプライマー溶液、反応用緩衝液を含み、前記検体懸濁用溶液は酸性溶液である、検体中の遺伝子包含体を検出するために用いるキット。
[11]
酵素溶液は、逆転写酵素をさらに含む、[10]に記載のキット。
[12]
前記検体懸濁用溶液は、pHが4.5~6.5の範囲である、[10]または[11]に記載のキット。
[13]
検体懸濁用溶液は、界面活性剤、還元剤及びセミアルカリプロテアーゼから成る群から選ばれる少なくとも1種を含有する、[10]~[12]のいずれか1項に記載のキット。
[14]
界面活性剤はSDSである、[13]に記載のキット。
[15]
酵素溶液は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種を含有する、[10]~[14]のいずれか1項に記載のキット。
[16]
RNase阻害剤はヒト胎盤由来RNaseインヒビターである、[15]に記載のキット。
[17]
核酸増幅用酵素が、核酸増幅酵素またはリガーゼであり、核酸合成酵素は、核酸の等温増幅反応用酵素またはサーモサイクル増幅反応用酵素である、[10]~[16]のいずれか1項に記載のキット。
[18]
核酸増幅用酵素が、鎖置換型DNAポリメラーゼであり、核酸増幅用プライマーが、鎖置換型DNAポリメラーゼ用のプライマーである、[10]~[16]のいずれか1項に記載のキット。
[19]
遺伝子包含体がウィルス、細菌、真菌、または細胞である、[10]~[18]のいずれか1項に記載のキット。
 本発明によれば、核酸を溶出させた溶液をそのまま核酸増幅に用いるダイレクト法によるウィルス等の遺伝子包含体を検出しようとする核酸の増幅反応の阻害と偽陽性の発生を抑制しつつ検出できる方法及びキットを提供することができる。
図1は、実施例1の増幅反応の結果を示す。 図2は、実施例2の増幅反応の結果を示す。 図3は、実施例3の増幅反応の結果を示す。 図4は、実施例4の増幅反応の結果を示す。 図5は、実施例5の増幅反応の結果を示す。
 本発明は、検体を検体懸濁用溶液に懸濁して検体懸濁液を得る工程(1)、
検体懸濁液と逆転写酵素、核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を逆転写及び核酸増幅に供する工程(2a)、または
検体懸濁液と核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を核酸増幅に供する工程(2b)、並びに
増幅した核酸を検出する工程(3)を含み、前記検体懸濁用溶液は、酸性溶液である、検体中の遺伝子包含体を検出する方法に関する。
工程(1)
 工程(1)では、検体を検体懸濁用溶液に懸濁して検体懸濁液を得る。検体は、特に限定されることはなく、例えば、生体由来試料であり、生体由来試料は、例えば、動植物組織、体液、排泄物等を挙げることができる。体液には唾液、鼻水、血液、髄液、尿、乳、鼻腔ぬぐい液、鼻咽頭ぬぐい液、咽頭ぬぐい液、膣ぬぐい液が含まれ、細胞には血液から分離した白血球等が含まれるが、これらに限定されるものではない。生体由来試料中の遺伝子包含体は、例えば、ウィルス、細胞、細菌、真菌等などを挙げることができる。生体由来試料中の遺伝子包含体もしくは生体由来試料そのものは、特別な前処理なしに検体懸濁用溶液に懸濁して検体懸濁液を得る。
 検体懸濁用溶液は、酸性溶液であり、好ましくは、検体懸濁用溶液は、pHが4.5~6.5の範囲である。検体懸濁用溶液が酸性溶液であることで、増幅反応が阻害されず、また後続の工程(2a)または(2b)及び工程(3)を経て核酸の検出における偽陽性の発生を抑制することができる。pHは、好ましくは5.0~6.5の範囲である。検体懸濁用溶液は、pHが4.5~6.5の範囲である緩衝液であることができ、緩衝液としては、例えば、MES(2-モルフォリノエタンスルホン酸)、ADA(N-(2-Acetamido)iminodiacetic acid)、PIPES(Piperazine-1,4-bis(2-ethanesulfonic acid))、ACES(N-(2-Acetamido)-2-aminoethanesulfonic acid)などの緩衝液を用いることができる。検体懸濁用溶液は、4.5~6.5の範囲のpHに調整したMES緩衝液を含有するものであることが好ましい。
 検体は、例えば、鼻や喉を綿棒で拭うことで収集した物であることができ、拭った綿棒の綿の部分を検体懸濁用溶液に浸漬し、適宜撹拌して収集された検体を検体懸濁用溶液に懸濁する。また、例えば、唾液などの溶液状の検体を検体懸濁溶液に懸濁することもできる。この時、検体と検体懸濁溶液の混合比を変えて、より検体の持ち込む量を増やすことにより、より高感度な検査を行うこともできる。使用する検体懸濁用溶液の量には特に制限はなく、綿棒のサイズ等を考慮して、例えば、200μL~10mLの範囲であることができる。但し、この範囲に限定される意図ではない。
