WO2023127552A1 - 作業機の油圧システム - Google Patents

作業機の油圧システム Download PDF

Info

Publication number
WO2023127552A1
WO2023127552A1 PCT/JP2022/046438 JP2022046438W WO2023127552A1 WO 2023127552 A1 WO2023127552 A1 WO 2023127552A1 JP 2022046438 W JP2022046438 W JP 2022046438W WO 2023127552 A1 WO2023127552 A1 WO 2023127552A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
temperature
hydraulic oil
hydraulic
current
Prior art date
Application number
PCT/JP2022/046438
Other languages
English (en)
French (fr)
Inventor
啓司 堀井
裕也 森
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202280075273.5A priority Critical patent/CN118234959A/zh
Publication of WO2023127552A1 publication Critical patent/WO2023127552A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature

Definitions

  • the present invention relates to hydraulic systems for work equipment such as backhoes.
  • Patent Document 1 discloses a hydraulic actuator, a control valve that supplies hydraulic oil to the hydraulic actuator according to the pilot pressure, a proportional electromagnetic valve that controls the pilot pressure of the control valve, and a control that controls the current of the proportional electromagnetic valve.
  • a work machine is disclosed in which a control unit supplies a dither current to a proportional solenoid valve.
  • the present invention has been made to solve the problems of the prior art, and aims to reduce the hysteresis of the electromagnetic proportional valve and suppress the generation of vibration noise.
  • a hydraulic system for a work machine includes a hydraulic actuator driven by hydraulic oil, an electromagnetic proportional valve that controls the hydraulic actuator according to the supplied current, and a current that is supplied to the electromagnetic proportional valve. and a controller that controls the dither amplitude of the current supplied to the proportional solenoid valve according to the temperature of the hydraulic oil.
  • the control device sets the dither amplitude to a predetermined first value when the temperature of the hydraulic fluid is a first temperature, and the temperature of the hydraulic fluid is a second temperature higher than the first temperature.
  • the dither amplitude may be changed to a second predetermined value that is less than the first value.
  • the control device divides the temperature range of the hydraulic oil into a plurality of sections, sets a plurality of temperature sections arranged in ascending order of temperature, and sets the dither amplitude value set for each of the plurality of temperature sections to the plurality of temperatures. You may make it small step by step in ascending order of a division.
  • the control device may continuously decrease the dither amplitude as the temperature of the hydraulic oil increases.
  • the hydraulic system of the work machine has a spool that can move from a stroke start position to a stroke end position in proportion to the flow rate of the hydraulic oil supplied from the electromagnetic proportional valve, and the amount of operation depends on the position of the spool.
  • a directional switching valve that supplies oil to the hydraulic actuator is provided, and the proportional electromagnetic valve changes the direction by changing the opening degree of the electromagnetic proportional valve according to the magnitude of the current supplied from the control device.
  • the control device switches the flow rate of the hydraulic oil supplied to the valve, and the control device determines in advance that the current supplied to the electromagnetic proportional valve is a maximum current value that maximizes the opening degree of the electromagnetic proportional valve or is higher than the maximum current value.
  • the dither amplitude is changed in accordance with the temperature of the hydraulic oil when the current value is a specific current value smaller than the maximum current value, and the dither amplitude is changed to the hydraulic oil when neither the maximum current value nor the specific current value may be set to a constant value regardless of the temperature.
  • the hydraulic system of the work machine has a spool movable from a stroke start position to a stroke end position, and the spool is moved in proportion to the flow rate of the hydraulic oil supplied from the electromagnetic proportional valve.
  • a directional switching valve is provided for supplying hydraulic fluid to the hydraulic actuator in accordance with the amount of movement, and the control device controls when the spool is at the stroke end position or a predetermined position before the stroke end position. and changing the dither amplitude according to the temperature of the hydraulic oil, and setting the dither amplitude to a constant value regardless of the temperature of the hydraulic oil when the spool is neither at the stroke end position nor at the front position. can be set to
  • the hydraulic system of the work machine includes a control valve in which the proportional solenoid valve and the directional switching valve are integrated, and the control device controls a dither amplitude of current supplied to the proportional solenoid valve of the control valve. may be changed to a value determined according to the temperature of the hydraulic oil.
  • the hydraulic system of the work machine includes a composite control valve in which a plurality of control valves each having the electromagnetic proportional valve and the directional switching valve are integrated, and the control device controls the plurality of control valves of the composite control valve.
  • the dither amplitude of the current supplied to the solenoid proportional valve may be changed to a value determined according to the temperature of the hydraulic oil.
  • the hydraulic system of the work machine includes a hydraulic fluid tank that stores the hydraulic fluid, and a temperature sensor that detects the temperature of the hydraulic fluid stored in the hydraulic fluid tank.
  • a dither amplitude of the current supplied to the valve may be changed according to the temperature of the hydraulic oil detected by the temperature sensor.
  • FIG. 1 is a schematic diagram of a hydraulic system of a working machine that drives various hydraulic actuators in the first embodiment
  • FIG. FIG. 4 is a hydraulic circuit diagram relating to a boom control valve, an arm control valve, a bucket control valve, and a swing control valve in the first embodiment
  • FIG. 3 is a hydraulic circuit diagram relating to a dozer control valve, a swing control valve, a first travel control valve, a second travel control valve, and an SP control valve in the first embodiment
  • FIG. 10 is a diagram showing a data table defining correspondence between a plurality of temperature ranges and dither amplitudes; 5 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by a current control unit;
  • FIG. 5 is a characteristic diagram showing a correspondence relationship between oil temperature and dither amplitude;
  • FIG. 11 is another characteristic diagram showing a correspondence relationship between oil temperature and dither amplitude;
  • 5 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by a current control unit; 5 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by a current control unit;
  • FIG. 10 is a diagram showing a data table defining correspondence between a plurality of temperature ranges and dither amplitudes;
  • 5 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by a current control unit;
  • FIG. 5 is
  • FIG. 11 is a hydraulic circuit diagram relating to a boom control valve, an arm control valve, a bucket control valve, and a swing control valve in the fourth embodiment; 5 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by a current control unit; FIG. 11 is a hydraulic circuit diagram relating to a boom control valve, an arm control valve, a bucket control valve, and a swing control valve in a fifth embodiment;
  • FIG. 1 is a side view showing the overall configuration of the working machine 1.
  • a backhoe which is a turning work machine, is exemplified as the work machine 1 .
  • the work machine 1 includes a machine body (swivel base) 2, a left traveling device 3L arranged on the left side of the machine body 2, a right traveling device 3R arranged on the right side of the machine body 2, A working device 4 attached to the front part of the machine body 2 is provided.
  • a driver's seat 6 on which a driver (operator) sits is provided on the body 2 .
  • the direction facing the driver seated in the driver's seat 6 of the working machine 1 (the direction of arrow A1 in FIG. 1) is referred to as the front, and the opposite direction (the direction of arrow A2 in FIG. 1) is referred to as the rear.
  • the left side of the driver (front side in FIG. 1) is called the left side
  • the right side of the driver (back side in FIG. 1) is called the right side. Therefore, the K1 direction in FIG. 1 is the longitudinal direction (body longitudinal direction).
  • a horizontal direction perpendicular to the front-rear direction K1 is referred to as a machine body width direction.
  • the left traveling device 3L and the right traveling device 3R are composed of crawler type traveling devices in this embodiment.
  • the left traveling device 3L is driven by the traveling motor ML
  • the right traveling device 3R is driven by the traveling motor MR.
  • the travel motors ML and MR are composed of hydraulic motors (hydraulic actuators AC).
  • a dozer device 7 is attached to the front portion of the travel frame 11 to which the left travel device 3L and the right travel device 3R are attached.
  • the dozer device 7 can be moved up and down (raising and lowering the blade) by extending and contracting the dozer cylinder C1.
  • the fuselage 2 is supported on the traveling frame 11 via a swivel bearing 8 so as to be able to swivel about a vertical axis (an axis extending in the vertical direction).
  • the body 2 is driven to turn by a turning motor MT consisting of a hydraulic motor (hydraulic actuator AC).
  • the fuselage 2 has a turning base plate 9 that turns around the vertical axis, and a weight 10 that is supported on the rear part of the turning base plate 9 .
  • the swivel base plate 9 is made of a steel plate or the like, and is connected to the swivel bearing 8 .
  • a prime mover E1 is mounted on the rear portion of the airframe 2. - ⁇ Prime mover E1 is an engine.
  • the prime mover E1 may be an electric motor or a hybrid type having an engine and an electric motor.
  • the fuselage 2 has a support bracket 13 at the front.
  • a swing bracket 14 is attached to the support bracket 13 so as to be able to swing about the vertical axis.
  • a working device 4 is attached to the swing bracket 14 .
  • the working device 4 has a boom 15, an arm 16, and a bucket 17 as a working tool.
  • the base of the boom 15 is pivotally attached to the swing bracket 14 so as to be rotatable about a horizontal axis (an axis extending in the width direction of the machine body), so that the boom 15 can swing vertically.
  • the base of the arm 16 is pivotally attached to the distal end of the boom 15 so as to be rotatable about a horizontal axis, and is swingable in the front-rear direction K1 or in the vertical direction.
  • the bucket 17 is provided on the tip side of the arm 16 so as to be able to scoop and dump.
  • the work machine 1 can be equipped with other work tools (hydraulic attachments) that can be driven by the hydraulic actuator AC.
  • the swing bracket 14 is swingable by extension and contraction of a swing cylinder C2 provided inside the body 2.
  • the boom 15 is swingable by extension and contraction of the boom cylinder C3.
  • the arm 16 is swingable by extension and contraction of the arm cylinder C4.
  • the bucket 17 is capable of squeezing and dumping by extension and contraction of a bucket cylinder C5 as a work tool cylinder.
  • the dozer cylinder C1, swing cylinder C2, boom cylinder C3, arm cylinder C4, and bucket cylinder C5 are configured by hydraulic cylinders (hydraulic actuators AC).
  • FIG. 2 shows a schematic configuration of the hydraulic system S of the working machine 1 for operating the hydraulic actuators AC (MT, ML, MR, C1 to C5) described above.
  • the hydraulic system S of the work implement 1 includes a pressure oil supply unit 20 and a control valve CV.
  • the pressure oil supply unit 20 includes a first pump (main pump) 21 for supplying hydraulic oil for operating the hydraulic actuator AC, and a second pump (pilot pump) for supplying signal pressure such as pilot pressure and detection signals. 22 are equipped.
  • the first pump 21 and the second pump 22 are driven by the prime mover E1.
  • the first pump 21 is a variable displacement hydraulic pump (a swash plate type variable displacement axial pump) that can change the discharge amount by changing the angle of the swash plate.
  • the second pump 22 is composed of a constant displacement gear pump. In the following description, the second pump 22 may be referred to as a "hydraulic pump".
  • the control valve CV is a composite control valve (multiple control valve) that combines multiple control valves V.
  • the control valve CV includes a plurality of control valves V (V1-V9) for controlling various hydraulic actuators AC (MT, ML, MR, C1-C5) driven by hydraulic fluid, an inlet block B1, and an outlet block B1.
  • Blocks B2 are arranged (stacked) in one direction, connected to each other, and connected to each other by internal oil passages.
  • the hydraulic system S of the working machine 1 includes a discharge oil passage 30 and a supply oil passage 31 .
  • the discharge oil passage 30 is an oil passage that connects the first pump 21 and the inlet block B1. Therefore, the oil discharged from the first pump 21 is supplied to the inlet block B1 through the oil discharge passage 30 and then to the control valves V (V1 to V9).
  • the supply oil passage 31 is an oil passage that supplies the hydraulic oil (discharge oil) discharged from the second pump 22 to the primary side of the control valve V as the pilot source pressure.
  • Hydraulic actuator AC is controlled by switching (output) and the discharge direction of hydraulic oil.
  • the control valves V include a dozer control valve V1 that controls the dozer cylinder C1, a swing control valve V2 that controls the swing cylinder C2, and a first travel control valve that controls the travel motor ML of the left travel device 3L.
  • a second travel control valve V4 that controls the travel motor MR of the right travel device 3R, a boom control valve V5 that controls the boom cylinder C3, an arm control valve V6 that controls the arm cylinder C4, and a bucket cylinder C5.
  • FIG. 2 shows an example in which the control valve V includes one SP control valve V9, but the control valve V may have a configuration that does not include the SP control valve V9. may be provided with one or more other SP control valves.
  • FIG. 3 shows a schematic configuration of hydraulic circuits relating to the boom control valve V5, arm control valve V6, bucket control valve V7, and swing control valve V8 in the first embodiment.
  • At least one of the plurality of control valves V is an electromagnetic three-position switching valve whose spool position is switched by operating oil (pilot oil) supplied from the second pump 22 .
  • at least one of the plurality of control valves V has a directional switching valve 41 and an electromagnetic proportional valve 45. By changing the opening degree of the electromagnetic proportional valve 45, the directional switching valve By changing the pressure of the pilot oil acting on the spool at 41, the position of the spool can be changed.
  • the boom control valve V5, the arm control valve V6, the bucket control valve V7, and the swing control valve V8 are electromagnetic three-position switching valves incorporating the electromagnetic proportional valve 45 described above. valve. That is, the boom control valve V5, the arm control valve V6, the bucket control valve V7, and the swing control valve V8 have the directional switching valve 41 and the electromagnetic proportional valve 45, respectively.
  • the directional switching valve 41 included in the boom control valve V5 is referred to as the first switching valve 41A
  • the directional switching valve 41 included in the arm control valve V6 is referred to as the second switching valve 41B
  • the directional switching valve 41 included in the bucket control valve V7 is called a third switching valve 41C
  • the directional switching valve 41 included in the swing control valve V8 is called a fourth switching valve 41D.
  • the electromagnetic proportional valve 45 of the boom control valve V5 is referred to as the first electromagnetic valve 45A
  • the electromagnetic proportional valve 45 of the arm control valve V6 is referred to as the second electromagnetic valve 45B
  • the proportional solenoid valve 45 included in the bucket control valve V7 is called a third solenoid valve 45C
  • the proportional solenoid valve 45 included in the swing control valve V8 is called a fourth solenoid valve 45D.
  • the directional switching valve 41 is a direct-acting spool type switching valve, and its switching position can be changed by hydraulic oil supplied from the electromagnetic proportional valve 45 .
  • the directional switching valve 41 has a spool moved in proportion to the flow rate of the hydraulic fluid supplied from the electromagnetic proportional valve 45, and supplies an amount of hydraulic fluid proportional to the amount of movement of the spool to the hydraulic actuator AC to be operated. supply.
  • the directional switching valve 41 can be switched between a first position 41a, a second position 41b, and a neutral position 41c.
  • the directional switching valve 41 is held at a neutral position 41c by the urging forces of a neutral spring on one side of the switching direction and a neutral spring on the other side opposite to the one side. Pressure switches from the neutral position 41c to the first position 41a or the second position 41b.
  • the direction switching valve 41 has a first pressure receiving portion 42 on one side in the switching direction and a second pressure receiving portion 43 on the other side. Therefore, when hydraulic oil supplied from the electromagnetic proportional valve 45 acts on the first pressure receiving portion 42, the directional switching valve 41 is switched from the neutral position 41c to the first position 41a. Further, when the hydraulic oil supplied from the electromagnetic proportional valve 45 acts on the second pressure receiving portion 43, the direction switching valve 41 is switched from the neutral position 41c to the second position 41b. As a result, the direction switching valve 41 can switch the discharge amount (output) of the hydraulic oil supplied from the discharge oil passage 30 and the discharge direction of the hydraulic oil.
  • the electromagnetic proportional valve 45 can change the opening degree by energizing the proportional solenoid 45a by being supplied with electric current.
  • the dither amplitude is superimposed on the current supplied to the solenoid proportional valve 45 .
  • the dither amplitude causes the proportional solenoid 45a to slightly move, and the working oil acting on the pressure receiving portion of the direction switching valve 41 from the electromagnetic proportional valve 45 also pulsates.
  • the electromagnetic proportional valve 45 has a first pilot valve 46 that supplies hydraulic oil to the first pressure receiving portion 42 of the direction switching valve 41 and a side opposite to the first pressure receiving portion 42 of the direction switching valve 41 . and a second pilot valve 47 that supplies hydraulic oil to the second pressure receiving portion 43 of the.
  • the hydraulic oil discharged from the second pump 22 is supplied to the first pilot valve 46 and the second pilot valve 47 via the supply oil passage 31 .
  • the first pilot valve 46 is provided with a proportional solenoid 45a, and the opening degree of the first pilot valve 46 is changed by the proportional solenoid 45a.