 検体懸濁用溶液は、界面活性剤及び還元剤から成る群から選ばれる少なくとも1種をさらに含有することが検出しようとする核酸の増幅反応の阻害と偽陽性を抑制するという観点からさらに好ましい。界面活性剤としては、たんぱく質の変成作用がある界面活性剤が好ましく、例えば、SDS(ドデシル硫酸ナトリウム)ラウレス硫酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ステアリン酸ナトリウムなどを挙げることができる。また、その対イオンはナトリウム以外にもカリウム、リチウム、アンモニウムなどを挙げることができる。界面活性剤の検体懸濁用溶液中の濃度は、例えば、0.01~1.0%、好ましくは、0.05~0.5%の範囲であることができる。
 検体懸濁用溶液は、還元剤を含有することができ、例えば、タンパク質内やタンパク質間のジスルフィド結合を切断する還元剤である、トリス(2-カルボキシエチル)フォスフィン塩酸塩(Tris(2-carboxyethyl)phosphine Hydrochloride〔TCEP-HCl〕)を含有することができる。検体懸濁用溶液中の還元剤濃度は、還元剤の種類にもよるが、例えば、0.1~100mMの範囲であることができる。
 検体の検体懸濁用溶液への懸濁は、セミアルカリプロテアーゼの存在下で行うことが偽陽性を抑制するという観点からさらに好ましい。セミアルカリプロテアーゼは、スプタザイムの商品名で入手可能である。
 検体の検体懸濁用溶液への懸濁には、超音波処理を用いることができる。超音波処理を用いることで、偽陽性を抑制することができる。超音波処理に使用する超音波の出力や時間には特に制限はないが、例えば、40kHzの超音波を用いる場合、10~500Wの範囲で、例えば、1~15分の範囲で行うことができる。
工程(2a)
 工程(2a)では、検体懸濁液と逆転写酵素、核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を逆転写及び核酸増幅に供する。この工程では、検体に含まれる遺伝子包含体のRNAを逆転写し、さらに逆転写で得られたDNAを増幅する。
 逆転写酵素としては、特に制限はないが、例えば、RNAを鋳型としたcDNA合成活性を有するものであれば特に限定されず、例えば、トリ骨髄芽球症ウィルス由来逆転写酵素(AMVRTase)、ラウス関連ウィルス2逆転写酵素(RAV-2RTase)、モロニーネズミ白血病ウィルス由来逆転写酵素(MMLV RTase)等、種々の起源の逆転写酵素が挙げられる。あるいは、後述するDNAポリメラーゼとして、逆転写活性を併せ持つDNAポリメラーゼを用いることもできる。逆転写活性を併せ持つDNAポリメラーゼとして、例えば、BcaBEST DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ、Tth DNAポリメラーゼ等を挙げることができる。
 核酸増幅用酵素は、特に制限されないが、例えば、核酸合成酵素またはリガーゼであることができる。核酸合成酵素は、核酸の等温増幅反応用酵素またはサーモサイクル増幅反応用酵素であることができる。核酸の等温増幅反応は、例えば、核酸のLAMP法またはSmartAmp法であることができ、鎖置換反応を利用した核酸の増幅反応用酵素であることができる。サーモサイクル増幅反応は、PCR増幅反応であることができる。核酸増幅用酵素がリガーゼである場合は、リガーゼ連鎖反応(LCR)法により、標的配列を増幅する。リガーゼ連鎖反応(LCR)法による標的配列の増幅については、例えば、特開平2-2934号公報を参照できる。
 鎖置換活性を有する核酸増幅反応用酵素であるポリメラーゼは、公知の酵素を利用できる。例えば、国際公開第2004/040019号に記載のポリメラーゼを挙げることができるが、これに限定される意図ではない。鎖置換活性を有するポリメラーゼは、DNAポリメラーゼ(Aac)であることもでき、国際公開第2009/054510号(日本特許第4450867号)に開示されている。
 鎖置換活性を有する核酸増幅反応に用いられるポリメラーゼとしては、常温性、中温性、もしくは耐熱性のいずれのものも好適に使用できる。また、このポリメラーゼは、天然体もしくは人工的に変異を加えた変異体のいずれであってもよい。このようなポリメラーゼとしては、DNAポリメラーゼが挙げられる。このようなDNAポリメラーゼとしては、バチルス・ステアロサーモフィルス(Bacillus stearothermophilus、以下「B.st」という)、バチルス・カルドテナックス(Bacillus caldotenax、以下「B.ca」という)等の好熱性バチルス属細菌由来DNAポリメラーゼの5’→3’エキソヌクレアーゼ活性を欠失した変異体、大腸菌(E.coli)由来DNAポリメラーゼIのクレノウフラグメント等が挙げられる。核酸増幅反応において使用するDNAポリメラーゼとしては、さらに、Vent DNAポリメラーゼ、Vent(Exo-)DNAポリメラーゼ、DeepVent DNAポリメラーゼ、DeepVent(Exo-)DNAポリメラーゼ、Φ29ファージDNAポリメラーゼ、MS-2ファージDNAポリメラーゼ、Z-Taq DNAポリメラーゼ、Pfu DNAポリメラーゼ、Pfu turbo DNAポリメラーゼ、KOD DNAポリメラーゼ、9°Nm DNAポリメラーゼ、Therminator DNAポリメラーゼ、Taq DNAポリメラーゼ等が挙げられる。
 核酸増幅用プライマーは、用いる核酸増幅用酵素に応じて適宜決定される。核酸増幅用酵素が、例えば、鎖置換型DNAポリメラーゼである場合、核酸増幅用プライマーは鎖置換型DNAポリメラーゼ用のプライマーである。核酸の増幅反応用酵素が、鎖置換反応を利用した核酸の増幅反応用酵素である場合は、国際公開第2004/040019号、特開2009-171935号公報、特開2011-50380号公報などに記載のプライマーを挙げることができる。
 核酸増幅用酵素がリガーゼの場合、核酸増幅用プライマーとして少なくとも4種類のプライマーを使用する。プライマーの塩基配列は、ターゲットとする塩基配列に応じて適宜決定できる。
工程(2b)
 工程(2b)では、検体懸濁液と核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を核酸増幅に供する。この工程では、検体に含まれる遺伝子包含体のDNAを増幅する。
 核酸増幅用酵素及び核酸増幅用プライマーは、工程(2a)で例示したものをそのまま利用できる。核酸増幅法は、限定する意図ではないが、例えば、SmartAmp法であることができる。
 工程(2a)の逆転写及び核酸増幅、並びに工程(2b)の核酸増幅は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種の共存下で行うことが、偽陽性を抑制するという観点からさらに好ましい。
 アセチル化ウシ血清アルブミンは、ウシ血清アルブミンをアセチル化することで得られる物であり、ウシ血清アルブミン(BSA)をアセチル化することで、特にリジン(Lys)残基が高い頻度で修飾され、セリン(Ser)残基とスレオニン(Thr)残基は低い頻度で修飾される。アセチル化により、BSA内の微量混入ヌクレアーゼの同様のアミノ酸残基も誘導体化され、そのヌクレアーゼ活性が不活性化される。このためアセチル化BSAは、ヌクレアーゼ活性が抑制されており、工程(2a)の逆転写においてヌクレアーゼ活性を抑制しつつBSAの作用により、偽陽性を抑制することかできる。アセチル化ウシ血清アルブミンの共存量は、例えば、1~500μg/mLであることができる。
 RNase阻害剤は、例えばヒト胎盤由来RNaseインヒビター(商品名Rnasin)であることができる。RNase阻害剤を用いることで、リポヌクレアーゼ活性を抑制しつつ工程(2a)の逆転写を実施することができ、それにより、偽陽性を抑制することかできる。
RNase阻害剤の共存量は、例えば、0.1U~20Uであることができる。
工程(3)
 工程(3)では、増幅した核酸を検出する。増幅した核酸の検出方法は公知の方法をそのまま利用することができる。増幅した核酸の検出により、検体中の遺伝子包含体を特定し、その存在を検出する。
 核酸増幅操作後に、増幅された核酸は、光学的に検出される、電気的に検出される、または表面プラズモン共鳴などにより検出される。増幅された核酸の検出は、例えば、プライマーとしてフルオロジェニックプライマーを用い、フルオロジェニックプライマーの標識を用いておこなうことができる。増幅された核酸の検出は、例えば、増幅反応においてエキシトンプライマーまたは、エキシトンプローブを用いて、エキシトン効果を用いておこうことができる。核酸を光学的に検出する方法は、インターカレート色素を利用した方法でもよい。
 本発明の方法において、核酸増幅反応をSmartAmp法またはLAMP法で行い、エキシトンプライマーまたはエキシトンプローブで標識検出することが好ましい。或いは、核酸増幅反応をPCR法で行い、エキシトンプライマーまたはエキシトンプローブで標識検出することが好ましい。
 核酸増幅反応に引き続き、核酸融解曲線を描き、融解曲線により、偽陽性や真の陽性の判定など、増幅産物の性質について判定することもできる。
<キット>
 本発明は、検体中の遺伝子包含体を検出するために用いるキットを包含し、このキットは、検体懸濁用溶液、核酸増幅用酵素を含有する酵素溶液、核酸増幅用プライマーを含有するプライマー溶液、反応用緩衝液を含み、前記検体懸濁用溶液は酸性溶液である。
 上記キットは、検体に含まれる遺伝子包含体のDNAを増幅し、検体中の遺伝子包含体を検出するために用いられる。また、上記酵素溶液は、逆転写酵素をさらに含むことができ、このキットは、検体に含まれる遺伝子包含体のRNAを逆転写し、さらに逆転写で得られたDNAを増幅して検体中の遺伝子包含体を検出するために用いられる。