  • the second pilot valve 47 is provided with a proportional solenoid 45a, and the opening degree of the second pilot valve 47 is changed by the proportional solenoid 45a.
  • the hydraulic system S of the work machine 1 includes a hydraulic oil passage 32 connected to the supply oil passage 31 and a drain oil passage 33 connected to the hydraulic oil tank T.
  • the hydraulic oil passage 32 has a first end connected to the supply oil passage 31, and a second end opposite to the first end branches into a plurality of electromagnetic proportional valves 45 (first pilot valves 46). and the primary side port (primary port) of the second pilot valve 47). Therefore, the hydraulic oil passage 32 can supply the hydraulic oil flowing through the supply oil passage 31 to each of the electromagnetic proportional valves 45 (the first pilot valve 46 and the second pilot valve 47). That is, the discharge oil discharged by the second pump 22 is supplied to the electromagnetic proportional valve 45 via the supply oil passage 31 and the working oil passage 32 .
  • the drain oil passage 33 has a first end connected to the hydraulic oil tank T, and a second end opposite to the first end branches into a plurality of electromagnetic It is connected to the proportional valve 45 and the directional switching valve 41 .
  • the second end of the drain oil passage 33 is the oil between the discharge side port of the electromagnetic proportional valve 45 and the pressure receiving portion (the first pressure receiving portion 42 and the second pressure receiving portion 43) of the directional switching valve 41.
  • the discharge port of the directional switching valve 41 (port for discharging return oil from the hydraulic actuator AC).
  • the port (secondary port) on the secondary side of the electromagnetic proportional valve 45 and the pressure receiving portion (the first pressure receiving portion 42 and the second pressure receiving portion 43) of the directional switching valve 41 are merged.
  • a throttle 33b is provided in the portion (exhaust oil passage 33a).
  • the drain oil passage 33 supplies part of the hydraulic oil supplied from the electromagnetic proportional valve 45 to the pressure receiving portions (the first pressure receiving portion 42 and the second pressure receiving portion 43) of the direction switching valve 41 and The discharged hydraulic fluid can be discharged to the hydraulic fluid tank T.
  • the electromagnetic proportional valve 45 changes the opening degree according to the magnitude of the supplied current, and the hydraulic oil supplied from the hydraulic oil passage 32 is directed to the pressure receiving portion (first pressure receiving portion) of the direction switching valve 41 . 42 and the second pressure receiving portion 43 ), and can be discharged to the drain oil passage 33 .
  • the electromagnetic proportional valve 45 may be configured separately.
  • the plurality of control valves V may be 2-position switching valves, 4-position switching valves, or the like other than 3-position switching valves, and are not limited.
  • the hydraulic system S of the work implement 1 includes a control device 70 .
  • the control device 70 is a device composed of programs and the like stored in an electric/electronic circuit, a CPU, an MPU, and the like.
  • the control device 70 controls various devices of the working machine 1 .
  • the control device 70 can control the prime mover E1 and the number of revolutions of the prime mover E1 (the number of revolutions of the prime mover).
  • the control device 70 has a storage section 70a and a current control section 70b.
  • the storage unit 70 a is a non-volatile memory or the like, and stores various information and the like regarding control of the control device 70 .
  • the current control section 70b controls the current supplied to the electromagnetic proportional valve 45. As shown in FIG.
  • the proportional solenoid 45a of the electromagnetic proportional valve 45 is connected to the control device 70, and changes the degree of opening according to the magnitude of the current (current value I, command signal) supplied from the control device 70. By supplying a pilot pressure corresponding to the value I to the directional switching valve 41, each directional switching valve 41 is switched. A first operation member 75 for operating each directional switching valve 41 is connected to the control device 70 .
  • the first operating member 75 has a sensor 76 that detects the direction of operation and the amount of operation.
  • the configuration of the sensor 76 is not particularly limited, and for example, a potentiometer or the like can be used.
  • the sensor 76 is connected to the control device 70 and outputs the detected operation direction and operation amount as a detection signal.
  • the control device 70 supplies a current having a current value I corresponding to the amount of operation of the first operating member 75 to the proportional solenoid 45a of the electromagnetic proportional valve 45 to be operated. Specifically, as shown in FIG. 3, the control device 70 controls (defines) the current supplied to the electromagnetic proportional valve 45 (proportional solenoid 45a) according to the operating direction and operating amount of the first operating member 75. It has a current control section 70b for controlling the current.
  • the current control unit 70b supplies to the electromagnetic proportional valve 45 (proportional solenoid 45a) based on the detection signal output from the sensor 76 to the control device 70, a control map stored in advance in the storage unit 70a, or a predetermined arithmetic expression. Define the current (current value I). Thereby, the control device 70 supplies the current defined by the current control section 70b to the proportional solenoid 45a of the electromagnetic proportional valve 45 to be operated.
  • the current control unit 70b superimposes the dither amplitude on the current supplied to the electromagnetic proportional valve 45. That is, dither can be generated by adding an oscillating component to the current supplied to the electromagnetic proportional valve 45 .
  • the current control unit 70b can set a low frequency of PWM (Pulse Width Modulation) used for current control to pulsate the current.
  • the current control section 70b may superimpose the dither amplitude on the current by using a method of adding an oscillating component to the current command value.
  • the first operating member 75 includes a first operating tool 75A and a second operating tool 75B.
  • the first operation tool 75A can operate two operation targets provided on the work machine 1, and can operate the first switching valve 41A and the third switching valve 41C, for example.
  • the first operation tool 75A is capable of swinging the boom 15 and swinging the bucket 17 .
  • the first operation tool 75A has, as the sensor 76, a first sensor 76a that detects the operation direction and the operation amount of the first operation tool 75A.
  • the current control unit 70b defines the current to be supplied to the first solenoid valve 45A and the third solenoid valve 45C based on the detection signal output from the first sensor 76a, and the control device 70 controls the first solenoid Current is supplied to the valve 45A and the third solenoid valve 45C.
  • the current control unit 70b defines the current to be supplied to the first electromagnetic valve 45A based on the detection signal output from the first sensor 76a, The control device 70 supplies current to the first solenoid valve 45A.
  • the current control unit 70b defines the current to be supplied to the third solenoid valve 45C based on the detection signal output from the first sensor 76a.
  • the controller 70 supplies current to the third solenoid valve 45C.
  • the control device 70 controls the first switching valve 41A and the third switching valve 41C based on the operation of the first operation tool 75A.
  • the second operation tool 75B can operate two operation targets provided on the work machine 1, and can operate the second switching valve 41B and the fourth switching valve 41D, for example.
  • the second manipulating tool 75B is capable of swinging the arm 16 and turning the turning motor MT.
  • the second operation tool 75B has a second sensor 76b as the sensor 76 for detecting the operation direction and the operation amount of the second operation tool 75B. Therefore, the current control unit 70b defines the current to be supplied to the second solenoid valve 45B and the fourth solenoid valve 45D based on the detection signal output from the second sensor 76b. Current is supplied to the valve 45B and the fourth solenoid valve 45D.
  • the current control unit 70b defines the current to be supplied to the second electromagnetic valve 45B based on the detection signal output from the second sensor 76b, The control device 70 supplies current to the second solenoid valve 45B.
  • the current control unit 70b defines the current to be supplied to the fourth solenoid valve 45D based on the detection signal output from the second sensor 76b.
  • the controller 70 supplies current to the fourth solenoid valve 45D.
  • the control device 70 controls the second switching valve 41B and the fourth switching valve 41D based on the operation of the second operation tool 75B.
  • first operation tool 75A and the second operation tool 75B are configured by, for example, operation levers that are gripped and operated by the driver seated in the driver's seat 6.
  • the dozer control valve V1, the swing control valve V2, the first travel control valve V3, the second travel control valve V4, and the SP control valve V9 are pilot-operated by the operating device 55. It is composed of a pilot-operated switching valve 51 that is
  • FIG. 4 is a hydraulic circuit diagram relating to the dozer control valve V1, swing control valve V2, first travel control valve V3, second travel control valve V4, and SP control valve V9 in the first embodiment.
  • the operating device 55 includes a pilot valve 56 that outputs pilot pressure (pilot oil) to the control valve V (V1 to V4, V9), and a second operating member that operates the pilot valve 56. 57.
  • the second operating member 57 is composed of, for example, an operating lever and pedals arranged around the driver's seat 6 .
  • the pilot operated switching valve 51 can be switched between a first position 51a, a second position 51b, and a neutral position 51c.
  • the pilot operated switching valve 51 is held at a neutral position 51c by the urging forces of a neutral spring on one side in the switching direction and a neutral spring on the other side opposite to the one side. Pressure switches from the neutral position 51c to the first position 51a or the second position 51b.
  • the pilot operated switching valve 51 has a third pressure receiving portion 52 on one side in the switching direction and a fourth pressure receiving portion 53 on the other side.
  • the primary side port (primary port) of the pilot valve 56 is connected to the second end of the hydraulic oil passage 32, and the hydraulic oil supplied from the hydraulic oil passage 32 is transferred to the secondary side port (secondary port). port) to the pressure receiving portions (the third pressure receiving portion 52 and the fourth pressure receiving portion 53) of the pilot operated switching valve 51.
  • the pilot operated switching valve 51 when the hydraulic oil supplied from the pilot valve 56 acts on the third pressure receiving portion 52, the pilot operated switching valve 51 is switched from the neutral position 51c to the first position 51a. Further, when the hydraulic oil supplied from the pilot valve 56 acts on the fourth pressure receiving portion 53, the pilot operated switching valve 51 is switched from the neutral position 51c to the second position 51b. Thereby, the pilot operated switching valve 51 can switch the discharge amount (output) of the hydraulic oil supplied from the discharge oil passage 30 and the discharge direction of the hydraulic oil.
  • At least one control valve V among the plurality of control valves V may be a control valve V incorporating the electromagnetic proportional valve 45.
  • Control valves V are not limited to boom control valve V5, arm control valve V6, bucket control valve V7, and swing control valve V8.
  • the control valve V incorporating the electromagnetic proportional valve 45 may be any one of the dozer control valve V1, the swing control valve V2, the first travel control valve V3, the second travel control valve V4, and the SP control valve V9. Good, and the combination is not limited.
  • the current control section 70b changes the dither amplitude of the current supplied to the electromagnetic proportional valve 45 according to the temperature of the hydraulic oil.
  • the hydraulic system S of the work machine 1 includes a temperature sensor 79 that detects the temperature of the hydraulic oil stored in the hydraulic oil tank T, and the current control unit 70b adjusts the dither amplitude of the current supplied to the electromagnetic proportional valve 45. , is changed according to the temperature of the hydraulic oil detected by the temperature sensor 79 .
  • the location of the temperature sensor 79 is not limited to the hydraulic oil tank T, and may be arranged in the control valve CV, the supply oil passage 31, the hydraulic oil passage 32, the drain oil passage 33, or the like.
  • the current control unit 70b sets the dither amplitude to a predetermined first value, and the temperature of the hydraulic fluid is the first value. If the second temperature (or second temperature range) is higher than the temperature, change the dither amplitude to a second predetermined value that is less than the first value. More specifically, as shown in FIG. 5, the current control unit 70b divides the temperature range of the hydraulic oil into a plurality of sections and sets a plurality of temperature sections arranged in ascending order of temperature. The value of the dither amplitude is set to decrease stepwise in ascending order of the plurality of temperature divisions.
  • FIG. 5 is a diagram showing an example of a data table TB that defines correspondence relationships between a plurality of temperature sections TC1-TC3 and dither amplitudes DA1-DA3.
  • a data table DT shown in FIG. 5 in which dither amplitudes DA1 to DA3 are set for each of a plurality of temperature sections TC1 to TC3 is stored in advance in the storage unit 70a.
  • the dither amplitudes DA1 to DA3 decrease in order of dither amplitude DA1>dither amplitude DA2>dither amplitude DA3.
  • Each of the dither amplitudes DA1-DA3 is a fixed value indicating a single current value (mA).
  • the temperature section TC1 is a section of "less than 30° C.”, and a dither amplitude DA1 is set.
  • the temperature section TC2 is a section of "30° C.
  • the temperature section TC3 is a section of "50° C. or higher", and a dither amplitude DA3 is set.
  • the threshold value for each temperature category is not limited to 30° C. and 50° C., and may be set as appropriate according to the characteristics of the hydraulic oil and the electromagnetic proportional valve 45 .
  • the dither amplitudes DA1 to DA3 are set so that the hysteresis of the solenoid proportional valve 45 can be sufficiently reduced and the vibration noise caused by the current dither amplitude can be reduced in the corresponding temperature range.
  • the hysteresis of the electromagnetic proportional valve 45 is the difference between the output hydraulic pressure when increasing the current supplied to the electromagnetic proportional valve 45 and the output hydraulic pressure when decreasing the current supplied to the electromagnetic proportional valve 45. The lower the temperature of the hydraulic oil, the larger it becomes. On the other hand, the higher the temperature of the hydraulic oil, the more likely the vibration noise caused by the dither amplitude is generated.
  • the dither amplitude to be superimposed on the current supplied to the proportional solenoid valve 45 is set to sufficiently suppress the hysteresis of the proportional solenoid valve 45 (sufficiently suppress the decrease in responsiveness) according to the temperature of the hydraulic oil.
  • the amplitude is set to be within a range in which the dither amplitude can be lowered and the generation of vibration noise caused by the dither amplitude can be sufficiently suppressed.
  • the current control unit 70b determines whether the prime mover E1 is being driven.
  • the ignition switch 71 is a switch for starting the prime mover E1.
  • the ignition switch 71 is connected to the control device 70 , and the control device 70 starts and stops the prime mover E ⁇ b>1 based on signals (start signal and stop signal) output from the ignition switch 71 .
  • FIG. 6 is a flow chart showing control processing of the dither amplitude according to the temperature of the hydraulic oil by the current control section 70b.
  • the current control unit 70b determines whether or not the prime mover E1 is driving (S1).
  • the current control unit 70b acquires the temperature of the hydraulic oil detected by the temperature sensor 79 (S4), specifies the temperature range corresponding to the acquired temperature of the hydraulic oil (S5), and determines the specified temperature range. A dither amplitude corresponding to is selected (S6).
  • the current control unit 70b identifies the electromagnetic proportional valve 45 that is being operated by the first operating member 75 in S3 (S7).
  • the current control unit 70b supplies a current obtained by superimposing the dither amplitude selected in S6 on the current defined in S3 to the electromagnetic proportional valve 45 specified in S7 (S8).
  • the current control section 70b determines whether or not the prime mover E1 is stopped (S9). Specifically, the current control unit 70b determines whether or not the prime mover E1 is being driven based on a signal (stop signal) output from the ignition switch 71 to the control device .
  • the current control unit 70b confirms that the control device 70 has output a stop signal from the ignition switch 71 and determines that the prime mover E1 has stopped (S9, Yes), this process ends. On the other hand, the current control unit 70b confirms that the control device 70 does not output a stop signal from the ignition switch 71, and when it determines that the prime mover E1 has not stopped (S9, No), returns to S2 and returns to S2. Repeat the subsequent steps.
  • the hydraulic system S of the work machine 1 of the first embodiment described above includes a hydraulic actuator AC driven by hydraulic oil, and an electromagnetic proportional valve that controls the hydraulic actuator AC by energizing the proportional solenoid 45a in accordance with the supplied current. 45, and a controller 70 for controlling the current supplied to the electromagnetic proportional valve 45.
  • the controller 70 changes the dither amplitude of the current supplied to the electromagnetic proportional valve 45 according to the temperature of the hydraulic oil.
  • a control unit 70b is provided.
  • the current control unit 70b reduces the hysteresis of the proportional solenoid valve 45 and reduces the hysteresis of the proportional solenoid valve 45 by changing the dither amplitude of the current supplied to the proportional solenoid valve 45 according to the temperature of the hydraulic oil. 45 can be reduced.
  • the current control unit 70b sets the dither amplitude to a predetermined first value when the temperature of the hydraulic oil is the first temperature, and sets the dither amplitude to a second temperature higher than the first temperature. Second, the dither amplitude is changed to a second predetermined value that is less than the first value. According to this configuration, when the temperature of the hydraulic oil rises from the first temperature to the second temperature, the vibration noise generated or increased due to the electromagnetic proportional valve 45 is reduced to the second dither amplitude smaller than the first value. It can be reduced by changing to binary.