 酸性溶液である検体懸濁用溶液は、pHが4.5~6.5の範囲であることが好ましい。検体懸濁用溶液が酸性溶液であることで、増幅反応が阻害されず、また核酸の検出における偽陽性の発生を抑制することができる。pHは、好ましくは5.0~6.5の範囲である。検体懸濁用溶液は、pHが4.5~6.5の範囲である緩衝液であることができ、緩衝液としては、例えば、MES(2-モルフォリノエタンスルホン酸)、ADA(N-(2-Acetamido)iminodiacetic acid)、PIPES(Piperazine-1,4-bis(2-ethanesulfonic acid))、ACES(N-(2-Acetamido)-2-aminoethanesulfonic acid)などの緩衝液を用いることができる。検体懸濁用溶液は、4.5~6.5の範囲のpHに調整したMES緩衝液を含有するものであることが好ましい。
 検体懸濁用溶液は、界面活性剤、還元剤及びセミアルカリプロテアーゼから成る群から選ばれる少なくとも1種を含有することが好ましい。
 検体懸濁用溶液は、界面活性剤をさらに含有することで、検出しようとする核酸の増幅反応の阻害と偽陽性を抑制することができる。界面活性剤としては、たんぱく質の変成作用がある界面活性剤が好ましく、例えば、SDS(ドデシル硫酸ナトリウム)などを挙げることができる。界面活性剤の検体懸濁用溶液中の濃度は、例えば、0.01~1.0%、好ましくは、0.05~0.5%の範囲であることができる。
 検体懸濁用溶液は、還元剤をさらに含有することが好ましい。還元剤は、例えば、タンパク質内やタンパク質間のジスルフィド結合を切断する還元剤である、トリス(2-カルボキシエチル)フォスフィン塩酸塩(Tris(2-carboxyethyl)phosphine Hydrochloride〔TCEP-HCl〕)であることができる。検体懸濁用溶液中の還元剤濃度は、還元剤の種類にもよるが、例えば、0.1~100mMの範囲であることができる。
 検体懸濁用溶液は、セミアルカリプロテアーゼをさらに含有することで、偽陽性を抑制することができ好ましい。セミアルカリプロテアーゼは、スプタザイムの商品名で入手可能である。但し、検体懸濁用溶液とは別に、セミアルカリプロテアーゼを含有する水をまたは水溶液を用意して、検体懸濁用溶液を用いる検体の懸濁に併用することもできる。
 核酸増幅用酵素を含有する酵素溶液に含まれる核酸増幅用酵素は、特に制限されないが、例えば、核酸合成酵素またはリガーゼであることができる。核酸合成酵素は、例えば、等温増幅反応用酵素、サーモサイクル増幅反応用酵素であることができる。核酸の等温増幅反応用の酵素としては、鎖置換反応を利用した核酸の増幅反応用酵素であることができる。核酸増幅用酵素がリガーゼである場合は、リガーゼ連鎖反応(LCR)法により、標的配列を増幅する。リガーゼ連鎖反応(LCR)法による標的配列の増幅については、例えば、特開平2-2934号公報を参照できる。
 鎖置換活性を有する核酸増幅反応用酵素であるポリメラーゼとしては、公知の酵素を挙げることができる。例えば、国際公開第2004/040019号(その全記載は、ここに特に開示として援用される。)に記載のポリメラーゼを挙げることができるが、これに限定される意図ではない。鎖置換活性を有するポリメラーゼは、DNAポリメラーゼ(Aac)であることもでき、国際公開第2009/054510号(その全記載は、ここに特に開示として援用される。)(日本特許第4450867号)に開示されている。
 鎖置換活性を有する核酸増幅反応に用いられるポリメラーゼとしては、常温性、中温性、もしくは耐熱性のいずれのものも好適に使用できる。また、このポリメラーゼは、天然体もしくは人工的に変異を加えた変異体のいずれであってもよい。このようなポリメラーゼとしては、DNAポリメラーゼが挙げられる。このようなDNAポリメラーゼとしては、バチルス・ステアロサーモフィルス(Bacillus stearothermophilus、以下「B.st」という)、バチルス・カルドテナックス(Bacillus caldotenax、以下「B.ca」という)等の好熱性バチルス属細菌由来DNAポリメラーゼの5’→3’エキソヌクレアーゼ活性を欠失した変異体、大腸菌(E.coli)由来DNAポリメラーゼIのクレノウフラグメント等が挙げられる。核酸増幅反応において使用するDNAポリメラーゼとしては、さらに、Vent DNAポリメラーゼ、Vent(Exo-)DNAポリメラーゼ、DeepVent DNAポリメラーゼ、DeepVent(Exo-)DNAポリメラーゼ、Φ29ファージDNAポリメラーゼ、MS-2ファージDNAポリメラーゼ、Z-Taq DNAポリメラーゼ、Pfu DNAポリメラーゼ、Pfu turbo DNAポリメラーゼ、KOD DNAポリメラーゼ、9°Nm DNAポリメラーゼ、Therminator DNAポリメラーゼ、Taq DNAポリメラーゼ等が挙げられる。
 上記酵素溶液は、逆転写酵素をさらに含むことがで、逆転写酵素としては、特に制限はないが、例えば、RNAを鋳型としたcDNA合成活性を有するものであれば特に限定されず、例えば、トリ骨髄芽球症ウィルス由来逆転写酵素(AMVRTase)、ラウス関連ウィルス2逆転写酵素(RAV-2RTase)、モロニーネズミ白血病ウィルス由来逆転写酵素(MMLV RTase)等、種々の起源の逆転写酵素が挙げられる。あるいは、後述するDNAポリメラーゼとして、逆転写活性を併せ持つDNAポリメラーゼを用いることもできる。逆転写活性を併せ持つDNAポリメラーゼとして、例えば、BcaBEST DNAポリメラーゼ、Bca(exo-)DNAポリメラーゼ、Tth DNAポリメラーゼ等を挙げることができる。
 核酸増幅用プライマーを含有するプライマー溶液に含まれる核酸増幅用プライマーは、用いる核酸増幅用酵素に応じて適宜決定される。核酸増幅用酵素が、例えば、鎖置換型DNAポリメラーゼである場合、核酸増幅用プライマーは鎖置換型DNAポリメラーゼ用のプライマーである。核酸の増幅反応用酵素が、鎖置換反応を利用した核酸の増幅反応用酵素である場合は、国際公開第2004/040019号、特開2009-171935号公報、特開2011-50380号公報など(それらの全記載は、ここに特に開示として援用される。)に記載のプライマーを挙げることができる。
 核酸増幅用酵素がリガーゼの場合、核酸増幅用プライマーとして少なくとも4種類のプライマーを使用する。プライマーの塩基配列は、ターゲットとする塩基配列に応じて適宜決定できる。
 酵素溶液は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種をさらに含有することが好ましい。
 アセチル化ウシ血清アルブミンは、方法の発明についての説明で記載したようにウシ血清アルブミンをアセチル化することで得られる物である。アセチル化により、BSA内の微量混入ヌクレアーゼの同様のアミノ酸残基も誘導体化され、そのヌクレアーゼ活性が不活性化される。このためアセチル化BSAは、ヌクレアーゼ活性が抑制されており、逆転写においてヌクレアーゼ活性を抑制しつつBSAの作用により、偽陽性を抑制することかできる。
 RNase阻害剤は、例えば、ヒト胎盤由来RNaseインヒビター(商品名Rnasin)であることができる。RNase阻害剤を用いることで、リポヌクレアーゼ活性を抑制しつつ逆転写を実施することができ、それにより、偽陽性を抑制することかできる。
 本発明のキットは、検体である生体由来試料中の遺伝子包含体の遺伝子を検出して、遺伝子包含体を特定することに用いることができる。遺伝子包含体は、例えば、ウィルス、細菌、真菌、または細胞であることができる。
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。
実施例1 <MES(pH5.8)の効果>
 表1に示す組成を有する検体懸濁用溶液0.8mLに検体を付着させたスワブを浸漬して検体懸濁液を調製する。調製した検体懸濁液を表2-1及び2-2に組成及び量を示す、2x反応buffer、酵素溶液と、表2-3に示す量で混合して増幅反応液を調製する。尚、プライマーミックスは、DNAポリメラーゼとしてDNAポリメラーゼAacを用いることから、国際公開第2009/054510号(その全記載は、ここに特に開示として援用される。)の段落0114に記載の5種類のプライマーTP、FP、BPw、OP1及びOP2を含むものを用いた。調製した増幅反応液を67℃での増幅反応に供する。48個の検体についての増幅反応の結果を図1に示す。
 図1に示す結果は、標的とするRNA分子が反応液中に1000コピー存在する場合には、すべての例において核酸増幅が起こり、また標的とするRNA分子が反応液中に存在しない場合には全く核酸増幅が起こらないことを示している。この結果から、使用した検体懸濁液、および反応溶液を用いた核酸増幅反応により、夾雑物による反応阻害が抑制され、検体に含まれる標的RNAを検出できることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
実施例2 <アセチル化ウシ血清アルブミンの効果>
 実施例1の方法において、増幅反応液(表2-1の2x反応buffer)にアセチル化BSAを添加しない場合と、0.2mgのアセチル化BSAを添加した場合の16個の検体についての増幅反応の結果を図2に示す。
 図2に示す結果は、標的とするRNA分子が反応液中に100コピー存在する場合には、すべての例において核酸増幅が起こり、また標的とするRNA分子が反応液中に存在しない場合には、アセチル化BSAを添加しない場合には、核酸増幅が一部の反応において見られた現象が、アセチル化BSAを添加したときには核酸増幅が全く起こらないことを示している。この結果から、アセチル化BSAを添加することにより非特異的な増幅反応を抑制することがきることが分かる。
実施例3 <セミアルカリプロテアーゼ(商品名スプタザイム)の効果>