  • the current control unit 70b divides the temperature range of the hydraulic oil into a plurality of sections, sets a plurality of temperature sections TC1 to TC3 arranged in ascending order of temperature, and sets the dither amplitude for each of the plurality of temperature sections TC1 to TC3.
  • the value is decreased stepwise in ascending order of the plurality of temperature divisions.
  • a control valve CV (composite control valve: multiple control valve) is provided in which a plurality of control valves V (V1 to V9) each integrally configured with the electromagnetic proportional valve 45 and the directional switching valve 41 are combined, and the current control unit 70b describes that the dither amplitude of the current supplied to the plurality of electromagnetic proportional valves 45 of the control valve CV is changed to a predetermined value according to the temperature of the hydraulic oil.
  • a hydraulic oil tank T that stores hydraulic oil and a temperature sensor 79 that detects the temperature of the hydraulic oil stored in the hydraulic oil tank T are provided. is changed according to the temperature of the hydraulic oil detected by the temperature sensor 79 . According to this configuration, it is possible to change the dither amplitude using the temperature of the hydraulic oil stored in the hydraulic oil tank T, whose temperature changes relatively slowly. As a result, the dither amplitude can be stably changed without being influenced by local temperature changes of the working machine.
  • the dither amplitude of the current is changed stepwise according to the temperature range of the hydraulic oil, but in the second embodiment, the dither amplitude of the current is changed continuously according to the temperature of the hydraulic oil. This is different from the first embodiment.
  • the current control section 70b continuously reduces the dither amplitude as the temperature of the hydraulic oil increases.
  • FIG. 7A is a characteristic diagram showing the correspondence between oil temperature and dither amplitude.
  • the storage unit 70a stores in advance the characteristic data shown in FIG. 7A in which the oil temperature and the dither amplitude are associated on a one-to-one basis.
  • the characteristic data shown in FIG. 7A indicates the dither amplitude DA1 when the oil temperature ranges from "-20° C. to 30° C.” This data changes continuously (changes in a linear downward slope) and becomes constant at the dither amplitude DA3 after the oil temperature is "50°C". Therefore, the current control unit 70b can specify the dither amplitude corresponding to the oil temperature detected by the temperature sensor 79 using the characteristic data shown in FIG. 7A stored in the storage unit 70a.
  • the storage unit 70a stores in advance a characteristic formula representing the characteristic data shown in FIG. 7A, and uses this characteristic formula and the oil temperature detected by the temperature sensor 79 to calculate the dither amplitude corresponding to the oil temperature. can be calculated.
  • the storage unit 70a may store in advance the characteristic data showing the characteristic diagram of another example shown in FIG. 7B.
  • FIG. 7B is another characteristic diagram showing the correspondence relationship between the oil temperature and the dither amplitude.
  • the characteristic data shown in FIG. 7B has a dither amplitude in the oil temperature range of "-20° C. to 30° C.” and also in the oil temperature range of "50° C. or higher". It differs from the characteristic data shown in FIG. 7A in that the characteristic changes continuously.
  • the characteristic data shown in FIGS. 7A and 7B are not limited to being linear, and may be curved.
  • FIG. 8 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by the current control unit.
  • the flowchart shown in FIG. 8 differs from the flowchart shown in FIG. 6 in that S5 and S6 in the flowchart shown in FIG. 6 are deleted and S5A is provided instead of S5.
  • the current control unit 70b acquires the temperature of the hydraulic oil detected by the temperature sensor 79 (S4), it selects (or calculates) the dither amplitude corresponding to the detected temperature (S5A). . Since S7 to S9 are the same as in the case of the first embodiment, description thereof is omitted here.
  • the current dither amplitude is changed according to the temperature class of the hydraulic oil.
  • the dither amplitude is changed according to the temperature, and when the current of the solenoid proportional valve 45 is neither the maximum current value nor the specific current value, the dither amplitude is not changed regardless of the temperature of the hydraulic oil. 2 embodiment.
  • the directional switching valve 41 has a spool that can move from the stroke start position to the stroke end position by changing the opening degree of the electromagnetic proportional valve 45 according to the magnitude of the current supplied from the current control section 70b. , the spool is moved in proportion to the flow rate of hydraulic fluid supplied from the electromagnetic proportional valve 45, and the amount of hydraulic fluid proportional to the amount of movement of the spool is supplied to the hydraulic actuator AC.
  • the direction switching valve 41 is the same as the direction switching valve 41 of the first and second embodiments.
  • the current control unit 70b specifies that the current supplied to the electromagnetic proportional valve 45 is the maximum current value that maximizes the opening degree of the electromagnetic proportional valve 45 or is smaller than the maximum current value by a predetermined value. If it is a current value, change the dither amplitude to a value determined according to the temperature of the hydraulic oil, and if it is neither the maximum current value nor the specific current value, determine the dither amplitude according to the temperature of the hydraulic oil Do not change to the specified value.
  • the electromagnetic proportional valve 45 maximizes its opening when supplied with the maximum current value.
  • the directional switching valve 41 maximizes the flow rate of the hydraulic oil supplied from the electromagnetic proportional valve 45 and moves the spool to the stroke end position. That is, the spool reaches the stroke end. From this, it can be said that the maximum current value is the current value for moving the spool to the stroke end.
  • the electromagnetic proportional valve 45 (first pilot valve 46) reaches the maximum opening, and the electromagnetic Hydraulic oil supplied from the proportional valve 45 (first pilot valve 46) acts on the first pressure receiving portion 42, the directional switching valve 41 is switched from the neutral position 41c to the first position 41a, and the spool of the directional switching valve 41 is closed. moves to the stroke end position (stroke end) at the first position 41a.
  • the electromagnetic proportional valve 45 (second pilot valve 47) reaches the maximum opening, and the electromagnetic Hydraulic oil supplied from the proportional valve 45 (second pilot valve 47) acts on the second pressure receiving portion 43, the direction switching valve 41 is switched from the neutral position 41c to the second position 41b, and the spool of the direction switching valve 41 is closed. moves to the stroke end position (stroke end) at the second position 41b.
  • the opening is set to a value slightly smaller than the maximum.
  • the flow rate of the hydraulic oil supplied from the electromagnetic proportional valve 45 is slightly smaller than the maximum value of the directional switching valve 41, and the spool is moved to a position slightly away from the stroke end position (near position). That is, the spool moves to a position near the stroke end.
  • the specific current value is a current value for moving the spool to a position near the stroke end.
  • the electromagnetic proportional valve 45 (first pilot valve 46) is slightly larger than the maximum opening.
  • the degree of opening becomes small, the hydraulic oil supplied from the electromagnetic proportional valve 45 (first pilot valve 46) acts on the first pressure receiving portion 42, and the directional switching valve 41 is switched from the neutral position 41c to the first position 41a, At the first position 41a, the spool of the direction switching valve 41 is moved to a near position (near position) slightly away from the stroke end position (stroke end).
  • the electromagnetic proportional valve 45 (second pilot valve 47) is slightly larger than the maximum opening.
  • the degree of opening becomes small, the hydraulic oil supplied from the electromagnetic proportional valve 45 (second pilot valve 47) acts on the second pressure receiving portion 43, the directional switching valve 41 is switched from the neutral position 41c to the second position 41b, At the second position 41b, the spool of the directional switching valve 41 is moved to a near position (near position) slightly away from the stroke end position (stroke end).
  • the specific current value may be a current value obtained by subtracting the current value of the dither amplitude from the maximum current value.
  • the spool is located in front of the stroke end by a distance corresponding to the fine movement width of the spool.
  • the current control unit 70b changes the dither amplitude according to the temperature of the hydraulic oil when the spool is at the stroke end position or at a predetermined position before the stroke end position.
  • the current control unit 70b maintains the dither amplitude at a constant value regardless of the temperature of the hydraulic oil when the spool is neither at the stroke end position nor at the front position.
  • FIG. 9 is a flowchart showing control processing of dither amplitude according to the temperature of hydraulic oil by the current control unit.
  • the flowchart shown in FIG. 9 differs from the flowchart shown in FIG. 6 in that S21 and S22 are added to the flowchart shown in FIG.
  • the current control unit 70b determines whether the current supplied to the electromagnetic proportional valve 45 is the maximum current value, the specific current value, or the maximum current value and the specific current value. It is determined whether it is neither (S21).
  • the current control unit 70b determines that the current supplied to the electromagnetic proportional valve 45 is the maximum current value or the specific current value (S21, Yes)
  • the current control unit 70b acquires the temperature of the hydraulic oil detected by the temperature sensor 79 ( S4). Since S5 to S9 are the same as in the first embodiment, descriptions thereof are omitted here.
  • the current control unit 70b determines that the current supplied to the electromagnetic proportional valve 45 is neither the maximum current value nor the specific current value (S21, No), it selects the highest dither amplitude (S22). That is, the current control unit 70b sets the dither amplitude to a constant value (for example, maximum value) regardless of the temperature of the hydraulic oil.
  • the opening degree of the electromagnetic proportional valve 45 is changed according to the magnitude of the current supplied from the current control unit 70b, so that the stroke from the stroke start position It has a spool that can move to the end position, and the spool is moved in proportion to the flow rate of the hydraulic oil supplied from the electromagnetic proportional valve 45, and the hydraulic actuator supplies an amount of hydraulic oil proportional to the amount of movement of the spool.
  • the direction switching valve 41 for supplying AC is provided, and the current control unit 70b sets the current supplied to the electromagnetic proportional valve 45 in advance to a maximum current value that maximizes the opening degree of the electromagnetic proportional valve 45 or to a value higher than the maximum current value.
  • the dither amplitude is changed to a value determined according to the temperature of the hydraulic oil, and if neither the maximum current value nor the specific current value, the dither amplitude is changed to the Do not change to the value determined according to the temperature.
  • the current control unit 70b controls the current supplied to the electromagnetic proportional valve 45 to be the maximum current value that maximizes the opening degree of the electromagnetic proportional valve 45 or the specific current that is smaller than the maximum current value by a predetermined value. value, that is, when the spool is at the stroke end position or a predetermined position before the stroke end position, the dither amplitude is changed to a value determined according to the temperature of the hydraulic oil. It is possible to prevent the spool from vibrating in synchronism with the pressure amplitude and hitting the spool cap at the stroke end position and the near position near the stroke end position. Moreover, it is possible to reduce the occurrence of pressure oscillation when the spool is pressed against the stroke end position.
  • the vibration noise generated or increased by the spool of the direction switching valve 41 as the temperature of the hydraulic oil rises can be appropriately reduced.
  • the current control unit 70b determines the dither amplitude according to the temperature of the hydraulic oil when neither the maximum current value nor the specific current value, that is, when the spool is neither the stroke end position nor the front position. set to the maximum value without changing to the specified value. In other words, when the spool is neither at the stroke end position nor at the front position, the vibration noise due to the spool of the direction switching valve 41 is unlikely to increase, so the dither amplitude can be maintained at the maximum value regardless of the temperature of the hydraulic oil. The hysteresis can be alleviated more effectively, and a state of good operability can be ensured.
  • the dither amplitude is changed according to the temperature, and if the current of the proportional solenoid valve is neither the maximum current value nor the specific current value.
  • the fourth embodiment if the spool is at the stroke end position or a predetermined position before the stroke end position, the dither amplitude is changed according to the temperature. The difference from the third embodiment is that the dither amplitude is not changed regardless of the temperature of the hydraulic oil when the spool is neither at the stroke end position nor at the front position.
  • the directional switching valve 41 of the fourth embodiment includes a position detection sensor 44 that detects the position of the spool, as shown in FIG.
  • the current control section 70b can determine the position of the spool of the direction switching valve 41 based on the detection signal from the position detection sensor 44.
  • the current control unit 70b controls the dither amplitude when the spool is at the stroke end position (stroke end) or a predetermined position before the stroke end position (position slightly away from the stroke end position (near position)).
  • the dither amplitude is set to a constant value regardless of the temperature of the hydraulic fluid when the spool is neither in the end of stroke position nor in the short position.
  • the front position may be a position where the spool is located in front of the stroke end by a distance corresponding to the fine movement width of the spool.
  • FIG. 11 is a flow chart showing control processing of the dither amplitude according to the temperature of the hydraulic oil by the current control section.
  • the flowchart shown in FIG. 11 differs from the flowchart shown in FIG. 9 in that S23 is added instead of S21 in the flowchart shown in FIG.
  • the current control unit 70b moves the spool of the directional switching valve 41 to the stroke end position or the predetermined stroke end position based on the detection signal from the position detection sensor 44 after the process of S3. It is determined whether it is at the front position, or whether it is neither the stroke end position nor the front position (S23).
  • the current control unit 70b determines that the spool of the directional switching valve 41 is at the stroke end position or a predetermined position before the stroke end position (S23, Yes)
  • the flow rate of the hydraulic oil detected by the temperature sensor 79 increases. A temperature is obtained (S4). Since S5 to S9 are the same as in the case of the third embodiment, description thereof is omitted here.
  • the current control unit 70b determines that the spool of the directional switching valve 41 is neither at the stroke end position nor at the front position (S23, No), the maximum dither value Amplitude is selected (S22). That is, the current control unit 70b sets the dither amplitude to a constant value (for example, maximum value) regardless of the temperature of the hydraulic oil.
  • the hydraulic system S of the work machine 1 of the fourth embodiment described above has a spool that can move from the stroke start position to the stroke end position, and the spool moves in proportion to the flow rate of hydraulic oil supplied from the electromagnetic proportional valve 45.
  • the directional switching valve 41 is moved to supply the hydraulic actuator AC with an amount of hydraulic oil proportional to the amount by which the spool is moved. position, the dither amplitude is changed to a value determined according to the temperature of the hydraulic oil, and when the spool of the direction switching valve 41 is neither the stroke end position nor the front position, the dither amplitude is changed to the value of the hydraulic oil. Do not change to the value determined according to the temperature.
  • FIG. 12 is a hydraulic circuit diagram regarding boom control valves, arm control valves, bucket control valves, and swing control valves in the fifth embodiment.
  • the control valve V employs, for example, a direct-acting solenoid valve 145 .
  • the direct-acting solenoid valve 145 is a valve in which the proportional solenoid 45a moves according to the magnitude of the supplied current, and the spool is moved by the proportional solenoid 45a to control the flow of hydraulic oil.
  • the direct-acting solenoid valve 145 can be switched between a first position a1, a second position b1, and a neutral position c1.
  • the direct-acting solenoid valve 145 is held at a neutral position c1 by the urging forces of a neutral spring on one side in the switching direction and a neutral spring on the other side opposite to the one side, and the spool is moved by the proportional solenoid 45a. , from the neutral position c1 to the first position a1 or the second position b1.
  • each control valve V constituting the control valve CV includes a direct-acting solenoid valve 145, and the current control unit 70b controls the solenoid valve of the control valve V.
  • the dither amplitude of the current supplied to 145 may be changed to a predetermined value depending on the temperature of the hydraulic fluid.
  • a control valve CV composite control valve: multiple control valve in which a plurality of control valves V are combined is used.
  • a valve that is, a control valve V in which the electromagnetic proportional valve 45 and the direction switching valve 41 are integrally configured, and the current control unit 70b dithers the current supplied to the electromagnetic proportional valve 45 of the control valve V.
  • the amplitude may be changed to a determined value depending on the temperature of the hydraulic fluid. According to this configuration, also in the control valve V (control valve), the vibration noise of the control valve V caused by the temperature of the hydraulic oil can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