 検体約100μLを付着させたスワブをスプタザイム含有水または蒸留水300μLに20秒間撹拌後にスピンダウンした後室温で15分間放置した。得られた溶液から100μLを表1に示す組成を有する検体懸濁用溶液800μLに加え、20秒間撹拌後30秒遠心し、上清を検体懸濁液とした。この検体溶液を用いて、実施例1と同様に増幅反応に供する。40個の検体についての増幅反応の結果を図3に示す。
 図3に示す結果では、標的とするRNA分子が反応液中に存在しない場合おいて、一部の検体に偽陽性の増幅がみられたが、セミアルカリプロテアーゼによる処理を加えた場合には、偽陽性が発生しなかった。この結果から、セミアルカリプロテアーゼによる処理が非特異的な増幅による偽陽性の発生を抑制する効果があることが分かる。
実施例4 <超音波処理の効果>
 実施例1と同様の方法において、検体懸濁液に検体を懸濁した後、Bransonic(R) M3800h-J(Output:110W/40kHz)を用いて5分間の超音波処理を行った後に増幅反応の結果を図4に示す。
 図4に示す結果では、標的とするRNA分子が反応液中に存在しない場合おいて、一部の検体に偽陽性の増幅がみられたが、超音波による処理を加えた場合には、偽陽性が発生しなかった。この結果から、超音波による処理が非特異的な増幅による偽陽性の発生を抑制する効果があることが分かる。
実施例5 <検体に唾液を用いた検出>
 表3-1に示す組成を有する検体懸濁用溶液20μLに唾液検体80μLを懸濁し、検体懸濁液を調製した。さらに、表3-2および表3-3に示す組成を有する2x反応bufferと酵素溶液を調製した。調製した検体懸濁液、2x反応bufferおよび酵素溶液を表3-4に示す量で混合し、増幅反応液を調製した。尚、プライマーミックスは、DNAポリメラーゼとしてAac DNAポリメラーゼを用いることから、国際公開第2009/054510号(その全記載は、ここに特に開示として援用される。)の段落0114に記載の5種類のプライマーTP、FP、BPw、OP1及びOP2を含むものを用いた。調製した増幅反応液を67℃での増幅反応に供した結果を図5に示す。
 図5に示す結果は、標的とするRNA分子が反応液中に50コピー~200コピー存在するすべての例において核酸増幅が起こり、また標的とするRNA分子が反応液中に存在しない場合には全く核酸増幅が起こらないことを示している。この結果から、使用した検体懸濁液、および反応溶液を用いた核酸増幅反応により、夾雑物による反応阻害が抑制され、また、増幅反応液への検体持ち込み量を増やすことができ、より高感度で検体に含まれる標的RNAを検出できることが分かる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明は、ウィルス等の遺伝子包含体の検出の分野に有用である。

Claims (19)

  1. 検体を検体懸濁用溶液に懸濁して検体懸濁液を得る工程(1)、
    検体懸濁液と逆転写酵素、核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を逆転写及び核酸増幅に供する工程(2a)、または
    検体懸濁液と核酸増幅用酵素及び核酸増幅用プライマーを混合し、得られた混合液を核酸増幅に供する工程(2b)、並びに
    増幅した核酸を検出する工程(3)を含み、前記検体懸濁用溶液は、酸性溶液である、検体中の遺伝子包含体を検出する方法。
  2. 前記検体懸濁用溶液は、pHが4.5~6.5の範囲である、請求項1に記載の方法。
  3. 前記検体懸濁用溶液は、界面活性剤及び還元剤から成る群から選ばれる少なくとも1種をさらに含有する、請求項1または2に記載の方法。
  4. 工程(2a)の逆転写及び核酸増幅、並びに工程(2b)の核酸増幅は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種の共存下で行う、請求項1~3のいずれか1項に記載の方法。
  5. 前記検体の検体懸濁用溶液への懸濁は、セミアルカリプロテアーゼの存在下で行う、請求項1~4のいずれか1項に記載の方法。
  6. 前記検体の検体懸濁用溶液への懸濁に、超音波処理を用いる、請求項1~5のいずれか1項に記載の方法。
  7. 遺伝子包含体は、ウィルス、細菌、真菌、または細胞である請求項1~6のいずれか1項に記載の方法。
  8. 核酸増幅用酵素が、核酸合成酵素またはリガーゼであり、核酸合成酵素は、核酸の等温増幅反応用酵素またはサーモサイクル増幅反応用酵素である、請求項1~7のいずれか1項に記載の方法。
  9. 核酸増幅用酵素が、鎖置換型DNAポリメラーゼであり、核酸増幅用プライマーが、鎖置換型DNAポリメラーゼ用のプライマーである請求項1~8のいずれか1項に記載の方法。
  10. 検体懸濁用溶液、核酸増幅用酵素を含有する酵素溶液、核酸増幅用プライマーを含有するプライマー溶液、反応用緩衝液を含み、前記検体懸濁用溶液は酸性溶液である、検体中の遺伝子包含体を検出するために用いるキット。
  11. 酵素溶液は、逆転写酵素をさらに含む、請求項10に記載のキット。
  12. 前記検体懸濁用溶液は、pHが4.5~6.5の範囲である、請求項10または11に記載のキット。
  13. 検体懸濁用溶液は、界面活性剤、還元剤及びセミアルカリプロテアーゼから成る群から選ばれる少なくとも1種を含有する、請求項10~12のいずれか1項に記載のキット。
  14. 界面活性剤はSDSである、請求項13に記載のキット。
  15. 酵素溶液は、アセチル化ウシ血清アルブミン及びRNase阻害剤から成る群から選ばれる少なくとも1種を含有する、請求項10~14のいずれか1項に記載のキット。
  16. RNase阻害剤はヒト胎盤由来RNaseインヒビターである、請求項15に記載のキット。
  17. 核酸増幅用酵素が、核酸合成酵素またはリガーゼであり、核酸合成酵素は、核酸の等温増幅反応用酵素またはサーモサイクル増幅反応用酵素である、請求項10~16のいずれか1項に記載のキット。
  18. 核酸増幅用酵素が、鎖置換型DNAポリメラーゼであり、核酸増幅用プライマーが、鎖置換型DNAポリメラーゼ用のプライマーである、請求項10~16のいずれか1項に記載のキット。
  19. 遺伝子包含体がウィルス、細菌、真菌、または細胞である、請求項10~18のいずれか1項に記載のキット。
PCT/JP2022/047823 2021-12-28 2022-12-26 遺伝子包含体の検出方法及び検出用キット WO2023127774A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214454 2021-12-28
JP2021214454 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127774A1 true WO2023127774A1 (ja) 2023-07-06

Family

ID=86999247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047823 WO2023127774A1 (ja) 2021-12-28 2022-12-26 遺伝子包含体の検出方法及び検出用キット

Country Status (1)

Country Link
WO (1) WO2023127774A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510364A (ja) * 1995-05-02 1999-09-14 ジェンセット mRNA断片の5′末端のキャップの特異的カップリングの方法、およびmRNAおよび完全なcDNAの調製
JP2000093175A (ja) * 1998-09-21 2000-04-04 Shimadzu Corp 核酸合成法
JP2007512837A (ja) * 2003-12-03 2007-05-24 アボット・ラボラトリーズ 二本鎖直鎖核酸プローブ及びその使用
WO2008122598A2 (en) * 2007-04-06 2008-10-16 Virco Bvba Respiratory syncytial virus (rsv) viral load detection assay
JP2009125033A (ja) * 2007-11-27 2009-06-11 Konica Minolta Medical & Graphic Inc 核酸単離方法、核酸抽出装置、及びそれらを用いた細胞種の同定方法及び遺伝子検出方法
WO2013002354A1 (ja) * 2011-06-29 2013-01-03 株式会社ダナフォーム 生体試料の前処理方法、rnaの検出方法及び前処理キット
JP2013021959A (ja) * 2011-07-20 2013-02-04 Sony Corp 核酸抽出方法及び核酸抽出用カートリッジ
WO2021221109A1 (ja) * 2020-04-30 2021-11-04 タカラバイオ株式会社 Rnaウイルスの検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510364A (ja) * 1995-05-02 1999-09-14 ジェンセット mRNA断片の5′末端のキャップの特異的カップリングの方法、およびmRNAおよび完全なcDNAの調製
JP2000093175A (ja) * 1998-09-21 2000-04-04 Shimadzu Corp 核酸合成法
JP2007512837A (ja) * 2003-12-03 2007-05-24 アボット・ラボラトリーズ 二本鎖直鎖核酸プローブ及びその使用
WO2008122598A2 (en) * 2007-04-06 2008-10-16 Virco Bvba Respiratory syncytial virus (rsv) viral load detection assay