作動油の温度によって電磁比例弁(45)に起因する振動音を低減することを可能にする。 作業機(1)の油圧システム(S)は、作動油によって駆動する油圧アクチュエータ(AC)と、供給される電流に応じて、油圧アクチュエータ(AC)を制御する電磁比例弁(45)と、電磁比例弁(45)に供給する電流を制御する制御装置(70)と、を備え、制御装置(70)は、電磁比例弁(45)に供給する電流のディザ振幅を、作動油の温度に応じて変更する。

Description

作業機の油圧システム
 本発明は、バックホー等の作業機の油圧システムに関する。
 特許文献1には、油圧アクチュエータと、パイロット圧に応じて前記油圧アクチュエータに作動油を供給する制御弁と、制御弁のパイロット圧を制御する比例電磁弁と、比例電磁弁の電流を制御する制御部とを備え、制御部が比例電磁弁にディザ電流を供給する作業機が開示されている。
日本国公開特許公報「特開2009-228794号公報」
 特許文献1の技術では、電磁比例弁に供給する電流にディザ振幅を重畳させることにより、電磁比例弁のヒステリシスを小さくして応答性を向上させることができる。
 ところで、電流に重畳させるディザ振幅が小さすぎると十分なヒステリシスの低減効果が得られず、ディザ振幅が大きすぎると制御弁にて振動音が発生するという問題がある。
 本発明は、このような従来技術の問題点を解決すべくなされたものであって、電磁比例弁のヒステリシスを低減するとともに振動音の発生を抑制することを目的とする。
 本発明の一態様に係る作業機の油圧システムは、作動油によって駆動する油圧アクチュエータと、供給される電流に応じて、前記油圧アクチュエータを制御する電磁比例弁と、前記電磁比例弁に供給する電流を制御する制御装置と、を備え、前記制御装置は、前記電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて変更する。
 前記制御装置は、前記作動油の温度が第1温度である場合に、前記ディザ振幅を予め定められた第1値とし、前記作動油の温度が前記第1温度よりも高い第2温度である場合に、前記ディザ振幅を、前記第1値よりも小さい予め定められた第2値に変更してもよい。
 前記制御装置は、前記作動油の温度範囲を複数に区分して温度の昇順に並ぶ複数の温度区分を設定し、前記複数の温度区分ごとに設定される前記ディザ振幅の値を当該複数の温度区分の昇順に段階的に小さくしてもよい。
 前記制御装置は、前記作動油の温度が高くなるにつれて、前記ディザ振幅を連続的に小さくしてもよい。
 前記作業機の油圧システムは、前記電磁比例弁から供給される作動油の流量に比例してストローク開始位置からストローク終了位置まで移動可能なスプールを有し、当該スプールの位置に応じた量の作動油を前記油圧アクチュエータに供給する方向切換弁を備え、前記電磁比例弁は、前記制御装置から供給される電流の大きさに応じて当該電磁比例弁の開度が変更されることで前記方向切換弁に供給する作動油の流量を切り替え、前記制御装置は、前記電磁比例弁に供給する電流が、前記電磁比例弁の開度を最大にする最大電流値又は前記最大電流値よりも予め定められた値だけ小さい特定電流値である場合に、前記ディザ振幅を前記作動油の温度に応じて変更し、前記最大電流値及び前記特定電流値のいずれでもない場合に、前記ディザ振幅を前記作動油の温度にかかわらず一定値に設定してもよい。
 前記作業機の油圧システムは、ストローク開始位置からストローク終了位置まで移動可能なスプールを有し、前記電磁比例弁から供給される作動油の流量に比例して前記スプールが動かされて、当該スプールの動かされた量に応じた作動油を前記油圧アクチュエータに供給する方向切換弁を備え、前記制御装置は、前記スプールが、前記ストローク終了位置又は当該ストローク終了位置の予め定められた手前位置にある場合に、前記ディザ振幅を前記作動油の温度に応じて変更し、前記スプールが、前記ストローク終了位置及び前記手前位置のいずれでもない場合に、前記ディザ振幅を前記作動油の温度にかかわらず一定値に設定してもよい。
 前記作業機の油圧システムは、前記電磁比例弁と前記方向切換弁とが一体的に構成された制御弁を備え、前記制御装置は、前記制御弁の前記電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて定められた値に変更してもよい。
 前記作業機の油圧システムは、前記電磁比例弁と前記方向切換弁とが一体的に構成された制御弁を複数結合した複合制御弁を備え、前記制御装置は、前記複合制御弁の前記複数の電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて定められた値に変更してもよい。
 前記作業機の油圧システムは、前記作動油を貯留する作動油タンクと、前記作動油タンクに貯留された前記作動油の温度を検出する温度センサと、を備え、前記制御装置は、前記電磁比例弁に供給する電流のディザ振幅を、前記温度センサにて検出された前記作動油の温度に応じて変更してもよい。
 上記作業機によれば、作動油の温度に応じて電磁比例弁に供給する電流のディザ振幅を変更することにより、電磁比例弁のヒステリシスを適切に低減するとともに振動音の発生を抑制できる。
作業機の側面図である。 第1実施形態における各種油圧アクチュエータを駆動する作業機の油圧システムの概略図である。 第1実施形態におけるブーム制御弁、アーム制御弁、バケット制御弁、及び旋回制御弁に関する油圧回路図である。 第1実施形態におけるドーザ制御弁、スイング制御弁、第1走行制御弁、第2走行制御弁、及びSP制御弁に関する油圧回路図である。 複数の温度区分とディザ振幅との対応関係を定義したデータテーブルを示す図である。 電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。 油温とディザ振幅との対応関係を示した特性図である。 油温とディザ振幅との対応関係を示した別例の特性図である。 電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。 電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。 第4実施形態におけるブーム制御弁、アーム制御弁、バケット制御弁、及び旋回制御弁に関する油圧回路図である。 電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。 第5実施形態におけるブーム制御弁、アーム制御弁、バケット制御弁、及び旋回制御弁に関する油圧回路図である。
 以下、本発明の一実施形態について、図面を適宜参照しつつ説明する。
[第1実施形態]
<全体構成>
 図1は、作業機1の全体構成を示す側面図である。本実施形態では、作業機1として旋回作業機であるバックホーが例示されている。
 図1に示すように、作業機1は、機体(旋回台)2と、機体2の左側に配置された左の走行装置3Lと、機体2の右側に配置された右の走行装置3Rと、機体2の前部に装着された作業装置4とを備えている。機体2上には、運転者(オペレータ)が着座する運転席6が設けられている。
 本実施形態においては、作業機1の運転席6に着座した運転者が向く方向(図1の矢印A1の方向)を前方といい、その反対方向(図1の矢印A2の方向)を後方という。また、運転者の左側(図1の手前側)を左方といい、運転者の右側(図1の奥側)を右方という。したがって、図1のK1方向が前後方向(機体前後方向)である。また、前後方向K1に直交する方向である水平方向を機体幅方向という。
 左の走行装置3L及び右の走行装置3Rは、本実施形態では、クローラ式の走行装置で構成されている。左の走行装置3Lは、走行モータMLによって駆動され、右の走行装置3Rは、走行モータMRによって駆動される。走行モータML,MRは、油圧モータ(油圧アクチュエータAC)によって構成されている。左の走行装置3L及び右の走行装置3Rが装着される走行フレーム11の前部には、ドーザ装置7が装着されている。ドーザ装置7は、ドーザシリンダC1を伸縮することにより昇降(ブレードを上げ下げ)させることができる。
 機体2は、走行フレーム11上に旋回ベアリング8を介して縦軸(上下の方向に延伸する軸心)回りに旋回可能に支持されている。機体2は、油圧モータ(油圧アクチュエータAC)からなる旋回モータMTによって旋回駆動される。
 機体2は、縦軸回りに旋回する旋回基板9と、旋回基板9の後部に支持されたウエイト10とを有している。旋回基板9は、鋼板等から形成されており、旋回ベアリング8に連結されている。機体2の後部には、原動機E1が搭載されている。原動機E1は、エンジンである。なお、原動機E1は、電動モータであってもよいし、エンジン及び電動モータを有するハイブリッド型であってもよい。
 機体2は、前部に支持ブラケット13を有している。支持ブラケット13には、スイングブラケット14が、縦軸回りに揺動可能に取り付けられている。スイングブラケット14には、作業装置4が取り付けられている。
 作業装置4は、ブーム15と、アーム16と、作業具としてのバケット17とを有している。ブーム15は、基部がスイングブラケット14に横軸(機体幅方向に延伸する軸心)回りに回動可能に枢着されていて、上下方向に揺動可能とされている。アーム16は、基部がブーム15の先端側に横軸回りに回動可能に枢着されていて、前後方向K1或いは上下方向に揺動可能とされている。バケット17は、アーム16の先端側にスクイ動作及びダンプ動作可能に設けられている。作業機1は、バケット17に代えて或いは加えて、油圧アクチュエータACにより駆動可能な他の作業具(油圧アタッチメント)を装着することが可能である。
 スイングブラケット14は、機体2内に備えられたスイングシリンダC2の伸縮によって揺動可能とされている。ブーム15は、ブームシリンダC3の伸縮によって揺動可能とされている。アーム16は、アームシリンダC4の伸縮によって揺動可能とされている。バケット17は、作業具シリンダとしてのバケットシリンダC5の伸縮によってスクイ動作及びダンプ動作可能とされている。ドーザシリンダC1、スイングシリンダC2、ブームシリンダC3、アームシリンダC4、及びバケットシリンダC5は、油圧シリンダ(油圧アクチュエータAC)によって構成されている。
<作業機の油圧システム>
 図2は、上記した油圧アクチュエータAC(MT,ML,MR,C1~C5)を作動させるための作業機1の油圧システムSの概略構成を示す。図2に示すように、作業機1の油圧システムSは、圧油供給ユニット20と、コントロールバルブCVと、を備えている。
 圧油供給ユニット20には、油圧アクチュエータACを作動させる作動油の供給用の第1ポンプ(メインポンプ)21と、パイロット圧や検出信号等の信号圧の供給用の第2ポンプ(パイロットポンプ)22とが装備されている。第1ポンプ21と第2ポンプ22とは、原動機E1によって駆動される。第1ポンプ21は、斜板の角度変更によって吐出量を変更可能な可変容量型の油圧ポンプ(斜板形可変容量アキシャルポンプ)で構成されている。第2ポンプ22は、定容量型のギヤポンプで構成されている。なお、以下の説明において、第2ポンプ22のことを「油圧ポンプ」として説明する場合がある。
 コントロールバルブCVは、制御弁Vを複数結合した複合制御弁(マルチプルコントロールバルブ)である。詳しくは、コントロールバルブCVは、作動油によって駆動する各種油圧アクチュエータAC(MT,ML,MR,C1~C5)を制御する複数の制御弁V(V1~V9)、インレット用ブロックB1、及びアウトレット用ブロックB2を一方向に配置(積層)すると共に相互に連結し、且つ互いに内部油路によって接続されて構成されている。
 図2に示すように、作業機1の油圧システムSは、吐出油路30と、供給油路31と、を備えている。吐出油路30は、第1ポンプ21とインレット用ブロックB1とを接続する油路である。このため、第1ポンプ21の吐出油は、吐出油路30を介してインレット用ブロックB1に供給されたのち、各制御弁V(V1~V9)に供給される。
 供給油路31は、第2ポンプ22から吐出された作動油(吐出油)を制御弁Vの一次側にパイロット元圧として供給する油路である。複数の制御弁Vは、供給油路31を介して供給されるパイロット圧に応じてスプールの切換位置を変更することで、吐出油路30から供給された作動油の油圧アクチュエータACへの吐出量(出力)、及び作動油の吐出方向を切り換えることで、油圧アクチュエータACを制御する。
 図2に示すように、制御弁Vは、ドーザシリンダC1を制御するドーザ制御弁V1、スイングシリンダC2を制御するスイング制御弁V2、左の走行装置3Lの走行モータMLを制御する第1走行制御弁V3、右の走行装置3Rの走行モータMRを制御する第2走行制御弁V4、ブームシリンダC3を制御するブーム制御弁V5、アームシリンダC4を制御するアーム制御弁V6、バケットシリンダC5を制御するバケット制御弁V7、旋回モータMTを制御する旋回制御弁V8、及びサービスポート(SP、図示せず)に作業具として油圧アタッチメントが取り付けられた場合に該油圧アタッチメントに装備された油圧アクチュエータACを制御するSP制御弁V9を含む。なお、図2においては、制御弁VがSP制御弁V9を1つ含む例を記載しているが、制御弁Vは、SP制御弁V9を含まない構成であってもよく、SP制御弁V9に加えて1または複数の他のSP制御弁を備えていてもよい。
 図3は、第1実施形態におけるブーム制御弁V5、アーム制御弁V6、バケット制御弁V7、及び旋回制御弁V8に関する油圧回路の概略構成を示している。複数の制御弁Vのうち、少なくともいずれかは、第2ポンプ22から供給された作動油(パイロット油)によって、スプールの位置が切り換わる電磁式の3位置切換弁である。具体的には、複数の制御弁Vのうち、少なくともいずれかは、方向切換弁41及び電磁比例弁45を有しており、当該電磁比例弁45が開度を変更することで、方向切換弁41のスプールへ作用するパイロット油の圧力を変化させて、当該スプールの位置を変更することができる。
 本実施形態においては、図3に示すように、ブーム制御弁V5、アーム制御弁V6、バケット制御弁V7、及び旋回制御弁V8は、上述した電磁比例弁45を組み込んだ電磁式の3位置切換弁である。つまり、ブーム制御弁V5、アーム制御弁V6、バケット制御弁V7、及び旋回制御弁V8は、それぞれ方向切換弁41及び電磁比例弁45を有している。
 なお、以下の説明において、ブーム制御弁V5が有する方向切換弁41を第1切換弁41Aといい、アーム制御弁V6が有する方向切換弁41を第2切換弁41Bという。また、バケット制御弁V7が有する方向切換弁41を第3切換弁41Cといい、旋回制御弁V8が有する方向切換弁41を第4切換弁41Dという。
 また、以下の説明において、ブーム制御弁V5が有する電磁比例弁45を第1電磁弁45Aといい、アーム制御弁V6が有する電磁比例弁45を第2電磁弁45Bという。また、バケット制御弁V7が有する電磁比例弁45を第3電磁弁45Cといい、旋回制御弁V8が有する電磁比例弁45を第4電磁弁45Dという。
 方向切換弁41は、直動スプール形切換弁であり、電磁比例弁45から供給される作動油によって切換位置を変更することができる。方向切換弁41は、電磁比例弁45から供給される作動油の流量に比例してスプールが動かされて、該スプールの動かされた量に比例する量の作動油を操作対象の油圧アクチュエータACに供給する。
 方向切換弁41は、第1位置41aと、第2位置41bと、中立位置41cとに切り換え可能である。方向切換弁41は、切り換え方向一側の中立バネと、一側とは反対側の他側の中立バネとの付勢力によって中立位置41cに保持され、電磁比例弁45から出力される作動油の圧力によって、中立位置41cから第1位置41a又は第2位置41bに切り換えられる。
 また、方向切換弁41は、切り換え方向一側に第1受圧部42を有し、他側に第2受圧部43を有している。このため、電磁比例弁45から供給された作動油が第1受圧部42に作用すると、方向切換弁41が中立位置41cから第1位置41aに切り換えられる。また、電磁比例弁45から供給された作動油が第2受圧部43に作用すると方向切換弁41が中立位置41cから第2位置41bに切り換えられる。これにより、方向切換弁41は、吐出油路30から供給された作動油の吐出量(出力)、及び作動油の吐出方向を切り換えることができる。
 電磁比例弁45は、電流を供給されることで、比例ソレノイド45aが励磁して開度を変更可能である。なお、電磁比例弁45に供給される電流には、ディザ振幅が重畳されている。当該ディザ振幅によって、比例ソレノイド45aは微動して、電磁比例弁45から方向切換弁41の受圧部に作用する作動油も脈動する。
 図3に示すように、電磁比例弁45は、方向切換弁41の第1受圧部42に作動油を供給する第1パイロット弁46と、方向切換弁41の第1受圧部42とは反対側の第2受圧部43に作動油を供給する第2パイロット弁47と、を有している。第1パイロット弁46及び第2パイロット弁47は、供給油路31を介して第2ポンプ22から吐出された作動油が供給される。第1パイロット弁46には、比例ソレノイド45aが設けられ、比例ソレノイド45aによって第1パイロット弁46の開度が変更される。第2パイロット弁47には、比例ソレノイド45aが設けられ、比例ソレノイド45aによって第2パイロット弁47の開度が変更される。
 具体的には、作業機1の油圧システムSは、供給油路31に接続された作動油路32と、作動油タンクTに接続されたドレン油路33と、を備えている。作動油路32は、第1端部が供給油路31と接続されており、第1端部の反対側の第2端部が複数に分岐して、電磁比例弁45(第1パイロット弁46及び第2パイロット弁47)の一次側のポート(一次ポート)に接続されている。このため、作動油路32は、供給油路31を流れる作動油を電磁比例弁45(第1パイロット弁46及び第2パイロット弁47)のそれぞれに供給することができる。即ち、第2ポンプ22が吐出した吐出油は、供給油路31及び作動油路32を介して、電磁比例弁45に供給される。
 また、図3に示すように、ドレン油路33は、第1端部が作動油タンクTと接続されており、第1端部の反対側の第2端部が複数に分岐して、電磁比例弁45及び方向切換弁41に接続されている。具体的には、ドレン油路33の第2端部は、電磁比例弁45の吐出側ポートと方向切換弁41の受圧部(第1受圧部42及び第2受圧部43)との間の油路と、方向切換弁41の排出ポート(油圧アクチュエータACからの戻り油を排出するポート)と、接続されている。また、ドレン油路33のうち、電磁比例弁45の二次側のポート(二次ポート)と方向切換弁41の受圧部(第1受圧部42及び第2受圧部43)との間に合流する部分(排出油路33a)には、絞り33bが設けられている。
 このため、ドレン油路33は、電磁比例弁45から方向切換弁41の受圧部(第1受圧部42及び第2受圧部43)に供給された作動油の一部、及び方向切換弁41から排出された作動油を作動油タンクTに排出することができる。これにより、電磁比例弁45は、供給される電流の大きさに応じて、開度を変更して、作動油路32から供給された作動油を方向切換弁41の受圧部(第1受圧部42及び第2受圧部43)に供給、及びドレン油路33に排出することができる。
 なお、この実施形態では、電磁比例弁45を組み込んだ電磁式の3位置切換弁を示しているが、電磁比例弁45は別体に構成されていてもよい。また、複数の制御弁Vは、3位置切換弁以外の2位置切換弁、4位置切換弁等であってもよく限定されない。
<J/S操作>
 図3に示すように、作業機1の油圧システムSは、制御装置70を備えている。制御装置70は、電気・電子回路、CPU、MPU等に格納されたプログラム等から構成された装置である。制御装置70は、作業機1が有する様々な機器を制御する。例えば、制御装置70は、原動機E1及び当該原動機E1の回転数(原動機回転数)の制御を行うことができる。また、制御装置70は、記憶部70a及び電流制御部70bを有している。記憶部70aは、不揮発性のメモリ等であり、制御装置70の制御に関する様々な情報等を記憶している。電流制御部70bは電磁比例弁45に供給する電流を制御する。
 電磁比例弁45の比例ソレノイド45aは、制御装置70に接続されており、制御装置70から供給される電流の大きさ(電流値I、指令信号)に応じて開度を変更して、当該電流値Iに応じたパイロット圧を方向切換弁41に供給することにより、各方向切換弁41を切り換え操作する。また、制御装置70には、各方向切換弁41を操作する第1操作部材75が接続されている。
 第1操作部材75は、操作方向及び操作量を検出するセンサ76を有している。センサ76の構成は、特に限定されるものではなく、例えば、ポテンショメータ等を用いることができる。センサ76は、制御装置70に接続されており、検出した操作方向及び操作量を検出信号として出力する。
 制御装置70は、第1操作部材75の操作量に応じた電流値Iの電流を、操作対象の電磁比例弁45の比例ソレノイド45aに供給する。具体的には、図3に示すように、制御装置70は、第1操作部材75の操作方向及び操作量に応じて、電磁比例弁45(比例ソレノイド45a)に供給する電流を制御(定義)する電流制御部70bを有している。
 電流制御部70bは、センサ76が制御装置70に出力した検出信号と、記憶部70aに予め記憶された制御マップ又は所定の演算式に基づいて、電磁比例弁45(比例ソレノイド45a)に供給する電流(電流値I)を定義する。これにより、制御装置70は、電流制御部70bが定義した電流を、操作対象の電磁比例弁45の比例ソレノイド45aに供給する。
 また、電流制御部70bは、電磁比例弁45に供給する電流にディザ振幅を重畳させる。つまり、電磁比例弁45に供給する電流に振動成分を加えることでディザを発生させることが可能である。例えば、電流制御部70bは、電流制御に用いるPWM(Pulse Width Modulation)の周波数を低く設定し、電流を脈動させることが可能である。また、電流制御部70bは、電流指令値に振動成分を加算する方法を用いて、電流にディザ振幅を重畳させてもよい。
 本実施形態において、第1操作部材75は、第1操作具75Aと、第2操作具75Bと、を含んでいる。第1操作具75Aは、作業機1に装備された2つの操作対象を操作可能であり、例えば、第1切換弁41A及び第3切換弁41Cを操作可能である。言い換えると、第1操作具75Aは、ブーム15の揺動操作と、バケット17の揺動操作が可能である。また、第1操作具75Aは、センサ76として、当該第1操作具75Aの操作方向及び操作量を検出する第1センサ76aを有している。このため、電流制御部70bは、第1センサ76aから出力された検出信号に基づいて、第1電磁弁45A及び第3電磁弁45Cに供給する電流を定義し、制御装置70は、第1電磁弁45A及び第3電磁弁45Cに電流を供給する。
 例えば、第1操作具75Aが前後方向に操作された場合、電流制御部70bは、第1センサ76aから出力された検出信号に基づいて、第1電磁弁45Aに供給する電流を定義して、制御装置70は、第1電磁弁45Aに電流を供給する。一方、第1操作具75Aが機体幅方向に操作された場合、電流制御部70bは、第1センサ76aから出力された検出信号に基づいて、第3電磁弁45Cに供給する電流を定義して、制御装置70は、第3電磁弁45Cに電流を供給する。これにより、制御装置70は、第1操作具75Aの操作に基づいて、第1切換弁41A及び第3切換弁41Cを制御する。
 第2操作具75Bは、作業機1に装備された2つの操作対象を操作可能であり、例えば、第2切換弁41B及び第4切換弁41Dを操作可能である。言い換えると、第2操作具75Bは、アーム16の揺動操作と、旋回モータMTの旋回操作が可能である。また、第2操作具75Bは、センサ76として、当該第2操作具75Bの操作方向及び操作量を検出する第2センサ76bを有している。このため、電流制御部70bは、第2センサ76bから出力された検出信号に基づいて、第2電磁弁45B及び第4電磁弁45Dに供給する電流を定義し、制御装置70は、第2電磁弁45B及び第4電磁弁45Dに電流を供給する。
 例えば、第2操作具75Bが前後方向に操作された場合、電流制御部70bは、第2センサ76bから出力された検出信号に基づいて、第2電磁弁45Bに供給する電流を定義して、制御装置70は、第2電磁弁45Bに電流を供給する。一方、第2操作具75Bが機体幅方向に操作された場合、電流制御部70bは、第2センサ76bから出力された検出信号に基づいて、第4電磁弁45Dに供給する電流を定義して、制御装置70は、第4電磁弁45Dに電流を供給する。これにより、制御装置70は、第2操作具75Bの操作に基づいて、第2切換弁41B及び第4切換弁41Dを制御する。
 なお、第1操作具75A及び第2操作具75Bは、例えば、運転席6に着座した運転者が把持して操作する操作レバーによって構成される。
<パイロット操作>
 本実施形態においては、図4に示すように、ドーザ制御弁V1、スイング制御弁V2、第1走行制御弁V3、第2走行制御弁V4、及びSP制御弁V9は、操作装置55によってパイロット操作されるパイロット操作切換弁51によって構成されている。
 図4は、第1実施形態におけるドーザ制御弁V1、スイング制御弁V2、第1走行制御弁V3、第2走行制御弁V4、及びSP制御弁V9に関する油圧回路図である。図4に示すように、操作装置55は、制御弁V(V1~V4,V9)に対してパイロット圧(パイロット油)を出力するパイロットバルブ56と、該パイロットバルブ56を操作する第2操作部材57とを有している。第2操作部材57は、例えば運転席6の周囲に配置された操作レバーやペダル等から構成されている。
 パイロット操作切換弁51は、第1位置51aと、第2位置51bと、中立位置51cと、に切り換え可能である。パイロット操作切換弁51は、切り換え方向一側の中立バネと、一側とは反対側の他側の中立バネとの付勢力によって中立位置51cに保持され、パイロットバルブ56から出力される作動油の圧力によって、中立位置51cから第1位置51a又は第2位置51bに切り換えられる。
 また、パイロット操作切換弁51は、切り換え方向一側に第3受圧部52を有し、他側に第4受圧部53を有している。また、パイロットバルブ56の一次側のポート(一次ポート)は、作動油路32の第2端部と接続されており、作動油路32から供給された作動油を二次側のポート(二次ポート)からパイロット操作切換弁51の受圧部(第3受圧部52及び第4受圧部53)に供給することができる。
 このため、パイロットバルブ56から供給された作動油が第3受圧部52に作用すると、パイロット操作切換弁51が中立位置51cから第1位置51aに切り換えられる。また、パイロットバルブ56から供給された作動油が第4受圧部53に作用するとパイロット操作切換弁51が中立位置51cから第2位置51bに切り換えられる。これにより、パイロット操作切換弁51は、吐出油路30から供給された作動油の吐出量(出力)、及び作動油の吐出方向を切り換えることができる。
 なお、作業機1の油圧システムSは、複数の制御弁Vのうち、少なくとも1つ以上の制御弁Vが電磁比例弁45を組み込んだ制御弁Vであればよく、電磁比例弁45を組み込んだ制御弁Vは、ブーム制御弁V5、アーム制御弁V6、バケット制御弁V7、及び旋回制御弁V8に限定されない。例えば、電磁比例弁45を組み込んだ制御弁Vは、ドーザ制御弁V1、スイング制御弁V2、第1走行制御弁V3、第2走行制御弁V4、及びSP制御弁V9のいずれかであってもよいし、その組み合わせも限定されない。
<作動油の温度に応じたディザ振幅の変更>
 作業機1の油圧システムSにおいて、電流制御部70bは、電磁比例弁45に供給する電流のディザ振幅を、作動油の温度に応じて変更する。例えば、作業機1の油圧システムSは、作動油タンクTに貯留された作動油の温度を検出する温度センサ79を備え、電流制御部70bは、電磁比例弁45に供給する電流のディザ振幅を、温度センサ79にて検出された作動油の温度に応じて変更する。なお、温度センサ79の配置位置は、作動油タンクTに限定されず、コントロールバルブCV、供給油路31、作動油路32又はドレン油路33などに配置してもよい。
 具体的には、電流制御部70bは、作動油の温度が第1温度(或いは第1温度範囲)である場合に、ディザ振幅を予め定められた第1値とし、作動油の温度が第1温度よりも高い第2温度(或いは第2温度範囲)である場合に、ディザ振幅を、第1値よりも小さい予め定められた第2値に変更する。より詳しくは、電流制御部70bは、図5に示すように、作動油の温度範囲を複数に区分して温度の昇順に並ぶ複数の温度区分を設定し、複数の温度区分ごとに設定されるディザ振幅の値を当該複数の温度区分の昇順に段階的に小さくして設定している。図5は、複数の温度区分TC1~TC3とディザ振幅DA1~DA3との対応関係を定義したデータテーブルTBの一例を示す図である。
 記憶部70aには、複数の温度区分TC1~TC3ごとに、ディザ振幅DA1~DA3が設定された図5に示すデータテーブルDTが予め記憶されている。ディザ振幅DA1~DA3は、ディザ振幅DA1>ディザ振幅DA2>ディザ振幅DA3の順に小さくなっている。ディザ振幅DA1~DA3は、それぞれ単一の電流値(mA)を示す固定値である。温度区分TC1は、「~30℃未満」の区分であり、ディザ振幅DA1が設定されている。温度区分TC2は、「30℃以上50℃未満」の区分であり、ディザ振幅DA2が設定されている。温度区分TC3は、「50℃以上」の区分であり、ディザ振幅DA3が設定されている。この実施形態では、3個の温度区分TC1~TC3としているが、複数の温度区分は、3個以外の複数個としてもよい。また、各温度区分の閾値は30℃、50℃に限らず、作動油や電磁比例弁45の特性等に応じて適宜設定すればよい。
 なお、ディザ振幅DA1~DA3は、対応する温度区分において、電磁比例弁45のヒステリシスを十分に低下させることができ、且つ、電流のディザ振幅に起因する振動音を低減することができるように設定されている。具体的には、電磁比例弁45のヒステリシスは、電磁比例弁45に供給する電流を増大させるときの出力油圧と電磁比例弁45に供給する電流を減少させるときの出力油圧との差であり、作動油の温度が低いほど大きくなる。一方、ディザ振幅に起因する振動音は作動油の温度が高いほど生じやすい。そこで、本実施形態では、電磁比例弁45に供給する電流に重畳させるディザ振幅を、作動油の温度に応じて、電磁比例弁45のヒステリシスを十分に(応答性の低下を十分に抑制することができる程度に)低下させることができ、且つディザ振幅に起因する振動音の発生を十分に抑制することができる範囲内の振幅になるように設定している。
 また、電流制御部70bは、イグニッションスイッチ71から制御装置70に出力された原動機E1を始動させる信号に基づいて、原動機E1が駆動しているか否かを判断する。
 イグニッションスイッチ71は、原動機E1を始動させるためのスイッチである。イグニッションスイッチ71は、制御装置70と接続されており、制御装置70は、イグニッションスイッチ71から出力された信号(始動信号及び停止信号)に基づいて原動機E1の始動及び停止を行う。
<作動油の温度に応じたディザ振幅の制御処理>
 以下、電流制御部70bによる作動油の温度に基づく電流のディザ振幅を設定する処理について、図6を用いて詳しく説明する。図6は、電流制御部70bによる作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。
 まず、電流制御部70bは、原動機E1が駆動しているか否かを判断する(S1)。
 電流制御部70bは、原動機E1が駆動していると判断した場合(S1,Yes)、第1操作部材75によって操作されている電磁比例弁45があるか否かを判断する(S2)。
 電流制御部70bは、第1操作部材75によって操作されている電磁比例弁45があると判断した場合(S2,Yes)、第1操作部材75の操作方向及び操作量に応じて、電磁比例弁45に供給する電流を定義する(S3)。
 次に、電流制御部70bは、温度センサ79にて検出された作動油の温度を取得し(S4)、取得した作動油の温度に対応する温度区分を特定し(S5)、特定した温度区分に対応するディザ振幅を選択する(S6)。
 また、電流制御部70bは、S3において第1操作部材75によって操作されている電磁比例弁45を特定する(S7)。
 次に、電流制御部70bは、S3で定義した電流にS6において選択したディザ振幅を重畳させた電流を、S7において特定した電磁比例弁45に供給する(S8)。
 電流制御部70bは、S8の処理の後、及びS2において操作されている電磁比例弁45がないと判断した場合(S2,No)、原動機E1が停止しているか否かを判断する(S9)。具体的には、電流制御部70bは、イグニッションスイッチ71から制御装置70に出力された信号(停止信号)に基づいて、原動機E1が駆動しているか否かを判断する。
 電流制御部70bは、制御装置70がイグニッションスイッチ71から停止信号を出力されたことを確認し、原動機E1が停止していると判断した場合(S9,Yes)、本処理を終了する。一方、電流制御部70bは、制御装置70がイグニッションスイッチ71から停止信号を出力されていないことを確認し、原動機E1が停止していないと判断した場合(S9,No)、S2に戻ってS2以降の処理を繰り返す。
<効果>
 上述した第1実施形態の作業機1の油圧システムSは、作動油によって駆動する油圧アクチュエータACと、供給される電流に応じて比例ソレノイド45aが励磁して、油圧アクチュエータACを制御する電磁比例弁45と、電磁比例弁45に供給する電流を制御する制御装置70と、を備え、制御装置70は、電磁比例弁45に供給する電流のディザ振幅を、作動油の温度に応じて変更する電流制御部70bを備える。この構成によれば、電流制御部70bは、電磁比例弁45に供給する電流のディザ振幅を、作動油の温度に応じて変更することにより、電磁比例弁45のヒステリシスを低減するとともに電磁比例弁45に起因する振動音を低減することができる。
 また、電流制御部70bは、作動油の温度が第1温度である場合に、ディザ振幅を予め定められた第1値とし、作動油の温度が第1温度よりも高い第2温度である場合に、ディザ振幅を、第1値よりも小さい予め定められた第2値に変更する。この構成によれば、作動油の温度が第1温度から第2温度に上昇した場合に、電磁比例弁45に起因して発生又は増大する振動音を、ディザ振幅を第1値よりも小さい第2値に変更することにより、低減することができる。
 また、電流制御部70bは、作動油の温度範囲を複数に区分して温度の昇順に並ぶ複数の温度区分TC1~TC3を設定し、複数の温度区分TC1~TC3ごとに設定されるディザ振幅の値を当該複数の温度区分の昇順に段階的に小さくする。この構成によれば、作動油の複数の温度区分TC1~TC3の昇順にディザ振幅を段階的に小さくすることにより、電磁比例弁45のヒステリシスを低減するとともに電磁比例弁45に起因する振動音を低減することができる。
 また、電磁比例弁45と方向切換弁41とが一体的に構成された制御弁V(V1~V9)を複数結合したコントロールバルブCV(複合制御弁:マルチプルコントロールバルブ)を備え、電流制御部70bは、コントロールバルブCVの複数の電磁比例弁45に供給する電流のディザ振幅を、作動油の温度に応じて定められた値に変更するとしている。この構成によれば、各方向切換弁41のスプールによる振動音をそれぞれ低減することができるので、コントロールバルブCV(複合制御弁)の全体の振動音を低減することができる。つまり、作動油の温度に起因するコントロールバルブCV(複合制御弁)の振動音を効果的に低減することができる。
 また、作動油を貯留する作動油タンクTと、作動油タンクTに貯留された作動油の温度を検出する温度センサ79と、を備え、電流制御部70bは、電磁比例弁45に供給する電流のディザ振幅を、温度センサ79にて検出された作動油の温度に応じて変更する。この構成によれば、温度変化の比較的緩やかな作動油タンクTに貯留された作動油の温度を用いて、ディザ振幅を変更することができる。これによって、ディザ振幅の変更を、作業機の局所的な温度変化に左右されることなく、安定して行うことができる。
[第2実施形態]
 以下、第2実施形態の作業機1の油圧システムSについて、上述した実施形態(第1実施形態)と異なる構成を中心に説明し、第1実施形態と共通する構成については同じ符号を付して詳しい説明を省略する。
 第1実施形態では、作動油の温度区分に応じて電流のディザ振幅を段階的に変更しているが、第2実施形態では、作動油の温度に応じて連続的に電流のディザ振幅を変更する点が、第1実施形態とは異なっている。
 第2実施形態では、電流制御部70bは、作動油の温度が高くなるにつれて、ディザ振幅を連続的に小さくする。
 図7Aは、油温とディザ振幅との対応関係を示した特性図である。記憶部70aには、油温とディザ振幅とが一対一で対応付けられた図7Aに示す特性データが予め記憶されている。図7Aに示す特性データは、例えば、油温が「-20℃~30℃」まではディザ振幅DA1を示し、油温が「30℃~50℃」の範囲ではディザ振幅DA1からディザ振幅DA3に連続的に変化(直線状の下り勾配の変化)し、油温が「50℃」以降ではディザ振幅DA3で一定となるデータである。このため、電流制御部70bは、記憶部70aに記憶された図7Aに示す特性データを用いて、温度センサ79にて検出された油温に対応するディザ振幅を特定することができる。なお、記憶部70aは、図7Aに示す特性データを示す特性式を予め記憶し、この特性式と、温度センサ79にて検出された油温とを用いて、油温に対応するディザ振幅を演算してもよい。
 なお、記憶部70aは、図7Bに示す別例の特性図を示す特性データを予め記憶しているものであってもよい。図7Bは、油温とディザ振幅との対応関係を示した別例の特性図である。図7Bに示す特性データは、図7Aに示す特性データと比べて、油温が「-20℃~30℃」までの範囲と、油温が「50℃」以降の範囲についても、ディザ振幅が連続的に変化する特性となっている点が、図7Aに示す特性データとは異なっている。なお、図7A、図7Bに示す特性データは、直線状に限らず、曲線状に変化するものであってもよい。
<作動油の温度に応じたディザ振幅の制御処理>
 図8は、電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。図8に示すフローチャートでは、図6に示すフローチャートのS5、S6を削除し、S5に替えてS5Aを備える点が、図6に示すフローチャートとは異なっている。
 図8に示すように、電流制御部70bは、温度センサ79にて検出された作動油の温度を取得する(S4)と、検出温度に対応するディザ振幅を選択(或いは演算)する(S5A)。S7~S9については、第1実施形態の場合と同じであるため、ここでの説明を省略する。
<効果>
 上述した第2実施形態の作業機1の油圧システムSでは、電流制御部70bは、作動油の温度が高くなるにつれて、ディザ振幅を連続的に小さくするので、電磁比例弁45のヒステリシス及び電磁比例弁45に起因する振動音をより適切に低減することができる。
[第3実施形態]
 以下、第3実施形態の作業機1の油圧システムSについて、上述した実施形態(第1、第2実施形態)と異なる構成を中心に説明し、第1、2実施形態と共通する構成については同じ符号を付して詳しい説明を省略する。
 第1、第2実施形態では、作動油の温度区分に応じて電流のディザ振幅を変更しているが、第3実施形態では、電磁比例弁45の電流が最大電流値又は特定電流値であればディザ振幅を温度に応じて変更し、電磁比例弁45の電流が最大電流値及び特定電流値のいずれでもない場合に作動油の温度に関わらずディザ振幅を変更しない点が、第1、第2実施形態とは異なっている。
 方向切換弁41は、電流制御部70bから供給される電流の大きさに応じて電磁比例弁45の開度が変更されることで、ストローク開始位置からストローク終了位置まで移動可能なスプールを有し、電磁比例弁45から供給される作動油の流量に比例してスプールが動かされて、当該スプールの動かされた量に比例する量の作動油を油圧アクチュエータACに供給する。方向切換弁41については、第1、第2実施形態の方向切換弁41と同じである。
 第3実施形態では、電流制御部70bは、電磁比例弁45に供給する電流が、電磁比例弁45の開度を最大にする最大電流値又は最大電流値よりも予め定められた値だけ小さい特定電流値である場合に、ディザ振幅を作動油の温度に応じて定められた値に変更し、最大電流値及び特定電流値のいずれでもない場合に、ディザ振幅を作動油の温度に応じて定められた値に変更することを行わない。
 例えば、電磁比例弁45は、最大電流値の電流が供給されると、開度を最大にする。方向切換弁41は、電磁比例弁45から供給される作動油の流量が最大となり、スプールがストローク終了位置に移動にする。つまり、スプールがストロークエンドに到達する。このことから、最大電流値は、スプールをストロークエンドに移動させるための電流値であると言える。
 例えば、電流制御部70bから電磁比例弁45(第1パイロット弁46)に供給される電流が最大電流値であった場合、電磁比例弁45(第1パイロット弁46)が最大開度となり、電磁比例弁45(第1パイロット弁46)から供給された作動油が第1受圧部42に作用して、方向切換弁41が中立位置41cから第1位置41aに切り換えられ、方向切換弁41のスプールが第1位置41aにおいてストローク終了位置(ストロークエンド)に移動にする。また、電流制御部70bから電磁比例弁45(第2パイロット弁47)に供給される電流が最大電流値であった場合、電磁比例弁45(第2パイロット弁47)が最大開度となり、電磁比例弁45(第2パイロット弁47)から供給された作動油が第2受圧部43に作用して、方向切換弁41が中立位置41cから第2位置41bに切り換えられ、方向切換弁41のスプールが第2位置41bにおいてストローク終了位置(ストロークエンド)に移動にする。
 また、電磁比例弁45は、特定電流値の電流が供給されると、開度を最大よりも少し小さい値にする。方向切換弁41は、電磁比例弁45から供給される作動油の流量が最大よりも少し小さい値となり、スプールがストローク終了位置から僅かに離れた手前位置(近傍位置)に移動にする。つまり、スプールがストロークエンドの近傍位置に移動する。このことから、特定電流値は、スプールをストロークエンドの近傍位置に移動させるための電流値であると言える。
 例えば、電流制御部70bから電磁比例弁45(第1パイロット弁46)に供給される電流が特定電流値であった場合、電磁比例弁45(第1パイロット弁46)が最大開度よりも少し小さい開度となり、電磁比例弁45(第1パイロット弁46)から供給された作動油が第1受圧部42に作用して、方向切換弁41が中立位置41cから第1位置41aに切り換えられ、方向切換弁41のスプールが第1位置41aにおいてストローク終了位置(ストロークエンド)から僅かに離れた手前位置(近傍位置)に移動にする。また、電流制御部70bから電磁比例弁45(第2パイロット弁47)に供給される電流が特定電流値であった場合、電磁比例弁45(第2パイロット弁47)が最大開度よりも少し小さい開度となり、電磁比例弁45(第2パイロット弁47)から供給された作動油が第2受圧部43に作用して、方向切換弁41が中立位置41cから第2位置41bに切り換えられ、方向切換弁41のスプールが第2位置41bにおいてストローク終了位置(ストロークエンド)から僅かに離れた手前位置(近傍位置)に移動にする。
 なお、特定電流値は、最大電流値から、ディザ振幅の電流値だけ減算した電流値としてもよい。この場合には、スプールが、ストロークエンドよりも当該スプールの微動幅に相当する距離だけ手前に位置することになる。
 つまり、電流制御部70bは、スプールがストローク終了位置又はストローク終了位置の予め定められた手前位置にある場合に、ディザ振幅を作動油の温度に応じて変更する。一方、電流制御部70bは、スプールがストローク終了位置及び手前位置のいずれでもない場合に、ディザ振幅を作動油の温度にかかわらず一定値に維持する。
<作動油の温度に応じたディザ振幅の制御処理>
 図9は、電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。図9に示すフローチャートでは、図6に示すフローチャートに対してS21、S22を追加している点が、図6に示すフローチャートとは異なっている。
 図9に示すように、電流制御部70bは、S3の処理のあと、電磁比例弁45に供給する電流が、最大電流値又は特定電流値であるか、又は、最大電流値及び特定電流値の何れでもないかを判定する(S21)。電流制御部70bは、電磁比例弁45に供給する電流が、最大電流値又は特定電流値であると判定すると(S21,Yes)、温度センサ79にて検出された作動油の温度を取得する(S4)。S5~S9については、第1実施形態の場合と同じであるため、ここでの説明を省略する。
 一方、電流制御部70bは、電磁比例弁45に供給する電流が、最大電流値及び特定電流値の何れでもないと判定すると(S21,No)、最高値のディザ振幅を選択する(S22)。つまり、電流制御部70bは、作動油の温度に関わらずディザ振幅を一定値(例えば最大値)に設定する。
<効果>
 上述した第3実施形態の作業機1の油圧システムSでは、電流制御部70bから供給される電流の大きさに応じて電磁比例弁45の開度が変更されることで、ストローク開始位置からストローク終了位置まで移動可能なスプールを有し、電磁比例弁45から供給される作動油の流量に比例してスプールが動かされて、当該スプールの動かされた量に比例する量の作動油を油圧アクチュエータACに供給する方向切換弁41を備え、電流制御部70bは、電磁比例弁45に供給する電流が、電磁比例弁45の開度を最大にする最大電流値又は最大電流値よりも予め定められた値だけ小さい特定電流値である場合に、ディザ振幅を作動油の温度に応じて定められた値に変更し、最大電流値及び特定電流値のいずれでもない場合に、ディザ振幅を作動油の温度に応じて定められた値に変更することを行わない。
 この構成によれば、電流制御部70bは、電磁比例弁45に供給する電流が電磁比例弁45の開度を最大にする最大電流値又は最大電流値よりも予め定められた値だけ小さい特定電流値である場合に、つまり、スプールが、ストローク終了位置又は当該ストローク終了位置の予め定められた手前位置にある場合に、ディザ振幅を作動油の温度に応じて定められた値に変更するので、スプールがストローク終了位置及びその付近である手前位置において、圧力振幅に同調してスプールが振動しスプールキャップを叩いてしまうことを抑制することができる。また、スプールをストローク終了位置に押し付けた状態で圧力発振が発生することを低減することができる。このため、作動油の温度が上昇するにつれて方向切換弁41のスプールによって発生又は増大する振動音を、的確に低減することができる。また、電流制御部70bは、最大電流値及び特定電流値のいずれでもない場合、つまり、スプールが、ストローク終了位置及び手前位置のいずれでもない場合に、ディザ振幅を作動油の温度に応じて定められた値に変更することを行わず、最大値に設定する。つまり、スプールがストローク終了位置及び手前位置のいずれでもない場合には、方向切換弁41のスプールによる振動音が大きくなりにくいので、ディザ振幅を作動油の温度にかかわらず最大値に維持できるので、ヒステリシスをより効果的に緩和することができ、操作性が良い状態を確保することができる。
[第4実施形態]
 以下、第4実施形態の作業機1の油圧システムSについて、上述した第3実施形態と異なる構成を中心に説明し、第3実施形態と共通する構成については同じ符号を付して詳しい説明を省略する。
 第3実施形態では、電磁比例弁の電流が最大電流値又は特定電流値であればディザ振幅を温度に応じて変更し、電磁比例弁の電流が最大電流値及び特定電流値のいずれでもない場合に作動油の温度に関わらずディザ振幅を変更しないとしているが、第4実施形態では、スプールがストローク終了位置又は当該ストローク終了位置の予め定められた手前位置であればディザ振幅を温度に応じて変更し、スプールがストローク終了位置又は手前位置のいずれでもない場合に作動油の温度に関わらずディザ振幅を変更しない点が、第3実施形態とは異なっている。
 第4実施形態の方向切換弁41は、図10に示すように、スプールの位置を検出する位置検出センサ44を備えている。
 第4実施形態では、電流制御部70bは、位置検出センサ44からの検出信号に基づいて、方向切換弁41のスプールの位置を判定できる。電流制御部70bは、スプールがストローク終了位置(ストロークエンド)又は当該ストローク終了位置の予め定められた手前位置(ストローク終了位置から僅かに離れた位置(近傍位置))にある場合に、ディザ振幅を作動油の温度に応じて変更し、スプールがストローク終了位置又は手前位置のいずれでもない場合に、ディザ振幅を作動油の温度にかかわらず一定値に設定する。
 なお、手前位置は、スプールが、ストロークエンドよりも当該スプールの微動幅に相当する距離だけ手前に位置する位置であってもよい。
<作動油の温度に応じたディザ振幅の制御処理>
 以下、電流制御部70bによる作動油の温度に基づく電流のディザ振幅を設定する処理について、図11を用いて詳しく説明する。図11は、電流制御部による作動油の温度に応じたディザ振幅の制御処理を示すフローチャートである。図11に示すフローチャートでは、図9に示すフローチャートに対してS21に替えて、S23を追加している点が、図9に示すフローチャートとは異なっている。
 図11に示すように、電流制御部70bは、S3の処理のあと、位置検出センサ44からの検出信号に基づいて、方向切換弁41のスプールがストローク終了位置又は当該ストローク終了位置の予め定められた手前位置にあるか、又は、ストローク終了位置及び手前位置の何れでもないかを判定する(S23)。電流制御部70bは、方向切換弁41のスプールがストローク終了位置又は当該ストローク終了位置の予め定められた手前位置にあると判定すると(S23,Yes)、温度センサ79にて検出された作動油の温度を取得する(S4)。S5~S9については、第3実施形態の場合と同じであるため、ここでの説明を省略する。
 一方、電流制御部70bは、位置検出センサ44からの検出信号に基づいて、方向切換弁41のスプールがストローク終了位置及び手前位置の何れでもないと判定すると(S23,No)、最高値のディザ振幅を選択する(S22)。つまり、電流制御部70bは、作動油の温度に関わらずディザ振幅を一定値(例えば最大値)に設定する。
<効果>
 上述した第4実施形態の作業機1の油圧システムSでは、ストローク開始位置からストローク終了位置まで移動可能なスプールを有し、電磁比例弁45から供給される作動油の流量に比例してスプールが動かされて、当該スプールの動かされた量に比例する量の作動油を油圧アクチュエータACに供給する方向切換弁41を備え、電流制御部70bは、方向切換弁41のスプールがストローク終了位置又は手前位置である場合に、ディザ振幅を作動油の温度に応じて定められた値に変更し、方向切換弁41のスプールがストローク終了位置及び手前位置のいずれでもない場合に、ディザ振幅を作動油の温度に応じて定められた値に変更することを行わない。
 この構成によれば、上述した第3実施形態と同様の効果が得られる。
[第5実施形態]
 図12は、第5実施形態におけるブーム制御弁、アーム制御弁、バケット制御弁、及び旋回制御弁に関する油圧回路図である。
 以下、第5実施形態の作業機1の油圧システムSについて、上述した第1実施形態と異なる構成を中心に説明し、第1実施形態と共通する構成については同じ符号を付して詳しい説明を省略する。第5実施形態の作業機1の油圧システムSでは、第1実施形態と異なり、制御弁Vは、例えば、直動式の電磁弁145が採用される。直動式の電磁弁145は、供給される電流の大きさに応じて比例ソレノイド45aが移動し、比例ソレノイド45aによってスプールを動かして作動油の流れを制御する弁である。
 直動式の電磁弁145は、第1位置a1と、第2位置b1、中立位置c1とに切り換え可能である。直動式の電磁弁145は、切り換え方向一側の中立バネと、一側とは反対側の他側の中立バネとの付勢力によって中立位置c1に保持され、比例ソレノイド45aによってスプールを動かして、中立位置c1から第1位置a1又は第2位置b1に切り換わる。
<効果>
 また、第5実施形態の作業機1の油圧システムSでは、コントロールバルブCVを構成する各制御弁Vは、直動式の電磁弁145を備え、電流制御部70bは、制御弁Vの電磁弁145に供給する電流のディザ振幅を、作動油の温度に応じて定められた値に変更するとしてもよい。
 なお、上記の第1~第4実施形態では、複数の制御弁Vを結合したコントロールバルブCV(複合制御弁:マルチプルコントロールバルブ)を用いているが、複数の制御弁Vを個別に分離した制御弁(コントロールバルブ)、つまり、電磁比例弁45と方向切換弁41とが一体的に構成された制御弁Vとし、電流制御部70bは、制御弁Vの電磁比例弁45に供給する電流のディザ振幅を、作動油の温度に応じて定められた値に変更するとしてもよい。この構成によれば、制御弁V(コントロールバルブ)においても、作動油の温度に起因する制御弁Vの振動音を低減することができる。
 以上、本発明について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
  1 作業機(旋回作業機)
 41 方向切換弁
 45 電磁比例弁
 70 制御装置
 70a 記憶部
 70b 電流制御部
 AC 油圧アクチュエータ
 CV コントロールバルブ
  S 油圧システム
  V 制御弁

Claims (9)

  1.  作動油によって駆動する油圧アクチュエータと、
     供給される電流に応じて、前記油圧アクチュエータを制御する電磁比例弁と、
     前記電磁比例弁に供給する電流を制御する制御装置と、
     を備え、
     前記制御装置は、前記電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて変更する作業機の油圧システム。
  2.  前記制御装置は、前記作動油の温度が第1温度である場合に、前記ディザ振幅を予め定められた第1値とし、前記作動油の温度が前記第1温度よりも高い第2温度である場合に、前記ディザ振幅を、前記第1値よりも小さい予め定められた第2値に変更する請求項1に記載の作業機の油圧システム。
  3.  前記制御装置は、前記作動油の温度範囲を複数に区分して温度の昇順に並ぶ複数の温度区分を設定し、前記複数の温度区分ごとに設定される前記ディザ振幅の値を当該複数の温度区分の昇順に段階的に小さくする請求項1又は2に記載の作業機の油圧システム。
  4.  前記制御装置は、前記作動油の温度が高くなるにつれて、前記ディザ振幅を連続的に小さくする請求項1又は2に記載の作業機の油圧システム。
  5.  前記電磁比例弁から供給される作動油の流量に比例してストローク開始位置からストローク終了位置まで移動可能なスプールを有し、当該スプールの位置に応じた量の作動油を前記油圧アクチュエータに供給する方向切換弁を備え、
     前記電磁比例弁は、前記制御装置から供給される電流の大きさに応じて当該電磁比例弁の開度が変更されることで前記方向切換弁に供給する作動油の流量を切り替え、
     前記制御装置は、前記電磁比例弁に供給する電流が、前記電磁比例弁の開度を最大にする最大電流値又は前記最大電流値よりも予め定められた値だけ小さい特定電流値である場合に、前記ディザ振幅を前記作動油の温度に応じて変更し、前記最大電流値及び前記特定電流値のいずれでもない場合に、前記ディザ振幅を前記作動油の温度にかかわらず一定値に設定する請求項1~4のいずれか1項に記載の作業機の油圧システム。
  6.  ストローク開始位置からストローク終了位置まで移動可能なスプールを有し、前記電磁比例弁から供給される作動油の流量に比例して前記スプールが動かされて、当該スプールの動かされた量に応じた作動油を前記油圧アクチュエータに供給する方向切換弁を備え、
     前記制御装置は、前記スプールが、前記ストローク終了位置又は当該ストローク終了位置の予め定められた手前位置にある場合に、前記ディザ振幅を前記作動油の温度に応じて変更し、前記スプールが、前記ストローク終了位置及び前記手前位置のいずれでもない場合に、前記ディザ振幅を前記作動油の温度にかかわらず一定値に設定する請求項1~4のいずれか1項に記載の作業機の油圧システム。
  7.  前記電磁比例弁と前記方向切換弁とが一体的に構成された制御弁を備え、
     前記制御装置は、前記制御弁の前記電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて定められた値に変更する請求項5又は6に記載の作業機の油圧システム。
  8.  前記電磁比例弁と前記方向切換弁とが一体的に構成された制御弁を複数結合した複合制御弁を備え、
     前記制御装置は、前記複合制御弁の前記複数の電磁比例弁に供給する電流のディザ振幅を、前記作動油の温度に応じて定められた値に変更する請求項5又は6に記載の作業機の油圧システム。
  9.  前記作動油を貯留する作動油タンクと、
     前記作動油タンクに貯留された前記作動油の温度を検出する温度センサと、を備え、
     前記制御装置は、前記電磁比例弁に供給する電流のディザ振幅を、前記温度センサにて検出された前記作動油の温度に応じて変更する請求項1~8のいずれか1項に記載の作業機の油圧システム。
PCT/JP2022/046438 2021-12-28 2022-12-16 作業機の油圧システム WO2023127552A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280075273.5A CN118234959A (zh) 2021-12-28 2022-12-16 作业机的液压系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214939 2021-12-28
JP2021214939 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127552A1 true WO2023127552A1 (ja) 2023-07-06

Family

ID=86998867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046438 WO2023127552A1 (ja) 2021-12-28 2022-12-16 作業機の油圧システム

Country Status (2)

Country Link
CN (1) CN118234959A (ja)
WO (1) WO2023127552A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300581A (ja) * 1989-05-11 1990-12-12 Nissan Motor Co Ltd 油圧制御用電磁バルブ制御装置
JPH0579503A (ja) * 1991-09-20 1993-03-30 Kobe Steel Ltd 油圧切換弁の切換装置
JP2009228794A (ja) 2008-03-24 2009-10-08 Kubota Corp 作業機の油圧システム
JP2021175911A (ja) * 2020-05-01 2021-11-04 株式会社ジェイテクト 電磁弁の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300581A (ja) * 1989-05-11 1990-12-12 Nissan Motor Co Ltd 油圧制御用電磁バルブ制御装置
JPH0579503A (ja) * 1991-09-20 1993-03-30 Kobe Steel Ltd 油圧切換弁の切換装置
JP2009228794A (ja) 2008-03-24 2009-10-08 Kubota Corp 作業機の油圧システム
JP2021175911A (ja) * 2020-05-01 2021-11-04 株式会社ジェイテクト 電磁弁の制御装置

Also Published As

Publication number Publication date
CN118234959A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
KR101793993B1 (ko) 작업 기계의 유압 시스템
JP5184773B2 (ja) 圧力補償弁を有する油圧システム
JP6467515B2 (ja) 建設機械
CN107532409B (zh) 工程机械的控制装置
JP6676827B2 (ja) 作業機械
KR20200048050A (ko) 건설기계의 주행 제어 시스템 및 건설기계의 주행 제어 방법
JP6695620B2 (ja) 建設機械
JP2011196439A (ja) 旋回作業車の油圧回路
KR20180029490A (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
JP6033708B2 (ja) 建設機械の油圧回路及びその制御方法
CN114555957A (zh) 再生装置、具备该再生装置的液压驱动系统及其控制装置
WO2020054507A1 (ja) 建設機械
JP3763375B2 (ja) 建設機械の制御回路
JP6257879B2 (ja) ショベル
CN109642416B (zh) 工程机械的控制系统及工程机械的控制方法
CN105971043B (zh) 挖土机
WO2023127552A1 (ja) 作業機の油圧システム
JP2019011690A (ja) 作業機
JP7297401B2 (ja) ショベル
JP2004076904A (ja) 建設機械の油圧シリンダ制御装置
US20140032057A1 (en) Feedforward control system
JP3788686B2 (ja) 油圧駆動制御装置
US20170108015A1 (en) Independent Metering Valves with Flow Sharing
JPH11229444A (ja) 建設機械の油圧制御装置およびその油圧制御方法
WO2023127303A1 (ja) 作業機の油圧システム、及び作業機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570858

Country of ref document: JP