JP2009125033A (ja) * 2007-11-27 2009-06-11 Konica Minolta Medical & Graphic Inc 核酸単離方法、核酸抽出装置、及びそれらを用いた細胞種の同定方法及び遺伝子検出方法
WO2013002354A1 (ja) * 2011-06-29 2013-01-03 株式会社ダナフォーム 生体試料の前処理方法、rnaの検出方法及び前処理キット
JP2013021959A (ja) * 2011-07-20 2013-02-04 Sony Corp 核酸抽出方法及び核酸抽出用カートリッジ
WO2021221109A1 (ja) * 2020-04-30 2021-11-04 タカラバイオ株式会社 Rnaウイルスの検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Acetylated BSA", 9 December 2021 (2021-12-09), XP093074687, Retrieved from the Internet <URL:https://web.archive.org/web/20211209073047/https://www.nippongene.com/siyaku/product/modifying-enzymes/acetylated-bsa/acetylated-bsa.html> *
KAZUHIRO AOYAGI, KAZUYOSHI KAWASAKI: "Separate volume of experimental medicine: PCR experimental protocols that can be selected according to purpose. Tips for experimental manipulation and condition setting to avoid failure", 1 January 2011, YODOSHA , JP , ISBN: 978-4-7581-0178-3, article AOYANAGI, KAZUHIKO: "RT-PCR", pages: 74 - 85, XP009547579 *

Similar Documents

Publication Publication Date Title
US11447821B2 (en) Nucleic acid amplification and testing
JP4735645B2 (ja) Rnaの検出法
JP5161066B2 (ja) 生体分子を含むサンプルの処理方法
JPH09510099A (ja) イオン性界面活性剤による、酵素により媒介される反応に対する阻害の抑制方法
JP2008142083A (ja) ポリドカノールおよび誘導体を用いた核酸単離
US11920185B2 (en) Method of inactivating microbes by citraconic anhydride
EP3167077B1 (en) Method and kit of detecting the absence of micro-organisms
JP2001029078A (ja) Rna増幅法
US20020172972A1 (en) Use of a selectively inactivatable enzyme to digest contaminating nucleic acid
WO2023127774A1 (ja) 遺伝子包含体の検出方法及び検出用キット
JP2021104046A (ja) ホルムアルデヒドを含有する液体系細胞診用保存剤中検体から核酸を単離する方法
US20240210394A1 (en) Microorganism capture from antimicrobial-containing solution
WO2006109751A1 (ja) 無細胞タンパク質合成系によるタンパク質の製造方法
JPWO2005001097A1 (ja) Sarsコロナウイルスの検出法
US20170218433A1 (en) Pcr amplification methods for detecting and quantifying sulfate-reducing bacteria in oilfield fluids
Gallup et al. SPUD qPCR Assay Confirms PREXCEL-Q Software's Ability to Avoid qPCR Inhibition
US11827885B1 (en) RNase inhibitors
TW202421795A (zh) 環境溫度核酸擴增及偵測
JP2006288257A (ja) 微生物の安定化試薬及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE